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A model of nonlinear electrodynamics coupled with the gravitational field is studied. We obtain the
asymptotic black hole solutions at r → 0 and r → ∞. The asymptotic at r → 0 is shown, and we find
corrections to the Reissner-Nordström solution and Coulomb’s law at r → ∞. The mass of the black hole is
evaluated having the electromagnetic origin. We investigate the thermodynamics of charged black holes
and their thermal stability. The critical point corresponding to the second-order phase transition (where heat
capacity diverges) is found. If the mass of the black hole is greater than the critical mass, the black hole
becomes unstable.
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I. INTRODUCTION

Nonlinear electrodynamics (NLED) can solve the problem
of the singularity of an electric field in the origin of charged
pointlike particles as well as the problem of infinite electro-
magnetic energy. For weak fields, NLED may be converted
into Maxwell’s electrodynamics so that Maxwell’s electro-
dynamics can be considered as an approximation. For strong
electromagnetic fields, classical electrodynamics has to be
modified [1] because the self-interaction of photons is
important. Born and Infeld [2] (BI) proposed a model of
NLED so that there is an upper limit on the electric field at the
origin of charged particles and the total electric energy is
finite. Thus, the BImodel of NLEDmay solve the problem of
singularity in the classical theory. The BI action also was
obtained from the low-energy effective action of the super-
string theory [3,4]. In Maxwell’s electrodynamics and in the
BI NLED, the dual invariance holds [5,6]. Within various
models of NLED [7–9], the problems of singularities and the
infinity of a total electromagnetic energy of charged particles
can be solved.
In the early epoch of the Universe, electromagnetic and

gravitational fields were very strong, and therefore, non-
linear effects should be taken into account. In addition,
nonlinear electromagnetic fields can drive the Universe’s
acceleration [10,11]. In [12–17], the magnetic universe was
considered and the stochastic magnetic fields result in
inflation of the Universe. BI cosmology was investigated
in [10]. It should be mentioned that electromagnetic fields
in BI electrodynamics do not drive the Universe to
accelerate [14] and, in addition, the BI model suffers
causality problems [18]. Recently, the exact black hole
solutions in the framework of general relativity (GR)
coupled with NLED were obtained in [19–27].
In this paper, we obtain a solution for charged black

holes in GR theory coupled with NLED proposed in [8].

Corrections to the Coulomb law and to the Reissner-
Nordström (RN) black hole solution are found. We also
study the thermodynamics of black holes and phase
transitions.
The paper is organized as follows. In Sec. II, we

introduce a model of NLED and study energy conditions.
NLED coupled to gravitational field is investigated in
Sec. III. Corrections to the Coulomb law are obtained.
We investigate the P frame that corresponds to the electric-
magnetic duality. The mass of the black hole is calculated
in Sec. IV. We find the black hole solution and obtain
corrections to the RN solution. We show that the solution
possesses the Reissner-Nordström asymptotic. In Sec. V,
the thermodynamics of black holes and phase transitions
are investigated. It was demonstrated that there is no first
order phase transition when the temperature of black holes
changes the sign. We obtain the critical point corresponding
to the second-order phase transition. Section VI is devoted
to a conclusion.
We use the units c ¼ ℏ ¼ 1 and the metric

η ¼ diagð−1; 1; 1; 1Þ.

II. NONLINEAR ELECTRODYNAMICS
AND ENERGY CONDITIONS

Let us consider NLED with the Lagrangian density
proposed in [8]

Lem ¼ −
F

2βF þ 1
: ð1Þ

The parameter β possesses the dimension of ðlengthÞ4 and
gives the upper bound on the possible electric field strength
[8], F ¼ ð1=4ÞFμνFμν, and Fμν is the field strength. The
electric field of a pointlike charged particle has the finite
value at the origin and the electromagnetic energy of
charged particles is also finite. The energy-momentum
tensor is given by [8]*serguei.krouglov@utoronto.ca
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Tμν ¼ −
1

ð2βF þ 1Þ2 ½Fμ
αFνα − gμνF ð2βF þ 1Þ�; ð2Þ

and the trace of the energy-momentum tensor is nonzero,

T ≡ Tμ
μ ¼ 8βF 2

ð2βF þ 1Þ2 : ð3Þ

At β → 0, one comes to Maxwell’s electrodynamics with
zero trace. The scale and dilatation invariance are broken
due to the presence of the dimensional parameter β.
The weak energy condition (WEC) [28] is defined as

ρ ≥ 0; ρþ pm ≥ 0 ðm ¼ 1; 2; 3Þ; ð4Þ

where ρ is the energy density, and pm are principal
pressures. Equations (4) guarantee that the energy density
is non-negative for any local observer. For the case B ¼ 0,
we find from Eq. (2),

ρ ¼ T0
0 ¼ E2ð1þ βE2Þ

2ð1 − βE2Þ2 ; ð5Þ

pm ¼ −Tm
m ¼ E2ð1 − βE2Þ − 2E2

m

2ð1 − βE2Þ2 ðm ¼ 1; 2; 3Þ; ð6Þ

and there is no summation in the index m in Eq. (6),
E2 ¼ E2

1 þ E2
2 þ E2

3. The plot of the function ρ is given in
Fig. 1. One can see from Eq. (5) that ρ ≥ 0. By virtue of
Eqs. (5) and (6), for the case B ¼ 0, we obtain

ρþ p1 ¼
E2
2 þ E2

3

ð1 − βE2Þ2 ; ρþ p2 ¼
E2
1 þ E2

3

ð1 − βE2Þ2 ;

ρþ p3 ¼
E2
1 þ E2

2

ð1 − βE2Þ2 : ð7Þ

Thus, WEC is satisfied for any values of the electric field.
It should be noted that βE2 < 1 because the maximum
electric field at the origin of charged particles is Emax ¼
1=

ffiffiffi
β

p
[8].

The dominant energy condition (DEC) [28] reads

ρ ≥ 0; ρþ pm ≥ 0; ρ − pm ≥ 0 ðm ¼ 1; 2; 3Þ:
ð8Þ

From Eqs. (5) and (6) (at B ¼ 0), one finds

ρ − p1 ¼
E2
1 þ βE4

ð1 − βE2Þ2 ; ρ − p2 ¼
E2
2 þ βE4

ð1 − βE2Þ2 ;

ρ − p3 ¼
E2
3 þ βE4

ð1 − βE2Þ2 : ð9Þ

Equations (8) hold and, as a result, the speed of sound is
less than the speed of light.
The strong energy condition (SEC) [28] requires

ρþ
X3
m¼1

pm ≥ 0: ð10Þ

With the aid of Eqs. (5) and (6) for the case B ¼ 0, we
obtain

ρþ
X3
m¼1

pm ¼ E2

1 − βE2
; ð11Þ

and SEC (10) is satisfied. The pressure at B ¼ 0 is

p ¼ Lþ E2

3

∂L
∂F ¼ E2ð1 − 3βE2Þ

6ð1 − βE2Þ2 ¼ 1

3

X3
m¼1

pm:

Then SEC (10) can be represented as ρþ 3p ≥ 0
which tells us that the electric field can not drive the
acceleration of the Universe. In the magnetic universe, the
acceleration of the Universe occurs in the model under
consideration [16].

III. NLED AND BLACK HOLES

The action of NLED coupled with GR is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ
Rþ L

�
: ð12Þ
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The R is the Ricci scalar, κ ¼ 8πG≡M−2
Pl , MPl is the

reduced Planck mass, and G is the Newton constant. By
varying action (12), one can find the Einstein equation and
equations for NLED:

Rμν −
1

2
gμνR ¼ −κTμν; ð13Þ

∂μ

� ffiffiffiffiffiffi−gp
Fμν

ð1þ 2βF Þ2
�

¼ 0: ð14Þ

Our goal is to obtain the static charged black hole solutions
to Eqs. (13) and (14). We explore the spherically symmetric
line element in (3þ 1)-dimensional spacetime as follows:

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2ðdϑ2 þ sin2ϑdϕ2Þ: ð15Þ

Implying that the vector-potential possesses nonzero com-
ponent A0ðrÞ, F ¼ −½EðrÞ�2=2 (B ¼ 0), from Eq. (14) we
obtain

∂r

�
r2EðrÞ

ð1 − β½EðrÞ�2Þ2
�

¼ 0: ð16Þ

Integrating Eq. (16), one finds the equation

r2EðrÞ ¼ Qð1 − β½EðrÞ�2Þ2; ð17Þ

where Q is the constant of integration. We introduce the
dimensionless variables1:

x ¼ r

β1=4
ffiffiffiffi
Q

p ; y ¼ β1=4
ffiffiffiffiffiffiffiffiffi
EðrÞ

p
: ð18Þ

Then Eq. (17) becomes

y4 þ xy − 1 ¼ 0: ð19Þ

The positive real solution to Eq. (19) is

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

31=4x

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðφ=3Þp −

sinhðφ=3Þffiffiffi
3

p
s

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðφ=3Þp
31=4

;

sinhðφÞ ¼ 33=2

16
x2: ð20Þ

The plot of the function yðxÞ is given by Fig. 2. At x → 0,
we have y → 1 and from Eq. (18) one obtains the finite
value of the electric field in the center Eð0Þ ¼ 1=

ffiffiffi
β

p
[8].

Thus, we have the maximum of the electric field at the
origin.

Let us investigate the functions EðrÞ, A0ðrÞ. The
asymptotic behavior of the function yðxÞ (20) at x → ∞
is given by

y ¼ 1

x
þ 0.592592

1

x11=3
− 0.209879

1

x15=3
þOðx−19=3Þ:

ð21Þ

From Eqs. (18) and (21), we find at r → ∞ the asymptotic
value of the electric field:

EðrÞ ¼ Q
r2

þ 1.185184
Q7=3β2=3

r14=3
þOðr−18=3Þ: ð22Þ

Equation (22) shows that the Q is the charge and correc-
tions to the Coulomb law at r → ∞ are in the order of
r−14=3. At β ¼ 0, one comes to the Coulomb law E ¼ Q=r2

of Maxwell’s electrodynamics. Integrating the function
(22), we obtain the asymptotic value of the electric
potential (A0ðrÞ ¼

R
EðrÞdr) at r → ∞:

A0ðrÞ ¼ −
Q
r
−
32Q7=3β2=3

99r11=3
þOðr−15=3Þ: ð23Þ

The Taylor series of yðxÞ at x → 0 (r → 0) is given by

yðxÞ ¼ 1 − 0.25x − 0.0312499x2

þ 0.00341799x4 þOðx5Þ: ð24Þ

From Eqs. (18) and (24), we obtain the asymptotic for the
electric field at r → 0:
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FIG. 2. The function y vs x.

1We use the variables which are different from [26].
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EðrÞ ¼ 1ffiffiffi
β

p −
r

2
ffiffiffiffi
Q

p
β3=4

þ r2

2 × 106Qβ
þOðr3Þ: ð25Þ

From Eq. (25), we find the expected result Eð0Þ ¼ 1=
ffiffiffi
β

p
.

One can obtain from Eq. (25) the electric potential in the
center. As a result, the electric field and the electric
potential are finite at the origin of the charged objects
and there are no singularities. This behavior of the electric
field at r ¼ 0 is due to non-Maxwellian character of NLED
considered. Such situation holds also in different nonlinear
electrodynamics [2,9].

A. P framework

By virtue of a Legendre transformation [29], we can
arrive at another form of NLED. Let us consider the tensor
Pμν ¼ LFFμν=2 (LF ¼ ∂L=∂F Þ. Then with the aid of (1),
one obtains the invariant

P ¼ PμνPμν ¼ F
ð1þ 2βF Þ4 : ð26Þ

The Hamilton-like variable becomes

H ¼ 2FLF − L ¼ F ð2βF − 1Þ
ð1þ 2βF Þ2 : ð27Þ

ComparingH in Eq. (27) with Eq. (5), we see thatH ¼ ρ is
the energy density. One can verify the relations,

LFHP ¼ 1; PH2
P ¼ F ; L ¼ 2PHP −H; ð28Þ

where

HP ¼ ∂H
∂P ¼ −ð1þ 2βF Þ2: ð29Þ

Equation (26) shows that the function F ðPÞ is not a
monotonic function. As a result, there is not a one-to-
one correspondence between the F frame and P frame [21]
because F ðPÞ is a multivalued function. Then there is not
an exact electric-magnetic duality between these frames.
For weak fields, βF ≪ 1, both models (1) and (27) are
converted to the Maxwell theory, L ¼ −F .

IV. ASYMPTOTIC REISSNER-NORDSTRÖM
BLACK HOLES

From Einstein’s equation (13), we find the Ricci scalar:

R ¼ κT : ð30Þ

Replacing the trace of the energy-momentum tensor, Eq. (3),
into (30) and using the relation F ¼ −ð1=2Þ½EðrÞ�2, one
obtains the Ricci curvature

R ¼ 2κβ½EðrÞ�4
ð1 − β½EðrÞ�2Þ2 : ð31Þ

At r → ∞, the electric field, according to Eq. (22), goes to
zero, EðrÞ → 0, and therefore the Ricci scalar approaches
zero, R → 0. The spacetime at big distances from the black
hole becomes Minkowski’s spacetime. By virtue of the
asymptotic (22), we obtain from Eq. (31) the value of the
Ricci scalar at r → ∞∶

R ¼ 2κβ

�
Q4

r8
þ 4.74Q16=3β2=3

r32=3
þOðr−12Þ

�
: ð32Þ

Thus, the Coulomb term gives the main contribution in the
order of r−8 to theRicci scalar at r → ∞. Themetric function
entering a static, spherically symmetric line element in
Eq. (15) and the mass function are given by

fðrÞ ¼ 1 −
2GMðrÞ

r
;

MðrÞ ¼
Z

r

0

ρðrÞr2dr ¼ m −
Z

∞

r
ρðrÞr2dr; ð33Þ

where m is the mass of the black hole. With the help of the
expression for the energy density (5) and Eqs. (18) and (19),
we obtain the mass function

MðrÞ ¼ mþ Q3=2

30β1=4
yð−32þ 22xy − 5x2y2Þ; ð34Þ

where y is given by Eq. (20) with the notations (18) and the
mass of the black hole is

m ¼ Mð∞Þ ¼ 16Q3=2

15β1=4
: ð35Þ

We have implied that the mass of the black hole possesses
an electromagnetic nature. The plot of the metric function
fðxÞ is represented in Fig. 3 for different values of the
parameter C ¼ 15

ffiffiffi
β

p
=ðGQÞ ¼ 16

ffiffiffiffi
Q

p
β1=4=ðGmÞ. It fol-

lows that black holes have one (nonextreme) horizon for
parameters 30 ≥ C ≥ 0 (1 ≥ y ≥ 0). The plot of the value of
the horizon xþ ¼ rþ=ðβ1=4

ffiffiffiffi
Q

p Þ (when fðrþÞ ¼ 0) vs C is
given in Fig. 4. One can obtain the asymptotic value of the
mass function (34) at r → ∞ by the use of Eq. (21):

MðrÞ ¼ m −
Q2

2r
−
0.059Q10=3β2=3

r11=3

þ 0.021Q4β

r5
þOðr−19=3Þ: ð36Þ

From Eqs. (33) and (36), we find the metric function
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fðrÞ ¼ 1 −
2Gm
r

þ GQ2

r2
þ 0.1185GQ10=3β2=3

r14=3

−
0.042GQ4β

r6
þOðr−22=3Þ: ð37Þ

The first three terms in Eq. (37) represent the RN solution
and the last terms give corrections. The spacetime at r → ∞
asymptotically becomes the Minkowski spacetime. At
β ¼ 0, one comes to Maxwell’s electrodynamics, and
solution (37) is converted to the RN solution. There are
different models of NLED [23,24,27] that also give an
asymptotic RN black hole solution with some corrections. It
is seen from Eq. (37) that corrections to the RN solution
change the event horizon. With the help of Eqs. (24), (33),

and (34), we obtain the regular asymptotic of the metric
function at r → 0:

fðrÞ ¼ 1 −
2GQffiffiffi

β
p þ

ffiffiffiffi
Q

p
Gr

β3=4
−
Gr2

4β
þOðr3Þ: ð38Þ

It should bementioned that the functionfðrÞ inEq. (38) does
not approach the value 1 for r → 0. Therefore, the spacetime
is not Minkowski’s spacetime in the neighborhood of the
origin, and the regularity condition fðrÞ → 1 for r → 0 is
violated. Thus, the solution obtained here is not a regular
black hole in the usual sense. In addition, the strong energy
condition should be broken for a regular black hole and the
black hole must have at least two horizons (or one degen-
erate horizon) [30]. In our case, the equation fðxÞ ¼ 0 (see
the plots in Fig. 3) possesses only one root; i.e., the black
hole has one horizon. According to the plots in Fig. 3, f(0) is
negative, and, therefore, the metric is nonstatic at the center
of the black holes. I alsomention that, at strong gravitational
fields, quantum mechanics corrections must be taken into
account. As a result, GR should break down and, hence, GR
cannot be used to show a singularity [31].

V. THERMODYNAMICS

In this section, we study the thermal stability of charged
black holes. For this purpose, one needs to calculate the
temperature of the black hole and its heat capacity. The
point where the temperature and heat capacity change
the sign corresponds to the first-order phase transition. The
region of negative temperature corresponds to the unstable
state of the black hole. The second-order phase transition is
related to the point where the heat capacity is singular.
To study the thermodynamics of black holes within our

model, we calculate the Hawking temperature,

TH ¼ κS
2π

¼ f0ðrþÞ
4π

; ð39Þ

where κS is the surface gravity and rþ is the event horizon.
From Eqs. (33), we obtain the following relations:

f0ðrÞ ¼ 2GMðrÞ
r2

−
2GM0ðrÞ

r
; M0ðrÞ ¼ r2ρ;

MðrþÞ ¼
rþ
2G

: ð40Þ

From Eqs. (39), (40), and (5), we find the Hawking
temperature expressed through the variables (18),

TH ¼ yþ½1 − 15
C y2þð1þ y4þÞ�

4π
ffiffiffiffi
Q

p
β1=4ð1 − y4þÞ

; ð41Þ

where the value yþ is connected with the horizon xþ by the
relation xþ ¼ ð1 − y4þÞ=yþ. The parameter C corresponds
to the value of the horizon xþ (fðrþÞ ¼ 0) and is given by
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FIG. 3. The function fðxÞ for C ¼ 25, 10, 5.
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C ¼ 32ð1 − yþÞ þ 22xþy2þ − 5x2þy3þ
xþ

: ð42Þ

The plot of the function TH4π
ffiffiffiffi
Q

p
β1=4 vs xþ ¼ rþ=

ffiffiffiffi
Q

p
β1=4

is given in Fig. 5. It follows from the graph that the
temperature TH never becomes zero and, therefore, there is
no phase transition of black holes of the first order. Now
we consider the heat capacity to study the possible phase
transition of the second order. The entropy satisfies the
Hawking area low S ¼ A=4 ¼ πr2þ. The heat capacity at the
constant charge is given by

CQ ¼ T
∂S
∂T

����
Q
: ð43Þ

The calculation of the heat capacity (43) gives the
expression

CQ ¼ −2πQ
ffiffiffi
β

p ð1 − y4þÞ2½1 − 15y2þ
C ð1þ y4þÞ�

y2þ½1 − 15y2þ
C ð3 − y4þÞ�

; ð44Þ

where the parameter C obeys Eq. (42) and xþ ¼
ð1 − y4þÞ=yþ. The plot of the function CQ vs xþ is given
in Fig. 6. The heat capacity CQ diverges (the denominator
of CQ in Eq. (44) becomes zero) at the value of the horizon
xþ ≃ 1.506 (yþ ≃ 0.585822). There is the second-order
phase transition at this value of the horizon xþ because
the heat capacity becomes singular. Then from Eq. (42)
at this value xþ ≃ 1.506, we obtain the constant
C≃ 14.837. It follows from Fig. 6 that when xþ ≥
1.506 (rþ ≥ 1.506

ffiffiffiffi
Q

p
β1=4), the heat capacity is negative

and, therefore, the black hole is unstable. We find critical

values of the parameter β, the mass of the black hole m,
and Hawking’s temperature corresponding to this horizon
xþ ¼ 1.506,

β ¼
�
CQG
15

�
≃ 0.98Q2G2; m ¼ 16Q3=2

15β1=4
≃ 1.07

Qffiffiffiffi
G

p ;

TH ≈
1

40πQ
ffiffiffiffi
G

p : ð45Þ

Thus, within the NLED considered, if the black hole mass
is greater than the Planck mass (times the charge of the
black hole), the black hole undergoes the second-order
phase transition and becomes unstable.

VI. CONCLUSION

In the model of NLED proposed, we studied energy
conditions and showed that WEC, DEC, and SEC are
satisfied. For the case of spherical symmetry, we have
obtained the exact solution for the electric field of charged
objects and found the corrections to the Coulomb law that
are in the order of r−14=3. It was demonstrated that the
electric field and the electric potential are finite at the
center of the charged objects and there are no singularities.
The P framework and the electric-magnetic duality trans-
formations were considered. NLED coupled to the gravi-
tational field was investigated, and we calculated the Ricci
scalar and its asymptotic at r → ∞ which is in the order of
r−8. We obtained the mass of the black hole expressed
through the parameter β and the charge. The asymptotic of
the metric function at r → ∞ was found, and corrections
to the Reissner-Nordström solution were obtained. We
found the metric function at r → 0. The thermodynamics
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of black holes and phase transitions were investigated. We
showed that, in our model, there is no phase transition of
the first order because the temperature of the black hole
does not change the sign. But at the critical value of the

horizon, the phase transition of the second order takes
place and the heat capacity is singular. If the mass of the
black hole is greater than the critical value, the black hole
becomes unstable.
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