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The spectrum of a relic gravitational wave (RGW) contains high-frequency divergences, which should
be removed. We present a systematic study of the issue, based on the exact RGW solution that covers the
five stages, from inflation to the acceleration, each being a power law expansion. We show that the present
RGW consists of vacuum dominating at f > 10" Hz and graviton dominating at f < 10'' Hz,
respectively. The gravitons are produced by the four cosmic transitions, mostly by the inflation-reheating
one. We perform adiabatic regularization to remove vacuum divergences in three schemes: at present, at the
end of inflation, and at horizon exit, to the second adiabatic order for the spectrum, and the fourth order for
energy density and pressure. In the first scheme, a cutoff is needed to remove graviton divergences. We find
that all three schemes yield the spectra of a similar profile, and the primordial spectrum defined far outside
horizon during inflation is practically unaffected. We also regularize the gauge-invariant perturbed inflaton
and the scalar curvature perturbation by the last two schemes, and find that the scalar spectra, the tensor-

scalar ratio, and the consistency relation remain unchanged.
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I. INTRODUCTION

In inflationary cosmology, relic gravitational wave
(RGW) is generated during inflation as the traceless-
transverse components of metric perturbations [1-16].
After reheating, radiation, matter, and acceleration stages
of the expansion, it evolves into a stochastic background in
the present Universe. Only slightly affected by some astro-
physical processes [17-22] during the evolution, RGW
carries unique information about the early Universe besides
cosmic microwave background (CMB). Moreover, existing
everywhere and all the time and having a very broad
spectrum over (107'8-10'!") Hz, RGW has been the target
for various GW detectors working at different frequency
bands, such as LIGO [23], Virgo [24], GEO [25], and
KAGRA [26], LISA [27], pulsar timing array (PTA)
[28,29], WMAP [30,31], Planck [32], BICEP2 [33,34],
and polarized laser beam detectors [35,36].

During inflation, the low-frequency modes of RGW are
stretched outside of the horizon and remain constant,
hy(7) = const. The modes in the band (107'8-10716 Hz)
reenter the horizon around z~ 1100 and leave their
imprints on CMB. The polarization spectrum CPZ in the
detection range [~ (10-3000) is due to the primordial
RGW spectrum [30,32,37-40]. On the other hand, as we
shall see, the high-frequency (f > 10'! Hz) modes never
exit the horizon and decreases as /;(z)  1/a(z). These
correspond to the vacuum part of RGW, giving a spectrum
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o f2 and leading to UV divergences in the autocorrelation
function, the energy density, and pressure. Vacuum diver-
gences also occur in any quantum fields in curved space-
time, such as inflaton fields and scalar metric perturbations.
To remove the vacuum divergences, the normal ordering of
field operators in the flat spacetime will not be proper in an
expanding universe, since certain finite portions of the
vacuum do have physical effects. Parker-Fulling’s adiabatic
regularization with a minimal subtraction rule [41-47] has
been developed to deal with the issue and can apply to
quantum fields in an expanding universe, including RGW.
The vacuum divergences of quantum fields can be effi-
ciently subtracted to a desired adiabatic order, while
physically relevant parts of the vacuum are kept. The
resulting RGW spectrum after regularization is conse-
quently suppressed in high frequencies, which will serve
as the target for the high-frequency GW detectors, such as a
polarized, Gaussian laser beam proposed in Refs. [35,36].
For the low range (10~'8-10'! Hz), the spectrum may be
also possibly modified by regularization. To investigate in a
precise manner, the structure of RGW as a quantum field in
the present accelerating stage needs to be explored in detail.

In the literature on adiabatic regularization of quantum
fields during inflation, different schemes and results were put
forward [48-58], and there are disagreements on the regu-
larized primordial spectrum and its spectral indices defined at
low frequencies. Even doubts arose as to whether adiabatic
regularization is proper for removing vacuum divergences.
The previous studies considered only the spectrum in the
inflation stage, but not in the present stage. Moreover, these
studies relied on the slow-roll approximation during inflation
[59-64]. Sometimes inconsistent treatments have been
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involved. For instance, in solving the field equation, a slow-
roll parameter € was firstly assumed to be a constant, but then
it was allowed to vary in calculating the spectral running
index. Sometimes the spectrum evaluated at the horizon exit
was used in place of the primordial spectrum evaluated at far
outside of the horizon. In fact, the two differ drastically in the
slope, the latter is the one actually referred to in CMB
observations, whereas the former is not. These shortcomings
will bring about uncertainties in the resulting spectrum and
its regularization.

In this paper, we shall study the spectrum, energy density,
and pressure of RGW in the expanding Universe, and
investigate the issue of removal of UV divergences of the
vacuum of RGW by adiabatic regularization method. To this
end, we use the exact solution of RGW that covers the whole
course of expansion, from inflation, reheating, radiation,
matter, to the present accelerating stage, each stage being
described by a power-law scalar factor a(z) o 79 where d is a
constant. Using the exact spectrum and the spectral indices n,
and a, valid at any time and wave number, we show explicitly
how the two spectra mentioned above differ drastically and
derive a relation between n, and the slow-roll parameter e.
Then we shall explore the structure of RGW as a quantum
field in the present stage, decompose it into the vacuum and
gravitons, and derive the number of gravitons generated
during the cosmic expansions. We identify that the vacuum
dominates for f > 10'"' Hz, gravitons dominate for
f < 10" Hz, and both have UV divergences to various
extents.

Then, we shall apply the formulation of adiabatic regu-
larization and the minimal-subtraction rule to remove the
vacuum divergences of RGW at a generic time. By explicit
calculations, we shall show that the second adiabatic order is
sufficient for the spectrum of vacuum containing quadratic
and logarithmic divergences, whereas the fourth order is
needed for the vacuum energy density and pressure contain-
ing extra quartic divergences. To achieve a convergent,
present RGW spectrum, we shall remove UV divergences,
from both vacuum and gravitons. Three schemes of regu-
larization for vacuum divergences will be presented, each ata
different time: the present time, the ending of inflation, and
the horizon crossing. For the first scheme, we perform
adiabatic regularization for the spectrum, energy density,
and pressure of the present vacuum, and remove the graviton
divergences by a cutoff. In the latter two schemes during
inflation, we shall first regularize the spectrum during
inflation and let it evolve into the present spectrum, according
to the evolution equation. The regularized RGW spectra
from the three schemes are all practically similar, except a
constant factor in the third scheme, which can be absorbed
into the model energy. Finally, in parallel to RGW, both the
gauge-invariant perturbed inflaton and the scalar curvature
perturbation have exact solutions, and the regularization
during inflation are extended to these fields straightfor-
wardly. The regularized spectra are unaffected by adiabatic
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regularization, so are the tensor-scalar ratio r and the
consistency relation.

The paper is organized as follows.

In Sec. II, we give the exact solution of RGW, the exact
power spectrum, the spectral indices, valid at any wave-
length and any time. The primordial spectrum is examined
in detail.

In Sec. IIl, we analyze the structure of RGW at the
present stage and decompose it into vacuum and gravitons.
The number density of gravitons is given. The divergent
behavior at high frequencies is analyzed for the power
spectrum, the spectral energy density, and pressure.

In Sec. IV, we use the adiabatic regularization to remove
UV divergences of RGW vacuum. The second adiabatic
order regularization is performed on the spectrum, and the
fourth order on the energy density and pressure. The
formulas are applied to the inflation and accelerating stages.

In Sec. V, three schemes of regularization at different
times are presented: at the present time, at the end of
inflation, and at the horizon exit.

In Sec. VI, regularization is extended to the gauge-
invariant perturbed inflaton and the scalar curvature per-
turbation during inflation in two schemes.

Section VII gives the conclusions and discussions.

The Appendix gives technical specifications of the exact
solution of RGW and the joining condition of the five
stages of expansion. We use the unit with c =A# =1 in
this paper.

II. RELIC GRAVITATIONAL WAVES FROM
INFLATION TO THE PRESENT

For a flat Robertson-Walker spacetime, the metric is
written as

dsz = az(’[) [dTZ - (5” + hij)dxidxj], (1)

which includes metric perturbations /;; in the synchronous
gauge with hgy = hy; = 0. The tensor perturbation part of
h;; is the traceless and transverse RGW, and, to the linear
order of metric perturbations, it satisfies the homogeneous
wave equation [Jh"” = 0. In order to reveal the vacuum
structure and graviton content of RGW, in this paper,
we take RGW as a quantum field, and expand it as
follows:

x Z e (k) [aphi (7)™ + ay by (r)e~ ],
kor @

where two polarization tensors satisfy
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e;j(k)s; =0, & (ke (k) = 8,0,

(3)

and aj and @, are the annihilation and creation operators
of a graviton satisfying the canonical commutation relation

[als(’ Cl;j] = 6sr53<k - k/) (4)

For RGW, the two polarization modes %, and h} are
assumed to be independent and statistically equivalent, so
that the superscript s = +, x can be dropped, and the wave
equation is

wm+2§3%@+ﬁm@_a (5)
Setting
h(t) = A (7)/a(z), (6)

where A is a normalization constant, the mode i, satisfies
the wave equation

all (T)

a(r)

For each stage of cosmic expansion of the Universe, i.e.,
inflation, reheating, radiation dominant, matter dominant,
and the present accelerating, the scale factor is a power-law
form a(z) o« ¢ where d is a constant [2,3,15], and the exact
solution of Eq. (7) is a combination of two Hankel
functions,

(o) = |3y oot + o] ®

where ¢ = kr, and C;, C, are coefficients determined by
continuity of u;, u) at the transition of two consecutive
stages. Thus, we obtain the analytical solution /() for the
whole course of evolution [15]. The Appendix gives a
detailed account of the coefficients for these five expanding
stages and the joining conditions between the adjoining
stages. Note that cosmic processes, such as neutrino free
streaming [17-19], QCD transition, and e*e™ annihilation
[22] only slightly modify the amplitude of RGW and will
be neglected in this study.

In particular, for the inflation stage during which RGW is
generated, one has

%m+%— ]W@:o (7)

a(t) = lo|t|'*7, —o0 <7< 71, 9)
where two constants /, and f are the parameters of the
model and 7; is the ending time of inflation [2,15].
The expansion rate is H = d'/a> = —(1 + B)/ly|z|*.
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In the special case of de Sitter, the inflation index
p=-2, one has I;' = H. Using observational data
WMAP [31] of the scalar spectral index ng=
0.9608 + 0.0080, one can infer from the relation n, — 1 =
2+ 4 that p=-2.02. For f= -2, the expansion of
Eq. (9) is quite general and describes a class of inflation
models. During inflation, Eq. (7) becomes

i+ =P —o (10)

T2

and has a general solution

T X
(®) = |3l HL @) + B0

—o0 <7 <1, (11)

where x = k|z], the coefficients ¢, and a, are specified by a

choice of the initial condition during inflation. Note that
1 2)x
H;;l%(x) = H/(}Jz% (x). We take

a; =0, and a, = —ie P2, (12)

so that the mode is given by

o) =\ oyt

which is the positive-frequency mode in the high frequency
limit k — oo,

1 )
up — \/—2_ke_lkf. (14)

The solution was equivalently written in terms of Bessel’s
functions

X
U = \/ﬁ[Alf%/}(x) + Aod 1y (X)), -0 <7 <71,
(15)

with the coefficients A; = — ! T V3™ and A, =
iA e~ [15].

We work in the Heisenberg picture, in which RGW is a
quantum field evolving in time, whereas Fock space vector of
quantum state does not change with time. In addition to the
choice of Eq. (13), we assume further that the quantum state

during inflation is given by the state vector |0) such that

a|0) =0, (16)

for s = +, x and all k, i.e., no gravitons are initially present,
only the vacuum fluctuations (zero-point energy) of
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RGW are present during inflation. The coefficient A in
Eq. (6) can be determined by the quantum normalization
condition, which requires that, during inflation in each
k mode and each polarization of RGW, there is a zero point
energy %ha} in high frequency limit

2
My’

A=322G = (17)

where Mp; = 1/+/8zG is the Planck mass. Thus, RGW
during inflationary stage is taken to be

V322G —urﬂ/Z)H (),
] |T|1+/3 B+

—00 <7< 1.

(18)

Now, the initial condition during the inflation is fully
specified by (16) and (18), which is referred to as the
Bunch-Davis vacuum state. This choice will be tested by
cosmological observations, such as those via CMB anisot-
ropies and polarizations.

The autocorrelation function of RGW is defined as the
expectation value of h;;h",

o | PR+ )
(19)

(0[n"(x. 7)hyj(x.7)|0) =

where Egs. (2), (3), and (4) have been used. The power
spectrum is defined by

A Az(k 1)% = (0|h"(x, r)h,»j(x,r)|0>. (20)
So one reads off
A7 (k,7) =25 2|hk( 7)P?, (21)

where the factor of 2 is from the polarizations +, x. In the
literature on GW detections, the characteristic amplitude
h(k,7) = \/A?(k,7) is often used [65,66]. The above
definition of spectrum can be used for any time 7, from
the inflation to the accelerating stage. Notice that the
spectrum (21) is evolving in the expanding spacetime, in
contrast to the spectrum in the flat spacetime, which is
independent of time because of the time translation
invariance. Substituting (18) into (21) yields the exact
spectrum during inflation

K 4
Az(k T) _22 5 2M2 |uk( )|2
K2(5+2)
_ —(2p+1) 7(2) (1)
s Hp ). (22)
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FIG. 1. The shape of A?(k,7) in Eq. (22) for # = —2. It s flat at
kt = 0, but has a steep slope « k' at k|z| = 1 during inflation.

Figure 1 sketches the shape of A?(k,7) as a function of
x = k|z|. The spectral indices follow from (22) accordingly

6) (1)
dIn A} Hys(x)  Hyox)
nlk )= S A G Sy
Hﬂ+% X Hﬂ+l(x)
(23)
d?In A2
a(k.7) = d(Ink)>
2 2 2
- X0 - 2
H}H)% X }H)l(x)
(1) (1) 2
+(2B+1) H/(’f(x) — |1+ H/(’f)%(x)
H/j_;'_; ) H/j_;'_%(x)
(24)

For a fixed inflation index f, (23) and (24) in long
wavelength limit x < 1 give

0, =2p 44— 2ﬁ2+ 7+ 0(), (25)
4
a,:—2ﬂ+3x2+0(x3). (26)

Figure 2 plots n; and a; as functions of x. These results hold
for the whole class of inflation models with a(z) « |z|'*7.

The primordial spectrum is defined far outside the
horizon k < 1/|z| during inflation. In this long wavelength
limit, the mode of Eq. (18) reduces to
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FIG. 2. The spectral indices n, and «, defined in (23) and (24)
as functions of k|z| during inflation. Note that n, = a;, =0 at
klz] =0, but n, = q; = 1 at k|z| = 1.

2 . ipn)2 1
V8r*G ie (k>ﬂ+- N O(k/”%),

hu(7) = ly T(B+3)cospn 2

(27)

and the primordial spectrum is given by

i (ﬁ) 2k2ﬁ+4 x k2ﬂ+4,

A7 (k) = A7 (k. )it 1) = a7 12 \2x

(28)

with a, = /z/2/ T ( +3) cos fr| = 1. Note that (27)
and (28) happen to be independent of 7 as a result of the
long wavelength limit. The slope of (28) depends on the
inflation index via (28 +4). In de Sitter case = -2
and a; = 1, (28) reduces to a flat spectrum [61]

A2(K) = M% (%)2 +0(). (29)

The primordial spectrum A, (k) with f = —2.0125 is shown
as the top curve in Fig. 3. The spectral indices in limit
k — 0 follow immediately

dIn A?
= =2/+4
n; dlnk 120 ﬁ + ’ (30)
d*In A?
=—— =0. 31
AT YoL o

This value of «, differs from the result of slow-roll
approximation [63,64]. One can introduce the slow-roll
parameter

e =—H'/aH?, (32)
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] at the end of inflation
10°] \
10
10"
= 10"
< atz~1100
< 10-23_
107
10
T LI T T
10% 10" 10 10° 10° 10° 10° 10"
f (Hz)
FIG. 3. The spectrum A,(f,7) at three different times: at the

end of inflation, at z~ 1100, and at present, respectively.
The horizontal axis is the physical frequency f = k/2ra(ry)
at the present time 7. The parameters f = —2.0125 and r = 0.12
are taken for illustration.

whose value is much smaller than 1. Solving Eq. (32)
leads to

p+2
€ = ——. 33

p+1 (33)
Here ¢ can be positive or negative, depending on p.
This generalizes the result € > 0 of a single scalar field
model [61]. Plugging Eq. (33) into Eq. (30) yields the
following relation:

—2¢e
= , 34
n; 1—¢ (34)
which generalizes the result n, = —2¢ of the slow-roll

approximation, but reduces to it when high power terms of
€ are dropped.

In regard to the spectrum and spectral indices, we would
like to point out certain inconsistent treatments in the
literature. For instance, sometimes the spectrum and
spectral indices around k|z| =1 were used [61,63,64].
However, here one would have

B2y = (5)2<2x+0<x—1>2>, (35)

M3, \2n

n,=1, and a, =1, as seen in Figs. 1 and 2, differing
drastically from (28), (30), and (31). (This distinction
applies also to scalar fields during inflation as will be
addressed in Sec. VI.) As far as cosmological observations
are concerned, it is incorrect to use k|z| = 1 in place of
k|z| = 0 for the spectrum and indices. As is known from
analytical calculations of CMB anisotropies and
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polarization [67-69], the power spectra C}X located at [ are
induced by the k modes of metric perturbations in the
following manner:

Cl" o |hk(7d)‘%:l/rﬁ’ CP*, CPP o |hk(7d)|%:l/n,’
where 7, is the decoupling time corresponding to a redshift
z~ 1100 when CMB were formed. Since C¥* have been

observed in a multipole range / ~ (10-3000) [30,32,38-
40], the relevant metric perturbation are those with [68,69]

k~1/zy ~ 1~ (10-3000). (36)

Among these, the one that entered the horizon exactly at 7,
is given by k(z;—1,) =1, i.e,, k=26. The k modes
specified by (36) stay far outside the horizon during most of
the inflation, for instance, they give k|z;|~ (6.4 x
1072-9.6 x 1072°) < 1 at the end of inflation 7;. These
modes are just described by the formulas of (27) and (28).
Hence, we conclude that it is incorrect to use A?(k), n,, and
a; evaluated at the horizon crossing to substitute for those at
far outside the horizon.

The overall amplitude of the primordial spectrum (28) is
essentially determined by the expansion rate H of inflation,
which in turn is related to the energy density via
H? = 87Gp/3. In association with observations, the spec-
trum (28) is often rewritten as [70]

2dg In(E
k) PR (k())’ (37)

A (k) = Aer/2 <k_0

where k is a pivot conformal wave number corresponding
to a physical wave number ky/a(zy) = 0.002 Mpc~!, Ag
is the curvature perturbation determined by observations
[71] A% = (2.464 £0.072) x 10™°, and r=A%(ky)/
A% (ko) is the tensor-scalar ratio, and r < 0.12 by the joint
analysis of BICEP2/Keck Array and Planck data [34,72].

The RGW spectrum at present time 7y follows from
Eq. (22):

IS 4
Atz(k7 TH) = 22 (TH)|27 (38)

P Yoy ol |
7 (ty) M3,

where the mode u;(7y) of the present accelerating stage
has been obtained and is listed in (39). The present
A,(k,zy) is plotted as the lowest curve in Fig. 3. Notice
that A, (k, z) is overlapped with the primordial one A, (k)
at the low-frequency end f < 107!8 Hz, both being flat
there. The wavelength of these modes are longer than
horizon, and they remain constant, 4, = const, ever since
inflation. At the high-frequency end for f > 10'! Hz, the
spectrum behaves as A?(f, 7y) o f2, as shown in Fig. 3.
These high-frequency modes have never exited the horizon
since inflation, so that their amplitude decreases as
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hy < 1/a(z). This high-frequency behavior will cause
the autocorrelation function (0/h"h;;|0) in Eq. (20) to
diverge, an issue to be addressed in Sec. V.

The frequency f atatime 7 isrelated to the comoving wave
number k via f(z) = ck/2ra(z). In this paper, we adopt the
convention a(ty) = Iy = 2.8 x 10%° m, so that the present
frequency is related to k via f=1.7 x 107'°k Hz. (see
Appendix)

III. DECOMPOSITION OF RGW INTO
VACUUM AND GRAVITONS

RGW during inflation has been assumed to be the
vacuum state specified by (16) and (18), consisting of
vacuum fluctuations. After the subsequent four stages,
RGW has evolved into the present accelerating stage with
a(zr) = ly|t — 7|77, where y = 2.1 fits the model Q, = 0.7
and Q,, = 1 — Q,. The analytical mode is given by

/3 S . .
)= [ =] )+ e 0]

(39)

T <1< 1Y,

where s = k(7 — 7,,) and the coefficients /3, a; are given by

e~mr2p = AZI{ i—E{leél)(ZE) + dzH;)(ZE)}
E

I L@ 2y
< g on) 4 VS )
e 1 (1) 2)
H) o) 5= (1 o)+ ot )
Ve (] er) + Y G) ). 0

e gy = Ae_l{\ IE—E[leél)(ZE) + d2H§2)(ZE)]
E

HY(o6) + Voo

(d1H§1)<ZE> + dzH(z)(ZE)>

3 3
2 2

Ve (@t ) + ) || @)

1 2) 1) 2
A = g [HY () (se) = B () HE) (s)]
(42)

where sp = k(zp —17,) and zy = k(zp—7,), and d,
and d, are the coefficients for the precedent matter stage.
(See Appendix for details.) In the high-frequency limit
k — o0, f, oy have the following asymptotic expressions:
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el M1 Hh =14y, —yatzp=zptsg)—inf | w eixi=ti oty =yota—zptsg) +inp

2
4t

y(y +1)

(43)
452

)ei("l—flﬂ;-)}H‘rzﬁzfﬂf)ﬂﬂﬁ + O(k™?)

BB+ 1)

ap = e~ it t=y oy~ tzp—sp)+inf [ ] _ lﬂ<ﬁ +1)
2X1

dh+) PB+1? BB +1)

B (B

+1i 2,

2SE
ARV S U G s Vs

2 2
8x1 811

L PBH DB+ 1)

223 27% 52

P+ DB+ B+

pB+1)

4.X1l1

+ﬁ(ﬁ+ Dy(y+1)

4x,t, 2x12,

ZXIZE
BB+ y(r +1)

4x1sE

2 2
_'_ﬁs(ﬁs +1° BB+ 1) _’_ﬂx(ﬂs +1)

4[1% 2[122 ZIIZE

_"_ﬁs(ﬁs +1) BB +1) +ﬁs(ﬁs +Dr(r+1) n

4t1SE

L _rrtD) v+ 1)

2tsZ2 2tSZE

where xi, 1,1, Vs, V2, ..., S are the time instances of
transitions multiplied by the wave number (see Appendix).
Analogous to Eq. (13) for inflation, the vacuum mode
during the present stage is chosen as

z § i 2
(0 = |3 2 H ),

—ik(z—1,)

g <t<71y, (45)

1 .
so that v, (7) - e as k — oco. Thus, in terms of

vi(7), Eq. (39) is written as

u(7) = aoi() + Prvi (), (46)

and a; and f,; are the Bogolyubov coefficients, satisfying
the relation

| ]> = Bl = 1, (47)
resulting from the commutation relation (4). Starting from
vacuum fluctuations described by the positive-frequency
mode (13) during inflation, RGW has evolved into a
mixture of the positive and negative frequency modes as
in Eq. (46) for the present stage. From the field operator £;;

in Eq. (2), one sees that the operator for each k is
proportional to

4 4
aguy + ayuy = Agvp + Aoy,

where

4tSSE

) + O(k™3), (44)

22 22,5g 22pSE

— % T
Ak = akak +ﬂkak

is interpreted as the annihilation operator of gravitons of k
for the present stage. Thus, the number density of gravitons
in the present stage is

Ny = (0AAL[0) = |5 (48)

This result is an application of the theory of particle
production in the expanding Universe, developed by
Parker [73]. As a function of k, |$|? is shown in Fig. 4,

10125 i
10"
10
10%
10%
107°
10%

— - —1st term contribution
—

IsI°

LA DL B L L B T
10" 10 10° 10° 10°

f(Hz)

FIG. 4. The number density || of gravitons produced in the k
mode is shown.
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and over the frequency range f > 107'® Hz, one has
|Bx|? o k=* approximately, as shown in Eq. (43). Moreover,
as k— o0, ap ~ 1, and B, « k72, so that u; of (46) is
dominated by the positive frequency mode v, in the high
frequency limit. This confirms the adiabatic theorem
[41,73,74], i.e., high frequency modes are essentially
unaffected by a slow expansion of the spacetime.
Our detailed calculations show that the modes with

|

a(r))*zG
b= 312
a(zy)’nG
3k?
a(t,)’nG
3k?
a(tg)’nG
3k?

+

+

where T#,(77) is evaluated at the end of inflation, 7*,,(z]")
at the beginning of reheating, etc. Equation (49) tells that
the graviton production is due to the discontinuities at the
transitions of the trace of the energy momentum tensor that
drives the expansion. In our model, the pressure p is not
continuous at the transition points. Furthermore, among the
four terms in (49), the first term o 1/(kz;)? by the
inflation-reheating transition gives the greatest contribu-
tion, other three terms give some modifications. This
analytically confirms the conclusion that particle creation
at the early stages is of great significance [75]. Our
computation shows that the full |8;|> computed from
(e-1) is lower than the square of the first term by 2 orders
of magnitude within the range (10~'7-107) Hz.

It is interesting to compare our result with the well-
known results of production of scalar particles in RW
spacetimes. For a scalar massless field conformally coupled
with the curvature, there is no particle production of the
scalar field [45,73,74]. This conclusion holds before
regularization where one has classically 7%, = 0, i.e., the
trace of energy momentum tensor of the scalar field is
vanishing, as well as after regularization whereby the trace
anomaly (0[7*,|0) ., # O appears [45,46,76]. For cases of
nonconformal coupling, in general, the trace 7%, # 0 and,
there are particle productions of the scalar field. However,
in our expression (49), T#, is that of the background matter
content that drives the expansion and may not be the scalar
field in Refs. [45,46,76].

Now we analyze the present power spectrum

k3
) )|uk(TH)|2’

A2(k,oy) = A>——
mra*(ty

(50)

[Tﬂﬂ (TE) —_ Tﬂ[l (Tg)}ei<xl_tl+7.r_ys+y2_22+zl:'+slz‘)+i”ﬂ + O(k_3)’
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f > 10'" Hz never exit the horizon from inflation up to
the present stage.

B in Eq. (43) contains terms such as % x a’/a. By
the Friedmann equation a”/a = %€ a®T# ,, it is revealing to
express these in terms of the trace 7%, of the energy

momentum tensor that drives the cosmic expansion.
One has

{T”# (t7) — ™, (TT)]ei(x'+""x*yv‘Y2+12-ZE+-YE)-iﬂ/f
[1",(z5) = T", (t})] ettty yata=zptsg) i

[T, (7)) = T", (T;')]ei(xl_tl+ts_}’s+)'2+z2_ZE+SE)+i”ﬁ

(49)

|
in terms of vacuum and gravitons. By Eq. (46) and the
relation in (47), one has the following decomposition:

|M/<(T)|2 = \Uk(7)|2 + 2Re[ak/3;§”k(7)2] + 2\ﬁk|2|vk(7) :

s

(51)

where |v,|? is the vacuum term given by (45), and the last
two terms containing S, are due to the gravitons. In high
frequency limit, the vacuum term behaves as |v;|> « k7!,
k=3, the cross term as Re[opfivi] «k™3, and
|Be|?|ve)? o k=3, so that the spectrum contains the follow-
ing quadratic and logarithmic divergences:

A2(k,zy) < K3, K0, for f> 10" Hz,  (52)

coming from the vacuum and cross terms, which will be
removed in later sections. In the range f < 10'! Hz,
A?(k,zy) is dominated by the graviton terms
Re[a i (vi)?] + |Bi|*|vi/|*, both having the same profile,
except that |8 |*|v|? is smooth, whereas Re[a; 5 (v;)?] has
extra quick oscillations, caused by the interference of
waves between vacuum v, and gravitons S v;. The slope
of the overall profile of A?(k,7y) is o k=2t in
(107'8-107) Hz, and o k~'5+F+2) in (107-10'!) Hz.
These features are illustrated in Fig. 5.

The energy momentum tensor of RGW can be also
decomposed into vacuum and gravitons. As long as the
wavelengths are shorter than the horizon, i.e.,
f >107!8 Hz, the energy-momentum tensor of RGW is
well-defined and given by [77-79]
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10°

graviton part:

10™° 2, 12 "2
2B IlvJ" +2Re[ap v, ]

107
1 vacuum part

2
v,/

2Re[ap v’
AT

10

P R
P .

10" 10" 10° 10° 10°
f (Hz)

10° 10" 10?
FIG. 5. The present spectrum consists of the vacuum and
graviton parts. At f > 10'! Hz, the vacuum is dominant and

contains both quadratic and log divergences A?(k) k2, k°, and
the gravitons gives only log divergence AZ(k) o k°.

1 .
t,, = =—=(0l|h" ,h;;,|0), 53
w = 555 O 5, [0) (53)

the energy density

1
" 327Ga?

P = 1% (0[Ai;h"0). (54)

and the pressure
L
pgw:_gti' (55)

Substituting (2), (3), and (4) into (54) yields

1 Pk o0 dk
= [l om )P = = (56
Pgw 3271.Ga2/ (271')3 | k(T)| /) pk(T) k ( )

where the spectral energy density

k3 U 112
=2 £ 57
pk(T) 277,'202 <a> ( )
with
w\ ]2 |u/ |2 a2 a . .
‘(f) = ak2 + P |uk|2—z(uku§(+uku§( ).
(58)

The formula (57) holds at any time z. Note that, in high
frequencies, p; is dominated by the first term of (58)
and can be approximated by

PHYSICAL REVIEW D 94, 044033 (2016)

1005 vacuum E)a:rt: .(‘
: [tv/a)" | \ ((
10° o
graviton part: rl"'
10707 2817 I(v/a) | *+2Re[a g (v/a) "] 4‘1
_ \ f
P 107
1 0»20
\
10 counterterm:

@y P
(u,"7a)" |

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

FIG. 6. Q,(f) = pi(zy)/p. at present consists of the vacuum
and graviton parts, where p,. is the critical density. f = —2.0125
and r = 0.12 are taken.

S 5 1

2 2 2A2
pk(T)_W‘“k’| _W|uk| —32”Ga2k A7 (k,7),

(59)
which has been often used in literature [2,66,80]. But for

regularization later, one should use the full expression (58).
Similar to (51), one has the vacuum-graviton decomposition

)G meefon (3]
a a a
12
r2p|(2) ] (60)

At f > 10" Hz, the vacuum term | (*4)’|? o« k', k™!, k=3, the
Cross term gives

Re {akﬂ,’z (%) ,2} o k1 k3, (61)

and

Bel?

e o

so that p, contains quartic, quadratic, and logarithmic
divergences

Pi X k4’ kZ’ kov (63)

in the integration (56). At f < 10'! Hz, the graviton terms
Re[a 57 (%)) + B[] (%)'|* dominate, giving py o« k% in
(107'8-107) Hz and p; o k%3*¥+2) in (107-10'") Hz.
These are illustrated in Fig. 6. Similarly, the pressure is [79]
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b vacuum part: &
(O R
10°; Iv,J* /
i
5 . 1
107 graviton part: .ﬂ'{'
o 410 2|BK|2|VKIZ+2RG[0‘KBK Vk2] M
<’ 10 ‘
~ \ |1‘
i’" 107

counterterm:
@2
u, "l

FIG. 7. Spectral pressure py(zy)/p. at present consists of the
vacuum and graviton parts. f = —2.0125 and r = 0.12.

1 &’k © dk
, = ———— 2k?|h 2:/ —, 64
P =55 | 2P = [T F 6

where

kS
pi(7) :WM(T)V (65)
is the spectral pressure. By (51), it also has the decomposition

5

3rtat

pil(r) = [[okl? + 2Re(aBivp) + 2Bl vil?]. (66)

At f > 10" Hz, the vacuum term |v;|? k7!, k73, k73
dominates, the cross term

Relmy ;0] o« k=, k5, (67)
and
Bel?|vel? o k72, (68)
so that
Pr < k4 kK. (69)

At f < 10" Hz, the gravitons terms dominate. These are
illustrated in Fig. 7. Notice that by (59) and (65) holding for
the whole range f > 107! Hz, there is a relation

pi(t) = g/’k(f)’ (70)

ie., #,(r) = 0. Thus, p; and p; have the similar shape, as
seen in Figs. 6 and 7.

PHYSICAL REVIEW D 94, 044033 (2016)

IV. ADIABATIC REGULARIZATION OF
DIVERGENCES OF VACUUM

A. Power spectrum

In field theories, divergences can occur in the expect-
ation values of physical quantities, such as the correlation
function (0|4"h;;|0) in Eq. (20) and the energy-momentum
tensor 7,, in Eq. (53) of RGW. In Minkowski spacetime,
UV divergences of the vacuum can be removed by the
normal ordering of the field operators. However, in curved
spacetimes, the normal ordering does apply, and the
adiabatic regularization [41-46] suits for removing UV
divergences of the vacuum. Since the equation of RGW
mode %, (7) has the same form as that of a minimally
coupling, massless scalar field, the regularization for the
scalar field [41,44,45] can be directly applied to RGW here.
From (52), we know that the power spectrum has respective
quadratic and logarithmic divergences. By the minimal
subtraction rule [41,45], only these two divergent parts are
to be removed from the spectrum, and the second adiabatic
order subtraction is sufficient, and one should not use the
fourth adiabatic order as claimed in Ref. [53]. On the other
hand, from (63) and (69), the energy density and pressure
contain quartic divergences besides the quadratic and
logarithmic ones, so that one should use the fourth
adiabatic order as required by the minimal subtraction
rule [41,45].

We remark that UV divergences should not be simply
dropped out as asserted in Ref. [62]. Moreover, since RGW
is regarded as a quantum field, one can not remove UV
divergences by applying some smoothing technique, such
as a window function, which is often used for classical,
stochastic fields.

There is an issue of infrared divergence. The spectrum of
(22)in low frequency limit k — O behaves as A? « k*** and
will also lead to the infrared divergence in the correlation
function. The adiabatic regularization has been developed,
aiming at removing the UV divergence of vacuum, not the IR
divergence. We shall not discuss the issue in this paper. See
Refs. [9,81,82] for further discussions.

To an adiabatic nth order, the mode as a solution to
Eq. (10) can be formally written as a general WKB function
[41,44,45]

W (7) —mexp [—i / w<n>(f’)df'], (71)

where W(")(z) is a function for the adiabatic nth order. For
the massless minimally coupled scalar field [44], the zeroth

order W§(O> = k, and the second order

(72)
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and the nth adiabatic order [83]

(n) ) a// 1 W]((Vl—z)// 3 W]((n—Z)/ 2
Wk - k - = 5 (n—2) - E (n—2) . (73)
a Wk Wk

These formulas apply to RGW also. The regularized
spectrum is given by [48]

k3
A} (k7)o = A o (@) = [ (@), (74)

where

)1 1 1 a’\7z 1 d'/a
- = (1-Z) =—+22% (75
] 2w? 2k< ak? TR TERE

is the counterterm to the second adiabatic order. In
principle, the regularization formula (74) can apply at
any time 7 during expansion. When one chooses different
time 7, (74) will give different schemes of regularization.
Later in Sec. V, we shall consider three schemes.

As the first example, we apply regularization to the
inflation stage. In high-frequency limit k£ — oo, the mode
ui(z) in Eq. (13) is expanded as

et (l_iﬂ(/ﬁrl)_
2k 2kt 8k272
(B+3)(B+2)(B+DB(B-1)(8-2)
4837
p+4)(B+3)(B+2)(B+1)B(F— 1)(/3—2)(ﬁ—3)>
384k4 4

+0O(k™2), (76)
1 pB+1) 3(+2)(B+1)p(H-1)

"2k (1 M T 8k )

+ O(k77). (77)

(B+2)(B+DB(B-1)

u(7)=

+i

N

so that

Jug(7)?

The first term 1/2k is quadratic divergence, corresponding
to the usual vacuum fluctuations in Minkowski space. The
second term is a logarithmic divergence due to additional
vacuum fluctuations in expanding spacetime, which can be
written as

pp+1) R

42 24(kfa)? (78)

with the scalar curvature R = 6a” /a>. This form agrees with
the known result in the R summed and the normal coordinate
momentum space methods [45,84—86]. We point out that the
logarithmic divergence (78) should not be written as a form

PHYSICAL REVIEW D 94, 044033 (2016)

(a'/a)*/k* of (1.5) in Ref. [51]. These two divergent terms
are exactly canceled by the second order adiabatic counter-

(p+1)p
4i3 72

terms |u,<€2)\2 =+ of Eq. (75), giving
Op_3P=DREE D)

16k°7* TOGT). (79)

|”k|2_

which comes from the third term in (77). Thus, the resulting
adiabatically regularized spectrum in high frequencies
f > 10" Hz is

3(p- 1B+ 1)(p+2)

167%a2k*c*

A2(k,7),, = A k2. (80)

We plot (80) for f > 10'! Hz in the top part of Fig. 12 for the
regularization at the end of inflation z;. As for low frequen-
cies f < 10'! Hz, the spectrum is less affected by the
regularization. When (80) is substituted into (20), it gives
a finite contribution to the autocorrelation function from the
upper limit of integration. Equation (80) represents the
vacuum fluctuations at high frequencies and has definite
physical effects. As we shall see in Sec. V, (80) will evolve
into the high frequency portion (f > 10'' Hz) of the present
spectrum and will serve as the target of high-frequency GW
detectors [35,36].

We like to clarify two points regarding adiabatic regu-
larization. First, as it stands, the subtraction by the counter-
terms in (75) applies to the whole frequency range, in
contrary to what Ref. [54] suggested only for high
frequencies, though its effect on the spectrum is strong
for the high k modes and weak for the low k modes.
Second, by the the minimal subtraction rule, the above
second order regularization is sufficient for the power
spectrum [48]. If one tries to do a fourth order adiabatic
regularization of the spectrum with the factor (|u|*> —
|u,(€2)|2) in (74) replaced by (|u;|> — |u,<{4)|2), where the
counterterm to the fourth order is defined in (94), the
regularized spectrum would be infrared divergent as o< k=2
as k — 0. This is unacceptable. Our calculation confirms
that the minimal subtraction rule and a fourth order of
adiabatic regularization is incorrect for the power spectrum.
This conclusion is just opposite to the claim of Ref. [87].

In the special case of de Sitter inflation with § = -2, the
analytical mode (13) is

uy (7) _e\;%<1—é> (81)

and |uy(7)]> = 1/2k + 1/2k*7%, which is just equal to the
2

counterterm |u,((2) (7)|%, resulting in a vanishing regularized
spectrum A% (k),, = 0. This feature of regularization for de
Sitter has been pointed out by Parker [48] for a massless
scalar field. However, we shall show in Sec. V that
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regularization at the present time will save the spectrum for
the de Sitter.

The next example is for the accelerating stage, in which
RGW consists of both vacuum and gravitons. Here con-
sider only the vacuum, whose mode is (45). The calcu-
lations are similar to those the inflation stage. One just
replaces (1 + f) by —y, and 7 by (7 — 7,,), in (80), arriving
at the regularized vacuum spectrum in high frequencies
k — o

B0l =Dr=2) o (g

A2 (k, =A
vae (Ko T) e 167%a*k*(t — 7,)*

The divergences of graviton part of the spectrum will
addressed in Sec. V. 1.

B. Vacuum energy density and pressure of RGW

The vacuum energy density and pressure of RGW
contain quartic, quadratic, and logarithmic divergences
as in (63) and (69), which can be removed by the adiabatic
regularization to the fourth order [41]. For the spectral

energy density, one takes
2 u,(j)(r) /
a

EHEDT). w

where the counterterm of the fourth adiabatic order is

4 4
w @V LV g
a a? a? k

!/
@ (u§€4)*u§€4)/ + M/<C4) u]({4)*/)’ (84)

k3
pk(T>re = 2277,'2612 (

S

and the fourth order adiabatic mode is

@y 1
uy (T) m

s exp [—i / W,i“)(f/)drf] (85)

Using the formula (73), one calculates (in Refs. [41,43,88]

W;f) was computed for a massive scalar field),

(4)\2 , 1
wihe =g -t
( k ) a 4k2a2

2 .1
X (a//2 _aa////+2a/a///_2a a >’ (86)
a

from which follow the terms in (84):
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4 4
wn WYy

1 2

?W" "= 24 S(W,({4))3a2
a’la 1
4a*k  16K34*

k
2a®
2 1
X (251”2 —aad" +2dad" 44 > (87)
a

Ve (VL (€Y (1 e
a*) "k a’ 2W,(€4> a’) \2k 4k )’

(88)
a @ @y @) (@w
_;(”k w, +uw w0 )
] alza// a///a/
:iFQ?r‘zr) (89)

and the counterterm is

WOVE k1 (22 o
LS =4 = =
a 2a%  4a*k \ a* «a

N 1 Salza// a//2 N a//// 3a/a///
8a’k3 \ d? a  2a a’ )’

(90)

Substituting these into (83) gives the regularized spectral
energy density. In a similar fashion for the spectral
pressure, one takes

K 4
Pe(@re = 52 (e @P = ). (o)
where
|u]((4)|2 o 1 zi a”/a 1

_2W§<4> 2k 4K 16k°4?

244"
% <4a//2 —ad" +2dd" — aaa > (92)

is the fourth order adiabatic counterterm.

The above regularization formulas hold for any time z.
First, apply to the inflation stage, during which the energy
density and pressure of RGW have only the vacuum
contributions. Using the mode u; of (13), one has
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()

2 [k, (B+1)(B+2)
_?[5 4kr?
+3ﬂ(ﬁ+1)(ﬂ+2)(ﬁ+3)
16k3¢%
S5(—=1)pF+1)(B+2)(B+3)(f+4)
32k370

+

+O0(k77),

and, by (90), the counterterm is

@OV 1Tk (B D(BE+2)
( a ) ?[5 4kr?
+3/3(ﬂ+1>(ﬂ+2)<ﬁ+3>
16k3¢* ’

which just cancels the quartic, quadratic, and logarithmic
divergences of |(u;(z)/a)'|?, yielding the regularized spec-
tral energy density in the high-frequency limit

S5-DB+DHB+2)(F+3)B+4)
3272a* k30
+ O(k™). (93)

pk(T)re =

For the pressure, similar calculations give

1 pp+1) 3(=-1pF+1)(F+2)

|uy (7) | = YRy + 16157
56=2)(B-=DpB+1)(B+2)(f+3)
+ 7.6
32kt
+ 0(k™),
and
u® (o) = 1 pp+1) 3-1BB+1)(B+2) ’

2k 4k 16k°7*

(94)

and the regularized spectral pressure in the high-frequency
limit

_S5B=2)(B-DpB+1(B+2)(B+3)
N 3 x 327%a*k?°
+ O(k™). (95)

pk<7)re

The expressions (93) and (95) hold only at f > 10'! Hz.
The low frequency f < 10'!' Hz parts of pg(z),, and
pi(7),, are less affected by adiabatic regularization.
Equations (93) and (95) tell that py,., pir & k=2 at high
frequencies, and the relation (70) is modified to
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1p-2
pk<7)re = g,ﬁ +4pk(7>re’ (96)
i.e., there is a trace anomaly of regularized RGW,
@)= @ 20 ()
g (f+4)

at high frequencies. This situation of anomaly is similar to
what happens to a conformally coupling massless scalar
field after regularization [45,46,76,89]. Notice that (93)
and (95) give py,. > 0 and py,, < 0 for f < —2, which is
similar to the inflaton field that drives inflation. However,
the magnitude of vacuum fluctuations are very small,
Pire/p ~ (H/Mp)?* ~ 1071%, where p is the inflation energy
scale with p'/4 ~ 105 Gev. In passing, we notice that a
negative pressure of quantum fields at infrared ranges also
arises in the context discussed in Ref. [81].

Next apply to the accelerating stage. Consider the
vacuum part of the energy density and pressure, i.e., the
vy () parts of (60) and (66). Just replacing (f + 1) — —y in
(93) and (95), one obtains the regularized energy density
and pressure of the present vacuum at high frequencies
f > 10" Hz

5P =3)r—=2)r - Drr+ H(r +2)
327%a*k?(t —1,)°

+ O0(k™), (98)

Pk (T) vre —

S =2)r=Drlr+D{r+2)(r +3)
3 x 32x%a*k?(t — 1,)°

+ O(k™). (99)

pk(T)vre =

The accelerating model can be fitted by y =2.1, (98)
and (99) give py,. < 0 and py,, > 0 for y > 2. However,
as will be seen in the next section, (98) and (99) from the
vacuum are overwhelmed by those of gravitons, so that the
total spectral energy density and pressure of RGW are
positive at high frequencies.

V. REGULARIZATION AT DIFFERENT TIME

As defined in Eq. (21), the spectrum A, (k, 7) depends on
time. At what time 7 should regularization be performed?
In literature, there have been disagreements in the context
of a scalar inflaton [50,51,54], and the issue also exists
for RGW. In the following, we shall regularize in three
methods, respectively: at the time of observation, at the
end of inflation [54], and at the horizon crossing time for
each k£ mode [50,51]. As it turns out, the three resulting
regularized spectra are quite similar in regard to
observations.
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A. Regularization at the present time

This is the first scheme of regularization. Suppose an
observer is to detect RGW now, and it is natural to
regularize the spectrum at the present time 7y of observa-
tion during the accelerating stage. To do this, one just sets
7 = 1y in the expression (74) of the regularized spectrum

k3

oo ()P = ) (z1)2),

A (k. T)pe = A2 5 ——
ra(ty

(100)

where the mode function u;(zy) is explicitly given by

Eq. (39) and the counterterm |u” (z;,)[? by (75). Using (51)
at 7y, one has

2 2 «
g = [P = (oe? = [ul]?) + 2Re[a 02

+ 2B luel?, (101)

where (|vg|*> — |u,({2>|2) o k=3 is the regularized vacuum
part, already known in (79), and the graviton part is
unaffected by the adiabatic regularization. The regularized
spectrum A, (k,7y),, of (100) is plotted in Fig. 8 for
f = —2.0125. The nonvanishing spectrum of de Sitter case
p = —2 is plotted in Fig. 9, which, as mentioned earlier,
would be vanishing if the regularization is performed
during inflation [48].

After adiabatic regularization, the logarithmic diver-
gence due to gravitons of 2Re[a;f;v7] term in (101) still
remains, as is indicated by a flat curve at £ > 10'' Hz in
Figs. 8 and 9. It is well-known that the occurrence of this
kind of UV divergence is caused by the discontinuity of
a"(7) between two adjacent stages of the model, thus can
be removed by choices of continuous a”(z). L. Ford [8]

B =-2.0125 near de Sitter -

at the end of inflation

after adiabatic regularization

1078 0
© iy log div of 2Re[a B 'vkz] remains
~ 23 Py
< 10 X
< 107 h"”h
10 ¥
after cutoff by : gy wpepwy mw
10°8 kS

inflation energy \ .

T T e
10 10™ 10™ 10° 10° 10° 10° 10"

f (Hz)
FIG. 8. Regularization at the present time 7. The unregular-

ized spectrum at the end of inflation is at the top, and the present
spectrum is at the lower part.
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=-2 exact de Sitter

at the end of inflation

10™
107
R
L= 107 after adiabatic regularization
< log div of 2Re[opv,”] remains
107
10 \
36 after cutoff by 1 e
10 i ;
inflation energy ———— o

AL DL L BN B AL BN AL B LR L B
10" 10" 10° 10° 10° 10" 10"
f (Hz)

FIG. 9. The spectrum regularized at present is nonvanishing for
p = —2, which would be zero if regularized during inflation [48].

demonstrated this by an explicit example, in which a finite
time duration At of the transition is assumed, and some
smooth a(z) with continuous a” is constructed. These
resulted in a graviton number density o« In(z;), which is
finite. In our model, the discontinuity of a” corresponds to
an abrupt transition with Az = 0, so there is no surprise that
UV divergences appear in the spectrum, graviton number
density, energy density, pressure, etc. To remove this
artificial divergence, Ref. [9] proposed that gravitons are
not produced with higher energy than the inflation energy
scale, say ~10'® GeV. This yields a cutoff of the loga-
rithmic divergence of gravitons at f > 10! Hz. Here, we
adopt this simple treatment. Thus, after adiabatic regulari-
zation and cutoff as well, the spectrum becomes conver-
gent, A?(k,7y),, o« k=2 for f > 10" Hz plotted as a dotted
line in the lower left part in Figs. 8 and 9, respectively.

For f < 10'! Hz, the spectrum is contributed by grav-
itons and essentially unchanged by regularization and
cutoff. In particular, the primordial spectrum defined at
the low frequency end f < 10~'® Hz remains the same as
(28). In a manner similar to (30) and (31), one can also
define the regularized spectral indices

dIn A%(k)
=" Tt\Mre =2 4 102
Nire dink o p+ ( )
and
d*1n A,z(k)
=2 Jre =0, 103
(Y0 1o

both have the same values as those in (30) and (31),
respectively.

Now the energy density and pressure at present. The
spectral energy density is adiabatically regularized to the
fourth order by

044033-14



VACUUM AND GRAVITONS OF RELIC GRAVITATIONAL ...

2

2

k3 Vi / ’4/(<4) /
Pe(Th),e = 2 <‘ (;) <7>

2
+2Re {akﬂz (%) ] + 203

5

@
where |(2)'|> —|(“-)'|? is the regularized vacuum part,
known in (98) at high frequencies, and the regularized
spectral pressure is

)

(104)

kK 4 .
Pe(E)re = 5 (ol = |7 ) + 2Re(@pio})

+ 2B Pluil?), (105)
where (| = |u”|?) is known in (99) at high frequencies.
The divergences of p, and p, due to gravitons have been
known in (61), (62), (67), and (68), which, unaffected by
regularization, will be cutoff for f > 10'! Hz by the same
argument of the inflation energy as for the power spectrum.
After cutoff, the graviton part of p;,. and py,. at
f > 10" Hz are given by the following leading terms:

Pkgr = 3pkgr
_ K [ﬁ(ﬁ+ 1) <(ﬁ ~DB+2) LG+ 1))
ma* 4x% 4x, 4t,

41 ( 4x, i 4t )]

x k72, (106)
where x; = k|z;| and t; = k|| — 7,,|. In comparison, this is
many orders higher than the present vacuum energy (98).
Thus, the total spectral energy after regularization and
cutoff is positive for f > 10" Hz. Over the broad range
(10718-10'") Hz, piye» Pire are dominated by gravitons and
remain practically unchanged after regularization. The final
Pires Drre after regularization and cutoff are plotted in
Figs. 10 and 11, respectively.

B. Regularization at the end of inflation

Next, we explore the second scheme of regularization, in
which the spectrum of RGW is regularized at the time 7,
the end of inflation [54]. Moreover, we shall also let the
associated, regularized mode u}°(r) evolve subsequently
according to its field equation and arrive at the present
spectrum at the time 7. Since the regularized spectrum
vanishes for exact de Sitter inflation, we consider the
general case f# # —2. We apply the general formula (74) of
regularized spectrum at the end of inflation with 7 = 7y,

re 2
e (o) = |ue(e) P = [u ()2 (107)
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10° unregularized

\ :_-'

regularized AT

10> 100 10% 10"
f (Hz)

FIG. 10. Regularized spectral energy density Q,(k), =
Pk (TH)re//)(r at present'

which has been known in Eq. (80). This fixes the amplitude
of regularized mode u;(z,) at = =7, as the initial con-
dition. To determine its phase, assume that u}¢(7;) has the
same phase as the unregularized mode u;(z;), which has
the following asymptotic behavior:

—ikt,

[N

u (7)) = , for k - o,
k( 1) \/ﬁ
\[_—,ﬁl’eiw—l)ﬂﬂ kr, \ A+
ti(71) = 20(f +3) cos 2
+ O(kKP+3)  for k — 0. (108)
So we choose the initial condition at 7; to be
e ; 1 pB+1)
l/lk (T):e‘g\/|uk(‘[>|2_ﬁ<l+ 2k21-2 s =1,
(109)

unregularized —

Eas

regularized

L T L L
10" 10° 10 10° 10’ 10% 10"
f (Hz)

FIG. 11. Regularized spectral pressure p;(zy),./p. at present.
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where the phase 0 is approximately chosen as

for k > —z7!

kt
0= { (110)
(B—-1)x/2 for k < —17!,

and the time derivative is given by u}¢ (7) = Lye(r) at
7 = 7. The modes u;(7) before 7, during inflation remain
the same as that in Eq. (13). The subsequent evolution of
uy(z) follows straightforwardly, from reheating, radiation,
matter, to the accelerating stage. As has been checked,
other choices of § will give the same outcome of spectrum
at present. Although the phase of mode contains informa-
tion of the quantum state of RGW, in addition to the
spectrum [1], the current detectors, such as LIGO, are not
capable of detecting such a phase information [90]. The
above treatment of the phase is sufficient for our purpose
since we are mainly concerned with the spectrum.

The regularized, initial spectrum at the end of inflation,
and the present spectrum evolved from the former are
plotted in Fig. 12. Notice that the regularized spectrum at
present behaves as A?(k),, « f~2 at high frequencies
f > 10"! Hz. Thus, all of the UV divergences of the power
spectrum have been removed by this scheme of adiabatic
regularization, including the quadratic and logarithmic
divergences of vacuum and the logarithmic divergence
of gravitons as well. No additional cutoff is needed, in
contrast to the first scheme in the last Sec. V 1. Comparing
with the first scheme, the amplitudes differ by about 20
around f ~ 10'! Hz, and by about 1.2 around f ~ 10° Hz.
At the low frequency end f ~ 1078 Hz, the primordial
spectrum, the indices n,, and a, remain unchanged, as in
(28), (30), and (31), respectively. The resulting spectra at
present in these two schemes are essentially the same.

10°3 -
] primordial spectrum unregularized
10— \ -
10_10 regularized at the end of inflation —_
107
o -20
é 10
=
107
109
1 0_35 ] The present spectrum
regularized at end of inflation
T T T T T

= T T T T T T A B
10% 10™ 10™ 10° 10" 10° 10° 10"
f (Hz)
FIG. 12. The spectrum is regularized at the end of inflation,

then evolves into the present spectrum, which turns out to be
almost the same as that of Fig. 8 regularized at the present time.

PHYSICAL REVIEW D 94, 044033 (2016)

C. Regularization at horizon exit

Finally, we explore the regularization at the horizon exit
proposed in Refs. [50,51]. Again we consider the case
p # —2. The low-frequency modes of RGW exit the
horizon during inflation at a time |z;| = 1/k, and regu-
larization is performed at 7, for each mode. So in this
scheme the regularization time is not instantaneous but
rather at different 7, for different modes. By the formula of
(74) during inflation, one obtains directly

k2/5 +4
for k <

Lo o
E o

re:C(ﬂ)

with C(p )—77:|H1+/}(1)| —(2+p(p+1)). This can be

rewritten as

A2(K),, = C2A2 (k) (112)

where A?(k) is the primordial spectrum in (28) and

C?= 22/’“75‘1F<ﬂ + %) 2cos2 (Br)C(B) =
(113)

depending on 3, and C? = 0.01 for # = —2.0125. For the
modes that have exited the horizon, the subsequent evo-
lution of the regularized modes is given by

1
for k < —.

1

On the other hand, the high-frequency modes with k >
1/|z1| never exit the horizon during inflation. It is these
modes that give rise to the UV divergence of the spectrum.
References [50,51] did not give a treatment of these modes.
We regularize these modes at the end of inflation 7 = 7,

+
ie lk‘r\/lu (T 2k 1+ﬁ(2/7;€2 2))

for k > 1/|7y],

e (3) = Cuyr) (114)

(115)
and the time derivative of the modes is given by u}¢ (1) =
4 u7*(7) at r = 7y. Thus, the primordial spectrum regular-
ized in the third scheme is

Atz(Tlvk)
{2A2 A | Cug ()2 for k < 1/|z]
247 5K g (2) 2 = [u ()] for k > 1/]z]
(116)
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10 1 primordial spectrum unregularized
10°
1 regularized at horizin-exit————"
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107
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< 10-21__
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10-31_:
1 The presentspectrum
109
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10" 10 10° 10° 10° 10° 10"
f (Hz)
FIG. 13. The spectrum is regularized at the horizon exit, then

evolves into the present spectrum, which is similar to that of
Figs. 8 and 12, but with a lower, overall amplitude.

as shown in the upper part of Fig. 13. Given the initial
condition (115), the subsequent evolution of the high-
frequency modes 1, (7) is also determined. The regularized,
present spectrum A?(k, 7j),, is shown in the lower part of
Fig. 13. The profile is similar to those in the first and second
schemes, but with the amplitude lower by the factor C2.
At the low-frequency end,

A2(k,7y),, = CPA2(k) fork <1/|zy|, (117)

where A?(k) is the primordial spectrum in (28), and
A?(k) o H? « p, where p is the energy density of inflation.
Since the amplitude will be eventually fixed by CMB
observations as in (37), one just raises p of the model by a
factor 1/C? to achieve the same amplitude as in the first and
second schemes.

Although (117) formally resembles the result of slow-
roll approximation in Ref. [50], nevertheless, C? is inde-
pendent of k here. Therefore, the spectral indices n, and a,
are unaffected by this regularization and remain the same as
in Egs. (30) and (31). We emphasize that no slow-roll
approximation is involved in our result.

VI. REGULARIZATION OF PRIMORDIAL
SPECTRA OF INFLATON AND SCALAR
CURVATURE PERTURBATION

The above result of RGW and regularization for the
inflation stage can be extended to the scalar metric
perturbation via an inflaton field. The scale factor a(7)
|z|'*# in (9) has been taken as a generic inflation model so
far. It can be specifically realized by a single scalar inflaton
field, also called the power-law inflation [7,91-93]. In this
case, the exact solution of perturbed scalar field is the same
form as RGW. For inflation driven by a scalar field ¢, the
Friedmann equations are

PHYSICAL REVIEW D 94, 044033 (2016)

ov
" ! 2 —
¢"+2HP +a a9 0,

H? = —SZG (%(ﬁ’z + a2V>,

(118)

(119)

where H =< and V is the potential. For a(z) « |z|'*”, the
solution of Egs. (118) and (119) is

M% — V20 P2+ P in(~7) + B.

26+4 ¢
=V - — . 12
Vg) = Voexp (- 500 (120
The slow-roll parameters are defined by
M3 (V'(#)\? _p+2 V"'(¢)
=—|— =5 = M3 = 2e.
‘=7 < % g1 MRy T
(121)

Consider the perturbed scalar field d¢, which generally
depends on the choice of coordinates. In fact, from 6¢ and
scalar metric perturbations, one can construct a gauge-
invariant perturbed scalar field 8¢, satisfying the field
equation [94-96]

6¢" + 2Ho¢ — V26

. [ LV 82G d <@>]%:0’

CoF T A\ H (122)

which holds in any coordinates. For a(r) o |z|'*7,
the bracket in Eq. (122) vanishes, so that the equation

reduces to
"
a
Wi+ (kz__)wk o,
a

where 8¢, = wy/a for each k mode. Equation (123) is
identical to Eq. (10) of RGW, and its solution wy, is the
same as u; in (13). Thus, we obtain the spectrum of ¢

(123)

Ko K M12>1
Aé—{l,(k, 7) = 2_]_[2|5¢k|2 Gy [wel? = ?A,z(k, 7),

(124)

where A?(k,7) is the RGW spectrum in (22). The spectral
dn A2 (k)

indices are given ng; — 1 = —— koo = 26+ 4, a55=

@ In A2 (K) . ' ' .

T lio = 0. One is more interested in scalar metric

perturbations, which are directly related to observations.

Introducing the curvature perturbation R = %% which is
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also gauge invariant [97-100], the spectrum of scalar
curvature perturbation is given by

k3 k3 H2
Ax(k.7) = W|Rk|2 = WPWUZ
1+p
= 7 A? 12
S5+ 4) i (k,7), (125)

H_ 1 /18 i
where &= My \ /2ﬁ +4 1s a constant in our model. The
primordial spectrum of R relevant to CMB observations is
defined at the far outside horizon,

2
! 2<5> P (126)

AR (k) = AR (k, 7) it o) = 2€—M%1az o

The scalar spectral index is given by

dlIn A% (k) —6¢ 2
_4mAagld) —2f 14—
ko =28+ v -

(127)

s S T Ik

differing from the result of slow-roll approximation n, =
1 — 6¢ + 275 in Ref. [61], and the scalar running index is

_ d*InAg(k)

= k) (128)

|k—>0 = 0’

differing from the result a, = —16en + 24€> + 2&2 with

g=M, V¥~ in slow-roll approximation in Ref. [63].

The tensor-scalar ratio is

2
K _ | B2

r= 16¢, 129
AR(R) p+1 129
and the consistency relation is
—8n,;
=—0. 130
- n,/2 (130)

Both (129) and (130) are valid for the whole relevant range
of k. The adiabatic regularization in (74) for RGW is
directly adopted here, yielding the regularized scalar
curvature spectrum,

1+ K g2 1 d'/a
== W —— —— .
2422 M\ 2k 48
(131)

A3 (k.7)

For regularization at the end of inflation, similar to Sec. V 2
for RGW, the primordial scalar spectrum, n;, a,, and r all
remain unchanged. For regularization at the horizon exit,
the spectrum becomes

PHYSICAL REVIEW D 94, 044033 (2016)

AL (k),, = CPAL(K) for k< 1/, (132)

with C? given by Eq. (113), thus n,, a,, and r remain
unchanged. These results differ from that of the slow-roll
approximation in Refs. [50,51].

VII. CONCLUSION AND DISCUSSION

Three aspects of RGW have been studied in this paper:
the analytic spectrum and spectral indices, the decompo-
sition of the present RGW into vacuum and gravitons, and
the removal of UV divergences of the spectrum, energy
density, and pressure, arising from both vacuum and
gravitons. Similarly, regularization during inflation is also
performed for the gauge-invariant perturbed inflaton and
the scalar curvature perturbation.

The analytical A?(k,7), n,, @, and r that have been
obtained are valid at any time and frequency during
inflation. The exact relations involving the indices in
(34), (127), and (130) differ from those in the slow-roll
approximation and can be tested by future CMB observa-
tions. In particular, using the observed spectra C¥* of CMB
in [=(10-3000), A?(k,z) is actually constrained at
klz;| ~ (10728-1072°), far outside the horizon during infla-
tion. This is where the primordial spectrum (28) is referred.
The spectrum at the horizon exit k|z| = 1 differs drastically
from the primordial one.

The present RGW as a quantum field in curved space-
time actually consists of the vacuum and graviton parts.
This decomposition sheds light on the structure of the
spectrum over the respective frequency ranges. The present
vacuum gives quadratic, logarithmic UV divergences to
A?(k,7y), and the gravitons give a logarithmic divergence,
at the high-frequency end f > 10'! Hz. However, at
f < 10" Hz, gravitons are dominant, and the current
detectors are all operating within this band. In this sense,
these detectors are to detect gravitons, not the present
vacuum of RGW. The graviton number density |3|? is
contributed by all four discontinuity points of a”(z), among
which the inflation-reheating transition is the greatest.

In removing UV divergences of RGW, we have carried
out regularization in three schemes: at the present time, at
the end of inflation, and at the horizon exit during inflation.
The first scheme actually involves two parts. The adiabatic
regularization removes only the divergences of present
vacuum, and the divergences of gravitons are cut off.
The last two schemes remove the vacuum divergences
during inflation, the regularized spectrum is then taken as
the initial condition and evolves into the present spectrum,
which is convergent. Besides, for the spectrum, the second
order adiabatic regularization is sufficient to remove UV
divergences, and the fourth adiabatic order is not used
according to the minimal subtraction rule. In all of these three
schemes, the regularized, present spectra are similar, except
that the third scheme yields a lower amplitude, which can be
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raised by a higher inflation energy scale in confronting
observational data. At high frequencies f > 10'! Hz, the
three regularized spectrabehave as A? (k, 7y),, o k=2, which
can serve as a target for high-frequency GW detectors, such
as the polarized, Gaussian laser beam detectors proposed in
Refs. [35,36]. At f < 10'! Hz, the regularized spectrum
remains practically unchanged.

We also calculate the spectral energy density and
pressure of RGW. The vacuum p; and p; contain quartic,
quadratic, and logarithmic divergences, and the regulari-
zation to fourth adiabatic order is necessary and sufficient
to remove them. The regularized vacuum p; ,, > 0 and
Prre <0 at high frequencies for inflation with f < =2,
which is implied by the current observations. For the
present accelerating stage with y = 2.1, the vacuum p; ,, <
0 and py,, > 0. The graviton part of p; and p; at present
contain only quadratic and logarithmic divergences, which
are cut off by the inflation energy scale, yielding py,, =
3pigr x k™2 at f > 10" Hz, greater than those of vacuum
by many orders. At f < 10'! Hz, p; and p, are practically
unchanged by regularization and cutoff. Hence, the total
spectral energy density and pressure, after regularization
and cutoff, are dominantly contributed by gravitons over
the whole frequency range.

Now we give our assessment of the three schemes of
regularization. During the course of cosmic expansion, the
actual, physical spectrum is described by the instantane-
ously regularized (|u(z)[? — [u\”) (z)|?) for any instance 7.
This instantaneous regularization is closest to the instanta-
neous normal ordering for quantum field in flat spacetime.
The two schemes, at the present time or at the end of
inflation, are different demonstrations of this same physical
quantity at respective instances. Moreover, as our work has
shown, the resulting two spectra for observation at present
are nearly the same. So we think that these two schemes are
a better choice than the one at the horizon exit, since the
latter is not instantaneous but at different times for different
k modes. Among the two instantaneous schemes, we would
like to remark that, in regard to technical convenience, the
first scheme, i.e., regularization at the present time for
observation, is a natural choice since it is simpler than the
one at the end of inflation.

For the scalar field driving the power-law inflation, the
gauge invariant perturbed scalar field has an exact solution
which is the same as RGW, so does the scalar curvature
perturbation. The regularization is the same as for RGW, in
particular, the scalar spectral indices n, and a,, tensor-
scalar ratio r remain unchanged.

Our study has an advantage that it is based on the exact
solutions of RGW for the whole expansion, and of the
perturbed inflaton and the scalar curvature perturbation

|

() = @2—2 [bl (KH, (1) + ba () H (1))
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during inflation. Our results have demonstrated, Parker-
Fuling’s adiabatic regularization and the minimal subtraction
rule work perfectly well in removing UV divergences of
vacuum, to the second order for the spectrum, to the fourth
order for the energy density and pressure, respectively.
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APPENDIX: MODE FUNCTION OF RGW

In this appendix, we list the explicit expressions of mode
functions of RGW and the associated coefficients, which
are determined analytically from continuous joining of
hi(r) and h)(7) for all five consequent stages of cosmic
expansion.

The scale factor a(z) in a power-law form is given for all
five stages, so that both a(z) and its time derivative a'(7)
are continuous at the four transition points between all five
stages. But, a” is not required to be continuous for
simplicity. This simple modeling of a(z) works well for
our purpose of an exact RGW solution, but the artificial
discontinuity of a” would bring about too much graviton
production, as addressed in Sec. V 1.

There is an overall normalization of a(z). In this paper,
we take |ty — 7,| = 1. The present Hubble radius Hy' =
ly/y =9.257 x 102%h~! cm with the Hubble parameter
h = 0.69. This fixes the parameters in the expressions of
a(t). Furthermore, for the time of the transitions, we use the
following cosmological specifications in our computation:
The matter-accelerating transition time at a redshift
7~0.347. The radiation-matter transition taken at z =
3293 [30]. The inflation energy scale is taken to 10'°
Gev, the reheating duration is chosen such that
a(zy)/a(r;) = 300, so that at the beginning of radiation
the energy scale will be 10" Gev. Details of the specifi-
cations have been given in Refs. [14,15].

The inflation stage: The scalae factor a() is in Eq. (9),
the mode of RGW is in Eq. (13) as part of the initial
condition.

The reheating stage

a(t) = a |t —7,|"", 71<t<1. (Al
As a model parameter, we simply take f; = —0.3. The
general solution of Eq. (7) during the reheating stage is

7 <7< 71, (A2)
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where ¢ = k(z —7,). The two coefficients b, and b, are determined by the joining condition at 7,

i g x) a3 o) [ 00+ VR0

—H® (1 )[2\/_<a1 1), (x)) + aH, (x ))—i-\/_(al () + a2 (x 1))”, (A3)

bz<k>—A;1{\[ oy 00)+ asH 0] [ = () + (00

) (0) [ o) + ]

Ay = VilH, (0)H(10) = H (1),

by (k)

NI—

(xl))+\/_—(al (Xl) + azHﬁ’%(Xl))} }7

By +1 By +1 By %( )] (A4)
where x|, = kz; and t;, = k(z; — 7,,), while the coefficients a; and a, are given by Eq. (12). In the high frequency limit
k — oo

1 1 : o
bl(k) —_ l(ﬂ(ﬂt ) _ﬂs(ﬁSj )>e—1(x1+tl)+mﬂ+mﬂs/2 + O(k—S) (AS)
4x7 411
o o SB+Y) PP+ PP
bo(k) = —je—ixi—t)Finp—inp/2 (1 _ ﬁ(/ s\Ms _
(k) = —ie ( T TS 87
BB+ 12 BB+ DAB+ 1) -
- s O(k™3 A6
St% + 4x1t1 + ( ) ( )
The radiation-dominant stage:
a(t) =a,(t—1,) 7, <7<1,) (A7)
and the mode function is
T |y
= 3\ 2t OH ) + e (D H ().
2\ 2k 2 2
7, <17 < 1y, (AB)
where y = k(r —7,) and ¢, and ¢, are given by
t 1
_A-1) s (M @) 2) @)
er) = a7 {\ [0 + 0] =10+ V)
2 1
00 [ @0 + 0 (0)
i () + it 0) | (A9)
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exd) = 85" { a0 + (0] [ =0 + v )

(aHy (1) + ol (1)

_Hé (¢ ){2\/—

vilay () + )| |

Ac = V3H OO () = HY () H ()],

2

where 7, = k(z; — 7,) and y,; = k(z, —7,). In the high frequency limit k — co

Cl(k) (ﬁ(:i;; ) ﬁx(éjt;‘ 1)) —i(x+1— t+yx)+mﬂ+ % —i(x =t +t+y +tﬂﬂ+0( )

Cz(k) - _ ie—i(xl—t1+t.‘—y.‘)+i7z[)’<] _ lﬁ(ﬁ+ 1) + lﬂs(ﬁs + 1) _ lﬂs(ﬂs + 1)

le 2t1 2t‘
B Y 1V S R S Vi A V) ST
8X% 81‘% 8[?- 4X1t1
2 2
4)C1ts 4t1ts
The matter-dominant stage
a(t) = a,(t —1,)%, 7, <t <18

and the mode function is

)+ dz(k)ng)(Z)} . 7, <1< Tp,

N|w P

=

where z = k(r — 7,,) and d, and d, are given by

6 = 85 {20 02) + s 0] | o= o)+ A )

Vs

¥l

(@ H(52) + @l (52) (e ] @g+aﬂ#>@gﬁ}

#0) + Vi) )

~H"(2,) wl“@»+@H<m»Wﬁwﬂ (v2) + axH, (v2)
2 22

Bg = ValH @) H (22) = HY (22) HY (22)],

where z, = k(7, — 7,,) and y, = k(z, — 7,). In the high frequency limit k — oo

d (k) — _ ﬂ(ﬁ + 1) _:Bs(ﬁs 1) —i(x)+t —t+ys—yo+zo)Hinf _ ﬁS(ﬂS ) —z(x]—t|+tl\+yx—y2+12)+ifr/7’
: 4x2 41 42

+ Le i) =1y 1=y +y2+22) Hinf + O(k_3),

2z2
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PB+1) | BB+ 1) AP+ D)

dz(k> = —e_i<xl_tl+tx_ys+y2_22)+iﬂﬂ (1 —_ i

2x, 2t 2t
+il_ﬁ2(ﬂ +1?2 BB+ BB+ 1 BB+ DB+ )
2 8} 81} 223 4x,1
BB+ VBB +1) B+ BB+ 1) BB +1) BB +1) .
B 4xi1, Y onn L ann an T 2tz ) +O(k™). (A18)

The accelerating stage up to the present time 7y

a(t) =lylt—1,] 7,7 <7 < 7H,

(A19)

with y = 2.1 fits the model Q, = 0.7 and Q,, = 1 — Q,. The mode function u,(r) and the coefficients a;, 3 of this stage

are given in (39), (40), and (41).
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