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The spectrum of a relic gravitational wave (RGW) contains high-frequency divergences, which should
be removed. We present a systematic study of the issue, based on the exact RGW solution that covers the
five stages, from inflation to the acceleration, each being a power law expansion. We show that the present
RGW consists of vacuum dominating at f > 1011 Hz and graviton dominating at f < 1011 Hz,
respectively. The gravitons are produced by the four cosmic transitions, mostly by the inflation-reheating
one. We perform adiabatic regularization to remove vacuum divergences in three schemes: at present, at the
end of inflation, and at horizon exit, to the second adiabatic order for the spectrum, and the fourth order for
energy density and pressure. In the first scheme, a cutoff is needed to remove graviton divergences. We find
that all three schemes yield the spectra of a similar profile, and the primordial spectrum defined far outside
horizon during inflation is practically unaffected. We also regularize the gauge-invariant perturbed inflaton
and the scalar curvature perturbation by the last two schemes, and find that the scalar spectra, the tensor-
scalar ratio, and the consistency relation remain unchanged.
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I. INTRODUCTION

In inflationary cosmology, relic gravitational wave
(RGW) is generated during inflation as the traceless-
transverse components of metric perturbations [1–16].
After reheating, radiation, matter, and acceleration stages
of the expansion, it evolves into a stochastic background in
the present Universe. Only slightly affected by some astro-
physical processes [17–22] during the evolution, RGW
carries unique information about the early Universe besides
cosmic microwave background (CMB). Moreover, existing
everywhere and all the time and having a very broad
spectrum over ð10−18–1011Þ Hz, RGW has been the target
for various GW detectors working at different frequency
bands, such as LIGO [23], Virgo [24], GEO [25], and
KAGRA [26], LISA [27], pulsar timing array (PTA)
[28,29], WMAP [30,31], Planck [32], BICEP2 [33,34],
and polarized laser beam detectors [35,36].
During inflation, the low-frequency modes of RGW are

stretched outside of the horizon and remain constant,
hkðτÞ ¼ const. The modes in the band (10−18–10−16 Hz)
reenter the horizon around z ∼ 1100 and leave their
imprints on CMB. The polarization spectrum CBB

l in the
detection range l ∼ ð10–3000Þ is due to the primordial
RGW spectrum [30,32,37–40]. On the other hand, as we
shall see, the high-frequency (f > 1011 Hz) modes never
exit the horizon and decreases as hkðτÞ ∝ 1=aðτÞ. These
correspond to the vacuum part of RGW, giving a spectrum

∝ f2 and leading to UV divergences in the autocorrelation
function, the energy density, and pressure. Vacuum diver-
gences also occur in any quantum fields in curved space-
time, such as inflaton fields and scalar metric perturbations.
To remove the vacuum divergences, the normal ordering of
field operators in the flat spacetime will not be proper in an
expanding universe, since certain finite portions of the
vacuum do have physical effects. Parker-Fulling’s adiabatic
regularization with a minimal subtraction rule [41–47] has
been developed to deal with the issue and can apply to
quantum fields in an expanding universe, including RGW.
The vacuum divergences of quantum fields can be effi-
ciently subtracted to a desired adiabatic order, while
physically relevant parts of the vacuum are kept. The
resulting RGW spectrum after regularization is conse-
quently suppressed in high frequencies, which will serve
as the target for the high-frequency GW detectors, such as a
polarized, Gaussian laser beam proposed in Refs. [35,36].
For the low range (10−18–1011 Hz), the spectrum may be
also possibly modified by regularization. To investigate in a
precise manner, the structure of RGWas a quantum field in
the present accelerating stage needs to be explored in detail.
In the literature on adiabatic regularization of quantum

fields during inflation, different schemes and results were put
forward [48–58], and there are disagreements on the regu-
larized primordial spectrum and its spectral indices defined at
low frequencies. Even doubts arose as to whether adiabatic
regularization is proper for removing vacuum divergences.
The previous studies considered only the spectrum in the
inflation stage, but not in the present stage. Moreover, these
studies relied on the slow-roll approximation during inflation
[59–64]. Sometimes inconsistent treatments have been
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involved. For instance, in solving the field equation, a slow-
roll parameter ϵwas firstly assumed to be a constant, but then
it was allowed to vary in calculating the spectral running
index. Sometimes the spectrum evaluated at the horizon exit
was used in place of the primordial spectrum evaluated at far
outside of the horizon. In fact, the two differ drastically in the
slope, the latter is the one actually referred to in CMB
observations, whereas the former is not. These shortcomings
will bring about uncertainties in the resulting spectrum and
its regularization.
In this paper, we shall study the spectrum, energy density,

and pressure of RGW in the expanding Universe, and
investigate the issue of removal of UV divergences of the
vacuum of RGW by adiabatic regularization method. To this
end, we use the exact solution of RGW that covers thewhole
course of expansion, from inflation, reheating, radiation,
matter, to the present accelerating stage, each stage being
described by a power-law scalar factor aðτÞ ∝ τd whered is a
constant. Using the exact spectrum and the spectral indicesnt
andαt valid at any time andwave number, we show explicitly
how the two spectra mentioned above differ drastically and
derive a relation between nt and the slow-roll parameter ϵ.
Then we shall explore the structure of RGW as a quantum
field in the present stage, decompose it into the vacuum and
gravitons, and derive the number of gravitons generated
during the cosmic expansions. We identify that the vacuum
dominates for f > 1011 Hz, gravitons dominate for
f < 1011 Hz, and both have UV divergences to various
extents.
Then, we shall apply the formulation of adiabatic regu-

larization and the minimal-subtraction rule to remove the
vacuum divergences of RGW at a generic time. By explicit
calculations, we shall show that the second adiabatic order is
sufficient for the spectrum of vacuum containing quadratic
and logarithmic divergences, whereas the fourth order is
needed for the vacuum energy density and pressure contain-
ing extra quartic divergences. To achieve a convergent,
present RGW spectrum, we shall remove UV divergences,
from both vacuum and gravitons. Three schemes of regu-
larization for vacuumdivergenceswill be presented, each at a
different time: the present time, the ending of inflation, and
the horizon crossing. For the first scheme, we perform
adiabatic regularization for the spectrum, energy density,
and pressure of the present vacuum, and remove the graviton
divergences by a cutoff. In the latter two schemes during
inflation, we shall first regularize the spectrum during
inflation and let it evolve into the present spectrum, according
to the evolution equation. The regularized RGW spectra
from the three schemes are all practically similar, except a
constant factor in the third scheme, which can be absorbed
into the model energy. Finally, in parallel to RGW, both the
gauge-invariant perturbed inflaton and the scalar curvature
perturbation have exact solutions, and the regularization
during inflation are extended to these fields straightfor-
wardly. The regularized spectra are unaffected by adiabatic

regularization, so are the tensor-scalar ratio r and the
consistency relation.
The paper is organized as follows.
In Sec. II, we give the exact solution of RGW, the exact

power spectrum, the spectral indices, valid at any wave-
length and any time. The primordial spectrum is examined
in detail.
In Sec. III, we analyze the structure of RGW at the

present stage and decompose it into vacuum and gravitons.
The number density of gravitons is given. The divergent
behavior at high frequencies is analyzed for the power
spectrum, the spectral energy density, and pressure.
In Sec. IV, we use the adiabatic regularization to remove

UV divergences of RGW vacuum. The second adiabatic
order regularization is performed on the spectrum, and the
fourth order on the energy density and pressure. The
formulas are applied to the inflation and accelerating stages.
In Sec. V, three schemes of regularization at different

times are presented: at the present time, at the end of
inflation, and at the horizon exit.
In Sec. VI, regularization is extended to the gauge-

invariant perturbed inflaton and the scalar curvature per-
turbation during inflation in two schemes.
Section VII gives the conclusions and discussions.
The Appendix gives technical specifications of the exact

solution of RGW and the joining condition of the five
stages of expansion. We use the unit with c ¼ ℏ ¼ 1 in
this paper.

II. RELIC GRAVITATIONAL WAVES FROM
INFLATION TO THE PRESENT

For a flat Robertson-Walker spacetime, the metric is
written as

ds2 ¼ a2ðτÞ½dτ2 − ðδij þ hijÞdxidxj�; ð1Þ

which includes metric perturbations hij in the synchronous
gauge with h00 ¼ h0i ¼ 0. The tensor perturbation part of
hij is the traceless and transverse RGW, and, to the linear
order of metric perturbations, it satisfies the homogeneous
wave equation □hij ¼ 0. In order to reveal the vacuum
structure and graviton content of RGW, in this paper,
we take RGW as a quantum field, and expand it as
follows:

hijðx; τÞ ¼
Z

d3k

ð2πÞ3=2
×
X
s¼þ;×

ϵ
s
ijðkÞ½askhskðτÞeik·x þ as†k h

s�
k ðτÞe−ik·x�;

k ¼ kk̂; ð2Þ

where two polarization tensors satisfy
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ϵ
s
ijðkÞδij ¼ 0; ϵ

s
ijðkÞki ¼ 0; ϵ

s
ijðkÞϵs

0
ijðkÞ ¼ δss0 ;

ð3Þ

and ask and as†k are the annihilation and creation operators
of a graviton satisfying the canonical commutation relation

½ask; ar†k0 � ¼ δsrδ
3ðk − k0Þ: ð4Þ

For RGW, the two polarization modes hþk and h×k are
assumed to be independent and statistically equivalent, so
that the superscript s ¼ þ, × can be dropped, and the wave
equation is

h00kðτÞ þ 2
a0ðτÞ
aðτÞ h

0
kðτÞ þ k2hkðτÞ ¼ 0: ð5Þ

Setting

hkðτÞ ¼ AukðτÞ=aðτÞ; ð6Þ

where A is a normalization constant, the mode uk satisfies
the wave equation

u00kðτÞ þ
�
k2 −

a00ðτÞ
aðτÞ

�
ukðτÞ ¼ 0: ð7Þ

For each stage of cosmic expansion of the Universe, i.e.,
inflation, reheating, radiation dominant, matter dominant,
and the present accelerating, the scale factor is a power-law
form aðτÞ ∝ τd where d is a constant [2,3,15], and the exact
solution of Eq. (7) is a combination of two Hankel
functions,

ukðτÞ ¼
ffiffiffi
π

2

r ffiffiffiffiffi
σ

2k

r �
C2H

ð1Þ
d−1

2

ðσÞ þ C2H
ð2Þ
d−1

2

ðσÞ
�
; ð8Þ

where σ ¼ kτ, and C1, C2 are coefficients determined by
continuity of uk, u0k at the transition of two consecutive
stages. Thus, we obtain the analytical solution hkðτÞ for the
whole course of evolution [15]. The Appendix gives a
detailed account of the coefficients for these five expanding
stages and the joining conditions between the adjoining
stages. Note that cosmic processes, such as neutrino free
streaming [17–19], QCD transition, and eþe− annihilation
[22] only slightly modify the amplitude of RGW and will
be neglected in this study.
In particular, for the inflation stage during which RGW is

generated, one has

aðτÞ ¼ l0jτj1þβ; −∞ < τ ≤ τ1; ð9Þ

where two constants l0 and β are the parameters of the
model and τ1 is the ending time of inflation [2,15].
The expansion rate is H ¼ a0=a2 ¼ −ð1þ βÞ=l0jτj2þβ.

In the special case of de Sitter, the inflation index
β ¼ −2, one has l−10 ¼ H. Using observational data
WMAP [31] of the scalar spectral index ns ¼
0.9608� 0.0080, one can infer from the relation ns − 1 ¼
2β þ 4 that β≃ −2.02. For β≃ −2, the expansion of
Eq. (9) is quite general and describes a class of inflation
models. During inflation, Eq. (7) becomes

u00k þ
�
k2 −

ð1þ βÞβ
τ2

�
uk ¼ 0 ð10Þ

and has a general solution

ukðτÞ ¼
ffiffiffi
π

2

r ffiffiffiffiffi
x
2k

r
½a1Hð1Þ

βþ1
2

ðxÞ þ a2H
ð2Þ
βþ1

2

ðxÞ�;

−∞ < τ ≤ τ1; ð11Þ

where x≡ kjτj, the coefficients a1 and a2 are specified by a
choice of the initial condition during inflation. Note that

Hð1Þ
βþ1

2

ðxÞ ¼ Hð2Þ�
βþ1

2

ðxÞ. We take

a1 ¼ 0; and a2 ¼ −ie−iπβ=2; ð12Þ

so that the mode is given by

ukðτÞ ¼
ffiffiffi
π

2

r ffiffiffiffiffi
x
2k

r
a2H

ð2Þ
βþ1

2

ðxÞ; ð13Þ

which is the positive-frequency mode in the high frequency
limit k → ∞,

uk →
1ffiffiffiffiffi
2k

p e−ikτ: ð14Þ

The solution was equivalently written in terms of Bessel’s
functions

uk ¼
ffiffiffiffiffi
x
2k

r
½A1J1

2
þβðxÞ þ A2J−ð1

2
þβÞðxÞ�; −∞ < τ ≤ τ1;

ð15Þ

with the coefficients A1 ¼ − i
cos βπ

ffiffi
π
2

p
eiπβ=2 and A2 ¼

iA1e−iπβ [15].
We work in the Heisenberg picture, in which RGW is a

quantum field evolving in time,whereas Fock spacevector of
quantum state does not change with time. In addition to the
choice of Eq. (13), we assume further that the quantum state
during inflation is given by the state vector j0i such that

askj0i ¼ 0; ð16Þ

for s ¼ þ, × and all k, i.e., no gravitons are initially present,
only the vacuum fluctuations (zero-point energy) of
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RGW are present during inflation. The coefficient A in
Eq. (6) can be determined by the quantum normalization
condition, which requires that, during inflation in each
k mode and each polarization of RGW, there is a zero point
energy 1

2
ℏω in high frequency limit

A≡ ffiffiffiffiffiffiffiffiffiffiffi
32πG

p
¼ 2

MPl
; ð17Þ

where MPl ¼ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p
is the Planck mass. Thus, RGW

during inflationary stage is taken to be

hkðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
32πG

p

l0jτj1þβ

ffiffiffi
π

2

r ffiffiffiffiffi
x
2k

r
ð−ie−iπβ=2ÞHð2Þ

βþ1
2

ðxÞ;

−∞ < τ ≤ τ1: ð18Þ
Now, the initial condition during the inflation is fully
specified by (16) and (18), which is referred to as the
Bunch-Davis vacuum state. This choice will be tested by
cosmological observations, such as those via CMB anisot-
ropies and polarizations.
The autocorrelation function of RGW is defined as the

expectation value of hijhij,

h0jhijðx; τÞhijðx; τÞj0i ¼
1

ð2πÞ3
Z

d3kðjhþk j2 þ jh×k j2Þ;

ð19Þ

where Eqs. (2), (3), and (4) have been used. The power
spectrum is defined by

Z
∞

0

Δ2
t ðk; τÞ

dk
k
≡ h0jhijðx; τÞhijðx; τÞj0i: ð20Þ

So one reads off

Δ2
t ðk; τÞ ¼ 2

k3

2π2
jhkðτÞj2; ð21Þ

where the factor of 2 is from the polarizations þ, ×. In the
literature on GW detections, the characteristic amplitude
hðk; τÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

t ðk; τÞ
p

is often used [65,66]. The above
definition of spectrum can be used for any time τ, from
the inflation to the accelerating stage. Notice that the
spectrum (21) is evolving in the expanding spacetime, in
contrast to the spectrum in the flat spacetime, which is
independent of time because of the time translation
invariance. Substituting (18) into (21) yields the exact
spectrum during inflation

Δ2
t ðk; τÞ ¼ 2

k3

2π2a2
4

M2
Pl

jukðτÞj2

¼ k2ðβþ2Þ

2πl20M
2
Pl

x−ð2βþ1ÞHð2Þ
βþ1

2

ðxÞHð1Þ
βþ1

2

ðxÞ: ð22Þ

Figure 1 sketches the shape of Δ2
t ðk; τÞ as a function of

x ¼ kjτj. The spectral indices follow from (22) accordingly

ntðk; τÞ≡ d lnΔ2
t

d ln k
¼ 2β þ 4 − x

Hð2Þ
βþ3

2

ðxÞ
Hð2Þ

βþ1
2

ðxÞ
− x

Hð1Þ
βþ3

2

ðxÞ
Hð1Þ

βþ1
2

ðxÞ
;

ð23Þ

αtðk; τÞ≡ d2 lnΔ2
t

dðln kÞ2

¼ ð2β þ 1Þx
Hð2Þ

βþ3
2

ðxÞ
Hð2Þ

βþ1
2

ðxÞ
− x2

2
641þ

0
B@Hð2Þ

βþ3
2

ðxÞ
Hð2Þ

βþ1
2

ðxÞ

1
CA

2
3
75

þ ð2β þ 1Þx
Hð1Þ

βþ3
2

ðxÞ
Hð1Þ

βþ1
2

ðxÞ
− x2

2
641þ

0
B@Hð1Þ

βþ3
2

ðxÞ
Hð1Þ

βþ1
2

ðxÞ

1
CA

2
3
75:

ð24Þ

For a fixed inflation index β, (23) and (24) in long
wavelength limit x ≪ 1 give

nt ≃ 2β þ 4 −
2

2β þ 3
x2 þOðx3Þ; ð25Þ

αt ≃ −
4

2β þ 3
x2 þOðx3Þ: ð26Þ

Figure 2 plots nt and αt as functions of x. These results hold
for the whole class of inflation models with aðτÞ ∝ jτj1þβ.
The primordial spectrum is defined far outside the

horizon k ≪ 1=jτj during inflation. In this long wavelength
limit, the mode of Eq. (18) reduces to

FIG. 1. The shape of Δ2
t ðk; τÞ in Eq. (22) for β ¼ −2. It is flat at

kτ ¼ 0, but has a steep slope ∝ k1 at kjτj ¼ 1 during inflation.
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hkðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
8π2G

p

l0

−ieiβπ=2

Γðβ þ 3
2
Þ cos βπ

�
k
2

�
βþ1

2 þOðkβþ3
2Þ;

ð27Þ
and the primordial spectrum is given by

Δ2
t ðkÞ≡ Δ2

t ðk; τÞjk≪1=jτj ¼ a2t
8

M2
Pl

�
H
2π

�
2

k2βþ4 ∝ k2βþ4;

ð28Þ

with at ¼
ffiffiffi
π

p
=2βþ1jΓðβ þ 3

2
Þ cos βπj≃ 1. Note that (27)

and (28) happen to be independent of τ as a result of the
long wavelength limit. The slope of (28) depends on the
inflation index via ð2β þ 4Þ. In de Sitter case β ¼ −2
and at ¼ 1, (28) reduces to a flat spectrum [61]

Δ2
t ðkÞ ¼

8

M2
Pl

�
H
2π

�
2

þOðk2Þ: ð29Þ

The primordial spectrumΔtðkÞ with β ¼ −2.0125 is shown
as the top curve in Fig. 3. The spectral indices in limit
k → 0 follow immediately

nt ≡ d lnΔ2
t

d ln k

����
k→0

¼ 2β þ 4; ð30Þ

αt ≡ d2 lnΔ2
t

dðln kÞ2
����
k→0

¼ 0: ð31Þ

This value of αt differs from the result of slow-roll
approximation [63,64]. One can introduce the slow-roll
parameter

ϵ≡ −H0=aH2; ð32Þ

whose value is much smaller than 1. Solving Eq. (32)
leads to

ϵ ¼ β þ 2

β þ 1
: ð33Þ

Here ϵ can be positive or negative, depending on β.
This generalizes the result ϵ > 0 of a single scalar field
model [61]. Plugging Eq. (33) into Eq. (30) yields the
following relation:

nt ¼
−2ϵ
1 − ϵ

; ð34Þ

which generalizes the result nt ¼ −2ϵ of the slow-roll
approximation, but reduces to it when high power terms of
ϵ are dropped.
In regard to the spectrum and spectral indices, we would

like to point out certain inconsistent treatments in the
literature. For instance, sometimes the spectrum and
spectral indices around kjτj ¼ 1 were used [61,63,64].
However, here one would have

Δ2
t ðkÞjkjτj≃1 ¼

8

M2
Pl

�
H
2π

�
2

ð2xþOðx − 1Þ2Þ; ð35Þ

nt ≃ 1, and αt ≃ 1, as seen in Figs. 1 and 2, differing
drastically from (28), (30), and (31). (This distinction
applies also to scalar fields during inflation as will be
addressed in Sec. VI.) As far as cosmological observations
are concerned, it is incorrect to use kjτj ¼ 1 in place of
kjτj≃ 0 for the spectrum and indices. As is known from
analytical calculations of CMB anisotropies and

FIG. 2. The spectral indices nt and αt defined in (23) and (24)
as functions of kjτj during inflation. Note that nt ¼ αk ¼ 0 at
kjτj ¼ 0, but nt ¼ αk ¼ 1 at kjτj ¼ 1.

FIG. 3. The spectrum Δtðf; τÞ at three different times: at the
end of inflation, at z ∼ 1100, and at present, respectively.
The horizontal axis is the physical frequency f ¼ k=2πaðτHÞ
at the present time τH . The parameters β ¼ −2.0125 and r ¼ 0.12
are taken for illustration.
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polarization [67–69], the power spectra CXX
l located at l are

induced by the k modes of metric perturbations in the
following manner:

CTT
l ∝ jhkðτdÞj2k¼l=τH

; CEE
l ; CBB

l ∝ j _hkðτdÞj2k¼l=τH
;

where τd is the decoupling time corresponding to a redshift
z ∼ 1100 when CMB were formed. Since CXX

l have been
observed in a multipole range l ∼ ð10–3000Þ [30,32,38–
40], the relevant metric perturbation are those with [68,69]

k ∼ l=τH ∼ l ∼ ð10–3000Þ: ð36Þ

Among these, the one that entered the horizon exactly at τd
is given by kðτd − τmÞ ¼ 1, i.e., k≃ 26. The k modes
specified by (36) stay far outside the horizon during most of
the inflation, for instance, they give kjτ1j ∼ ð6.4 ×
10−29–9.6 × 10−26Þ ≪ 1 at the end of inflation τ1. These
modes are just described by the formulas of (27) and (28).
Hence, we conclude that it is incorrect to use Δ2

t ðkÞ, nt, and
αt evaluated at the horizon crossing to substitute for those at
far outside the horizon.
The overall amplitude of the primordial spectrum (28) is

essentially determined by the expansion rate H of inflation,
which in turn is related to the energy density via
H2 ¼ 8πGρ=3. In association with observations, the spec-
trum (28) is often rewritten as [70]

ΔtðkÞ ¼ ΔRr1=2
�
k
k0

�nt
2
þ1

4
αt lnð k

k0
Þ
; ð37Þ

where k0 is a pivot conformal wave number corresponding
to a physical wave number k0=aðτHÞ ¼ 0.002 Mpc−1, ΔR
is the curvature perturbation determined by observations
[71] Δ2

R ¼ ð2.464� 0.072Þ × 10−9, and r≡ Δ2
t ðk0Þ=

Δ2
Rðk0Þ is the tensor-scalar ratio, and r < 0.12 by the joint

analysis of BICEP2/Keck Array and Planck data [34,72].
The RGW spectrum at present time τH follows from

Eq. (22):

Δ2
t ðk; τHÞ ¼ 2

k3

2π2a2ðτHÞ
4

M2
Pl

jukðτHÞj2; ð38Þ

where the mode ukðτHÞ of the present accelerating stage
has been obtained and is listed in (39). The present
Δtðk; τHÞ is plotted as the lowest curve in Fig. 3. Notice
that Δtðk; τHÞ is overlapped with the primordial one ΔtðkÞ
at the low-frequency end f < 10−18 Hz, both being flat
there. The wavelength of these modes are longer than
horizon, and they remain constant, hk ≃ const, ever since
inflation. At the high-frequency end for f > 1011 Hz, the
spectrum behaves as Δ2

t ðf; τHÞ ∝ f2, as shown in Fig. 3.
These high-frequency modes have never exited the horizon
since inflation, so that their amplitude decreases as

hk ∝ 1=aðτÞ. This high-frequency behavior will cause
the autocorrelation function h0jhijhijj0i in Eq. (20) to
diverge, an issue to be addressed in Sec. V.
The frequencyf at a time τ is related to the comovingwave

number k via fðτÞ ¼ ck=2πaðτÞ. In this paper, we adopt the
convention aðτHÞ ¼ lH ≃ 2.8 × 1026 m, so that the present
frequency is related to k via f ≃ 1.7 × 10−19k Hz. (see
Appendix)

III. DECOMPOSITION OF RGW INTO
VACUUM AND GRAVITONS

RGW during inflation has been assumed to be the
vacuum state specified by (16) and (18), consisting of
vacuum fluctuations. After the subsequent four stages,
RGW has evolved into the present accelerating stage with
aðτÞ ¼ lHjτ − τaj−γ, where γ ≃ 2.1 fits the modelΩΛ ≃ 0.7
and Ωm ¼ 1 − ΩΛ. The analytical mode is given by

ukðτÞ ¼
ffiffiffi
π

2

r ffiffiffiffiffi
s
2k

r �
e−iπγ=2βkH

ð1Þ
−γ−1

2

ðsÞ þ eiπγ=2αkH
ð2Þ
−γ−1

2

ðsÞ
�
;

τE < τ ≤ τH; ð39Þ

where s≡ kðτ − τaÞ and the coefficients βk, αk are given by

e−iπγ=2βk ¼ Δ−1
e

� ffiffiffiffiffi
zE
sE

r h
d1H

ð1Þ
3
2

ðzEÞ þ d2H
ð2Þ
3
2

ðzEÞ
i

×

�
1

2
ffiffiffiffiffi
sE

p Hð2Þ
−γ−1

2

ðsEÞ þ
ffiffiffiffiffi
sE

p
Hð2Þ0

−γ−1
2

ðsEÞ
�

−Hð2Þ
−γ−1

2

ðsEÞ
�

1

2
ffiffiffiffiffi
zE

p
	
d1H

ð1Þ
3
2

ðzEÞ þ d2H
ð2Þ
3
2

ðzEÞ



þ ffiffiffiffiffi
zE

p 	
d1H

ð1Þ0
3
2

ðzEÞ þ d2H
ð2Þ0
3
2

ðzEÞ

��

; ð40Þ

eiπγ=2αk ¼ Δ−1
e

� ffiffiffiffiffi
zE
sE

r �
d1H

ð1Þ
3
2

ðzEÞ þ d2H
ð2Þ
3
2

ðzEÞ
i

×

�
1

2
ffiffiffiffiffi
sE

p Hð1Þ
−γ−1

2

ðsEÞ þ
ffiffiffiffiffi
sE

p
Hð1Þ0

−γ−1
2

ðsEÞ
�

−Hð1Þ
−γ−1

2

ðsEÞ
�

1

2
ffiffiffiffiffi
zE

p
	
d1H

ð1Þ
3
2

ðzEÞ þ d2H
ð2Þ
3
2

ðzEÞ



þ ffiffiffiffiffi
zE

p 	
d1H

ð1Þ0
3
2

ðzEÞ þ d2H
ð2Þ0
3
2

ðzEÞ

��

; ð41Þ

Δe ¼
ffiffiffiffiffi
sE

p h
Hð1Þ

−γ−1
2

ðsEÞHð2Þ0
−γ−1

2

ðsEÞ −Hð1Þ0
−γ−1

2

ðsEÞHð2Þ
−γ−1

2

ðsEÞ
i
;

ð42Þ

where sE ¼ kðτE − τaÞ and zE ¼ kðτE − τmÞ, and d1
and d2 are the coefficients for the precedent matter stage.
(See Appendix for details.) In the high-frequency limit
k → ∞, βk, αk have the following asymptotic expressions:
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βk ¼
�
βðβ þ 1Þ

4x21
−
βsðβs þ 1Þ

4t21

�
eiðx1þt1−tsþys−y2þz2−zEþsEÞ−iπβ þ βsðβs þ 1Þ

4t2s
eiðx1−t1þtsþys−y2þz2−zEþsEÞþiπβ

−
1

2z22
eiðx1−t1þts−ysþy2þz2−zEþsEÞþiπβ þ

�
1

2z2E
−
γðγ þ 1Þ
4s2E

�
eiðx1−t1þts−ysþy2−z2þzEþsEÞþiπβ þOðk−3Þ ð43Þ

αk ¼ e−iðx1−t1þts−ysþy2−z2þzE−sEÞþiπβ

�
1 − i

βðβ þ 1Þ
2x1

þ i
βsðβs þ 1Þ

2t1

−i
βsðβs þ 1Þ

2ts
þ i

1

z2
− i

1

zE
þ i

γðγ þ 1Þ
2sE

−
β2ðβ þ 1Þ2

8x21
−
β2sðβs þ 1Þ2

8t21

−
β2sðβs þ 1Þ2

8t2s
−

1

2z22
−

1

2z2E
−
γ2ðγ þ 1Þ2

s2E
þ βðβ þ 1Þβsðβs þ 1Þ

4x1t1

−
βðβ þ 1Þβsðβs þ 1Þ

4x1ts
þ βðβ þ 1Þ

2x1z2
−
βðβ þ 1Þ
2x1zE

þ βðβ þ 1Þγðγ þ 1Þ
4x1sE

þ β2sðβs þ 1Þ2
4t1ts

−
βsðβs þ 1Þ

2t1z2
þ βsðβs þ 1Þ

2t1zE
−
βsðβs þ 1Þγðγ þ 1Þ

4t1sE

þ βsðβs þ 1Þ
2tsz2

−
βsðβs þ 1Þ

2tszE
þ βsðβs þ 1Þγðγ þ 1Þ

4tssE
þ 1

z2zE
−
γðγ þ 1Þ
2z2sE

þ γðγ þ 1Þ
2zEsE

�
þOðk−3Þ; ð44Þ

where x1; t1; ts; ys; y2;…; sE are the time instances of
transitions multiplied by the wave number (see Appendix).
Analogous to Eq. (13) for inflation, the vacuum mode
during the present stage is chosen as

vkðτÞ ¼
ffiffiffi
π

2

r ffiffiffiffiffi
s
2k

r
eiπγ=2Hð2Þ

−γ−1
2

ðsÞ; τE < τ ≤ τH; ð45Þ

so that vkðτÞ → 1ffiffiffiffi
2k

p e−ikðτ−τaÞ as k → ∞. Thus, in terms of

vkðτÞ, Eq. (39) is written as

ukðτÞ ¼ αkvkðτÞ þ βkv�kðτÞ; ð46Þ

and αk and βk are the Bogolyubov coefficients, satisfying
the relation

jαkj2 − jβkj2 ¼ 1; ð47Þ

resulting from the commutation relation (4). Starting from
vacuum fluctuations described by the positive-frequency
mode (13) during inflation, RGW has evolved into a
mixture of the positive and negative frequency modes as
in Eq. (46) for the present stage. From the field operator hij
in Eq. (2), one sees that the operator for each k is
proportional to

akuk þ a†ku
�
k ¼ Akvk þ A†

kv
�
k;

where

Ak ≡ αkak þ β�ka
†
k

is interpreted as the annihilation operator of gravitons of k
for the present stage. Thus, the number density of gravitons
in the present stage is

Nk ¼ h0jA†
kAkj0i ¼ jβkj2: ð48Þ

This result is an application of the theory of particle
production in the expanding Universe, developed by
Parker [73]. As a function of k, jβkj2 is shown in Fig. 4,

FIG. 4. The number density jβkj2 of gravitons produced in the k
mode is shown.

VACUUM AND GRAVITONS OF RELIC GRAVITATIONAL … PHYSICAL REVIEW D 94, 044033 (2016)

044033-7



and over the frequency range f ≥ 10−18 Hz, one has
jβkj2 ∝ k−4 approximately, as shown in Eq. (43). Moreover,
as k → ∞, αk ∼ 1, and βk ∝ k−2, so that uk of (46) is
dominated by the positive frequency mode vk in the high
frequency limit. This confirms the adiabatic theorem
[41,73,74], i.e., high frequency modes are essentially
unaffected by a slow expansion of the spacetime.
Our detailed calculations show that the modes with

f > 1011 Hz never exit the horizon from inflation up to
the present stage.
βk in Eq. (43) contains terms such as βðβþ1Þ

4x2
1

∝ a00=a. By

the Friedmann equation a00=a ¼ 4πG
3
a2Tμ

μ, it is revealing to
express these in terms of the trace Tμ

μ of the energy
momentum tensor that drives the cosmic expansion.
One has

βk ¼
aðτ1Þ2πG

3k2
½Tμ

μðτ−1 Þ − Tμ
μðτþ1 Þ�eiðx1þt1−tsþys−y2þz2−zEþsEÞ−iπβ

þ aðτsÞ2πG
3k2

½Tμ
μðτ−s Þ − Tμ

μðτþs Þ�eiðx1−t1þtsþys−y2þz2−zEþsEÞþiπβ

þ aðτ2Þ2πG
3k2

½Tμ
μðτ−2 Þ − Tμ

μðτþ2 Þ�eiðx1−t1þts−ysþy2þz2−zEþsEÞþiπβ

þ aðτEÞ2πG
3k2

½Tμ
μðτ−EÞ − Tμ

μðτþE Þ�eiðx1−t1þts−ysþy2−z2þzEþsEÞþiπβ þOðk−3Þ; ð49Þ

where Tμ
μðτ−1 Þ is evaluated at the end of inflation, Tμ

μðτþ1 Þ
at the beginning of reheating, etc. Equation (49) tells that
the graviton production is due to the discontinuities at the
transitions of the trace of the energy momentum tensor that
drives the expansion. In our model, the pressure p is not
continuous at the transition points. Furthermore, among the
four terms in (49), the first term ∝ 1=ðkτ1Þ2 by the
inflation-reheating transition gives the greatest contribu-
tion, other three terms give some modifications. This
analytically confirms the conclusion that particle creation
at the early stages is of great significance [75]. Our
computation shows that the full jβkj2 computed from
(e-1) is lower than the square of the first term by 2 orders
of magnitude within the range ð10−17–107Þ Hz.
It is interesting to compare our result with the well-

known results of production of scalar particles in RW
spacetimes. For a scalar massless field conformally coupled
with the curvature, there is no particle production of the
scalar field [45,73,74]. This conclusion holds before
regularization where one has classically Tμ

μ ¼ 0, i.e., the
trace of energy momentum tensor of the scalar field is
vanishing, as well as after regularization whereby the trace
anomaly h0jTμ

μj0iphys ≠ 0 appears [45,46,76]. For cases of
nonconformal coupling, in general, the trace Tμ

μ ≠ 0 and,
there are particle productions of the scalar field. However,
in our expression (49), Tμ

μ is that of the background matter
content that drives the expansion and may not be the scalar
field in Refs. [45,46,76].
Now we analyze the present power spectrum

Δ2
t ðk; τHÞ ¼ A2

k3

π2a2ðτHÞ
jukðτHÞj2; ð50Þ

in terms of vacuum and gravitons. By Eq. (46) and the
relation in (47), one has the following decomposition:

jukðτÞj2 ¼ jvkðτÞj2 þ 2Re½αkβ�kvkðτÞ2� þ 2jβkj2jvkðτÞj2;
ð51Þ

where jvkj2 is the vacuum term given by (45), and the last
two terms containing βk are due to the gravitons. In high
frequency limit, the vacuum term behaves as jvkj2 ∝ k−1,
k−3, the cross term as Re½αkβ�kv2k� ∝ k−3, and
jβkj2jvkj2 ∝ k−5, so that the spectrum contains the follow-
ing quadratic and logarithmic divergences:

Δ2
t ðk; τHÞ ∝ k2; k0; for f > 1011 Hz; ð52Þ

coming from the vacuum and cross terms, which will be
removed in later sections. In the range f < 1011 Hz,
Δ2

t ðk; τHÞ is dominated by the graviton terms
Re½αkβ�kðvkÞ2� þ jβkj2jvkj2, both having the same profile,
except that jβkj2jvkj2 is smooth, whereas Re½αkβ�kðvkÞ2� has
extra quick oscillations, caused by the interference of
waves between vacuum αkvk and gravitons βkv�k. The slope
of the overall profile of Δ2

t ðk; τHÞ is ∝ k−2þð2βþ4Þ in
ð10−18–107Þ Hz, and ∝ k−1.5þðβþ2Þ in ð107–1011Þ Hz.
These features are illustrated in Fig. 5.
The energy momentum tensor of RGW can be also

decomposed into vacuum and gravitons. As long as the
wavelengths are shorter than the horizon, i.e.,
f ≥ 10−18 Hz, the energy-momentum tensor of RGW is
well-defined and given by [77–79]
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tμν ¼
1

32πG
h0jhij;μhij;νj0i; ð53Þ

the energy density

ρgw ¼ t00 ¼
1

32πGa2
h0jh0ijh0ijj0i; ð54Þ

and the pressure

pgw ¼ −
1

3
tii: ð55Þ

Substituting (2), (3), and (4) into (54) yields

ρgw ¼ 1

32πGa2

Z
d3k
ð2πÞ3 2jh

0
kðτÞj2 ¼

Z
∞

0

ρkðτÞ
dk
k
; ð56Þ

where the spectral energy density

ρkðτÞ ¼ 2
k3

2π2a2

����
�
uk
a

�0����2 ð57Þ

with

����
�
uk
a

�0����2 ¼ ju0kj2
a2

þ
�
a0

a2

�
2

jukj2 −
a0

a3
ðu�ku0k þ uku0k

�Þ:

ð58Þ

The formula (57) holds at any time τ. Note that, in high
frequencies, ρk is dominated by the first term of (58)
and can be approximated by

ρkðτÞ≃ k3

π2a4
juk0 j2 ≃ k5

π2a4
jukj2 ¼

1

32πGa2
k2Δ2

t ðk; τÞ;
ð59Þ

which has been often used in literature [2,66,80]. But for
regularization later, one should use the full expression (58).
Similar to (51), one has the vacuum-graviton decomposition

����
�
uk
a

�0����2 ¼
����
�
vk
a

�0����2 þ 2Re

�
αkβ

�
k

�
vk
a

�02�

þ 2jβkj2
����
�
vk
a

�0����2: ð60Þ

At f > 1011 Hz, the vacuum term jðvka Þ0j2 ∝ k1; k−1; k−3, the
cross term gives

Re

�
αkβ

�
k

�
vk
a

�02�
∝ k−1; k−3; ð61Þ

and

jβkj2
����
�
vk
a

�0����2 ∝ k−3; ð62Þ

so that ρk contains quartic, quadratic, and logarithmic
divergences

ρk ∝ k4; k2; k0; ð63Þ

in the integration (56). At f < 1011 Hz, the graviton terms
Re½αkβ�kðvka Þ02� þ jβkj2jðvka Þ0j2 dominate, giving ρk ∝ k2βþ4 in
ð10−18–107Þ Hz and ρk ∝ k0.5þðβþ2Þ in ð107–1011Þ Hz.
These are illustrated in Fig. 6. Similarly, the pressure is [79]

FIG. 6. ΩgðfÞ ¼ ρkðτHÞ=ρc at present consists of the vacuum
and graviton parts, where ρc is the critical density. β ¼ −2.0125
and r ¼ 0.12 are taken.

FIG. 5. The present spectrum consists of the vacuum and
graviton parts. At f > 1011 Hz, the vacuum is dominant and
contains both quadratic and log divergences Δ2

t ðkÞ ∝ k2, k0, and
the gravitons gives only log divergence Δ2

t ðkÞ ∝ k0.
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pgw ¼ 1

96a2πG

Z
d3k
ð2πÞ3 2k

2jhkj2 ¼
Z

∞

0

pkðτÞ
dk
k
; ð64Þ

where

pkðτÞ ¼
k5

3π2a4
jukðτÞj2 ð65Þ

is the spectral pressure. By (51), it also has the decomposition

pkðτÞ ¼
k5

3π2a4
½jvkj2 þ 2Reðαkβ�kv2kÞ þ 2jβkj2jvkj2�: ð66Þ

At f > 1011 Hz, the vacuum term jvkj2 ∝ k−1, k−3, k−5

dominates, the cross term

Re½αkβ�kv2k� ∝ k−3; k−5; ð67Þ

and

jβkj2jvkj2 ∝ k−5; ð68Þ

so that

pk ∝ k4; k2; k0: ð69Þ

At f < 1011 Hz, the gravitons terms dominate. These are
illustrated in Fig. 7. Notice that by (59) and (65) holding for
the whole range f > 10−18 Hz, there is a relation

pkðτÞ≃ 1

3
ρkðτÞ; ð70Þ

i.e., tμμðτÞ ¼ 0. Thus, ρk and pk have the similar shape, as
seen in Figs. 6 and 7.

IV. ADIABATIC REGULARIZATION OF
DIVERGENCES OF VACUUM

A. Power spectrum

In field theories, divergences can occur in the expect-
ation values of physical quantities, such as the correlation
function h0jhijhijj0i in Eq. (20) and the energy-momentum
tensor tμν in Eq. (53) of RGW. In Minkowski spacetime,
UV divergences of the vacuum can be removed by the
normal ordering of the field operators. However, in curved
spacetimes, the normal ordering does apply, and the
adiabatic regularization [41–46] suits for removing UV
divergences of the vacuum. Since the equation of RGW
mode hkðτÞ has the same form as that of a minimally
coupling, massless scalar field, the regularization for the
scalar field [41,44,45] can be directly applied to RGW here.
From (52), we know that the power spectrum has respective
quadratic and logarithmic divergences. By the minimal
subtraction rule [41,45], only these two divergent parts are
to be removed from the spectrum, and the second adiabatic
order subtraction is sufficient, and one should not use the
fourth adiabatic order as claimed in Ref. [53]. On the other
hand, from (63) and (69), the energy density and pressure
contain quartic divergences besides the quadratic and
logarithmic ones, so that one should use the fourth
adiabatic order as required by the minimal subtraction
rule [41,45].
We remark that UV divergences should not be simply

dropped out as asserted in Ref. [62]. Moreover, since RGW
is regarded as a quantum field, one can not remove UV
divergences by applying some smoothing technique, such
as a window function, which is often used for classical,
stochastic fields.
There is an issue of infrared divergence. The spectrum of

(22) in low frequency limit k → 0 behaves asΔ2
t ∝ k2βþ4 and

will also lead to the infrared divergence in the correlation
function. The adiabatic regularization has been developed,
aiming at removing theUVdivergence of vacuum, not the IR
divergence. We shall not discuss the issue in this paper. See
Refs. [9,81,82] for further discussions.
To an adiabatic nth order, the mode as a solution to

Eq. (10) can be formally written as a general WKB function
[41,44,45]

uðnÞk ðτÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2WðnÞðτÞ

q exp

�
−i
Z

τ

τ0

WðnÞðτ0Þdτ0
�
; ð71Þ

where WðnÞðτÞ is a function for the adiabatic nth order. For
the massless minimally coupled scalar field [44], the zeroth

order Wð0Þ
k ¼ k, and the second order

Wð2Þ
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 −

a00

a

r
; ð72Þ

FIG. 7. Spectral pressure pkðτHÞ=ρc at present consists of the
vacuum and graviton parts. β ¼ −2.0125 and r ¼ 0.12.
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and the nth adiabatic order [83]

WðnÞ
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 −

a00

a
−
1

2

�
Wðn−2Þ00

k

Wðn−2Þ
k

−
3

2

�
Wðn−2Þ0

k

Wðn−2Þ
k

�2�vuut : ð73Þ

These formulas apply to RGW also. The regularized
spectrum is given by [48]

Δ2
t ðk; τÞre ¼ A2

k3

π2a2
ðjukðτÞj2 − juð2Þk ðτÞj2Þ; ð74Þ

where

juð2Þk j2 ¼ 1

2Wð2Þ
k

¼ 1

2k

�
1 −

a00

ak2

�
−1
2 ≃ 1

2k
þ a00=a

4k3
ð75Þ

is the counterterm to the second adiabatic order. In
principle, the regularization formula (74) can apply at
any time τ during expansion. When one chooses different
time τ, (74) will give different schemes of regularization.
Later in Sec. V, we shall consider three schemes.
As the first example, we apply regularization to the

inflation stage. In high-frequency limit k → ∞, the mode
ukðτÞ in Eq. (13) is expanded as

ukðτÞ¼
e−ikτffiffiffiffiffi
2k

p
�
1−i

βðβþ1Þ
2kτ

−
ðβþ2Þðβþ1Þβðβ−1Þ

8k2τ2

þi
ðβþ3Þðβþ2Þðβþ1Þβðβ−1Þðβ−2Þ

48k3τ3

þðβþ4Þðβþ3Þðβþ2Þðβþ1Þβðβ−1Þðβ−2Þðβ−3Þ
384k4τ4

�

þOðk−11
2 Þ; ð76Þ

so that

jukðτÞj2 ¼
1

2k

�
1þ βðβ þ 1Þ

2k2τ2
þ 3ðβ þ 2Þðβ þ 1Þβðβ − 1Þ

8k4τ4

�
þOðk−7Þ: ð77Þ

The first term 1=2k is quadratic divergence, corresponding
to the usual vacuum fluctuations in Minkowski space. The
second term is a logarithmic divergence due to additional
vacuum fluctuations in expanding spacetime, which can be
written as

βðβ þ 1Þ
4k2τ2

¼ R
24ðk=aÞ2 ; ð78Þ

with the scalar curvatureR ¼ 6a00=a3. This form agrees with
the known result in theR summed and the normal coordinate
momentum space methods [45,84–86]. We point out that the
logarithmic divergence (78) should not be written as a form

ða0=aÞ2=k2 of (1.5) in Ref. [51]. These two divergent terms
are exactly canceled by the second order adiabatic counter-

terms juð2Þk j2 ¼ 1
2k þ ðβþ1Þβ

4k3τ2 of Eq. (75), giving

jukj2− juð2Þk j2¼3ðβ−1Þβðβþ1Þðβþ2Þ
16k5τ4

þOðk−7Þ; ð79Þ

which comes from the third term in (77). Thus, the resulting
adiabatically regularized spectrum in high frequencies
f > 1011 Hz is

Δ2
t ðk; τÞre ¼ A2

3ðβ − 1Þβðβ þ 1Þðβ þ 2Þ
16π2a2k2τ4

∝ k−2: ð80Þ

Weplot (80) for f > 1011 Hz in the top part of Fig. 12 for the
regularization at the end of inflation τ1. As for low frequen-
cies f < 1011 Hz, the spectrum is less affected by the
regularization. When (80) is substituted into (20), it gives
a finite contribution to the autocorrelation function from the
upper limit of integration. Equation (80) represents the
vacuum fluctuations at high frequencies and has definite
physical effects. As we shall see in Sec. V, (80) will evolve
into the high frequency portion (f > 1011 Hz) of the present
spectrum and will serve as the target of high-frequency GW
detectors [35,36].
We like to clarify two points regarding adiabatic regu-

larization. First, as it stands, the subtraction by the counter-
terms in (75) applies to the whole frequency range, in
contrary to what Ref. [54] suggested only for high
frequencies, though its effect on the spectrum is strong
for the high k modes and weak for the low k modes.
Second, by the the minimal subtraction rule, the above
second order regularization is sufficient for the power
spectrum [48]. If one tries to do a fourth order adiabatic

regularization of the spectrum with the factor ðjukj2 −
juð2Þk j2Þ in (74) replaced by ðjukj2 − juð4Þk j2Þ, where the
counterterm to the fourth order is defined in (94), the
regularized spectrum would be infrared divergent as ∝ k−2

as k → 0. This is unacceptable. Our calculation confirms
that the minimal subtraction rule and a fourth order of
adiabatic regularization is incorrect for the power spectrum.
This conclusion is just opposite to the claim of Ref. [87].
In the special case of de Sitter inflation with β ¼ −2, the

analytical mode (13) is

ukðτÞ ¼
e−ikτffiffiffiffiffi
2k

p
�
1 −

i
kτ

�
; ð81Þ

and jukðτÞj2 ¼ 1=2kþ 1=2k3τ2, which is just equal to the

counterterm juð2Þk ðτÞj2, resulting in a vanishing regularized
spectrum Δ2

TðkÞre ¼ 0. This feature of regularization for de
Sitter has been pointed out by Parker [48] for a massless
scalar field. However, we shall show in Sec. V that
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regularization at the present time will save the spectrum for
the de Sitter.
The next example is for the accelerating stage, in which

RGW consists of both vacuum and gravitons. Here con-
sider only the vacuum, whose mode is (45). The calcu-
lations are similar to those the inflation stage. One just
replaces ð1þ βÞ by −γ, and τ by ðτ − τaÞ, in (80), arriving
at the regularized vacuum spectrum in high frequencies
k → ∞

Δ2
vacðk; τÞre ¼ A2

3ðγ þ 1Þγðγ − 1Þðγ − 2Þ
16π2a2k2ðτ − τaÞ4

∝ k−2: ð82Þ

The divergences of graviton part of the spectrum will
addressed in Sec. V. 1.

B. Vacuum energy density and pressure of RGW

The vacuum energy density and pressure of RGW
contain quartic, quadratic, and logarithmic divergences
as in (63) and (69), which can be removed by the adiabatic
regularization to the fourth order [41]. For the spectral
energy density, one takes

ρkðτÞre ¼ 2
k3

2π2a2

�����
�
ukðτÞ
a

�0����2−
����
�
uð4Þk ðτÞ

a

�0����2
�
; ð83Þ

where the counterterm of the fourth adiabatic order is

����
�
uð4Þk ðτÞ

a

�0����2 ¼ juð4Þ0k j2
a2

þ
�
a0

a2

�
2

juð4Þk j2

−
a0

a3
ðuð4Þ�k uð4Þ0k þ uð4Þk uð4Þ�0k Þ; ð84Þ

and the fourth order adiabatic mode is

uð4Þk ðτÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Wð4Þ

k ðτÞ
q exp

�
−i
Z

τ

τ0

Wð4Þ
k ðτ0Þdτ0

�
: ð85Þ

Using the formula (73), one calculates (in Refs. [41,43,88]

Wð4Þ
k was computed for a massive scalar field),

ðWð4Þ
k Þ2 ¼ k2 −

a00

a
−

1

4k2a2

×

�
a002 − aa0000 þ 2a0a000 − 2

a02a00

a

�
; ð86Þ

from which follow the terms in (84):

1

a2
juð4Þ0k j2 ¼ Wð4Þ

k

2a2
þ ðWð4Þ0

k Þ2
8ðWð4Þ

k Þ3a2

≃ k
2a2

−
a00=a
4a2k

−
1

16k3a4

×

�
2a002 − aa0000 þ 2a0a000 − 2

a02a00

a

�
ð87Þ

�
a0

a2

�
2

juð4Þk j2 ¼
�
a0

a2

�
2 1

2Wð4Þ
k

≃
�
a0

a2

�
2
�
1

2k
þ a00=a

4k3

�
;

ð88Þ

−
a0

a3
ðuð4Þ�k uð4Þ0k þ uð4Þk uð4Þ�0k Þ

≃ 1

4k3

�
a02a00

a5
−
a000a0

a4

�
; ð89Þ

and the counterterm is

����
�
uð4Þk ðτÞ

a

�0����2 ¼ k
2a2

þ 1

4a2k

�
2a02

a2
−
a00

a

�

þ 1

8a2k3

�
5a02a00

a3
−
a002

a2
þ a0000

2a
−
3a0a000

a2

�
:

ð90Þ

Substituting these into (83) gives the regularized spectral
energy density. In a similar fashion for the spectral
pressure, one takes

pkðτÞre ¼
k5

3π2a4
ðjukðτÞj2 − juð4Þk j2Þ; ð91Þ

where

juð4Þk j2 ¼ 1

2Wð4Þ
k

≃ 1

2k
þ a00=a

4k3
þ 1

16k5a2

×

�
4a002 − aa0000 þ 2a0a000 −

2a02a00

a

�
ð92Þ

is the fourth order adiabatic counterterm.
The above regularization formulas hold for any time τ.

First, apply to the inflation stage, during which the energy
density and pressure of RGW have only the vacuum
contributions. Using the mode uk of (13), one has
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����
�
ukðτÞ
a

�0����2 ¼ 1

a2

�
k
2
þ ðβ þ 1Þðβ þ 2Þ

4kτ2

þ 3βðβ þ 1Þðβ þ 2Þðβ þ 3Þ
16k3τ4

þ 5ðβ − 1Þβðβ þ 1Þðβ þ 2Þðβ þ 3Þðβ þ 4Þ
32k5τ6

�
þOðk−7Þ;

and, by (90), the counterterm is

����
�
uð4Þk ðτÞ

a

�0����2 ¼ 1

a2

�
k
2
þ ðβ þ 1Þðβ þ 2Þ

4kτ2

þ 3βðβ þ 1Þðβ þ 2Þðβ þ 3Þ
16k3τ4

�
;

which just cancels the quartic, quadratic, and logarithmic
divergences of jðukðτÞ=aÞ0j2, yielding the regularized spec-
tral energy density in the high-frequency limit

ρkðτÞre ¼
5ðβ − 1Þβðβ þ 1Þðβ þ 2Þðβ þ 3Þðβ þ 4Þ

32π2a4k2τ6

þOðk−4Þ: ð93Þ

For the pressure, similar calculations give

jukðτÞj2 ¼
1

2k
þ βðβ þ 1Þ

4k3τ2
þ 3ðβ − 1Þβðβ þ 1Þðβ þ 2Þ

16k5τ4

þ 5ðβ − 2Þðβ − 1Þβðβ þ 1Þðβ þ 2Þðβ þ 3Þ
32k7τ6

þOðk−8Þ;

and

juð4Þk ðτÞj2 ¼ 1

2k
þ βðβ þ 1Þ

4k3τ2
þ 3ðβ − 1Þβðβ þ 1Þðβ þ 2Þ

16k5τ4
;

ð94Þ

and the regularized spectral pressure in the high-frequency
limit

pkðτÞre ¼
5ðβ − 2Þðβ − 1Þβðβ þ 1Þðβ þ 2Þðβ þ 3Þ

3 × 32π2a4k2τ6

þOðk−4Þ: ð95Þ

The expressions (93) and (95) hold only at f > 1011 Hz.
The low frequency f < 1011 Hz parts of ρkðτÞre and
pkðτÞre are less affected by adiabatic regularization.
Equations (93) and (95) tell that ρkre, pkre ∝ k−2 at high
frequencies, and the relation (70) is modified to

pkðτÞre ¼
1

3

β − 2

β þ 4
ρkðτÞre; ð96Þ

i.e., there is a trace anomaly of regularized RGW,

tμμðτÞre ¼
6

ðβ þ 4Þ ρkðτÞre ≠ 0 ð97Þ

at high frequencies. This situation of anomaly is similar to
what happens to a conformally coupling massless scalar
field after regularization [45,46,76,89]. Notice that (93)
and (95) give ρkre > 0 and pkre < 0 for β < −2, which is
similar to the inflaton field that drives inflation. However,
the magnitude of vacuum fluctuations are very small,
ρkre=ρ ∼ ðH=MPlÞ2 ∼ 10−16, where ρ is the inflation energy
scale with ρ1=4 ∼ 1015 Gev. In passing, we notice that a
negative pressure of quantum fields at infrared ranges also
arises in the context discussed in Ref. [81].
Next apply to the accelerating stage. Consider the

vacuum part of the energy density and pressure, i.e., the
vkðτÞ parts of (60) and (66). Just replacing ðβ þ 1Þ → −γ in
(93) and (95), one obtains the regularized energy density
and pressure of the present vacuum at high frequencies
f > 1011 Hz

ρkðτÞvre ¼
5ðγ − 3Þðγ − 2Þðγ − 1Þγðγ þ 1Þðγ þ 2Þ

32π2a4k2ðτ − τaÞ6
þOðk−4Þ; ð98Þ

pkðτÞvre ¼
5ðγ − 2Þðγ − 1Þγðγ þ 1Þðγ þ 2Þðγ þ 3Þ

3 × 32π2a4k2ðτ − τaÞ6
:

þOðk−4Þ: ð99Þ

The accelerating model can be fitted by γ ≃ 2.1, (98)
and (99) give ρkre < 0 and pkre > 0 for γ > 2. However,
as will be seen in the next section, (98) and (99) from the
vacuum are overwhelmed by those of gravitons, so that the
total spectral energy density and pressure of RGW are
positive at high frequencies.

V. REGULARIZATION AT DIFFERENT TIME

As defined in Eq. (21), the spectrum Δtðk; τÞ depends on
time. At what time τ should regularization be performed?
In literature, there have been disagreements in the context
of a scalar inflaton [50,51,54], and the issue also exists
for RGW. In the following, we shall regularize in three
methods, respectively: at the time of observation, at the
end of inflation [54], and at the horizon crossing time for
each k mode [50,51]. As it turns out, the three resulting
regularized spectra are quite similar in regard to
observations.
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A. Regularization at the present time

This is the first scheme of regularization. Suppose an
observer is to detect RGW now, and it is natural to
regularize the spectrum at the present time τH of observa-
tion during the accelerating stage. To do this, one just sets
τ ¼ τH in the expression (74) of the regularized spectrum

Δ2
t ðk; τHÞre ¼ A2

k3

π2aðτHÞ2
ðjukðτHÞj2 − juð2Þk ðτHÞj2Þ;

ð100Þ

where the mode function ukðτHÞ is explicitly given by

Eq. (39) and the counterterm juð2Þk ðτHÞj2 by (75). Using (51)
at τH, one has

jukj2 − juð2Þk j2 ¼ ðjvkj2 − juð2Þk j2Þ þ 2Re½αkβ�kv2k�
þ 2jβkj2jvkj2; ð101Þ

where ðjvkj2 − juð2Þk j2Þ ∝ k−5 is the regularized vacuum
part, already known in (79), and the graviton part is
unaffected by the adiabatic regularization. The regularized
spectrum Δtðk; τHÞre of (100) is plotted in Fig. 8 for
β ¼ −2.0125. The nonvanishing spectrum of de Sitter case
β ¼ −2 is plotted in Fig. 9, which, as mentioned earlier,
would be vanishing if the regularization is performed
during inflation [48].
After adiabatic regularization, the logarithmic diver-

gence due to gravitons of 2Re½αkβ�kv2k� term in (101) still
remains, as is indicated by a flat curve at f > 1011 Hz in
Figs. 8 and 9. It is well-known that the occurrence of this
kind of UV divergence is caused by the discontinuity of
a00ðτÞ between two adjacent stages of the model, thus can
be removed by choices of continuous a00ðτÞ. L. Ford [8]

demonstrated this by an explicit example, in which a finite
time duration Δt of the transition is assumed, and some
smooth aðτÞ with continuous a00 is constructed. These
resulted in a graviton number density ∝ lnð 1

HΔtÞ, which is
finite. In our model, the discontinuity of a00 corresponds to
an abrupt transition with Δt ¼ 0, so there is no surprise that
UV divergences appear in the spectrum, graviton number
density, energy density, pressure, etc. To remove this
artificial divergence, Ref. [9] proposed that gravitons are
not produced with higher energy than the inflation energy
scale, say ∼1016 GeV. This yields a cutoff of the loga-
rithmic divergence of gravitons at f > 1011 Hz. Here, we
adopt this simple treatment. Thus, after adiabatic regulari-
zation and cutoff as well, the spectrum becomes conver-
gent, Δ2

t ðk; τHÞre ∝ k−2 for f > 1011 Hz plotted as a dotted
line in the lower left part in Figs. 8 and 9, respectively.
For f < 1011 Hz, the spectrum is contributed by grav-

itons and essentially unchanged by regularization and
cutoff. In particular, the primordial spectrum defined at
the low frequency end f < 10−18 Hz remains the same as
(28). In a manner similar to (30) and (31), one can also
define the regularized spectral indices

ntre ≡ d lnΔ2
t ðkÞre

d ln k

����
k→0

¼ 2β þ 4 ð102Þ

and

αtre ≡ d2 lnΔ2
t ðkÞre

dðln kÞ2
����
k→0

¼ 0; ð103Þ

both have the same values as those in (30) and (31),
respectively.
Now the energy density and pressure at present. The

spectral energy density is adiabatically regularized to the
fourth order by

FIG. 8. Regularization at the present time τH . The unregular-
ized spectrum at the end of inflation is at the top, and the present
spectrum is at the lower part.

FIG. 9. The spectrum regularized at present is nonvanishing for
β ¼ −2, which would be zero if regularized during inflation [48].
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ρkðτHÞre ¼
k3

π2a2

�����
�
vk
a

�0����2−
����
�
uð4Þk

a

�0����2

þ 2Re

�
αkβ

�
k

�
vk
a

�02�
þ 2jβkj2

����
�
vk
a

�0����2
�
;

ð104Þ

where jðvka Þ0j2 − jðu
ð4Þ
k
a Þ0j2 is the regularized vacuum part,

known in (98) at high frequencies, and the regularized
spectral pressure is

pkðτHÞre ¼
k5

3π2a4
ððjvkj2 − juð4Þk j2Þ þ 2Reðαkβ�kv2kÞ

þ 2jβkj2jvkj2Þ; ð105Þ

where ðjvkj2 − juð4Þk j2Þ is known in (99) at high frequencies.
The divergences of ρk and pk due to gravitons have been
known in (61), (62), (67), and (68), which, unaffected by
regularization, will be cutoff for f > 1011 Hz by the same
argument of the inflation energy as for the power spectrum.
After cutoff, the graviton part of ρkre and pkre at
f > 1011 Hz are given by the following leading terms:

ρkgr ¼ 3pkgr

≃ k4

π2a4

�
βðβ þ 1Þ

4x21

�ðβ − 1Þðβ þ 2Þ
4x1

þ βsðβs þ 1Þ
4t1

�

−
βsðβs þ 1Þ

4t21

�
βðβ þ 1Þ

4x1
þ ðβs − 1Þðβs þ 2Þ

4t1

��
2

∝ k−2; ð106Þ

where x1 ≡ kjτ1j and t1 ≡ kjτ1 − τpj. In comparison, this is
many orders higher than the present vacuum energy (98).
Thus, the total spectral energy after regularization and
cutoff is positive for f > 1011 Hz. Over the broad range
ð10−18–1011Þ Hz, ρkre, pkre are dominated by gravitons and
remain practically unchanged after regularization. The final
ρkre, pkre after regularization and cutoff are plotted in
Figs. 10 and 11, respectively.

B. Regularization at the end of inflation

Next, we explore the second scheme of regularization, in
which the spectrum of RGW is regularized at the time τ1,
the end of inflation [54]. Moreover, we shall also let the
associated, regularized mode urek ðτÞ evolve subsequently
according to its field equation and arrive at the present
spectrum at the time τH. Since the regularized spectrum
vanishes for exact de Sitter inflation, we consider the
general case β ≠ −2. We apply the general formula (74) of
regularized spectrum at the end of inflation with τ ¼ τ1,

jurek ðτ1Þj2 ¼ jukðτ1Þj2 − juð2Þk ðτ1Þj2; ð107Þ

which has been known in Eq. (80). This fixes the amplitude
of regularized mode urek ðτ1Þ at τ ¼ τ1 as the initial con-
dition. To determine its phase, assume that urek ðτ1Þ has the
same phase as the unregularized mode ukðτ1Þ, which has
the following asymptotic behavior:

ukðτ1Þ≃ e−ikτ1ffiffiffiffiffi
2k

p ; for k → ∞;

ukðτ1Þ≃
ffiffiffiffiffiffiffiffiffiffi−πτ1

p
eiðβ−1Þπ=2

2Γðβ þ 3
2
Þ cos βπ

�
kτ1
2

�
βþ1

2

þOðkβþ3
2Þ for k → 0. ð108Þ

So we choose the initial condition at τ1 to be

urek ðτÞ ¼ eiθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jukðτÞj2 −

1

2k

�
1þ βðβ þ 1Þ

2k2τ2

�s
; τ ¼ τ1;

ð109Þ

FIG. 10. Regularized spectral energy density ΩgðkÞre ¼
ρkðτHÞre=ρc at present.

FIG. 11. Regularized spectral pressure pkðτHÞre=ρc at present.
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where the phase θ is approximately chosen as

θ ¼
�−kτ for k > −τ−11
ðβ − 1Þπ=2 for k < −τ−11 ;

ð110Þ

and the time derivative is given by ure
0

k ðτÞ ¼ d
dτ u

re
k ðτÞ at

τ ¼ τ1. The modes ukðτÞ before τ1 during inflation remain
the same as that in Eq. (13). The subsequent evolution of
ukðτÞ follows straightforwardly, from reheating, radiation,
matter, to the accelerating stage. As has been checked,
other choices of θ will give the same outcome of spectrum
at present. Although the phase of mode contains informa-
tion of the quantum state of RGW, in addition to the
spectrum [1], the current detectors, such as LIGO, are not
capable of detecting such a phase information [90]. The
above treatment of the phase is sufficient for our purpose
since we are mainly concerned with the spectrum.
The regularized, initial spectrum at the end of inflation,

and the present spectrum evolved from the former are
plotted in Fig. 12. Notice that the regularized spectrum at
present behaves as Δ2

t ðkÞre ∝ f−2 at high frequencies
f > 1011 Hz. Thus, all of the UV divergences of the power
spectrum have been removed by this scheme of adiabatic
regularization, including the quadratic and logarithmic
divergences of vacuum and the logarithmic divergence
of gravitons as well. No additional cutoff is needed, in
contrast to the first scheme in the last Sec. V 1. Comparing
with the first scheme, the amplitudes differ by about 20
around f ∼ 1011 Hz, and by about 1.2 around f ∼ 100 Hz.
At the low frequency end f ∼ 10−18 Hz, the primordial
spectrum, the indices nt, and αt remain unchanged, as in
(28), (30), and (31), respectively. The resulting spectra at
present in these two schemes are essentially the same.

C. Regularization at horizon exit

Finally, we explore the regularization at the horizon exit
proposed in Refs. [50,51]. Again we consider the case
β ≠ −2. The low-frequency modes of RGW exit the
horizon during inflation at a time jτkj ¼ 1=k, and regu-
larization is performed at τk for each mode. So in this
scheme the regularization time is not instantaneous but
rather at different τk for different modes. By the formula of
(74) during inflation, one obtains directly

Δ2
t ðkÞre ¼ CðβÞ k2βþ4

π2M2
Pll

2
0

for k <
1

jτ1j
; ð111Þ

with CðβÞ≡ πjHð2Þ
1
2
þβ
ð1Þj2 − ð2þ βðβ þ 1ÞÞ. This can be

rewritten as

Δ2
t ðkÞre ¼ C2Δ2

t ðkÞ for k <
1

jτ1j
; ð112Þ

where Δ2
t ðkÞ is the primordial spectrum in (28) and

C2 ≡ 22βþ1π−1Γ
�
β þ 3

2

�
2

cos2ðβπÞCðβÞ≃ 0.904 · j2þ βj;

ð113Þ

depending on β, and C2 ≃ 0.01 for β ¼ −2.0125. For the
modes that have exited the horizon, the subsequent evo-
lution of the regularized modes is given by

urek ðτÞ ¼ CukðτÞ for k <
1

jτ1j
: ð114Þ

On the other hand, the high-frequency modes with k >
1=jτ1j never exit the horizon during inflation. It is these
modes that give rise to the UV divergence of the spectrum.
References [50,51] did not give a treatment of these modes.
We regularize these modes at the end of inflation τ ¼ τ1,

urek ðτÞ ¼ e−ikτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jukðτÞj2 −

1

2k

�
1þ βðβ þ 1Þ

2k2τ2

�s

for k > 1=jτ1j; ð115Þ

and the time derivative of the modes is given by ure
0

k ðτÞ ¼
d
dτ u

re
k ðτÞ at τ ¼ τ1. Thus, the primordial spectrum regular-

ized in the third scheme is

Δ2
t ðτ1; kÞre

¼
(
2A2 k3

2π2a2 jCukðτ1Þj2 for k < 1=jτ1j
2A2 k3

2π2a2 ½jukðτ1Þj2 − juð2Þk ðτ1Þj2� for k > 1=jτ1j
;

ð116Þ
FIG. 12. The spectrum is regularized at the end of inflation,
then evolves into the present spectrum, which turns out to be
almost the same as that of Fig. 8 regularized at the present time.
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as shown in the upper part of Fig. 13. Given the initial
condition (115), the subsequent evolution of the high-
frequency modes ukðτÞ is also determined. The regularized,
present spectrum Δ2

t ðk; τHÞre is shown in the lower part of
Fig. 13. The profile is similar to those in the first and second
schemes, but with the amplitude lower by the factor C2.
At the low-frequency end,

Δ2
t ðk; τHÞre ¼ C2Δ2

t ðkÞ for k < 1=jτ1j; ð117Þ
where Δ2

t ðkÞ is the primordial spectrum in (28), and
Δ2

t ðkÞ ∝ H2 ∝ ρ, where ρ is the energy density of inflation.
Since the amplitude will be eventually fixed by CMB
observations as in (37), one just raises ρ of the model by a
factor 1=C2 to achieve the same amplitude as in the first and
second schemes.
Although (117) formally resembles the result of slow-

roll approximation in Ref. [50], nevertheless, C2 is inde-
pendent of k here. Therefore, the spectral indices nt and αt
are unaffected by this regularization and remain the same as
in Eqs. (30) and (31). We emphasize that no slow-roll
approximation is involved in our result.

VI. REGULARIZATION OF PRIMORDIAL
SPECTRA OF INFLATON AND SCALAR

CURVATURE PERTURBATION

The above result of RGW and regularization for the
inflation stage can be extended to the scalar metric
perturbation via an inflaton field. The scale factor aðτÞ ∝
jτj1þβ in (9) has been taken as a generic inflation model so
far. It can be specifically realized by a single scalar inflaton
field, also called the power-law inflation [7,91–93]. In this
case, the exact solution of perturbed scalar field is the same
form as RGW. For inflation driven by a scalar field ϕ, the
Friedmann equations are

ϕ00 þ 2Hϕ0 þ a2
∂V
∂ϕ ¼ 0; ð118Þ

H2 ¼ 8πG
3

�
1

2
ϕ02 þ a2V

�
; ð119Þ

where H ¼ a0
a and V is the potential. For aðτÞ ∝ jτj1þβ, the

solution of Eqs. (118) and (119) is

ϕ

MPl
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ βÞð2þ βÞ

p
lnð−τÞ þ B;

VðϕÞ ¼ V0 exp

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2β þ 4

β þ 1

s
ϕ

MPl

�
: ð120Þ

The slow-roll parameters are defined by

ϵ≡M2
Pl

2

�
V 0ðϕÞ
V

�
2

¼ β þ 2

β þ 1
η≡M2

Pl
V 00ðϕÞ
V

¼ 2ϵ:

ð121Þ

Consider the perturbed scalar field δϕ, which generally
depends on the choice of coordinates. In fact, from δϕ and
scalar metric perturbations, one can construct a gauge-
invariant perturbed scalar field δϕ, satisfying the field
equation [94–96]

δϕ00 þ 2Hδϕ0 −∇2δϕ

þ
�
a2

∂2V
∂ϕ2

−
8πG
a2

d
dτ

�
a2ϕ02

H

��
δϕ ¼ 0; ð122Þ

which holds in any coordinates. For aðτÞ ∝ jτj1þβ,
the bracket in Eq. (122) vanishes, so that the equation
reduces to

w00
k þ

�
k2 −

a00

a

�
wk ¼ 0; ð123Þ

where δϕk ≡ wk=a for each k mode. Equation (123) is
identical to Eq. (10) of RGW, and its solution wk is the
same as uk in (13). Thus, we obtain the spectrum of δϕ

Δ2

δϕ
ðk; τÞ ¼ k3

2π2
jδϕkj2 ¼

k3

2π2a2
jwkj2 ¼

M2
Pl

8
Δ2

t ðk; τÞ;
ð124Þ

where Δ2
t ðk; τÞ is the RGW spectrum in (22). The spectral

indices are given nδϕ − 1≡ d lnΔ2

δϕ
ðkÞ

d ln k jk→0 ¼ 2β þ 4, αδϕ≡
d2 lnΔ2

δϕ
ðkÞ

dðln kÞ2 jk→0 ¼ 0. One is more interested in scalar metric

perturbations, which are directly related to observations.
Introducing the curvature perturbation R≡ H

ϕ0 δϕ, which is

FIG. 13. The spectrum is regularized at the horizon exit, then
evolves into the present spectrum, which is similar to that of
Figs. 8 and 12, but with a lower, overall amplitude.
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also gauge invariant [97–100], the spectrum of scalar
curvature perturbation is given by

Δ2
Rðk; τÞ ¼

k3

2π2
jRkj2 ¼

k3

2π2a2
H2

ϕ02 jwkj2

¼ 1þ β

8ð2β þ 4ÞΔ
2
t ðk; τÞ; ð125Þ

where H
ϕ0 ¼ 1

MPl

ffiffiffiffiffiffiffiffi
1þβ
2βþ4

q
is a constant in our model. The

primordial spectrum of R relevant to CMB observations is
defined at the far outside horizon,

Δ2
RðkÞ≡ Δ2

Rðk; τÞjk≪1=jτj ¼
1

2ϵM2
Pl

a2t

�
H
2π

�
2

k2βþ4: ð126Þ

The scalar spectral index is given by

ns − 1≡ d lnΔ2
RðkÞ

d ln k
jk→0 ¼ 2β þ 4 ¼ −6ϵ

1 − ϵ
þ 2η

1 − η=2

ð127Þ

differing from the result of slow-roll approximation ns ¼
1 − 6ϵþ 2η in Ref. [61], and the scalar running index is

αs ≡ d2 lnΔ2
RðkÞ

dðln kÞ2 jk→0 ¼ 0; ð128Þ

differing from the result αs ¼ −16ϵηþ 24ϵ2 þ 2ξ2 with
ξ2 ≡M4

pl
V 0V 000
V2 in slow-roll approximation in Ref. [63].

The tensor-scalar ratio is

r≡ Δ2
t ðkÞ

Δ2
RðkÞ

¼ 16
β þ 2

β þ 1
¼ 16ϵ; ð129Þ

and the consistency relation is

r ¼ −8nt
1 − nt=2

: ð130Þ

Both (129) and (130) are valid for the whole relevant range
of k. The adiabatic regularization in (74) for RGW is
directly adopted here, yielding the regularized scalar
curvature spectrum,

Δ2
Rðk; τÞre ¼

1þ β

2β þ 4

k3

2π2a2M2
Pl

�
jwkj2 −

1

2k
−
a00=a
4k3

�
:

ð131Þ

For regularization at the end of inflation, similar to Sec. V 2
for RGW, the primordial scalar spectrum, ns, αs, and r all
remain unchanged. For regularization at the horizon exit,
the spectrum becomes

Δ2
RðkÞre ¼ C2Δ2

RðkÞ for k ≪ 1=jτ1j; ð132Þ

with C2 given by Eq. (113), thus ns, αs, and r remain
unchanged. These results differ from that of the slow-roll
approximation in Refs. [50,51].

VII. CONCLUSION AND DISCUSSION

Three aspects of RGW have been studied in this paper:
the analytic spectrum and spectral indices, the decompo-
sition of the present RGW into vacuum and gravitons, and
the removal of UV divergences of the spectrum, energy
density, and pressure, arising from both vacuum and
gravitons. Similarly, regularization during inflation is also
performed for the gauge-invariant perturbed inflaton and
the scalar curvature perturbation.
The analytical Δ2

t ðk; τÞ, nt, αt, and r that have been
obtained are valid at any time and frequency during
inflation. The exact relations involving the indices in
(34), (127), and (130) differ from those in the slow-roll
approximation and can be tested by future CMB observa-
tions. In particular, using the observed spectra CXX

l of CMB
in l≃ ð10–3000Þ, Δ2

t ðk; τÞ is actually constrained at
kjτ1j ∼ ð10−28–10−26Þ, far outside the horizon during infla-
tion. This is where the primordial spectrum (28) is referred.
The spectrum at the horizon exit kjτj ¼ 1 differs drastically
from the primordial one.
The present RGW as a quantum field in curved space-

time actually consists of the vacuum and graviton parts.
This decomposition sheds light on the structure of the
spectrum over the respective frequency ranges. The present
vacuum gives quadratic, logarithmic UV divergences to
Δ2

t ðk; τHÞ, and the gravitons give a logarithmic divergence,
at the high-frequency end f > 1011 Hz. However, at
f < 1011 Hz, gravitons are dominant, and the current
detectors are all operating within this band. In this sense,
these detectors are to detect gravitons, not the present
vacuum of RGW. The graviton number density jβkj2 is
contributed by all four discontinuity points of a00ðτÞ, among
which the inflation-reheating transition is the greatest.
In removing UV divergences of RGW, we have carried

out regularization in three schemes: at the present time, at
the end of inflation, and at the horizon exit during inflation.
The first scheme actually involves two parts. The adiabatic
regularization removes only the divergences of present
vacuum, and the divergences of gravitons are cut off.
The last two schemes remove the vacuum divergences
during inflation, the regularized spectrum is then taken as
the initial condition and evolves into the present spectrum,
which is convergent. Besides, for the spectrum, the second
order adiabatic regularization is sufficient to remove UV
divergences, and the fourth adiabatic order is not used
according to theminimal subtraction rule. In all of these three
schemes, the regularized, present spectra are similar, except
that the third scheme yields a lower amplitude, which can be
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raised by a higher inflation energy scale in confronting
observational data. At high frequencies f > 1011 Hz, the
three regularized spectra behave asΔ2

t ðk; τHÞre ∝ k−2, which
can serve as a target for high-frequency GW detectors, such
as the polarized, Gaussian laser beam detectors proposed in
Refs. [35,36]. At f < 1011 Hz, the regularized spectrum
remains practically unchanged.
We also calculate the spectral energy density and

pressure of RGW. The vacuum ρk and pk contain quartic,
quadratic, and logarithmic divergences, and the regulari-
zation to fourth adiabatic order is necessary and sufficient
to remove them. The regularized vacuum ρk;re > 0 and
pkre < 0 at high frequencies for inflation with β < −2,
which is implied by the current observations. For the
present accelerating stage with γ ≃ 2.1, the vacuum ρk;re <
0 and pkre > 0. The graviton part of ρk and pk at present
contain only quadratic and logarithmic divergences, which
are cut off by the inflation energy scale, yielding ρkgr ¼
3pkgr ∝ k−2 at f > 1011 Hz, greater than those of vacuum
by many orders. At f < 1011 Hz, ρk and pk are practically
unchanged by regularization and cutoff. Hence, the total
spectral energy density and pressure, after regularization
and cutoff, are dominantly contributed by gravitons over
the whole frequency range.
Now we give our assessment of the three schemes of

regularization. During the course of cosmic expansion, the
actual, physical spectrum is described by the instantane-
ously regularized ðjukðτÞj2 − juð2Þk ðτÞj2Þ for any instance τ.
This instantaneous regularization is closest to the instanta-
neous normal ordering for quantum field in flat spacetime.
The two schemes, at the present time or at the end of
inflation, are different demonstrations of this same physical
quantity at respective instances. Moreover, as our work has
shown, the resulting two spectra for observation at present
are nearly the same. So we think that these two schemes are
a better choice than the one at the horizon exit, since the
latter is not instantaneous but at different times for different
kmodes. Among the two instantaneous schemes, we would
like to remark that, in regard to technical convenience, the
first scheme, i.e., regularization at the present time for
observation, is a natural choice since it is simpler than the
one at the end of inflation.
For the scalar field driving the power-law inflation, the

gauge invariant perturbed scalar field has an exact solution
which is the same as RGW, so does the scalar curvature
perturbation. The regularization is the same as for RGW, in
particular, the scalar spectral indices ns and αs, tensor-
scalar ratio r remain unchanged.
Our study has an advantage that it is based on the exact

solutions of RGW for the whole expansion, and of the
perturbed inflaton and the scalar curvature perturbation

during inflation. Our results have demonstrated, Parker-
Fuling’s adiabatic regularization and theminimal subtraction
rule work perfectly well in removing UV divergences of
vacuum, to the second order for the spectrum, to the fourth
order for the energy density and pressure, respectively.
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APPENDIX: MODE FUNCTION OF RGW

In this appendix, we list the explicit expressions of mode
functions of RGW and the associated coefficients, which
are determined analytically from continuous joining of
hkðτÞ and h0kðτÞ for all five consequent stages of cosmic
expansion.
The scale factor aðτÞ in a power-law form is given for all

five stages, so that both aðτÞ and its time derivative a0ðτÞ
are continuous at the four transition points between all five
stages. But, a00 is not required to be continuous for
simplicity. This simple modeling of aðτÞ works well for
our purpose of an exact RGW solution, but the artificial
discontinuity of a00 would bring about too much graviton
production, as addressed in Sec. V 1.
There is an overall normalization of aðτÞ. In this paper,

we take jτH − τaj ¼ 1. The present Hubble radius H−1
0 ¼

lH=γ ¼ 9.257 × 1028h−1 cm with the Hubble parameter
h ¼ 0.69. This fixes the parameters in the expressions of
aðτÞ. Furthermore, for the time of the transitions, we use the
following cosmological specifications in our computation:
The matter-accelerating transition time at a redshift
z ∼ 0.347. The radiation-matter transition taken at z ¼
3293 [30]. The inflation energy scale is taken to 1016

Gev, the reheating duration is chosen such that
aðτsÞ=aðτ1Þ ¼ 300, so that at the beginning of radiation
the energy scale will be 1013 Gev. Details of the specifi-
cations have been given in Refs. [14,15].
The inflation stage: The scalae factor aðτÞ is in Eq. (9),

the mode of RGW is in Eq. (13) as part of the initial
condition.
The reheating stage

aðτÞ ¼ azjτ − τpj1þβs ; τ1 ≤ τ ≤ τs: ðA1Þ

As a model parameter, we simply take βs ¼ −0.3. The
general solution of Eq. (7) during the reheating stage is

ukðτÞ ¼
ffiffiffi
π

2

r ffiffiffiffiffi
t
2k

r �
b1ðkÞHð1Þ

βsþ1
2

ðtÞ þ b2ðkÞHð2Þ
βsþ1

2

ðtÞ
i
; τ1 < τ ≤ τs; ðA2Þ
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where t ¼ kðτ − τpÞ. The two coefficients b1 and b2 are determined by the joining condition at τ1

b1ðkÞ ¼ Δ−1
b

� ffiffiffiffiffi
x1
t1

r
½a1Hð1Þ

βþ1
2

ðx1Þ þ a2H
ð2Þ
βþ1

2

ðx1Þ�
�

1

2
ffiffiffiffi
t1

p Hð2Þ
βsþ1

2

ðt1Þ þ
ffiffiffiffi
t1

p
Hð2Þ0

βsþ1
2

ðt1Þ
�

−Hð2Þ
βsþ1

2

ðt1Þ
�

1

2
ffiffiffiffiffi
x1

p
�
a1H

ð1Þ
βþ1

2

ðx1Þ þ a2H
ð2Þ
βþ1

2

ðx1Þ
�
þ ffiffiffiffiffi

x1
p �

a1H
ð1Þ0
βþ1

2

ðx1Þ þ a2H
ð2Þ0
βþ1

2

ðx1Þ
���

; ðA3Þ

b2ðkÞ ¼ Δ−1
b

� ffiffiffiffiffi
x1
t1

r
½a1Hð1Þ

βþ1
2

ðx1Þ þ a2H
ð2Þ
βþ1

2

ðx1Þ�
�

1

2
ffiffiffiffi
t1

p Hð1Þ
βsþ1

2

ðt1Þ þ
ffiffiffiffi
t1

p
Hð1Þ0

βsþ1
2

ðt1Þ
�

−Hð1Þ
βsþ1

2

ðt1Þ
�

1

2
ffiffiffiffiffi
x1

p ða1Hð1Þ
βþ1

2

ðx1Þ þ a2H
ð2Þ
βþ1

2

ðx1ÞÞþ
ffiffiffiffiffi
x1

p ða1Hð1Þ0
βþ1

2

ðx1Þ þ a2H
ð2Þ0
βþ1

2

ðx1ÞÞ
��

;

Δb ¼
ffiffiffiffi
t1

p ½Hð1Þ
βsþ1

2

ðt1ÞHð2Þ0
βsþ1

2

ðt1Þ −Hð1Þ0
βsþ1

2

ðt1ÞHð2Þ
βsþ1

2

ðt1Þ�: ðA4Þ

where x1 ¼ kτ1 and t1 ¼ kðτ1 − τpÞ, while the coefficients a1 and a2 are given by Eq. (12). In the high frequency limit
k → ∞

b1ðkÞ ¼ i

�
βðβ þ 1Þ

4x21
−
βsðβs þ 1Þ

4t21

�
e−iðx1þt1Þþiπβþiπβs=2 þOðk−3Þ ðA5Þ

b2ðkÞ ¼ −ie−iðx1−t1Þþiπβ−iπβs=2
�
1 − i

βðβ þ 1Þ
2x1

þ i
βsðβs þ 1Þ

2t1
−
β2ðβ þ 1Þ2

8x21

−
β2sðβs þ 1Þ2

8t21
þ βðβ þ 1Þβsðβs þ 1Þ

4x1t1

�
þOðk−3Þ ðA6Þ

The radiation-dominant stage:

aðτÞ ¼ aeðτ − τeÞ; τs ≤ τ ≤ τ2: ðA7Þ

and the mode function is

ukðτÞ ¼
ffiffiffi
π

2

r ffiffiffiffiffi
y
2k

r
½c1ðkÞHð1Þ

1
2

ðyÞ þ c2ðkÞHð2Þ
1
2

ðyÞ�;

τs < τ ≤ τ2; ðA8Þ

where y ¼ kðτ − τeÞ and c1 and c2 are given by

c1ðkÞ ¼ Δ−1
c

� ffiffiffiffiffi
ts
ys

r
½b1Hð1Þ

βsþ1
2

ðtsÞ þ a2H
ð2Þ
βsþ1

2

ðtsÞ�
�

1

2
ffiffiffiffiffi
ys

p Hð2Þ
1
2

ðysÞ þ ffiffiffiffiffi
ys

p
Hð2Þ0

1
2

ðysÞ
�

−Hð2Þ
1
2

ðysÞ
�

1

2
ffiffiffiffi
ts

p ða1Hð1Þ
βsþ1

2

ðtsÞ þ a2H
ð2Þ
βsþ1

2

ðtsÞÞ

þ ffiffiffiffi
ts

p �
a1H

ð1Þ0
βsþ1

2

ðtsÞ þ a2H
ð2Þ0
βsþ1

2

ðtsÞ
���

; ðA9Þ

DONG-GANG WANG, YANG ZHANG, and JIE-WEN CHEN PHYSICAL REVIEW D 94, 044033 (2016)

044033-20



c2ðkÞ ¼ Δ−1
b

� ffiffiffiffiffi
ts
ys

r
½a1Hð1Þ

βsþ1
2

ðtsÞ þ a2H
ð2Þ
βsþ1

2

ðtsÞ�
�

1

2
ffiffiffiffiffi
ys

p Hð1Þ
1
2

ðysÞ þ ffiffiffiffiffi
ys

p
Hð1Þ0

1
2

ðysÞ
�

−Hð1Þ
1
2

ðysÞ
�

1

2
ffiffiffiffi
ts

p ða1Hð1Þ
βsþ1

2

ðtsÞ þ a2H
ð2Þ
βsþ1

2

ðtsÞÞ

þ ffiffiffiffi
ts

p ða1Hð1Þ0
βsþ1

2

ðtsÞ þ a2H
ð2Þ0
βsþ1

2

ðtsÞÞ
��

;

Δc ¼
ffiffiffiffiffi
ys

p ½Hð1Þ
1
2

ðysÞHð2Þ0
1
2

ðysÞ −Hð1Þ0
1
2

ðysÞHð2Þ
1
2

ðysÞ�; ðA10Þ

where ts ¼ kðτs − τpÞ and ys ¼ kðτs − τeÞ. In the high frequency limit k → ∞

c1ðkÞ ¼ i

�
βðβ þ 1Þ

4x21
−
βsðβs þ 1Þ

4t21

�
e−iðx1þt1−tsþysÞþiπβ þ i

βsðβs þ 1Þ
4t2s

e−iðx1−t1þtsþysÞþiπβ þOðk−3Þ; ðA11Þ

c2ðkÞ ¼ − ie−iðx1−t1þts−ysÞþiπβ

�
1 − i

βðβ þ 1Þ
2x1

þ i
βsðβs þ 1Þ

2t1
− i

βsðβs þ 1Þ
2ts

−
β2ðβ þ 1Þ2

8x21
−
β2sðβs þ 1Þ2

8t21
−
β2sðβs þ 1Þ2

8t2s
þ βðβ þ 1Þβsðβs þ 1Þ

4x1t1

−
βðβ þ 1Þβsðβs þ 1Þ

4x1ts
þ β2sðβs þ 1Þ2

4t1ts

�
þOðk−3Þ: ðA12Þ

The matter-dominant stage

aðτÞ ¼ amðτ − τmÞ2; τ2 ≤ τ ≤ τE: ðA13Þ

and the mode function is

ukðτÞ ¼
ffiffiffi
π

2

r ffiffiffiffiffi
z
2k

r h
d1ðkÞHð1Þ

3
2

ðzÞ þ d2ðkÞHð2Þ
3
2

ðzÞ
i
; τ2 < τ ≤ τE; ðA14Þ

where z ¼ kðτ − τmÞ and d1 and d2 are given by

d1ðkÞ ¼ Δ−1
d

� ffiffiffiffiffi
y2
z2

r
½b1Hð1Þ

1
2

ðy2Þ þ a2H
ð2Þ
1
2

ðy2Þ�
�

1

2
ffiffiffiffiffi
ys

p Hð2Þ
3
2

ðz2Þ þ ffiffiffiffiffi
z2

p
Hð2Þ0

3
2

ðz2Þ
�

−Hð2Þ
3
2

ðz2Þ
�

1

2
ffiffiffiffiffi
y2

p ða1Hð1Þ
1
2

ðy2Þ þ a2H
ð2Þ
1
2

ðy2ÞÞþ
ffiffiffiffiffi
y2

p ða1Hð1Þ0
1
2

ðy2Þ þ a2H
ð2Þ0
1
2

ðy2ÞÞ
��

; ðA15Þ

d2ðkÞ ¼ Δ−1
d

� ffiffiffiffiffi
y2
z2

r
½a1Hð1Þ

1
2

ðy2Þ þ a2H
ð2Þ
1
2

ðy2Þ�
�

1

2
ffiffiffiffiffi
z2

p Hð1Þ
3
2

ðysÞ þ ffiffiffiffiffi
z2

p
Hð1Þ0

3
2

ðz2Þ
�

−Hð1Þ
3
2

ðz2Þ
�

1

2
ffiffiffiffiffi
y2

p ða1Hð1Þ
1
2

ðy2Þ þ a2H
ð2Þ
1
2

ðy2ÞÞþ
ffiffiffiffiffi
y2

p ða1Hð1Þ0
1
2

ðy2Þ þ a2H
ð2Þ0
1
2

ðy2ÞÞ
��

;

Δd ¼ ffiffiffiffiffi
z2

p ½Hð1Þ
3
2

ðz2ÞHð2Þ0
3
2

ðz2Þ −Hð1Þ0
3
2

ðz2ÞHð2Þ
3
2

ðz2Þ�; ðA16Þ

where z2 ¼ kðτ2 − τmÞ and y2 ¼ kðτ2 − τeÞ. In the high frequency limit k → ∞

d1ðkÞ ¼ −
�
βðβ þ 1Þ

4x21
−
βsðβs þ 1Þ

4t21

�
e−iðx1þt1−tsþys−y2þz2Þþiπβ −

βsðβs þ 1Þ
4t2s

e−iðx1−t1þtsþys−y2þz2Þþiπβ

þ 1

2z22
e−iðx1−t1þts−ysþy2þz2Þþiπβ þOðk−3Þ; ðA17Þ
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d2ðkÞ ¼ −e−iðx1−t1þts−ysþy2−z2Þþiπβ

 
1 − i

βðβ þ 1Þ
2x1

þ i
βsðβs þ 1Þ

2t1
− i

βsðβs þ 1Þ
2ts

þi
1

z2
−
β2ðβ þ 1Þ2

8x21
−
β2sðβs þ 1Þ2

8t21
−
β2sðβs þ 1Þ2

8t2s
−

1

2z22
þ βðβ þ 1Þβsðβs þ 1Þ

4x1t1

−
βðβ þ 1Þβsðβs þ 1Þ

4x1ts
þ βðβ þ 1Þ

2x1z2
þ β2sðβs þ 1Þ2

4t1ts
−
βsðβs þ 1Þ

2t1z2
þ βsðβs þ 1Þ

2tsz2

!
þOðk−3Þ: ðA18Þ

The accelerating stage up to the present time τH

aðτÞ ¼ lHjτ − τaj−γ; τE ≤ τ ≤ τH; ðA19Þ

with γ ≃ 2.1 fits the model ΩΛ ≃ 0.7 and Ωm ¼ 1 −ΩΛ. The mode function ukðτÞ and the coefficients αk, βk of this stage
are given in (39), (40), and (41).
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