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We consider the finite interactions of the generalized Proca theory including the sixth-order Lagrangian
and derive the full linear perturbation equations of motion on the flat Friedmann-Lemaître-Robertson-
Walker background in the presence of a matter perfect fluid. By construction, the propagating degrees of
freedom (besides the matter perfect fluid) are two transverse vector perturbations, one longitudinal scalar,
and two tensor polarizations. The Lagrangians associated with intrinsic vector modes neither affect the
background equations of motion nor the second-order action of tensor perturbations, but they do give rise to
nontrivial modifications to the no-ghost condition of vector perturbations and to the propagation speeds of
vector and scalar perturbations. We derive the effective gravitational coupling Geff with matter density
perturbations under a quasistatic approximation on scales deep inside the sound horizon. We find that the
existence of intrinsic vector modes allows a possibility for reducing Geff . In fact, within the parameter
space, Geff can be even smaller than the Newton gravitational constant G at the late cosmological epoch,
with a peculiar phantom dark energy equation of state (without ghosts). The modifications to the slip
parameter η and the evolution of the growth rate fσ8 are discussed as well. Thus, dark energy models in the
framework of generalized Proca theories can be observationally distinguished from the ΛCDM model
according to both cosmic growth and expansion history. Furthermore, we study the evolution of vector
perturbations and show that outside the vector sound horizon the perturbations are nearly frozen and start to
decay with oscillations after the horizon entry.
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I. INTRODUCTION

The discovery of a late-time acceleration of the Universe
[1] pushed forward an idea that one or more additional
degrees of freedom (DOF) to those appearing in the
standard model of particle physics may be the origin of
dark energy [2]. The simplest example is a minimally
coupled scalar field dubbed “quintessence” [3]. The cosmic
acceleration can be realized for the scalar field with a
slowly varying potential, in which case the dark energy
equation of state wDE is larger than −1. The cosmological
constant can be regarded as the nonpropagating limit of
quintessence (i.e., vanishing kinetic energy) withwDE ¼ −1.
The likelihood analysis based on supernovae type Ia (SN Ia),
cosmic microwave background (CMB), and baryon acoustic
oscillations (BAO) showed no statistically significant sig-
natures that quintessence is observationally favored over the
cosmological constant [4].

There are models of dark energy in which the scalar field
ϕ has a nonminimal coupling to the Ricci scalar R with the
form FðϕÞR, where FðϕÞ is a function of ϕ [5]. Brans-
Dicke theory [6] with a scalar potential is one of the
examples for such modified gravitational theories. For dark
energy models in the framework of nonminimally coupled
theories it is possible to realize wDE smaller than −1 [7,8]
without ghosts. Since the gravitational interaction is also
different from that in general relativity (GR), these models
leave several interesting observational signatures that can
be distinguished from the Λ-cold-dark-matter (ΛCDM)
model [9].
The nonminimal coupling FðϕÞR can be extended to

contain a derivative coupling in the form Fðϕ; XÞR, where
X ¼ −∂μϕ∂μϕ=2 is the field kinetic energy. In general,
unless some counterterms are introduced, such derivative
couplings give rise to the equations of motion higher than
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second order [10]. The appearance of time derivatives
higher than two leads to the so-called Ostrogradski insta-
bility [11] with the Hamiltonian unbounded from below.
In 1974 Horndeski derived most general scalar-tensor
theories with second-order equations of motion [12], which
received much attention over the past five years in con-
nection to the problems of dark energy and inflation [13]. A
subclass of Horndeski interactions also naturally arises in
massive gravity [14]. In scalar-tensor Horndeski theories,
there is one scalar propagating DOF besides the two tensor
polarizations.
If we consider a vector field Aμ as the source of dark

energy, the number of DOF generally increases relative to
scalar-tensor Horndeski theories. The massless Maxwell
field given by the Lagrangian LF ¼ −FμνFμν=4 (where
Fμν ¼ ∂μAν − ∂νAμ) has two transverse polarizations of
the vector mode with a protected Uð1Þ gauge symmetry.
The introduction of the vector mass term gives rise to the
additional longitudinal propagation of a scalar mode due to
the breaking of gauge invariance. In GR with the massive
Proca field, there are two transverse and one longitudinal
propagating DOF besides the two tensor polarizations.
For the massless gauge-invariant vector field coupled to

gravity with Lorentz symmetry, there is a no-go theorem
stating that derivative interactions similar to those appear-
ing for covariant Galileons [15] do not arise for a single
spin-1 field in any dimensions [16,17] (see also Ref. [18]).
This situation is different for massive Proca theories in
which the Uð1Þ gauge invariance is explicitly broken.
Analogous to scalar-tensor Horndeski theories, it is pos-
sible to construct an action of generalized Proca theories
with second-order equations of motion having three propa-
gating DOF with two tensor polarizations. The correspond-
ing action has been constructed by using the Levi-Civita
tensor to avoid the appearance of time derivatives higher
than two. In fact, the analysis based on the Hessian matrix
showed that such theories do not propagate extra DOF
other than those mentioned above [19]. A subclass of these
interactions was also discussed in Ref. [20].
If we impose the condition that the scalar part of the

vector field only has terms that do not correspond to trivial
total derivative interactions, then the series of the gener-
alized Proca Lagrangian stops at quintic order (L5) [19]. By
relaxing this condition, it is also possible to construct
higher-order derivative interactions associated with the
intrinsic vector part [21,22]. The sixth-order Lagrangian
L6 [22], which contains the double dual Riemann tensor,
accommodates an interaction term in the gauge-invariant
vector-tensor theories constructed by Horndeski in 1976
[23]. In Ref. [21] the authors derived seventh and higher-
order derivative interactions having one longitudinal and
two transverse polarizations, but it was later found that
they correspond to trivial interactions by virtue of the
Cayley-Hamilton theorem. Thus, it suffices to consider the
Lagrangians up to sixth order presented in Ref. [22].

Recently, the cosmology in generalized Proca theories
up to the quintic Lagrangian L5 was studied in Ref. [24]
(see also Refs. [25–30] for earlier related works). In such
theories, there is a nontrivial branch of the background
solutions where the temporal vector component ϕ depends
on the Hubble expansion rate H alone. In Ref. [24] the
authors proposed a dark energy model in which the
solutions finally approach a de Sitter attractor characterized
by constant ϕ. The conditions for avoiding ghosts and
Laplacian instabilities were generally derived for tensor,
vector, and scalar perturbations, which were applied to the
proposed dark energy model to search for theoretically
consistent parameter spaces. Moreover, there exists viable
model parameter spaces in which the propagation speed
of tensor perturbations is consistent with the Cherenkov-
radiation constraint [31] and the recent detection of
gravitational waves [32]. In addition, the cubic and quartic
derivative interactions allow the screening of the fifth force
mediated by the vector field [33].
In this paper, we extend the analysis of Ref. [24] to

include the sixth-order Lagrangian L6 as well as the
quadratic Lagrangian L2 containing the dependence of
X ¼ −AμAμ=2, F ¼ −FμνFμν=4, and Y ¼ AμAνFμ

αFνα

(which accommodates the terms discussed in Ref. [34]).
We derive full linear perturbation equations of motion for
tensor, vector, and scalar modes at linear order in the
presence of a perfect fluid and then obtain the effective
gravitational coupling Geff with matter by employing a
quasistatic approximation for perturbations deep inside the
sound horizon. We also study the growth rate of matter
perturbations and the evolution of gravitational potentials
to confront generalized Proca theories with the observa-
tions of redshift-space distortions (RSD), CMB, and weak
lensing.
The recent observations of RSD [35–37] and cluster

counts [38] have shown that the cosmic growth rate is lower
than that predicted by the ΛCDM model with σ8 con-
strained by the Planck CMB data [39]. This tension reduces
with the WMAP bound on σ8 [40] and the systematic errors
of RSD data are still quite large. Hence, in current obser-
vations, one cannot conclusively say that weak gravity is
really favored over the gravitational law of GR. However, it
is of interest to look for the theoretical possibility of realizing
weak gravity on cosmological scales. In scalar-tensor
Horndeski theories, unless the second-order action of tensor
perturbations is modified from GR to a large extent, it is
difficult to realize Geff < G without ghosts due to the
presence of attractive scalar-matter couplings [41] (see also
Refs. [42–47]). It remains to be seenwhether the existence of
thevector field canmodify this situation.We shall pursue the
possibility of weak gravity for a class of dark energy models
in generalized Proca theories.
This paper is organized as follows. In Sec. II we obtain

the background equations of motion in the presence of a
perfect fluid containing the generalized Proca Lagrangian
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up to sixth order. In Sec. III we derive the equations of
motion for tensor and vector perturbations and identify
no-ghost and stability conditions of them in the small-scale
limit. In Sec. IV the scalar perturbation equations and
the observables associated with large-scale structures,
CMB, and weak lensing will be discussed. In Sec. V we
analytically obtain the effective gravitational coupling with
matter perturbations under the quasistatic approximation
and derive a necessary condition for realizing Geff < G. In
Sec. VI we study the evolution of observable quantities for
dark energy models in a class of generalized Proca theories
and discuss how the vector field affects Geff . Section VII is
devoted to conclusions.

II. GENERALIZED PROCA THEORIES AND THE
BACKGROUND EQUATIONS OF MOTION

We study generalized Proca theories with one longi-
tudinal and two transverse polarizations of a vector field Aμ

coupled to gravity. The action of such theories is of the
following forms [19,22]:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðLþ LMÞ; L ¼
X6
i¼2

Li; ð2:1Þ

where g is a determinant of the metric tensor gμν, LM is a
matter Lagrangian, and L2;3;4;5;6 are given by

L2 ¼ G2ðX;F; YÞ; ð2:2Þ

L3 ¼ G3ðXÞ∇μAμ; ð2:3Þ

L4 ¼ G4ðXÞRþG4;XðXÞ½ð∇μAμÞ2 −∇ρAσ∇σAρ�; ð2:4Þ

L5 ¼ G5ðXÞGμν∇μAν −
1

6
G5;XðXÞ½ð∇μAμÞ3

− 3∇μAμ∇ρAσ∇σAρ þ 2∇ρAσ∇γAρ∇σAγ�
− g5ðXÞ ~Fαμ ~Fβ

μ∇αAβ; ð2:5Þ

L6 ¼ G6ðXÞLμναβ∇μAν∇αAβ

þ 1

2
G6;XðXÞ ~Fαβ ~Fμν∇αAμ∇βAν; ð2:6Þ

with Fμν ¼ ∇μAν −∇νAμ (and ∇μ is the covariant deriva-
tive operator). The function G2 depends on the following
three quantities:

X ¼ −
1

2
AμAμ; ð2:7Þ

F ¼ −
1

4
FμνFμν; ð2:8Þ

Y ¼ AμAνFμ
αFνα; ð2:9Þ

whereas G3;4;5;6 and g5 are arbitrary functions of X with
the notation of partial derivatives as Gi;X ≡ ∂Gi=∂X. The
vector field is coupled to the Ricci scalar R and the Einstein
tensor Gμν through the functions G4ðXÞ and G5ðXÞ.1 The
Lμναβ and ~Fμν are the double dual Riemann tensor and the
dual strength tensor defined, respectively, by

Lμναβ ¼ 1

4
ϵμνρσϵαβγδRρσγδ; ~Fμν¼ 1

2
ϵμναβFαβ; ð2:10Þ

where ϵμνρσ is the Levi-Civita tensor and Rρδγδ is the
Riemann tensor.
In the original Proca theory on the Minkowski back-

ground, which corresponds to the functions G2ðXÞ ¼ m2X
and G3;4;5;6 ¼ 0, the Uð1Þ gauge symmetry is explicitly
broken due to the nonvanishing mass m of the vector field.
In this case, the longitudinal mode arises in addition to the
two transverse polarizations. The Lagrangians given above
are the generalization of Proca theories coupled to gravity
in which the number of propagating DOF remains three
besides the two graviton polarizations. The existence of
nonminimal couplings in L4;5;6 comes from the demand for
keeping the three propagating DOF with second-order
equations of motion. The gauge-invariant vector-tensor
interaction introduced by Horndeski in 1976 corresponds
to the Lagrangian L ¼ F þ L4 þ L6 with constant func-
tions G4 and G6 [23].
In Ref. [19] there exists a term of the form

f4ðXÞð∇ρAσ∇ρAσ −∇ρAσ∇σAρÞ with f4ðXÞ ¼ c2G4;X in
the LagrangianL4, but it can be expressed in terms of X and
F as −2f4ðXÞF. Hence such a term has been absorbed into
the Lagrangian L2. The term multiplied by d2G5;XðXÞ in
the Lagrangian L5 of Ref. [19], which corresponds to an
intrinsic vector mode, is now replaced with the last
contribution in Eq. (2.5). The function g5ðXÞ does not
need to have a relation with G5;XðXÞ [21,22], so the
prescription in this paper is more general than that of
Ref. [19]. Furthermore, we adapt to the same notation as in
Ref. [22], which agrees completely with Ref. [21].
In the Lagrangian L2, we have also taken into account

the dependence of the quantity Y that can be constructed
from Aμ and its derivatives up to first order [19,34]. In
principle we can also include the dependence of the term
Fμν ~Fμν in L2. If we impose the parity invariance, however,
such a term is irrelevant to the perturbations at linear order.
Hence we shall consider the function G2 depending on the
three quantities X, F, Y in this paper.
Let us consider the flat Friedmann-Lemaître-Robertson-

Walker (FLRW) background describedwith the line element
ds2 ¼ −dt2 þ a2ðtÞdx2, where aðtÞ is the time-dependent

1It would be interesting to study the consequences of the vector
field living on a composite effective metric as it could be for
instance the case in massive gravity [46]. This will be studied in a
future work.

EFFECTIVE GRAVITATIONAL COUPLINGS FOR … PHYSICAL REVIEW D 94, 044024 (2016)

044024-3



scale factor. To keep the spatial isotropy of the background,
the vector field needs to have a time-dependent temporal
component ϕðtÞ alone, i.e.,

Aμ ¼ ðϕðtÞ; 0; 0; 0Þ: ð2:11Þ

For the matter Lagrangian LM we consider a perfect fluid
with the energy density ρM and the isotropic pressure PM.
Assuming that matter is minimally coupled to gravity, we
have the continuity equation

_ρM þ 3HðρM þ PMÞ ¼ 0; ð2:12Þ

where a dot denotes a derivative with respect to t, and
H ≡ _a=a is the expansion rate of the Universe.
Variation of the action (2.1) with respect to gμν leads to

the background equations of motion

G2 −G2;Xϕ
2 − 3G3;XHϕ3 þ 6G4H2

− 6ð2G4;X þG4;XXϕ
2ÞH2ϕ2 þ G5;XXH3ϕ5

þ 5G5;XH3ϕ3 ¼ ρM; ð2:13Þ

G2 − _ϕϕ2G3;X þ 2G4ð3H2 þ 2 _HÞ
− 2G4;Xϕð3H2ϕþ 2H _ϕþ 2 _HϕÞ − 4G4;XXH _ϕϕ3

þ G5;XXH2 _ϕϕ4

þ G5;XHϕ2ð2 _Hϕþ 2H2ϕþ 3H _ϕÞ ¼ −PM: ð2:14Þ

Varying the action (2.1) with respect to Aμ, it follows that

ϕðG2;X þ 3G3;XHϕþ 6G4;XH2 þ 6G4;XXH2ϕ2

− 3G5;XH3ϕ − G5;XXH3ϕ3Þ ¼ 0: ð2:15Þ

Equations (2.13)–(2.15) are exactly the same as those derived
for more specific theories containing the Lagrangians up to
L5 [24]. Hence the Lagrangian L6 and the dependence of F
and Y in L2 do not affect the background equations. In
Eq. (2.15) there exists a branch with ϕ ≠ 0, which gives rise
to interesting de Sitter solutions characterized by constant ϕ
and H [24].

III. TENSOR AND VECTOR PERTURBATIONS

In what follows we derive the equations of motion for
tensor, vector, and scalar perturbations on the flat FLRW
background. The discussions about scalar perturbations
will be given separately in Sec. IV.
First of all, we decompose temporal and spatial compo-

nents of the vector field Aμðt; xÞ into the background and
perturbed components, as

A0 ¼ ϕðtÞ þ δϕ; ð3:1Þ

Ai ¼ 1

a2ðtÞ δ
ijð∂jχV þ EjÞ; ð3:2Þ

where the perturbation δϕ depends on t and x. The
perturbations χV and Ej correspond to the intrinsic scalar
and vector parts, respectively, where the latter satisfies the
transverse condition ∂jEj ¼ 0.
As for the matter sector, we consider a single perfect

fluid described by the Schutz-Sorkin action [48]:

SM¼−
Z

d4x½ ffiffiffiffiffiffi
−g

p
ρMðnÞþJμð∂μlþA1∂μB1þA2∂μB2Þ�;

ð3:3Þ

where the fluid energy density ρM depends on its number
density defined by

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JαJβgαβ

g

s
; ð3:4Þ

and Jμ is a vector field of weight one, l is a scalar, and
A1;2, B1;2 are scalar quantities associated with vector
perturbations.
On the FLRW background the temporal component J0

corresponds to the total fluid number N 0, which is
constant. From Eq. (3.4) the background number density
n0 reads

n0 ¼
N 0

a3
: ð3:5Þ

The temporal component ∂0l is equivalent to −ρM;n ≡
−∂ρM=∂n at the background level, so that the matter action
(3.3) reduces to

Sð0ÞM ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
PM; PM ¼ n0ρM;n − ρM; ð3:6Þ

where PM corresponds to the pressure of the perfect fluid.
The scalar quantities J0 and l have the perturbations δJ

and v, respectively, so they can be written as

J0 ¼ N 0 þ δJ; ð3:7Þ

l ¼ −
Z

t
ρM;ndt0 − ρM;nv; ð3:8Þ

where v corresponds to the velocity potential. One can
express the spatial components of Jμ in terms of the sum of
the scalar part δj and the vector part Wk, as

Ji ¼ 1

a2
δikð∂kδjþWkÞ: ð3:9Þ

The vector perturbation Wk obeys the transverse condi-
tion ∂kWk ¼ 0. If we consider the vector field in the form
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Wk ¼ ðW1ðt; zÞ;W2ðt; zÞ; 0Þ whose x and y components
depend on t and z alone, then it automatically satisfies the
transverse condition. For the quantitiesAi and Bi appearing
in Eq. (3.3), the simplest choice keeping the required
property of the vector mode is given by [49]

A1 ¼ δA1ðt; zÞ; A2 ¼ δA2ðt; zÞ;
B1 ¼ xþ δB1ðt; zÞ; B2 ¼ yþ δB2ðt; zÞ; ð3:10Þ

where δAi and δBi are perturbed quantities.
On taking the variation of the matter action with

respect to the field Jμ, we find the fluid normalized
four-velocity uμ as

uμ ≡ Jμ
n

ffiffiffiffiffiffi−gp ¼ 1

ρM;n
ð∂μlþA1∂μB1 þA2∂μB2Þ; ð3:11Þ

whose spatial components, on the FLRW manifold, are
split, in terms of scalar and vector perturbations, as

ui ¼ −∂ivþ vi; ð3:12Þ

where v is the velocity potential given in Eq. (3.8) and vi
is a transverse three-vector satisfying ∂ivi ¼ 0. From
Eqs. (3.10) and (3.11) the intrinsic vector part vi is related
with the linear perturbation δAi, as δAi ¼ ρM;nvi. The
equation of motion for δAi follows by varying the sec-
ond-order action of the vector field with respect to the
perturbation δBi.
For the gravity sector, we consider the linearly perturbed

line element in the flat gauge [50–53]:

ds2 ¼ −ð1þ 2αÞdt2 þ 2ð∂iχ þ ViÞdtdxi
þ a2ðtÞðδij þ hijÞdxidxj; ð3:13Þ

where α, χ are scalar metric perturbations, Vi is the
vector perturbation obeying the transverse condition
∂iVi ¼ 0, and hij is the tensor perturbation satisfying
the transverse and traceless conditions ∂ihij ¼ 0 and
hii ¼ 0. The temporal and spatial components of gauge
transformation vectors are completely fixed under the
above gauge choice.

A. Tensor perturbations

We can express the tensor perturbation hij in terms of the
two polarization modes hþ and h×, as hij ¼ hþeþij þ h×e×ij,
where eþij and e×ij obey the relations eþijðkÞeþijð−kÞ� ¼ 1,
e×ijðkÞe×ijð−kÞ� ¼ 1, and eþijðkÞe×ijð−kÞ� ¼0 in Fourier space
(k is the comoving wave number). The second-order action
for tensor perturbations, which is derived after expanding
Eq. (2.1) in hij up to quadratic order, reads

ST ¼
X
λ¼þ;×

Z
dtd3xa3

qT
8

�
_h2λ −

c2T
a2

ð∂hλÞ2
�
; ð3:14Þ

where

qT ¼ 2G4 − 2ϕ2G4;X þHϕ3G5;X; ð3:15Þ

and

c2T ¼ 2G4 þ ϕ2 _ϕG5;X

qT
: ð3:16Þ

The quantities qT and c2T are the same as those derived in
Ref. [24], so the LagrangianL6 and the terms F and Y in L2

do not affect the dynamics of tensor perturbations. Varying
the action (3.14) with respect to hλ, the tensor perturbation
equation of motion in Fourier space is given by

ḧλ þ
�
3H þ _qT

qT

�
_hλ þ c2T

k2

a2
hλ ¼ 0; ð3:17Þ

where k ¼ jkj. The tensor ghost and small-scale Laplacian
instabilities are absent for qT > 0 and c2T > 0, respectively.

B. Vector perturbations

As we have already mentioned, the vector perturbations
Ei, Wi, δAi, and Vi obey the transverse conditions, so the
components of these fields can be chosen as Ei ¼ ðE1ðt; zÞ;
E2ðt; zÞ; 0Þ. On using Eq. (3.10) and expanding the matter
action (3.3) up to quadratic order in vector perturbations, the
second-order action reads [24]

ðSð2ÞM ÞV ¼
Z

dtd3x
X2
i¼1

�
1

2a2N 0

fρM;nðW2
i þN 2

0V
2
i Þ

þN 0ð2ρM;nViWi − a3ρMV2
i Þg

−N 0δAi
_δBi −

1

a2
WiδAi

�
; ð3:18Þ

where the quantitiesWi, δAi, δBi appear only in the matter
action (3.18) but not in the quadratic action originating
from

R
d4x

ffiffiffiffiffiffi−gp
L.

Varying Eq. (3.18) with respect to Wi, it follows that

Wi ¼
N 0ðδAi − ρM;nViÞ

ρM;n
¼ N 0ðvi − ViÞ: ð3:19Þ

On using this relation and varying the matter action with
respect to δAi, we obtain

δAi ¼ ρM;nvi; where vi ¼ Vi − a2 _δBi: ð3:20Þ

Similarly, the variation of the matter action with respect to
δBi gives rise to the conservation equation
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ρM;nvi ¼
ðρM þ PMÞ

n0
vi ¼ δAi ¼ Ci; ð3:21Þ

where Ci are two constants in time (but may be dependent
on k), which are related to the initial conditions for the
intrinsic vector modes in the fluid. Therefore, the dynamics
of vi is completely determined as

vi ¼
N 0Ci

ðρM þ PMÞa3
: ð3:22Þ

Then, after integrating out the fields Wi and δAi, the
resulting second-order matter action reduces to

ðSð2ÞM ÞV ¼
Z

dtd3x
X2
i¼1

a
2
½ðρMþPMÞðVi−a2 _δBiÞ2−ρMV2

i �:

ð3:23Þ

To expand the action (2.1) up to second order, it is
convenient to introduce the following combination:

Zi ¼ Ei þ ϕðtÞVi; ð3:24Þ

so that Ai ¼ Zi for vector perturbations. We also introduce
the rescaled fields

~Vi ≡ 1

a
Vi; ~Zi ≡ 1

a
Zi: ð3:25Þ

Taking into account Eq. (3.23), the full quadratic action for
vector perturbation reads

Sð2ÞV ¼
Z

dtd3x
X2
i¼1

a3
�
qV
2

_~Z
2

i −
1

2a2
C1ð∂ ~ZiÞ2−

1

2
C2 ~Z

2
i

þ ϕ

2a2
ð2G4;X−G5;XHϕÞ∂ ~Vi∂ ~Zi

þ qT
4a2

ð∂ ~ViÞ2þ
1

2
ðρMþPMÞð ~Vi−a _δBiÞ2

�
; ð3:26Þ

where

qV ¼ G2;F þ 2G2;Yϕ
2 − 4g5Hϕþ 2G6H2 þ 2G6;XH2ϕ2;

ð3:27Þ

C1 ¼ qV þ 2½G6
_H −G2;Yϕ

2 − ðHϕ − _ϕÞðHϕG6;X − g5Þ�;
ð3:28Þ

C2 ¼ 2ð2G4;X −HϕG5;XÞ _H
þ ðG3;X þ 4ϕHG4;XX −G5;XH2 − ϕ2G5;XXH2Þ _ϕ

þ 2qVH2 þ d
dt

ðqVHÞ: ð3:29Þ

Since ~Vi is not coupled with
_~Zi, the kinetic term of the field

~Zi remains unchanged after the integration of ~Vi. Hence we
need to impose the condition qV > 0 to avoid that ~Zi

becomes a ghost field. The auxiliary fields _δBi acquire a
kinetic term which is trivially positive for qT > 0.
It should be noted that the dynamics of the vector

perturbations is completely determined by the initial con-
ditions of ~Zi and

_~Zi and by the two constants Ci. In fact, in
Fourier space, on using Eqs. (3.20) and (3.22), the equations
of motion for ~Vi and ~Zi following from Eq. (3.26) are given,
respectively, by

qT
2

k2

a2
~Vi ¼ −

N 0Ci

a4
−
ϕ

2
ð2G4;X −G5;XHϕÞ k

2

a2
~Zi; ð3:30Þ

̈~Zi þ
�
3H þ _qV

qV

�
_~Zi

þ
�
C1
qV

þ ϕ2

2qVqT
ð2G4;X − G5;XHϕÞ2

�
k2

a2
~Zi þ

C2
qV

~Zi

¼ −
ϕ

qVqT
ð2G4;X − G5;XHϕÞN 0Ci

a4
: ð3:31Þ

This shows that there are only two dynamical fields ~Z1 and
~Z2 and that the matter fields can influence their dynamics
only via the term on the rhs of Eq. (3.31), which is
independent of the matter equation of state. From
Eq. (3.31) we define the mass squared of the vector fields
~Zi, as

m2
V ≡ C2

qV
: ð3:32Þ

We can easily see, from the expression of C2, that, on the de
Sitter solution characterized by _H ¼ 0 and _ϕ ¼ 0, m2

V
reduces to 2H2.
The vector propagation speed squared c2V corresponds

to the coefficient in front of the ðk2=a2Þ ~Zi term in
Eq. (3.31), i.e.,

c2V ¼ 1þ ϕ2ð2G4;X −G5;XHϕÞ2
2qTqV

þ 2½G6
_H −G2;Yϕ

2 − ðHϕ − _ϕÞðHϕG6;X − g5Þ�
qV

;

ð3:33Þ
which is required to be positive for the stability on small
scales. The Lagrangian L6, the contribution Y to L2, and
the g5-dependent term in L5 affect both qV and c2V .
In the small-scale limit, the contribution of the matter

fields in Eq. (3.30) can be neglected by assuming that the
constants Ci are background dominated for large k. In this
case we have
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~Vi ≃ −
ϕ

qT
ð2G4;X − G5;XHϕÞ ~Zi: ð3:34Þ

Substituting this relation into Eq. (3.26) and ignoring the
effective mass term m2

V
~Z2
i relative to those containing

ðk2=a2Þ ~Z2
i , the second-order action (3.26) in Fourier space

reduces to

Sð2ÞV ≃
Z

dtd3x
X2
i¼1

a3qV
2

�
_~Z
2

i þ c2V
k2

a2
~Z2
i

�
: ð3:35Þ

Introducing the quantities

U i ¼ zV ~Zi; zV ¼ a
ffiffiffiffiffiffi
qV

p
; τ ¼

Z
a−1dt; ð3:36Þ

the action (3.35) can be expressed as

Sð2ÞV ≃
Z

dτd3x
X2
i¼1

1

2

�
U 02
i þ c2Vk

2U2
i þ

z00V
zV

U2
i

�
; ð3:37Þ

where a prime represents a derivative with respect to the
conformal time τ. Provided the variation of qV is not
significant such that j _qV j≲ jHqV j and jq̈V j ≲ jH2qV j, we
have that c2Vk

2U2
i ≫ jðz00V=zVÞU2

i j for the perturbations deep
inside the vector sound horizon (c2Vk

2=a2 ≫ H2). Then, the
equation of motion for U i is given by

U 00
i þ c2Vk

2U i ≃ 0: ð3:38Þ

As long as the frequencyωk ¼ cVk adiabatically changes in
time, we have the following WKB solution, which is valid
only in the regime c2Vk

2=a2 > H2:

~Zi ¼
U i

zV
≃ 1

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qVcVk

p ðαke−icVkτ þ βkeicVkτÞ; ð3:39Þ

where αk and βk are integration constants. Hence, for qV
and cV slowly varying in time, the perturbation ~Zi oscillates
with an amplitude decreasing as a−1.
For dark energy models in which the energy density of

the temporal vector component comes out at the late
cosmological epoch [24] the quantities G4;X and G5;X in
Eq. (3.34) are usually small in the radiation and matter eras,
so the perturbation ~Vi should be suppressed. The wave
numbers k relevant to the observations of large-scale
structures and weak lensing correspond to k ≫ a0H0

(the lower index “0” represents present values), so unless
cV is not much smaller than 1, the solution (3.39) is valid
for such wave numbers from the vector sound horizon entry
(c2Vk

2=a2 ¼ H2) to today. This means that, for qV and c2V

adiabatically changing in time, the vector perturbations ~Zi
tend to be negligible with time.

IV. SCALAR PERTURBATIONS

In this section we derive the equations of motion for
scalar perturbations by expanding the action (2.1) up to
quadratic order. We also introduce observables associated
with measurements of large-scale structures, CMB, and
weak lensing.

A. Perturbation equations

First of all, we define the matter perturbation δρM, as

δρM ¼ ρM;n

a3
δJ ¼ ρM þ PM

n0a3
δJ; ð4:1Þ

where we used Eq. (3.6) in the second equality. For the
expansion of the matter action (3.3) of the scalar mode, we
need to consider the perturbation δn of the number density
n, as

δn ¼ δρM
ρM;n

−
N 2

0ð∂χÞ2 þ 2N 0∂χ∂δjþ ð∂δjÞ2
2N 0a5

; ð4:2Þ

which is expanded up to quadratic order in scalar pertur-
bations. Then, the second-order matter action of the scalar
mode is given by

ðSMÞð2ÞS ¼
Z

dtd3x

�
1

2a5n0ρ2M;n
½ρM;nðρ2M;n∂δj2

þ 2a3n0ρ2M;n∂δj∂vþ 2a8n0ρM;n _vδρM

− 6a8n20ρM;nnHvδρMÞ − a8n0ρM;nnδρ
2
M�

− a3αδρM þ ρM;n

a2
∂χ∂δj

�
: ð4:3Þ

Varying this action with respect to δj, we obtain

∂δj ¼ −a3n0ð∂vþ ∂χÞ: ð4:4Þ

On account of Eq. (4.4), the perturbation δj appearing in
Eq. (4.3) is integrated out.
We introduce the combination

ψ ¼ χV þ ϕðtÞχ; ð4:5Þ

so that Ai ¼ ∂iψ for scalar perturbations. On using
Eq. (4.3) with the relation (4.4), the second-order action
of Eq. (2.1) for scalar perturbations reads
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Sð2ÞS ¼
Z

dtd3xa3
�
−
n0ρM;n

2

ð∂vÞ2
a2

þ
�
n0ρM;n

∂2χ

a2
− _δρM − 3Hð1þ c2MÞδρM

�
v −

c2M
2n0ρM;n

ðδρMÞ2

− αδρM − w3

ð∂αÞ2
a2

þ w4α
2 −

�
ð3Hw1 − 2w4Þ

δϕ

ϕ
− w3

∂2ðδϕÞ
a2ϕ

− w3

∂2 _ψ

a2ϕ
þ w6

∂2ψ

a2

�
α

−
w3

4

ð∂δϕÞ2
a2ϕ2

þ w5

ðδϕÞ2
ϕ2

−
�ðw6ϕþ w2Þψ

2
−
w3

2
_ψ

� ∂2ðδϕÞ
a2ϕ2

−
w3

4ϕ2

ð∂ _ψÞ2
a2

þ w7

2

ð∂ψÞ2
a2

þ
�
w1αþ w2δϕ

ϕ

� ∂2χ

a2

�
;

ð4:6Þ

with the shorthand notations

w1 ¼ H2ϕ3ðG5;X þ ϕ2G5;XXÞ
− 4HðG4 þ ϕ4G4;XXÞ − ϕ3G3;X; ð4:7Þ

w2 ¼ w1 þ 2HqT; ð4:8Þ

w3 ¼ −2ϕ2qV; ð4:9Þ

w4 ¼
1

2
H3ϕ3ð9G5;X − ϕ4G5;XXXÞ

− 3H2ð2G4 þ 2ϕ2G4;X þ ϕ4G4;XX − ϕ6G4;XXXÞ

−
3

2
Hϕ3ðG3;X − ϕ2G3;XXÞ þ

1

2
ϕ4G2;XX; ð4:10Þ

w5 ¼ w4 −
3

2
Hðw1 þ w2Þ; ð4:11Þ

w6 ¼ −ϕ½H2ϕðG5;X − ϕ2G5;XXÞ
− 4HðG4;X − ϕ2G4;XXÞ þ ϕG3;X�; ð4:12Þ

w7 ¼ 2ðHϕG5;X − 2G4;XÞ _H þ ½H2ðG5;X þ ϕ2G5;XXÞ
− 4HϕG4;XX − G3;X� _ϕ: ð4:13Þ

The quantity c2M corresponds to the matter propagation
speed squared given by

c2M ¼ n0ρM;nn

ρM;n
: ð4:14Þ

We note that the terms containing G2;F, G2;Y , g5, G6, G6;X

appear only in the coefficient w3. Hence, the functions
g5ðXÞ; G6ðXÞ as well as G2ðF; YÞ lead to modifications to
the quadratic action (4.6) through the change of qV .

Varying the action Sð2ÞS with respect to α, χ, δϕ, v, ∂ψ ,
and δρM, we obtain the following equations of motion in
Fourier space respectively:

δρM − 2w4αþ ð3Hw1 − 2w4Þ
δϕ

ϕ

þ k2

a2
ðY þ w1χ − w6ψÞ ¼ 0; ð4:15Þ

ðρM þ PMÞvþ w1αþ w2

ϕ
δϕ ¼ 0; ð4:16Þ

ð3Hw1 − 2w4Þα − 2w5

δϕ

ϕ

þ k2

a2

�
1

2
Y þ w2χ −

1

2

�
w2

ϕ
þ w6

�
ψ

�
¼ 0; ð4:17Þ

_δρM þ 3Hð1þ c2MÞδρM þ k2

a2
ðρM þ PMÞðχ þ vÞ ¼ 0;

ð4:18Þ

_Y þ
�
H −

_ϕ

ϕ

�
Y þ 2ϕðw6αþ w7ψÞ

þ
�
w2

ϕ
þ w6

�
δϕ ¼ 0; ð4:19Þ

_v − 3Hc2Mv − c2M
δρM

ρM þ PM
− α ¼ 0; ð4:20Þ

where

Y ≡ w3

ϕ
ð _ψ þ δϕþ 2αϕÞ: ð4:21Þ

The dynamics of scalar perturbations is known by solving
the first-order differential equations (4.18)–(4.21) for δρM,
Y, v, ψ and the algebraic equations (4.15)–(4.17) for α,
χ, δϕ.

B. Observables associated with nonrelativistic matter

A key observable related with the measurements of
large-scale structures and weak lensing is the gauge-
invariant matter density contrast δ, defined by

δ≡ δρM
ρM

þ 3Hð1þ wMÞv; ð4:22Þ

where wM ≡ PM=ρM is the matter equation of state. We are
interested in the evolution of nonrelativistic matter pertur-
bations (dark matter and baryons) satisfying the conditions
wM ¼ 0 and c2M ¼ 0. In this case, Eqs. (4.18) and (4.20)
reduce, respectively, to
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_δ − 3 _B ¼ −
k2

a2
ðχ þ vÞ; ð4:23Þ

_v ¼ α; ð4:24Þ

where B≡Hv.
Taking the time derivative of Eq. (4.23) and using

Eq. (4.24), it follows that

δ̈þ 2H _δþ k2

a2
Ψ ¼ 3B̈ þ 6H _B; ð4:25Þ

where Ψ is the gauge-invariant Bardeen gravitational
potential defined by [50]

Ψ≡ αþ _χ: ð4:26Þ

The growth of the matter density contrast δ is sourced by
the gravitational potentialΨ. We relate Ψ and δ through the
modified Poisson equation

k2

a2
Ψ ¼ −4πGeffρMδ; ð4:27Þ

where Geff corresponds to the effective gravitational
coupling known by solving the perturbation equa-
tions (4.15)–(4.21) for Ψ and δ. To quantify the growth
rate of δ, we also define

f ≡ _δ

Hδ
: ð4:28Þ

An important observable associated with RSD measure-
ments is the quantity fσ8 [54,55], where σ8 is the
amplitude of over-density at the comoving 8 h−1Mpc
scale (h is the normalized Hubble parameter today
H0 ¼ 100 h km sec−1 Mpc−1).
Besides Ψ, we also introduce another gauge-invariant

gravitational potential

Φ≡Hχ; ð4:29Þ

and the gravitational slip parameter

η≡ −
Φ
Ψ
: ð4:30Þ

The effective gravitational potential associated with the
deviation of light rays in CMB and weak lensing obser-
vations is given by [56]

Φeff ¼
1

2
ðΨ − ΦÞ ¼ 1

2
ð1þ ηÞΨ; ð4:31Þ

which is affected by both Ψ and η.

V. EFFECTIVE GRAVITATIONAL COUPLING
FOR MATTER PERTURBATIONS

The comoving wave numbers associated with the galaxy
power spectrum for linear perturbations are in the range
0.01 hMpc−1 ≲ k≲ 0.2 hMpc−1 [55], which correspond
to 30a0H0 ≲ k≲ 600a0H0. To derive analytic expressions
of Geff , η, Ψ, Φ on scales relevant to the observations of
large-scale structures and weak lensing, we employ the so-
called quasistatic approximation for the perturbations
inside the sound horizon.

A. Quasistatic approximation on scales deep
inside the sound horizon

For the theories with L6 ¼ 0 and the Lagrangian L2 with
no Y dependence, the no-ghost and stability conditions of
scalar perturbations were derived in Ref. [24] in the small-
scale limit. Even for theories with G6 ≠ 0 and L2 ¼
G2ðX;F; YÞ, the modifications to scalar perturbations arise
only through the change of qV . In the k → ∞ limit, the
condition for the absence of scalar ghosts is given by

QS ¼
a3H2qTqS

ϕ2ðw1 − 2w2Þ2
> 0; ð5:1Þ

where

qS ≡ 3w2
1 þ 4qTw4: ð5:2Þ

Since the quantity QS does not contain w3, the no-ghost
condition is not modified relative to the theories studied in
Ref. [24]. Besides the matter propagation speed squared
(4.14), the propagation speed squared associated with
another scalar degree of freedom is given by

c2S ¼
μc

8H2ϕ2qTqVqS
; ð5:3Þ

where

μc ≡ ½w6ϕðw1 − 2w2Þ þ w1w2�2 − w3ð2w2
2 _w1 − w2

1 _w2Þ
þ 2w2

2w3ðρM þ PMÞ þ ϕðw1 − 2w2Þ2w3 _w6

þ w3ðw1 − 2w2Þ½ðH − 2 _ϕ=ϕÞw1w2

þ ðw1 − 2w2Þfw6ðHϕ − _ϕÞ þ 2w7ϕ
2g�: ð5:4Þ

To avoid the small-scale Laplacian instabilitywe require that
c2S > 0. This translates to μc > 0 under the three no-ghost
conditions qT > 0, qV > 0, qS > 0. It should be noted that
since the expression for c2S contains the termw3, compared to
the case in Ref. [24], the new Lagrangians L6 and L2 ¼
G2ðX;F; YÞ contribute to the scalar sound speed.
In the following, we employ the quasistatic approxima-

tion for the perturbations deep inside the sound horizon
(c2Sk

2=a2 ≫ H2) [42,57]. This amounts to picking up the
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terms containing k2=a2 and δρM in Eqs. (4.15)–(4.20); see
the Appendix for a more detailed discussion about this
approximation. This approximation breaks down for the
models in which c2S is very close to 0. In the following we
assume that c2S is not very much smaller than 1, in such a
way that the condition c2Sk

2=a2 ≫ H2 holds for the
perturbations relevant to the growth of large-scale struc-
tures. We also note that, in some dark energy models like
fðRÞ gravity [8], the mass m of a scalar degree of freedom
can be much larger than H in the past. In our generalized
Proca theories, we are interested in the mass term m2X in
the Lagrangian L2 with m at most of the order of H0 [24],
so we can consistently ignore its effect for discussing the
perturbations deep inside the sound horizon.
In what follows, we focus on nonrelativistic matter

satisfying the conditions PM ¼ 0 and c2M ¼ 0. Employing
the quasistatic approximation mentioned above for
Eqs. (4.15) and (4.17), it follows that

δρM ≃ −
k2

a2
ðY þ w1χ − w6ψÞ; ð5:5Þ

Y ≃
�
w2

ϕ
þ w6

�
ψ − 2w2χ: ð5:6Þ

Substituting Eq. (5.6) into Eq. (5.5), we have

δρM ≃ −
k2

a2

�
ðw1 − 2w2Þχ þ

w2

ϕ
ψ

�

¼ −
k2

a2

�
w1 − 2w2

H
Φþ w2

ϕ
ψ

�
; ð5:7Þ

where, in the second equality, we expressed χ in terms ofΦ.
From Eqs. (4.16) and (4.18) we eliminate v and obtain

_δρM þ 3HδρM þ k2

a2

�
ρMχ − w1α −

w2

ϕ
δϕ

�
¼ 0: ð5:8Þ

We take the time derivative of Eq. (5.7) and eliminate the
terms _δρM and δρM in Eq. (5.8). In doing so, we exploit
Eq. (5.6) with the definition of Y given in Eq. (4.21) to
remove the _ψ term. The perturbation αþ _χ can be expressed
in terms of the Bardeen gravitational potential Ψ. This
process leads to

ϕ2ðw1 − 2w2Þw3Ψþ μ1Φþ μ2ψ ≃ 0; ð5:9Þ

where

μ1 ≡ ϕ2

H
½ð _w1 − 2 _w2 þHw1 − ρMÞw3 − 2w2ðw2 þHw3Þ�;

ð5:10Þ

μ2 ≡ ϕðw2
2 þHw2w3 þ _w2w3Þ þ w2ðw6ϕ

2 − w3
_ϕÞ:

ð5:11Þ
We also take the time derivative of Eq. (5.6) and

eliminate the _Y and Y terms in Eq. (4.19). Then, it follows
that

2ϕ2w2Ψþ μ3Φþ μ4ψ ≃ 0; ð5:12Þ
where

μ3 ≡ 2ϕ

Hw3

μ2; ð5:13Þ

μ4 ≡ −
1

w3

½ϕ3ðw2
6 þ 2w3w7Þ

þ ϕ2ð2w2w6 þHw3w6 þ w3 _w6Þ
þ ϕfw2

2 þHw2w3 þ w3ð _w2 − _ϕw6Þg − 2 _ϕw2w3�:
ð5:14Þ

We can solve Eqs. (5.7), (5.9), and (5.12) for Ψ, Φ,
and ψ , as

Ψ≃ −
Hðμ2μ3 − μ1μ4Þ

ϕμ5

a2

k2
ρMδ; ð5:15Þ

Φ≃ ϕH½2w2μ2 − w3μ4ðw1 − 2w2Þ�
μ5

a2

k2
ρMδ; ð5:16Þ

ψ ≃ ϕH½w1w3μ3 − 2w2ðμ1 þ w3μ3Þ�
μ5

a2

k2
ρMδ; ð5:17Þ

where

μ5 ≡ ðw1 − 2w2Þ½ϕðw1 − 2w2Þw3μ4 − 2ϕw2μ2�
þHw2½2w2ðμ1 þ w3μ3Þ − w1w3μ3�: ð5:18Þ

Note that we used the approximation δ≃ δρM=ρM, which is
valid deep inside the sound horizon. From Eqs. (4.27) and
(4.30), the effective gravitational coupling and the gravi-
tational slip parameter are given, respectively, by

Geff ¼
Hðμ2μ3 − μ1μ4Þ

4πϕμ5
; ð5:19Þ

η ¼ ϕ2½2w2μ2 − w3μ4ðw1 − 2w2Þ�
μ2μ3 − μ1μ4

: ð5:20Þ

Under our approximation scheme, the rhs of Eq. (4.25) is
neglected relative to the lhs, so that

δ̈þ 2H _δ − 4πGeffρMδ≃ 0; ð5:21Þ

where we used Eq. (4.27). For a given model we can
integrate Eq. (4.25) for δ by using the analytic expression
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(5.19). In Sec. VI we shall confirm the validity of the above
quasistatic approximation for a class of dark energy models
in generalized Proca theories.

B. Estimates for Geff and η

We rewrite the effective gravitational coupling (5.19) and
the gravitational slip parameter (5.20) in more convenient
forms by using physical quantities like qS and c2S associated
with no-ghost and stability conditions (along the similar
line performed in Ref. [41] for scalar Horndeski theories).
In doing so, we first substitute the relations w1 ¼ w2 −
2HqT and w3 ¼ −2ϕ2qV into Eq. (5.19) with μi given by
Eqs. (5.10)–(5.11), (5.13)–(5.14), and (5.18). From the
definitions of w1, qT , and w6 in Eqs. (4.7), (3.15), and
(4.12), it follows that

G3;X ¼ −
1

2ϕ3
½w2 þ w6ϕþ 8Hϕ4G4;XX

− 2H2ϕ3ðG5;X þ ϕ2G5;XXÞ�; ð5:22Þ

G4;X ¼ −
1

8Hϕ2
ðw2 − w6ϕ − 4H2ϕ3G5;XÞ; ð5:23Þ

G4 ¼
1

8H
ð4HqT − w2 þ w6ϕÞ: ð5:24Þ

On using these relations with the background equa-
tions (2.13)–(2.14), the terms ρM þ PM and w7 can be
expressed as

ρM þ PM ¼ −2qT _H −
_ϕ

ϕ
w2; ð5:25Þ

w7 ¼
1

2Hϕ3
½ðw2 − w6ϕÞ _Hϕþ ðw2 þ w6ϕÞH _ϕ�: ð5:26Þ

We substitute these relations into Eq. (5.3) and then
express _w6 with respect to c2S. This allows us to eliminate
the _w6 term in the expression of Geff (which appears
through μ4). The resulting effective gravitational coupling
Geff contains the time derivatives _H and _ϕ. Taking the time
derivative of Eq. (2.15) for the branch ϕ ≠ 0, combining it
with Eq. (2.14), and eliminating the G2 and G2;X terms on
account of Eqs. (2.13) and (2.15), we can write _H and _ϕ in
terms of w1, qT , and w4. Employing the relation (5.2) to
express w4 with respect to qS, it follows that

_H ¼ 3w2
2 − qS

2qTqS
ðρM þ PMÞ; ð5:27Þ

_ϕ ¼ −
3w2ϕ

qS
ðρM þ PMÞ: ð5:28Þ

After setting PM ¼ 0 for nonrelativistic matter, Eqs. (5.19)
and (5.20) reduce, respectively, to

Geff ¼
ξ2 þ ξ3

ξ1
; ð5:29Þ

η ¼ ξ4
ξ2 þ ξ3

; ð5:30Þ

with the shorthand notations

ξ1 ¼ 4πϕ2ðw2 þ 2HqTÞ2; ð5:31Þ

ξ2 ¼ ½Hðw2 þ 2HqTÞ − _w1 þ 2 _w2 þ ρM�ϕ2 −
w2
2

qV
; ð5:32Þ

ξ3 ¼
1

8H2ϕ2q3SqTc
2
S

�
2ϕ2fqS½w2 _w1 − ðw2 − 2HqTÞ _w2�

þ ρMw2½3w2ðw2 þ 2HqTÞ − qS�g

þ qS
qV

w2fw2ðw2 − 2HqTÞ − w6ϕðw2 þ 2HqTÞg
�
2

;

ð5:33Þ

ξ4¼
w2þ2HqT
4Hq2SqVqTc

2
S

�
4H2ϕ2q2SqVqTc

2
S

þ2ϕ2qSqVw2 _w2ðw2−2HqTÞþw2
2fϕqSw6ðw2þ2HqTÞ

−w2qSðw2−2HqTÞ−2ϕ2qSqV _w1

þ2ϕ2qV ½qS−3w2ðw2þ2HqTÞ�ρMg
�
: ð5:34Þ

One can extract useful information from the expressions
(5.29) and (5.30). First, the terms proportional to 1=qV in ξ2
and ξ3 do not vanish for

w2 ¼ −ϕ2½ϕG3;X þ 4HðG4;X þ ϕ2G4;XXÞ
−H2ϕð3G5;X þ ϕ2G5;XXÞ� ≠ 0: ð5:35Þ

If the functions G3;4;5 do not have any X dependence,
which is the case for GR, then w2 ¼ 0 and hence Geff is
not affected by the vector contribution qV . In such cases
we have w1 ¼ −4HG4 and qT ¼ 2G4 with constant G4, so
the quantities (5.31)–(5.34) reduce, respectively, to
ξ1 ¼ 64πG2

4H
2ϕ2, ξ2¼ð4G4H2þ4G4

_HþρMÞϕ2, ξ3 ¼ 0,
and ξ4 ¼ 4G4H2ϕ2. Using the relation 4G4

_H ¼ −ρM,
which follows from the background equations (2.13)–
(2.15), we obtain Geff ¼ 1=ð16πG4Þ and η ¼ 1. Since
GR corresponds to G4 ¼ 1=ð16πGÞ, the effective gravita-
tional coupling reduces to G.
For the theories with w2 ≠ 0 the term ξ3 does not

generally vanish, so Geff and η generally differ from G
and 1 respectively. Under the three no-ghost and stability
conditions qS > 0, qT > 0, and c2S > 0, we have that
ξ3 > 0. Since ξ1 is also positive, the presence of the term
ξ3=ξ1 in Eq. (5.29) increases the gravitational attraction. In
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the expression of ξ2 there exists the term −w2
2=qV sourced

by the vector sector, which is negative under the no-ghost
condition qV > 0. Hence the contribution from the vector
sector to ξ2=ξ1 works to suppress the gravitational
attraction.
In view of the recent tension between the RSD and the

Planck data [35–39], we would like to discuss whether the
vector field allows the possibility of realizing the gravita-
tional interaction weaker than that in GR. Since ξ3=ξ1 is
positive, the necessary condition for realizing Geff smaller
than the Newton gravitational constant G is given by
ξ2=ξ1 < G, i.e.,

ϕ2½ðw2 þ 2HqTÞfH − 4πGðw2 þ 2HqTÞg

− _w1 þ 2 _w2 þ ρM� <
w2
2

qV
: ð5:36Þ

For the function G2 containing the standard Maxwell term
F, we may write G2 in the form G2 ¼ F þ g2ðX;F; YÞ, in
which case qV ¼ 1þg2;Fþ2g2;Yϕ2−4g5Hϕþ2G6H2þ
2G6;XH2ϕ2. If the value of qV gets smaller than 1 by
the existence of functions g2ðF; YÞ, g5, and G6, it tends to
be easier to satisfy Eq. (5.36). Unlike the case of scalar-
tensor Horndeski theories [41] the condition (5.36) does not
solely depend on quantities associated with tensor pertur-
bations, so the vector field allows a more flexible possibil-
ity for satisfying the necessary condition of weak gravity.

We would like to stress that the condition (5.36) is
necessary but not sufficient to realize Geff < G. Even for
ξ2=ξ1 < G, it can happen that the existence of the positive
term ξ3=ξ1 leads to Geff larger than G. The effect of the
vector sector also appears in the expressions of ξ3 and ξ4. In
order to see the possibility of Geff smaller than G, we need
to compute the three quantities ξ1, ξ2, and ξ3 for given
models. Note that, for the opposite inequality to that given
in Eq. (5.36), Geff is always larger than G.

C. Effective gravitational coupling on the de
Sitter background

On the de Sitter fixed point characterized by _ϕ ¼ 0

and _H ¼ 0, it is possible to simplify the effective gravi-
tational coupling (5.29) further. Since in this case
_w1 ¼ _w2 ¼ _w6 ¼ 0, w7 ¼ 0, and ρM ¼ PM ¼ 0, the
numerator (5.4) of c2S reduces to

μc ¼ ½w2ðw2 − 2HqTÞ − w6ϕðw2 þ 2HqTÞ�
× ½w2ðw2 − 2HqTÞ − w6ϕðw2 þ 2HqTÞ
þ 2Hϕ2qVðw2 þ 2HqTÞ�; ð5:37Þ

which is required to be positive to avoid the Laplacian
instability. Substituting Eq. (5.3) with Eq. (5.37) into
Eq. (5.33), it follows that

ξ3 ¼
w2ðw2 − 2HqTÞ − w6ϕðw2 þ 2HqTÞ

w2ðw2 − 2HqTÞ − w6ϕðw2 þ 2HqTÞ þ 2Hϕ2qVðw2 þ 2HqTÞ
w2
2

qV
: ð5:38Þ

Under the conditions μc > 0 and qV > 0, the quantity ξ3 is positive. Then the effective gravitational coupling (5.29) reads

Geff ¼
Hð2Hϕ2qV − w6ϕ − w2Þ

4π½2Hϕ2qVðw2 þ 2HqTÞ þ w2ðw2 − 2HqTÞ − w6ϕðw2 þ 2HqTÞ�
: ð5:39Þ

In the weak-coupling limit of vector perturbations (qV → ∞), Geff reduces to

ðGeffÞW ¼ H
4πðw2 þ 2HqTÞ

; ð5:40Þ

whereas, in the strong-coupling limit (qV → 0), we have

ðGeffÞS ¼ Hðw2 þ w6ϕÞ
4π½w6ϕðw2 þ 2HqTÞ − w2ðw2 − 2HqTÞ�

: ð5:41Þ

The difference between ðGeffÞW and ðGeffÞS is given by

ΔGeff ≡ ðGeffÞW − ðGeffÞS ¼ Hw2
2

2π½ðw2 þ 2HqTÞfw2ðw2 − 2HqTÞ − w6ϕðw2 þ 2HqTÞg�
: ð5:42Þ

If the condition

ðw2 þ 2HqTÞfw2ðw2 − 2HqTÞ − w6ϕðw2 þ 2HqTÞg > 0 ð5:43Þ
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is satisfied, it follows that ðGeffÞW > ðGeffÞS. In this case,
the effective gravitational coupling tends to decrease for a
stronger coupling of vector modes (i.e., for smaller qV). In
Sec. VI we shall consider a class of generalized Proca
theories to see how the change of qV modifies Geff .

VI. OBSERVABLES IN A CONCRETE DARK
ENERGY MODEL

We study the evolution of perturbations associated with
the observations of large-scale structures, weak lensing,
and CMB for a dark energy model in generalized Proca
theories. Let us consider theories given by the functions

G2ðX; Y; FÞ ¼ b2Xp2 þ ½1þ g2ðXÞ�F;

G3ðXÞ ¼ b3Xp3 ; G4ðXÞ ¼
1

16πG
þ b4Xp4 ;

G5ðXÞ ¼ b5Xp5 ; g5ðXÞ ¼ ~b5Xq5 ;

G6ðXÞ ¼ b6Xp6 ; ð6:1Þ

where G is the Newton gravitational constant, b2;3;4;5;6, ~b5,
p2;3;4;5;6, q5 are constants, and g2ðXÞ is an arbitrary function
of X with g2ð0Þ ¼ 0. Compared to the model studied in
Ref. [24], there exist additional functional freedoms in
g2ðXÞ (not necessarily proportional to Xp4−1), ~b5Xq5 (not
necessarily satisfying q5 ¼ p5 − 1), and b6Xp6 . The quan-
tity F vanishes on the FLRW background, so they do not
affect the background equations of motion. Since the
background has Y ¼ 0, by adopting the Taylor expansion
around Y ¼ 0, it is sensible to include a further additional
term of the form ~b2YXq2 in G2. However, for simplicity, we
do not consider this term in the following. Since the
background has a nonvanishing X, we do not adopt the
Taylor expansion with respect to X.

A. Cosmological background

For the powers p3;4;5 given by

p3 ¼
1

2
ðpþ 2p2 − 1Þ; p4 ¼ pþ p2;

p5 ¼
1

2
ð3pþ 2p2 − 1Þ; ð6:2Þ

the background solution of the form

ϕp ∝ H−1 ð6:3Þ

can be realized [24], where p is a positive constant.
The vector Galileon [19] corresponds to the powers
p ¼ p2 ¼ 1. For positive p the temporal vector component
ϕ is small in the early cosmological epoch, but it grows
with the decrease of H to give rise to the late-time cosmic
acceleration. According to the stability analysis around a

late-time de Sitter fixed point, it is always a stable
attractor [24].
Sincewe are interested in the cosmological evolution after

the end of the radiation era, we take into account non-
relativisticmatter alone for thematter LagrangianLM (unlike
Ref. [24] in which radiation is also present). We introduce
the matter density parameter Ωm ¼ 8πGρM=ð3H2Þ and the
dimensionless quantities

y≡ 8πGb2ϕ2p2

3H22p2
; βi ≡ pibi

2pi−p2p2b2
ðϕpHÞi−2; ð6:4Þ

where i ¼ 3, 4, 5 and the βi’s are constants from Eq. (6.3).
For the branch ϕ ≠ 0 of Eq. (2.15), we have the relation

1þ 3β3 þ 6ð2pþ 2p2 − 1Þβ4 − ð3pþ 2p2Þβ5 ¼ 0;

ð6:5Þ
which can be used to express β3 in terms of β4 and β5.
The dark energy density parameter is given by

ΩDE ¼ 1 − Ωm

¼ 6p2
2ð2pþ 2p2 − 1Þβ4 − p2ðpþ p2Þð1þ 4p2β5Þ

p2ðpþ p2Þ
y;

ð6:6Þ

which satisfies the differential equation

dΩDE

dN
¼ 3ð1þ sÞΩDEð1 −ΩDEÞ

1þ sΩDE
; ð6:7Þ

whereN ¼ ln a and s ¼ p2=p. From the matter-dominated
fixed point characterized by ΩDE ¼ 0, the solutions finally
approach a de Sitter attractor with ΩDE ¼ 1. The equation
of state of dark energy depends on ΩDE, as

wDE ¼ −
1þ s

1þ sΩDE
; ð6:8Þ

which evolves from −1 − s (matter era) to −1 (de Sitter
epoch). The likelihood analysis based on the SN Ia, CMB,
and BAO data showed that the constant s is constrained to
be 0 ≤ s < 0.36 [58].

B. Evolution of perturbations

The theoretical consistency of the model (6.1) requires
that the six quantitiesqT , c2T , qV , c

2
V , qS, c

2
S are positive in the

small-scale limit. In Ref. [24] the parameter space consistent
with these conditions was discussed for the specific func-
tions b6 ¼ 0, g2 ¼ −2c2G4;X, and g5 ¼ d2G5;X=2. The
generalization to the model (6.1) modifies neither the
background equations ofmotion nor the second-order action
of tensor perturbations, but the evolution of vector pertur-
bations is subject to change. The scalar perturbation is also
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affected by the new terms of intrinsic vector modes through
the change of qV . In the following, we investigate how the
new terms affect the evolution of scalar perturbations and
observable quantities. The evolution of vector perturbations
is discussed at the end of this section.
For the model given by the functions (6.1), the parameter

qV reads

qV ¼ 1þg2−4~b5Xq5Hϕþ2b6ð1þ2p6ÞH2Xp6 ; ð6:9Þ

where the last term arises for the theories with b6 ≠ 0.
From Eq. (6.3) the last term of Eq. (6.9) is proportional to
ϕ2ðp6−pÞ, so it is constant for p6 ¼ p. Depending on the sign
of the term2b6ð1þ2p6Þ,qV is either larger or smaller than 1.
The variables w2 and qT can be expressed in the

following forms:

w2 ¼ −
21−p2=2ffiffiffiffiffiffiffiffiffiffiffi
24πG

p p2ϕ
p2

ffiffiffiffiffiffiffi
b2y

p
½1þ 6β4ð1 − 2p2 − 2pÞ

þ 2β5ð3pþ 2p2Þ�; ð6:10Þ

qT ¼ 1

8πG

�
1þ 6β4p2

�
1

p2 þ p
− 2

�
yþ 6β5p2y

�
:

ð6:11Þ

In the asymptotic past where ΩDE is negligibly small, we
have y → 0 and hence w2 → 0 and qT → 1=ð8πGÞ. This
means that, in the early matter era, the quantities ξi in
Eq. (5.31)–(5.34) are approximately given by ξ1 ≃H2ϕ2=
ð4πG2Þ, ξ2 ≃H2ϕ2=ð4πGÞ, ξ3 ≃ 0, and ξ4 ≃H2ϕ2=ð4πGÞ,
respectively, where we used the approximate background
equation of motion _H ≃ −4πGρM (neglecting the contri-
bution of dark energy density). Then, in the early matter-
dominated epoch, the effective gravitational coupling (5.29)
and the slip parameter (5.30) are close to G and 1,
respectively.
After the dark energy dominance the quantity w2 starts to

be away from 0, which leads to the deviation of Geff from
G. From Eq. (5.39) the effective gravitational coupling on
the de Sitter solution is given by

Geff

G
¼ ðpþ p2Þ½qVu2 − 2p2yf1 − 6β4ð2pþ 2p2 − 3Þ þ 2β5ð3pþ 2p2 − 3Þg�

FG
; ð6:12Þ

where u ¼ ffiffiffiffiffiffiffiffiffi
8πG

p
ϕ, and

FG ¼ qVu2½pþ p2 þ 6β4p2yþ p2ðpþ p2Þf1 − 6β4ð1þ 2pþ 2p2Þ þ 2β5ð3þ 3pþ 2p2Þgy�
þ 2p2y½ðpþ p2Þf−1þ 6β4ð2pþ 2p2 − 3Þ þ β5ð6 − 6p − 4p2Þg þ 6p2f18β24ð2pþ 2p2 − 1Þ
− β4½1þ β5ð30pþ 28p2 − 6Þ� þ 6β25ðpþ p2Þgy�: ð6:13Þ

The value of Geff at the de Sitter attractor depends on the
parameters p, p2, β4, β5 and the quantities y, qVu2. Let us
consider the constant qV model realized by the nonvanish-
ing Lagrangian L6 with

p6 ¼ p; g2 ¼ 0; ~b5 ¼ 0: ð6:14Þ
In Fig. 1 we plot the evolution of Geff=G for p2 ¼ 1=2,

p ¼ p6 ¼ 5=2, β4 ¼ 10−4, and β5 ¼ 0.052 versus the

redshift z ¼ a0=a − 1 with five different values of qV .
We choose the negative coefficient b2 ¼ −m2ð8πGÞp2−1

(where m2 > 0) with λ≡ upH=m. For the model param-
eters given above, all the no-ghost and stability conditions
of tensor, vector, and scalar perturbations are consistently
satisfied. In Fig. 1 we see that Geff is close to G in the early
matter era independent of qV , but the late-time evolution of
Geff is different depending on the values of qV .

FIG. 1. Evolution of Geff=G for the model parameters
p2 ¼ 1=2, p ¼ p6 ¼ 5=2, g2 ¼ 0, ~b5 ¼ 0, β4 ¼ 10−4,
β5 ¼ 0.052, λ ¼ 1 with qV ¼ 0.5, 0.1, 0.05, 0.01, 0.001 (from
top to bottom). The present epoch (the redshift z ¼ 0) is identified
as ΩDE ¼ 0.68.
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For the model parameters used in Fig. 1, the asymptotic
values of y and u at the de Sitter attractor are given,
respectively, by y ¼ −0.906 and u ¼ 1.252. The analytic
estimation (6.12) shows that, for smaller qV, the effective
gravitational coupling at the de Sitter fixed point decreases,
e.g., Geff=G ¼ 1.503 for qV ¼ 0.5 and Geff=G ¼ 0.974 for
qV ¼ 0.001. In fact, we have numerically confirmed that
the condition (5.43) is satisfied for the model parameters
used in Fig. 1. Thus, for qV close to 0, it is possible to
realize Geff smaller than G.
We also numerically computed the quantities ξ1, ξ2, ξ3

and found that the contribution ξ2=ξ1 to Geff becomes
negative at low redshifts in the numerical simulation of
Fig. 1. This is overwhelmed by the positive contribution
ξ3=ξ1 to Geff , such that Geff stays positive. Thus, the
necessary condition (5.36) for realizing Geff < G is sat-
isfied for all the cases shown in Fig. 1, but we need to
evaluate the ξ3=ξ1 term for each value of qV to discuss
whether weak gravity is really possible.
In the left panel of Fig. 2, we show the evolution of fσ8

for several different values of qV derived by numerically
integrating the perturbation equations (4.15)–(4.20). We
choose the comoving wave number k ¼ 230a0H0, which is
within the linear regime of perturbations in the observations
of large-scale structures [55]. We recall that, under the
quasistatic approximation on scales deep inside the sound
horizon (c2Sk

2=a2 ≫ H2), the matter perturbation obeys
Eq. (5.21) with Geff given by Eq. (5.29). In the numerical
simulations of Fig. 2 the sound speed squared tends to be

larger for smaller qV, whose present value is in the range
Oð0.1Þ < c2S < Oð102Þ. By solving Eq. (5.21) with
Eq. (5.29) numerically, we confirmed that the evolution
of δ obtained under the quasi-approximation exhibits very
good agreement with the full numerical solutions of
Eqs. (4.15)–(4.20). In fact, the theoretical curves of fσ8
derived under the quasistatic approximation for the modes
c2Sk

2=a2 ≫ H2 are almost indistinguishable from those
obtained by full integrations.
As we see in Fig. 2, the theoretical values of fσ8 in low

redshifts get smaller for decreasing qV . This behavior
reflects the fact that Geff at the de Sitter fixed point tends
to be smaller for qV closer to 0. In Fig. 2 we also show the
observational data constrained from the RSDmeasurements
(including the recent FastSound data [65] measured at the
highest redshift z ¼ 1.4). To plot the theoretical curves, we
have chosen the value σ8ðz ¼ 0Þ ¼ 0.82 constrained by the
recent PlanckCMBdata [39]. The theoretical prediction is in
tension with some of the RSD data, but this property also
persists in the ΛCDM model for σ8ðz ¼ 0Þ constrained
from Planck observations. The tension reduces for smaller
σ8ðz ¼ 0Þ constrained from the WMAP data [40]. In any
case, the present RSD data are not sufficiently accurate to
place tight constraints on model parameters of the theory. It
is however interesting to note that the models with different
values ofqV can be potentially distinguished fromeach other
in future RSD measurements.
In the right panel of Fig. 2 we also plot the evolution of

the gravitational potentials for qV ¼ 10, 0.001. As in the

FIG. 2. (Left) Evolution of fσ8 for the same model parameters as those used in Fig. 1 with qV ¼ 10, 1, 0.1, 0.001. The initial
conditions of perturbations are chosen to match those under the subhorizon approximation discussed in Sec. V with the comoving wave
number k ¼ 230a0H0 and σ8ðz ¼ 0Þ ¼ 0.82. The black points with error bars correspond to the bounds of fσ8 constrained from the data
of redshift-space-distortion measurements [59–65]. (Right) Evolution of the gravitational potentials −Ψ, Φ for qV ¼ 10, 0.001.
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case of GR, both −Ψ and Φ stay nearly constant in the deep
matter era with the slip parameter η very close to 1. They
start to vary around the end of the matter-dominated epoch,
but the difference between −Ψ and Φ is small. Hence the
evolution of the effective gravitational potential −Φeff
defined by Eq. (4.31) is similar to that of −Ψ and Φ.
The deviation of the slip parameter η from 1 is typically
insignificant for theoretically consistent model parameters.
In Fig. 2 we see that the gravitational potentials are

enhanced for qV ¼ 10 after the onset of cosmic acceler-
ation. This enhancement occurs due to the strong gravita-
tional coupling with Geff > G. On the other hand, for
qV ¼ 0.001, both −Ψ and Φ start to decay after the end of
the matter era. Thus, it should be possible to distinguish the
models with large and small values of qV from the
integrated Sachs-Wolfe effect of CMB observations.
Finally, we discuss the evolution of vector perturbations

from the deep radiation era to the de Sitter epoch. For this
purpose, we take into account radiation besides nonrelativ-
istic matter in the forms ρM ¼ ρr þ ρm andPM ¼ ρr=3with
the velocity perturbations vi;r, vi;m and solve Eqs. (3.30) and
(3.31) numerically. In the left panel of Fig. 3, the evolution of
~Zi and ~Vi is plotted for qV ¼ 0.001 and the wave number
k ¼ 230a0H0. At the initial stage of the radiation era the
perturbations are outside the vector sound horizon
(c2Vk

2=a2 < H2), in which regime the dynamical field ~Zi
is nearly frozen. After the entry of the vector sound horizon,
~Zi starts to oscillate with a decreasing amplitude. In this

regime, the evolution of ~Zi is well described by the WKB
solution given by Eq. (3.39). As we see in Fig. 3, the
perturbation ~Vi does not grow either.
In the right panel of Fig. 3, we show the evolution of the

mass squaredm2
V ¼ C2=qV of the dynamical vector field ~Zi.

The ratio m2
V=H

2 grows from the radiation era to today and
it finally approaches the asymptotic value m2

V=H
2 ¼ 2 at

the de Sitter attractor. For small qV closer to 0, there is a
tendency that the massmV gets larger than the order ofH at
low redshifts. In such cases the oscillations of ~Zi are also
present even for small k, but the amplitude of ~Zi does not
increase. In summary, there is no growth of ~Zi for the dark
energy model studied above.

VII. CONCLUSIONS

One promising way to tackle dark energy and cosmo-
logical constant problems is to invoke new dynamical
degrees of freedom in addition to those appearing in the
standard model of particle physics. Modifications in the
form of an additional scalar degree of freedom have been
mostly studied in the literature. Among them the Galileon
and Horndeski interactions received much attention, as the
latter are the most general scalar-tensor theories with
second-order equations of motion. On the other hand,
the presence of a vector degree of freedom can also induce
interesting phenomenology besides providing a self-
acceleration of the Universe.

FIG. 3. Evolution of the vector perturbations ~Zi (normalized by 1=
ffiffiffiffiffiffiffiffiffi
8πG

p
) and ~Vi for the case qV ¼ 0.001 (left) and evolution

of the vector mass squared m2
V divided by H2 (right). The model parameters are the same as those used in Fig. 1 with qV ¼ 0.001. The

initial conditions are chosen, at the redshift z ¼ 4.77 × 108, as ΩDE ¼ 9.74 × 10−38, Ωr ≡ 8πGρr=ð3H2Þ ¼ 1 − 6.888 × 10−6,
~Zi ¼ 2.0095 × 10−3=

ffiffiffiffiffiffiffiffiffi
8πG

p
, d ~Zi=dN ¼ −10−8=

ffiffiffiffiffiffiffiffiffi
8πG

p
, and ~Vi ¼ 0.0015 with vi;r ¼ vi;m. We choose the comoving wave number

to be k ¼ 230a0H0.
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In this work, we followed this latter approach and
considered the most general vector-tensor interactions in
the form of generalized Proca theories with five propagat-
ing degrees of freedom, i.e., the two tensor gravitational
degrees of freedom and the two transverse and one
longitudinal mode of the vector field. To realize some
nontrivial cosmological dynamics with a gauge-invariant
vector field, one usually needs to introduce spatial compo-
nents of it at the background level. In our case the Uð1Þ
gauge symmetry is explicitly broken, so that the existence
of the temporal vector component can lead to interesting
cosmological solutions with a late-time de Sitter attractor.
The action of our generalized Proca theories has been

constructed in such a way that time derivatives higher than
second order do not arise to avoid the Ostrogradski
instability. The temporal component ϕ of the vector field,
which appears as an auxiliary field, can be entirely
expressed in term of the Hubble expansion rate H. The
de Sitter solutions, which are relevant to dark energy, can be
realized for constant values of ϕ and H. We obtained
second-order actions of tensor, vector, and scalar perturba-
tions on top of the general FLRW background in the
presence of a matter fluid. This allowed us to derive general
conditions for avoiding ghosts and Laplacian instabilities in
the small-scale limit.
In difference to the previous analysis, the perturbations

coming from the sixth-order Lagrangian L6 and the
quadratic Lagrangian L2 containing the X, F, Y depend-
ence (which preserves the parity invariance) are included as
well. The presence of purely vector interactions in L2, g5,
L6 has an important impact on the no-ghost and stability
conditions for vector perturbations and on the sound speed
of scalar perturbations. To guarantee the absence of any
theoretical pathology, we require that six no-ghost and
stability conditions are satisfied. This permits us to shrink
the allowed parameter space of the theory drastically.
The main goal of this work was to study observational

signatures of generalized Proca theories related with linear
cosmological perturbations. For this purpose, we derived
the full perturbation equations of motion for tensor, vector,
and scalarmodes and then analytically obtained the effective
gravitational couplingGeff withmatter density perturbations
and the slip parameter η by employing the quasistatic
approximation on scales deep inside the sound horizon.
In view of the recent tension between the data of redshift-
space distortions and CMB, we identified the necessary
condition for realizing Geff smaller than the Newton gravi-
tational constant G. One can nicely observe the important
impact of intrinsic vector modes on Geff in the quantity qV
associated with the vector no-ghost condition. For smaller
qV there is a tendency thatGeff decreases, so the vector field
plays an important role to modify the gravitational inter-
action on cosmological scales relevant to the observations of
large-scale structures and weak lensing.

For concreteness, we have considered a class of dark
energy models in which the temporal vector component ϕ
is of the form ϕp ∝ H−1 with p > 0. This solution, which
has a late-time de Sitter attractor, can be realized for the
functionsG2;3;4;5;6 given by Eq. (6.1) with the powers (6.2).
As we see in Fig. 1, it is indeed possible to realizeGeff < G
for small qV , while satisfying six no-ghost and stability
conditions. We also numerically integrated the scalar
perturbation equations of motion to study the evolution
of the growth rate fσ8 as well as the gravitational potentials
Ψ and Φ. We confirmed that the full numerical results show
excellent agreement with those derived under the quasi-
static approximation for the perturbations deep inside the
sound horizon. As we see in Fig. 2, the evolution of
observables is quite different at low redshifts depending on
the values of qV . Since the dark energy equation of state
wDE is also smaller than −1, it is possible to distinguish our
model from the ΛCDMmodel according to both expansion
history and cosmic growth.
Concerning the vector perturbations, we have also

provided an analytic estimation for the evolution of the
transverse vector modes. This analytic estimation has been
also confirmed by numerically solving the perturbation
equations (3.30) and (3.31) for the model (6.1). The
evolution of the vector modes is characterized as follows:
far outside the vector sound horizon, the perturbations ~Zi are
nearly constants. After the horizon entry (c2Vk

2=a2 > H2),
the perturbations start to decay with oscillations. Thus, there
is no growth for the dynamical vector fields ~Zi.
We have thus shown that generalized Proca theories offer

a nice possibility for realizing a dark energy model with
peculiar observational signatures. It is of interest to put
observational constraints on the allowed parameter space of
the model, which we leave for a future work.
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APPENDIX: SUBHORIZON LIMIT AND
QUASISTATIC APPROXIMATION

In this appendix we shall clarify the distinction between
the subhorizon limit and the quasistatic approximation.
In the subhorizon approximation we suppose that modes

of interest have physical momenta k=a sufficiently higher
than the Hubble expansion rate H (but sufficiently lower
than the cutoff of the theory under consideration). Let us
then introduce a small bookkeeping parameter ϵ (≪1) so
thatHa=k ¼ OðϵÞ. In the subhorizon limit (ϵ ≪ 1) it makes
perfect sense to consider a dispersion relation for each
propagating mode since there is a clear separation between
the scale of the background and that of the perturbation.
Assuming that the modes of interest approximately have
linear dispersion relations in the subhorizon limit, it is easy
to see that a time derivative acted on perturbationvariables is
of order H ×Oðϵ−1Þ. With this assignment, we keep the
lowest-order part of the quadratic action written in terms
of canonically normalized perturbation variables (after
eliminating nondynamical variables of course). We can
consider this procedure as the subhorizon limit in the context
of cosmological perturbations.
In the scalar perturbation sector of the system considered

in the present paper, there are two propagating degrees of
freedom, one from gravity and the other from dust matter.
They follow coupled second-order differential equations.
Therefore, a general solution in the scalar sector is a linear
combination of four independent modes. This means that
we can derive a fourth-order differential equation for one

master variable, e.g., the gauge-invariant density contrast.
We can also express all the other (dynamical and non-
dynamical) variables, e.g., two gauge-invariant potentials,
as linear combinations of the master variable and its
derivatives up to third order.
When the sound speed of the degree of freedom from

gravity is of order unity, one can easily show that the scalar
sector includes two fast modes and two slow modes since
the sound speed of dust matter is zero. The two fast modes
have the time scale of order a=k, while the two slow modes
have the time scale of order 1=H (≫a=k).
The quasistatic approximation is nothing but dropping

the fast modes and keeping the slow modes in order to
describe an adiabatic evolution of the system. In practice
we can easily take the quasistatic approximation: we start
with the fourth-order differential equation for one master
variable and consider that a time derivative acted on the
master variable is of order H ×Oðϵ0Þ [instead of
H ×Oðϵ−1Þ]. By keeping the leading-order contribution
in the small-ϵ limit with this new assignment, one obtains a
second-order differential equation for the master variable.
This is the equation of motion in the quasistatic approxi-
mation describing the two slow modes only. From the
equation of motion for the gauge-invariant density contrast
in the quasistatic approximation, one can easily read off
the effective gravitational constant Geff . One can also
apply the quasistatic approximation to the expressions
of the two gauge-invariant potentials to obtain the
Poisson equation and the slip parameter η. The expressions
for Geff and η obtained in this way completely agree
with those obtained in the main text by a different
method.
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