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We study Weyl symmetry (local conformal symmetry) in unimodular gravity. It is shown that the
Noether currents for both Weyl symmetry and global scale symmetry vanish exactly as in conformally
invariant scalar-tensor gravity. We clearly explain why in the class of conformally invariant gravitational
theories, the Noether currents vanish by starting with conformally invariant scalar-tensor gravity. Moreover,
we comment on both classical and quantum-mechanical equivalences in Einstein’s general relativity,
conformally invariant scalar-tensor gravity, and the Weyl-transverse gravity. Finally, we discuss the Weyl
current in the conformally invariant scalar action and see that it is also vanishing.
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I. INTRODUCTION

One of the biggest mysteries in modern theoretical
physics is certainly the problem of the cosmological
constant [1]. This problem consists of several facets that
must be understood in a proper way. The old cosmological
constant problem was to understand simply why the
vacuum energy density is so small. The vacuum energy
density coming from gravitational fluctuations up to the
Planck mass scale is larger than that observed experimen-
tally by some 120 orders of magnitude. On the other hand,
the new cosmological constant problem is to understand
why the cosmological constant is not exactly zero and why
its energy density is the same order of magnitude as the
present matter density.
Among several aspects of the cosmological constant

problem—what the author would especially like to under-
stand is the issue of radiative instability of the cosmological
constant—is the necessity of fine-tuning the value of the
cosmological constant every time the higher-order loop
corrections are added in perturbation theory. To resolve this
problem, unimodular gravity [2–14] has been put forward
where the vacuum energy and a fortiori all potential energy
are decoupled from gravity since, in the unimodular
condition

ffiffiffiffiffiffi−gp ¼ 1, the potential energy cannot couple
to gravity at the action level.
However, the world is not so simple since the unimodular

condition must be properly implemented via the Lagrange
multiplier field in quantum field theories. Radiative cor-
rections then modify the Lagrange multiplier field, which
essentially corresponds to the cosmological constant in
unimodular gravity, thereby rendering its initial value
radiatively unstable.
Thus, if unimodular gravity could provide us with

some solution to the issue of radiative instability of the
cosmological constant, there should be more symmetry

or a still-unknown dynamical mechanism to suppress
radiative corrections to the vacuum energy. Actually,
there has already appeared such a theory where Weyl
symmetry—i.e., local conformal symmetry—is added to
the volume preserving diffeomorphisms or, equivalently, the
transverse diffeomorphisms (TDiff) of unimodular gravity
[15–19]. We will henceforth call this theory that of Weyl-
transverse (WTDiff) gravity. Many of the reasons why
WTDiff gravity is better than transverse gravity, which is
called TDiff gravity, are mentioned in Ref. [18], where, for
instance, it is expected that if Weyl symmetry could survive
even at the quantum level, this theory would be a finite one,
although a one-loop calculation leads to anomalies in the
Ward-Takahashi identities.1

The purposes of this article are threefold. First, we
calculate the Noether current for Weyl symmetry in
WTDiff gravity and show that it vanishes identically as
in conformally invariant scalar-tensor gravity [20]. Second,
we provide simple proof that the Weyl current vanishes in a
class of conformally invariant gravitational theories.
Finally, we generalize this proof to a conformally invariant
scalar matter action.
This paper is organized as follows. In Sec. II, we give

two calculations of the Noether current for Weyl symmetry
that use the same lines of argument found in Ref. [20]. In
Sec. III, wewill demonstrate that three kinds of gravitational
theories—namely, Einstein’s general relativity, conformally
invariant scalar-tensor gravity, and WTDiff gravity—are all
equivalent, at least classically, and comment on their
quantum equivalences as well. In Sec. IV, we will explore
why the Noether current made in Sec. II vanishes identically
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1One reason why we are interested in WTDiff gravity and not
the TDiff one is that, in TDiff gravity, g ¼ det gμν becomes a
dimensionless scalar field, so that any polynomials of g are not
excluded by symmetries and are allowed, in principle, to exist in
the action. This fact makes it difficult to construct an action
consisting of a finite number of terms.
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in this class of conformally invariant gravitational theories.
In Sec. V, we consider the Weyl-invariant scalar matter
coupling with gravity and see that the Weyl Noether current
also vanishes in this case. The final section is devoted to
discussions.

II. THE NOETHER CURRENT FOR WEYL
SYMMETRY

We will start with the action of WTDiff gravity in
unimodular gravity [18,19], which is given by2

S ¼
Z

d4xL ¼ 1

12

Z
d4xjgj14

�
Rþ 3

32

1

jgj2 g
μν∂μjgj∂νjgj

�
;

ð1Þ

where we have confined ourselves to four space-time
dimensions since the generalization to a general space-time
dimension is straightforward. Moreover, we have selected
the coefficient 1

12
for later convenience. Finally, note that we

have defined g ¼ det gμν < 0.
The action (1) turns out not to be invariant under the full

group of diffeomorphisms (Diff), but rather only under the
TDiff. Moreover, it is worthwhile to notice that, in spite of
the existence of an explicit mass scale (the reduced Planck
units, which we have set at Mp ¼ 1), this action is also
invariant under Weyl transformation. Actually, under the
Weyl transformation

gμν → g0μν ¼ Ω2ðxÞgμν; ð2Þ

the Lagrangian density in (1) is changed to

L0 ¼ L −
1

2
∂μ

�
jgj14gμν 1

Ω
∂νΩ

�
: ð3Þ

Now we will calculate the Noether current for Weyl
symmetry by using the Noether procedure [22]. We will
closely follow the lines of argument found in Ref. [20]. A
general variation of the Lagrangian density in the action (1)
reads

δL ¼ ∂L
∂gμν δgμν þ

∂L
∂ð∂μgνρÞ

δð∂μgνρÞ

þ ∂L
∂ð∂μ∂νgρσÞ

δð∂μ∂νgρσÞ: ð4Þ

In this expression, let us note that the Lagrangian density at
hand includes second-order derivatives of gμν in the scalar
curvature R. Setting ΩðxÞ ¼ e−ΛðxÞ, the infinitesimal varia-
tion δL under Weyl transformation (2) is given by

δL ¼ ∂μX
μ
1; ð5Þ

where Xμ
1 is defined as

Xμ
1 ¼

1

2
jgj14gμν∂νΛ: ð6Þ

Equation (5) of course indicates that the action (1) is
invariant under the Weyl transformation up to a sur-
face term.
Next, using the equations of motion

∂L
∂gμν ¼ ∂ρ

∂L
∂ð∂ρgμνÞ

− ∂ρ∂σ
∂L

∂ð∂ρ∂σgμνÞ
; ð7Þ

the variation δL in (4) can be cast to the form

δL ¼ ∂μK
μ
1; ð8Þ

where Kμ
1 is defined as

Kμ
1 ¼

∂L
∂ð∂μgνρÞ

δgνρ þ
∂L

∂ð∂μ∂νgρσÞ
∂νδgρσ

− ∂ν
∂L

∂ð∂μ∂νgρσÞ
δgρσ: ð9Þ

Using this formula, an explicit calculation yields

Kμ
1 ¼ Xμ

1; ð10Þ

thereby giving us the result that the Noether current for
Weyl symmetry vanishes identically:

Jμ1 ¼ Kμ
1 − Xμ

1 ¼ 0: ð11Þ

Let us note that expressions Xμ
1 and Kμ

1 are both gauge
invariant under the Weyl transformation. This fact will be
utilized later when we provide proof in Sec. IV.
As an alternative derivation of the same result, one can

also appeal to a more conventional method where the
Lagrangian density in (1) does not explicitly involve
second-order derivatives of gμν in the curvature scalar R.
To do that, one makes use of the following well-known
formula: when one writes the scalar curvature

R ¼ R1 þ R2; ð12Þ

the formula takes the form [23]

2We follow the notation and conventions by Misner et al.’s
textbook [21], for instance, the flat Minkowski metric
ημν ¼ diagð−;þ;þ;þÞ, the Riemann curvature tensor
Rμ

ναβ ¼ ∂αΓ
μ
νβ − ∂βΓ

μ
να þ Γμ

σαΓσ
νβ − Γμ

σβΓσ
να, and the Ricci tensor

Rμν ¼ Rα
μαν. The reduced Planck mass is defined as

Mp ¼
ffiffiffiffiffiffi
cℏ
8πG

q
¼ 2.4 × 1018 GeV. Through this article, we adopt

the reduced Planck units, where we set c ¼ ℏ ¼ Mp ¼ 1.

ICHIRO ODA PHYSICAL REVIEW D 94, 044032 (2016)

044032-2



R1 ¼ −2R2 þ
1ffiffiffiffiffiffi−gp ∂μð

ffiffiffiffiffiffi
−g

p
AμÞ; ð13Þ

where one has defined the following quantities:

R1 ¼ gμνð∂ρΓ
ρ
μν − ∂νΓ

ρ
μρÞ;

R2 ¼ gμνðΓσ
ρσΓ

ρ
μν − Γσ

ρνΓ
ρ
μσÞ

¼ gμνΓσ
ρσΓ

ρ
μν þ 1

2
Γρ
μν∂ρgμν;

Aμ ¼ gνρΓμ
νρ − gμνΓρ

νρ: ð14Þ

Here, let us note that R2 is free of second-order derivatives
of gμν, which are now involved in the term including Aμ.
Then we have the Lagrangian density

L ¼ L0 þ
1

12
∂μ

�
jgj14Aμ

�
; ð15Þ

where L0 is defined as

L0¼
1

12
jgj14

�
−R2þ

1

4
jgj−1Aμ∂μjgjþ

3

32
jgj−2gμν∂μjgj∂νjgj

�
:

ð16Þ

We are now ready to show that the Noether current for
Weyl symmetry is also zero by a more conventional
method. First of all, let us observe that the variation of
L under the Weyl transformation (2) comes from only the
total derivative term

δL ¼ ∂μ

�
1

2
jgj14gμν∂νΛ

�
¼ 1

12
∂μ½δðjgj14AμÞ�: ð17Þ

Total derivative terms are irrelevant to the dynamics so,
in what follows, let us focus our attention only on the
Lagrangian L0, which is free of second-order derivatives
of gμν.
Second, by an explicit calculation we find that the

Lagrangian L0 is invariant under the Weyl transformation
without any surface terms,

Xμ
2 ¼ 0: ð18Þ

Finally, applying the Noether theorem [22] for L0, we
can derive the following result:

Kμ
2 ¼

∂L0

∂ð∂μgνρÞ
ð−2gνρÞ ¼ 0: ð19Þ

Hence, the Noether current for Weyl symmetry vanishes
identically:

Jμ2 ¼ Kμ
2 − Xμ

2 ¼ 0: ð20Þ

This result is very similar to that of conformally invariant
scalar-tensor gravity [20]. This fact suggests that there
might be more universal proof which is independent of the
form of actions but reflects only the conformal invariance in
this class of Weyl-invariant gravitational theories. In
Sec. IV, we will present such proof.
Before closing this section, we should refer to the

ambiguity associated with the Noether currents for local
Weyl symmetry. Our calculation in this section is based on
Noether’s first theorem, which is applicable to global
symmetries, and the second theorem, which can be applied
to local (gauge) symmetries. Of course, the latter case
includes the former one as a special case, and both of
Noether’s theorems give the same result, such that the
Noether currents vanish identically. However, we should
recall the well-known fact that Noether currents for local
(gauge) symmetries always reduce to superpotentials, which
leave us with ambiguity. Thus, a more reliable statement
which is obtained from our calculation is that the global
Weyl symmetry has a vanishing Noether current, and hence
no charge and no symmetry generator.

III. CLASSICAL EQUIVALENCE

In this section, we wish to show the classical equivalence
among the three kinds of gravitational theories, which are
Einstein’s general relativity, conformally invariant scalar-
tensor gravity, and WTDiff gravity. This equivalence of the
three theories will be used in the next section to explain
why the Noether current for Weyl symmetry vanishes
identically.
To show the equivalence, let us start with the Einstein-

Hilbert action of general relativity in four space-time
dimensions,

S ¼ 1

12

Z
d4x

ffiffiffiffiffiffi
−g

p
R: ð21Þ

Thewell-known trick to enlargegauge symmetries fromDiff
to WDiff is to introduce the spurion field φ and then
construct a Weyl-invariant metric ĝμν ¼ φ2gμν since, under
the Weyl transformation, the spurion field transforms as

φ → φ0 ¼ Ω−1ðxÞφ: ð22Þ

Replacing gμνwith ĝμν in theEinstein-Hilbert action, one can
obtain the action of conformally invariant scalar-tensor
gravity [24,25],

Ŝ ¼ 1

12

Z
d4x

ffiffiffiffiffiffi
−ĝ

p
R̂

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

12
φ2Rþ 1

2
gμν∂μφ∂νφ

�
: ð23Þ

Conversely, beginning with Ŝ, to eliminate the spurion field
φ one can take a gauge φ ¼ 1 for Weyl symmetry, by which
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Ŝ is reduced to the Einstein-Hilbert action S, which is
invariant only under Diff. In this sense, Einstein’s general
relativity is classically equivalent to conformally invariant
scalar-tensor gravity.
Next let us show the equivalence between conformally

invariant scalar-tensor gravity and WTDiff gravity. In this
case, we start with the action Ŝ of conformally invariant
scalar-tensor gravity, then take a different gauge condition,
φ2 ¼ jgj−1

4, i.e.,

ĝμν ¼ φ2gμν ¼ jgj−1
4gμν: ð24Þ

It is worthwhile to stress that this gauge condition is a
gauge condition not for the Weyl transformation but for
the longitudinal diffeomorphism. In fact, under the Weyl
transformation, jgj−1

4 transforms in the same way as the
square of the spurion field does:

jgj−1
4 → jg0j−1

4 ¼ Ω−2ðxÞjgj−1
4: ð25Þ

Thus, the gauge condition (24) does not break Weyl
symmetry, but rather breaks Diff down to TDiff since

ĝ ¼ det ĝμν ¼ −1: ð26Þ

Now, substituting the gauge condition (24) into the action
(23) of conformally invariant scalar-tensor gravity, it turns
out that one arrives at the action (1) of WTDiff gravity.
Consequently, via the gauge-fixing procedure, conformally
invariant scalar-tensor gravity becomes equivalent to
WTDiff gravity, at least at the classical level. To summa-
rize, we have found that the three gravitational theories are
classically equivalent via a trick that introduces a Weyl-
invariant metric and a gauge-fixing procedure.
An important issue to address is to ensure that the three

gravitational theories are equivalent, even at the quantum
level. To put it differently, are there some anomalies,
specifically, conformal anomaly for Weyl symmetry and
a gauge anomaly for the longitudinal diffeomorphism? We
believe that there are no such anomalies for the following
reasons, even if we lack precise proof in this regard.
In a pioneering work, Englert et al. [26] have inves-

tigated the local conformal invariance in conformally
invariant scalar-tensor gravity. Their result is that, as long
as the local conformal symmetry is spontaneously broken,
anomalies do not arise. In this context, the spontaneous
symmetry breakdown of Weyl symmetry means that the
spurion field takes the nonvanishing vacuum expectation
value, hφðxÞi ≠ 0. Afterwards, this quantum equivalence
has been studied from various viewpoints, and an affirma-
tive answer was obtained in [27–32]. This observation
could also be applied to the quantum equivalence between
conformally invariant scalar-tensor gravity and WTDiff
gravity, although in this case the spurion field must take the
vacuum expectation value, which is not a constant but a
field-dependent value. Anyway, we will need more studies

to prove the exact equivalence among the three gravita-
tional theories in the future.

IV. WHY IS THE NOETHER CURRENT
VANISHING?

In this section, on the basis of the results obtained in the
previous section, we shall provide simple proof that the
Noether current for Weyl symmetry in both conformally
invariant scalar-tensor gravity and WTDiff gravity van-
ishes. For simplicity, we will consider the action which
includes only first-order derivatives of the metric tensor gμν.
As the starting action, we will take the action Ŝ of

conformally invariant scalar-tensor gravity. As in the case
of WTDiff gravity, the action (23) can be rewritten in the
first-order derivative form,

Ŝ ¼
Z

d4x

�
L̂0 þ

1

12
∂μð

ffiffiffiffiffiffi
−g

p
φ2AμÞ

�
; ð27Þ

where L̂0 is defined by

L̂0 ¼
ffiffiffiffiffiffi
−g

p �
−

1

12
φ2R2 −

1

12
Aμ∂μðφ2Þ þ 1

2
gμν∂μφ∂νφ

�
:

ð28Þ

The total derivative term in Ŝ plays no role in bulk
dynamics, so we will consider L̂0 from now on.
As shown in Ref. [20], L̂0 in invariant under the Weyl

transfomation without a surface term, from which we have

Xμ
0 ¼ 0: ð29Þ

Then the Noether theorem [22] gives us

Kμ
0 ¼

∂L̂0

∂ð∂μφÞ
φþ ∂L̂0

∂ð∂μgνρÞ
ð−2gνρÞ: ð30Þ

Now we would like to give simpler proof of Kμ
0 ¼ 0

without many calculations. The key observation for our
proof is to recall that three kinds of gravitational theories are
related to each other by aWeyl-invariantmetric ĝμν ¼ φ2gμν,
taking the differentiation from which we can derive the
equation

∂μĝνρ ¼ 2φ∂μφgνρ þ φ2∂μgνρ: ð31Þ

Using this equation, one finds that

∂L̂0

∂ð∂μφÞ
¼ ∂L̂0

∂ð∂μĝνρÞ
2φgνρ;

∂L̂0

∂ð∂μgνρÞ
¼ ∂L̂0

∂ð∂μĝνρÞ
φ2: ð32Þ
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From Eq. (32), Eq. (30) produces the expected result,

Kμ
0 ¼ 0: ð33Þ

As a result, the Noether current for Weyl symmetry is
vanishing:

Jμ0 ¼ Kμ
0 − Xμ

0 ¼ 0: ð34Þ

This is simple proof of the vanishing Noether current for
Weyl symmetry in conformally invariant scalar-tensor
gravity. Since the current is gauge invariant, our proof
can be directly applied to any locally conformally invariant
gravitational theories, such as WTDiff gravity obtained via
the trick ĝμν ¼ φ2gμν.

V. WEYL-INVARIANT MATTER COUPLING

Since there are plenty of matters around us, it is natural to
take account of effects of matter fields in the present
formalism. In this section, we will show that an introduc-
tion of conformal matters does not change the fact that the
Weyl current vanishes. As an example, we will work with
the WDiff coupling of a real scalar field with gravity, but
the generalization to general matter fields is straightforward
as long as the matter fields are invariant under the Weyl
transformation.
As before, let us first begin with the action of a scalar

field ϕ with the potential VðϕÞ in curved space-time,

Sm ¼
Z

d4xjgj12½−gμν∂μϕ∂νϕ − VðϕÞ�: ð35Þ

Note that this action is manifestly invariant under the full
group of Diff. Under the Weyl transformation, the scalar
field transforms as

ϕ → ϕ0 ¼ Ω−1ðxÞϕ: ð36Þ

The trick to enlarging gauge symmetries from Diff to
WDiff is to now make both a Weyl-invariant metric ĝμν ¼
φ2gμν and a Weyl-invariant scalar field ϕ̂ ¼ φ−1ϕ, then
replace the metric and the scalar field in the action (35) with
the corresponding Weyl-invariant objects. As a result, the
WDiff matter action takes the form

Ŝm ¼
Z

d4xL̂m ¼
Z

d4xjĝj12½−ĝμν∂μϕ̂∂νϕ̂ − Vðϕ̂Þ�

¼
Z

d4xjgj12
�
−φ2gμν∂μ

�
ϕ

φ

�
∂ν

�
ϕ

φ

�

− φ4V

�
ϕ

φ

��
: ð37Þ

In this section, we shall calculate the Noether current for
Weyl symmetry with the two different methods. One

method is to calculate the current in the WDiff matter
action without gauge-fixing Weyl symmetry like confor-
mally invariant scalar-tensor gravity. The other method is to
gauge fix the longitudinal diffeomorphism with the gauge
condition, by which the WDiff matter action is reduced to
the WTDiff matter one, and then to calculate the Noether
current for Weyl symmetry like WTDiff gravity. The Weyl
current is a gauge-invariant quantity, so both methods
should provide the same result.
First, let us calculate the Noether current for Weyl

symmetry on the basis of the WDiff matter action (37).
It is easy to see that the action (37) is invariant under
the Weyl transformation without a surface term, which
implies

Xμ
m ¼ 0: ð38Þ

Again, the Noether theorem [22] yields

Kμ
m ¼ ∂L̂m

∂ð∂μϕÞ
ϕþ ∂L̂m

∂ð∂μφÞ
φþ ∂L̂m

∂ð∂μgνρÞ
ð−2gνρÞ: ð39Þ

Next, the Weyl-invariant combinations ĝμν ¼ φ2gμν and
ϕ̂ ¼ φ−1ϕ give us the relations

∂L̂m

∂ð∂μϕÞ
¼ ∂L̂m

∂ð∂μϕ̂Þ
1

φ
;

∂L̂m

∂ð∂μφÞ
¼ ∂L̂m

∂ð∂μĝνρÞ
2φgνρ −

∂L̂m

∂ð∂μϕ̂Þ
ϕ

φ2
;

∂L̂m

∂ð∂μgνρÞ
¼ ∂L̂m

∂ð∂μĝνρÞ
φ2: ð40Þ

Using these relations, Kμ
m in (39) becomes zero:

Kμ
m ¼ 0: ð41Þ

The Noether current for Weyl symmetry is, therefore,
vanishing:

Jμm ¼ Kμ
m − Xμ

m ¼ 0: ð42Þ

This is a general result and, even after fixing the
longitudinal diffeomorphism, this result should be valid
since the Weyl current is gauge invariant under the Weyl
transformation. Indeed, this is the case when we calculate
the Weyl current in WTDiff scalar action quickly.
Now let us take the gauge condition (24) for the

longitudinal diffeomorphism, which does not break the
local conformal symmetry. Inserting the gauge condition
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(24) into the WDiff scalar matter action (37) leads to the
WTDiff scalar matter action,

Ŝm ¼
Z

d4xL̂m

¼
Z

d4x

�
−jgj12gμν

�
1

64

ϕ2

jgj2 ∂μjgj∂νjgj

þ 1

4

ϕ

jgj ∂μjgj∂νϕþ ∂μϕ∂νϕ

�
− Vðjgj18ϕÞ

�
: ð43Þ

Since the action (43) is invariant under the Weyl trans-
formation without a surface term, we have

Xμ
m ¼ 0: ð44Þ

The Noether theorem [22] gives us the formula

Kμ
m ¼ ∂L̂m

∂ð∂μϕÞ
ϕþ ∂L̂m

∂ð∂μgνρÞ
ð−2gνρÞ: ð45Þ

It is useful to evaluate each term in (45) separately to see its
gauge invariance, whose result is given by

∂L̂m

∂ð∂μϕÞ
ϕ ¼ −ϕ̂2ĝμν∂ν logðϕ̂2Þ;

∂L̂m

∂ð∂μgνρÞ
ð−2gνρÞ ¼ ϕ̂2ĝμν∂ν logðϕ̂2Þ: ð46Þ

As promised, each term is manifestly gauge invariant under
the Weyl transformation since it is expressed in terms of
only gauge-invariant quantities. Adding the two terms in
(46), we have

Kμ
m ¼ 0: ð47Þ

Thus, the Noether current for Weyl symmetry is certainly
vanishing,

Jμm ¼ Kμ
m − Xμ

m ¼ 0: ð48Þ

The results in (42) and (48) both clearly account for the fact
that the Noether current for Weyl symmetry is vanishing in
the conformally invariant scalar matter action as well.

VI. DISCUSSIONS

In this article, we have explicitly shown that the Noether
currents inWTDiff gravity, which is invariant under both the
local conformal transformation and the transverse diffeo-
morphisms, are identically vanishing for both local and
global conformal symmetries. Moreover, we have provided
simple proof of thevanishingWeyl currents and stressed that
all the locally conformally invariant gravitational theories,
which are obtained via the trick ĝμν ¼ φ2gμν from the

diffeomorphism-invariant gravitational theories, have the
vanishing Weyl currents. We have also extended this
calculation to conformally invariant scalar matter theory
and have shown that theNoether current is vanishing aswell.
This result of the vanishing Weyl currents in conformally

invariant scalar-tensor gravity and WTDiff gravity is math-
ematically plausible since these two theories are at least
classically equivalent to Einstein’s general relativity. In
general relativity, there is no conformal invariance, so the
Weyl current is trivially zero and it is therefore alsovanishing
in conformally invariant scalar-tensor gravity and WTDiff
gravity. In this sense, the local conformal symmetry existing
in conformally invariant scalar-tensor gravity and WTDiff
gravity could be called fake conformal symmetry [20].
An important issue associated with fake conformal

symmetry involves what advantage we have by introducing
a spurion field and adding fake conformal symmetry to
quantum field theory.3 One opinion on this issue is that the
fake Weyl invariance has no dynamical role and that, at
best, a possible calculational device might be achieved
[20].4 However, there is at least one advantage, in the sense
that conformally invariant scalar-tensor gravity can be
regarded as the more fundamental theory, from which,
via a gauge-fixing procedure, both general relativity and
WTDiff gravity can be derived in a natural way.
Our opinion on the advantage of fake conformal sym-

metry is different from that of Ref. [20]. We think that fake
Weyl symmetry plays an important role in the cosmological
constant problem, particularly at the quantum level. In
conventional unimodular gravity, the cosmological con-
stant is generated with quantum corrections but it does not
couple to the gravitational field. In this sense, the quantum
corrections do not generate the cosmological constant. On
the other hand, in WTDiff gravity, there is fake Weyl
symmetry, which forbids operators of dimension zero such
as the cosmological constant. If in WTDiff gravity the
quantum corrections do not generate the cosmological
constant as well, we expect that fake Weyl symmetry
survives at the quantum level, thereby suppressing radiative
corrections. Then fake Weyl symmetry would not give rise
to a Weyl anomaly at the quantum level, owing to its
“fakeness.”Of course, we will require more investigation to
check out this interesting conjecture in the future.
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