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We study higher-dimensional scenarios of massive bigravity, which is a very interesting extension of
nonlinear massive gravity since its reference metric is assumed to be fully dynamical. In particular, the
Einstein field equations along with the following constraint equations for both physical and reference
metrics of a five-dimensional massive bigravity will be addressed. Then, we study some well-known
cosmological spacetimes such as the Friedmann-Lemaitre-Robertson-Walker, Bianchi type I, and
Schwarzschild-Tangherlini metrics for the five-dimensional massive bigravity. As a result, we find that
massive graviton terms will serve as effective cosmological constants in both physical and reference sectors
if a special scenario, in which reference metrics are chosen to be proportional to physical ones, is
considered for all mentioned metrics. Thanks to the constancy property of massive graviton terms,
consistent cosmological solutions will be figured out accordingly.
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I. INTRODUCTION

Recently, a nonlinear massive gravity has been suc-
cessfully constructed by de Rham, Gabadadze, and
Tolley (dRGT) [1] as a generalization of massive gravity
proposed by Fierz and Pauli in a seminal paper [2,3]. As
a result, the most important property of the dRGT
theory is that it has been proved to be free of the
so-called Boulware-Deser (BD) ghost [4] by different
approaches whatever the form of reference (or fiducial)
metric [5]. In fact, many cosmological and physical
aspects of the dRGT theory have been investigated
extensively, which can be found in recent interesting
review papers [6].
It is known that a second metric fab in the massive

gravity, which is usually called a reference (or fiducial)
metric to distinguish it from a dynamical physical metric
gμν, is assumed to be nondynamical. It is introduced
along with the Stückelberg scalar fields ϕa to give a
manifestly diffeomorphism invariant description [3].
Since the dRGT theory has been proved to be free of
the BD ghost for arbitrary reference metric [5], one can
therefore extend this theory to a more general scenario,
in which the reference metric can be dynamical. Note
that a theory involving both dynamical metrics has been
known as a bimetric gravity (or bigravity for short)
theory [7]. Similar to the massive gravity, the old
bigravity [7] has faced the same BD ghost problem
for quite a long time. However, after the discovery by de
Rham, Gabadadze, and Tolley, a ghost-free nonlinear
bigravity employing the massive graviton terms (or the
interaction terms) of nonlinear massive gravity was
proposed by Hassan and Rosen in Ref. [8]. As a result,
there are two gravitons interacting with each other in the

ghost-free bigravity theory—one is massive carrying
five degrees of freedom and another is massless carrying
two degrees of freedom. Soon after this investigation,
ghost-free multimetric gravity (or multigravity for short)
theories were also formulated in Refs. [9,10]. Of course,
the number of gravitons in multigravity must be larger
than two. However, the number of massive gravitons is
always larger than the number of massless gravitons in
multi-gravity, which should be equal to one.
It turns out that the massive bigravity has received a

lot of discussions recently. For a up-to-date review on
the progress of the bigravity, see Ref. [11]. In particular,
the bigravity has been discussed extensively in
Refs. [12–25]. More precisely, some cosmological issues
of the ghost-free bigravity such as the cosmological
evolution and the dark matter problem have been
examined in Refs. [12,14,15]; while some black holes,
wormholes, and some anisotropic Bianchi types have
been investigated in the context of bigravity in
Refs. [16–18], Ref. [19], and Ref. [20], respectively.
For recent reviews on the black holes solutions of
massive (bi)gravity, see Ref. [18]. Furthermore, some
extensions of the massive bigravity have been proposed,
e.g., the fðRÞ bigravity in Ref. [21], the scalar-tensor
bigravity in Ref. [22], and the massive bigravity with
nonminimal coupling of matter in Ref. [23]. Along this line,
another natural way to generalize the bigravity is con-
structing higher-dimensional scenarios of massive bigravity
as done in papers listed in Refs. [24,25]. However, these
paper have not discussed particularly the well-known
Friedmann-Lemaitre-Robertson-Walker, Bianchi type I,
and Schwarzschild-Tangherlini metrics with additional
higher-dimensional massive graviton terms, which must
vanish in all four-dimensional spacetimes but do exist in
any higher-dimensional spacetime. As far as we know,
many previous papers have focused only, even when*tuanqdo@vnu.edu.vn, tuanqdo.py97g@nctu.edu.tw
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they discuss higher-dimensional solutions of massive
(bi)gravity, on the first three graviton terms U i’s (or
Li’s=2) (i ¼ 2–4), which have been shown to be non-
vanishing in any four-dimensional spacetime [26].
Therefore, it is physically important to study higher
than four-dimensional massive (bi)gravity involving not
only the first three graviton terms, U2, U3, and U4, but
also U i>4’s terms since this inclusion might affect on the
previous results [26] due to the existence of additional
graviton terms U i>4, which would not vanish in higher-
dimensional spacetimes.
It is noted that we have been able to construct explicit

ghost-free higher-dimensional graviton terms such as
L5, L6, and L7 in five-, six-, and seven-dimensional
spacetimes, respectively, in recent works on the higher-
dimensional nonlinear massive gravity [11,24,25,27]. It
is apparent that our construction is based on the well-
known Cayley-Hamilton (CH) theorem in linear algebra
for the determinant of square matrix [28]. For detailed
discussions on how to construct all graviton terms based
on the CH theorem, see for example Refs. [11,27]. Note
that this method can be used to build up any higher-
dimensional graviton term for both dRGT gravity and
massive bigravity theories. Additionally, we have also
shown in Ref. [27] that some results obtained in a four-
dimensional nonlinear massive gravity [29] will be
recovered in a five-dimensional scenario by fine-tuning
α5, the coefficient of additional graviton term L5 in the
action, such that a specific relation between α5 and the
other coefficients α3 and α4 is satisfied.
As a companion paper to Ref. [27] and Refs. [24,25],

the present paper is devoted to study a five-dimensional
scenario of massive bigravity with an additional gravi-
ton term, U5 ¼ L5=2, which disappears in all four-
dimensional spacetimes but survives in any higher than
four-dimensional one. In particular, we will examine
whether the graviton terms U i’s (i ¼ 2–5) act as effective
cosmological constants in a number of spacetimes such
as the Friedmann-Lemaitre-Robertson-Walker (FLRW),
Bianchi type I, and Schwarzschild-Tangherlini for both
physical and reference metrics, which will be assumed to
be compatible with each other. It is noted that the
reference metric fμν in the bigravity is dynamical, similar
to the physical metric gμν, rather than nondynamical.
Hence, the field equations of fμν in the massive bigravity
will be differential rather than algebraic as in the dRGT
gravity. Hence, the graviton terms could not easily turn
out to be effective constants. However, the Bianchi
identity will be applied to the reference metric since
its role in the action is now similar to that of the physical
metric. As a result, the Bianchi constraints of fμν along
with that of gμν will lead to some solutions, under which
the graviton terms could act as effective cosmological
constants in both physical and reference sectors (from
now on we will call them the g and f sectors for short).

Consequently, the field equations in both of these sectors
could become simple to be solvable analytically
(or numerically). Indeed, we will figure out some
simple solutions of the five-dimensional massive bigrav-
ity with effective cosmological constants coming
from the graviton terms U i’s (i ¼ 2–5) for all above
mentioned metrics. We will also discuss whether the
five-dimensional bigravity recovers results of the four-
dimensional bigravity.
This paper will be organized as follows. A brief

introduction of this research has been given in Sec. I.
Some basic details of four-dimensional massive bigravity
will be presented in Sec. II. A five-dimensional massive
bigravity model will be shown in Sec. III. The FLRW,
Bianchi type I, and Schwarzschild-Tangherlini metrics will
be studied in the framework of the five-dimensional
bigravity in Sec. IV, Sec. V, and Sec. VI, respectively. In
Sec. VII, we will examine whether effective cosmo-
logical constants derived from the graviton terms of
four-dimensional massive bigravity will be recovered in
the context of five-dimensional massive bigravity. Finally,
concluding remarks and discussions will be given in
Sec. VIII.

II. FOUR-DIMENSIONAL MASSIVE
BIGRAVITY

In this section, we will briefly review the four-
dimensional massive bigravity [8], which is based on the
four-dimensional nonlinear massive gravity [1,6]. In par-
ticular, an action of the four-dimensional massive bigravity
is given by [8]

S4d ¼ M2
g

Z
d4x

ffiffiffi
g

p
RðgÞ þM2

f

Z
d4x

ffiffiffi
f

p
RðfÞ

þ 2m2M2
eff

Z
d4x

ffiffiffi
g

p ðU2 þ α3U3 þ α4U4Þ; ð2:1Þ

where g≡ − det gμν, f ≡ − det fμν, and U i’s ði ¼ 2–4Þ are
massive graviton terms (or interaction terms) defined in
terms of Kμ

ν ≡ δμν −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gμσfσν

p
as follows

U2 ¼
1

2
f½K�2 − ½K2�g; ð2:2Þ

U3 ¼
1

6
f½K�3 − 3½K�½K2� þ 2½K3�g; ð2:3Þ

U4 ¼
1

24
f½K�4 − 6½K�2½K2� þ 3½K2�2

þ 8½K�½K3� − 6½K4�g: ð2:4Þ

It is noted that the other parameters, α0 associated with
U0 ¼ 1 and α1 associated with U1 ¼ ½K�, have been
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chosen to be zero since we would like to have flat space
solutions for the corresponding field equations in the
weak field limit, gμν ≈ fμν ≈ ημν. On the other hand, α2
associated with U2 has also been set to be one in order
to recover the Fierz-Pauli term [8]. Hence, we end up
with two free parameters α3 and α4. It is also noted that
one can work in an equivalent framework constructed by
Hassan and Rosen [8], where the graviton terms Un’s
will no longer be functions of Kμ

ν but of Xμ
ν ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi

gμσfσν
p

,
while the parameters αi’s will be replaced by βi’s.
Furthermore, the highest order of graviton terms in
the Hassan-Rosen framework is third order rather than
fourth order as in the dRGT framework. Hence, working
in the Hassan-Rosen framework might be more con-
venient than the dRGT framework. For more details,
especially the relation between the coefficients αi’s and
βi’s, see [8]. In this paper, however, we prefer using the
original definitions of the dRGT massive gravity [1] in
order to compare obtained results in this paper with that
investigated in the previous paper on the dRGT
theory [27].
It is noted in the above action that the square brackets

stand for the trace of matrix, i.e., ½K� ¼ trK, ½Kn� ¼ trKn,
and ½K�n ¼ ðtrKÞn. Note that Stückelberg scalar fields will
no longer be introduced in the context of bigravity. In
addition, m is the graviton mass, while RðgÞ and RðfÞ stand
for the scalar curvatures of a physical metric gμν and a
reference metric fμν, respectively. In the rest of paper, we
will still use the name “reference metric” for the fμν in order
to distinguish it from the “physical metric” gμν. Of course,
one can rename fμν as the “second metric” since fμν plays a
similar role as gμν does in the context of massive bigravity. In
addition,Meff is an effective Planck mass defined in terms of
two other Planck masses,Mg for the physical metric gμν and
Mf for the reference metric fμν, as follows [8]

M2
eff ¼

�
1

M2
g
þ 1

M2
f

�
−1
: ð2:5Þ

It is noted that the reference metric fμν in the bimetric gravity
has been regarded as a fully dynamical metric like the
physical one [8], while the reference metric in the nonlinear
massive gravity theory has been chosen to be non-dynamical
[1]. This is a main difference between these two theories.
As a result, choosing fμν as a fully dynamical metric will
yield a theory invariant under general coordinate trans-
formations without introducing the Stückelberg scalar fields
[8]. Additionally, the indexes of tensors in the f sector of
bigravity will be raised or lowered by the reference metric
instead of the physical metric since the reference metric is
chosen to play the same role as the physical metric [8].
As a result, the Einstein field equations for the g

sector associated with the physical metric gμν can be
derived to be [8]

M2
g

�
RμνðgÞ −

1

2
gμνRðgÞ

�
þm2M2

effHμνðgÞ ¼ TμνðgÞ;

ð2:6Þ

where

HμνðgÞ ¼ XμνðgÞ þ α4YμνðgÞ; ð2:7Þ

XμνðgÞ ¼ Kμν − ½K�gμν − ðα3 þ 1ÞfK2
μν − ½K�Kμν þ U2gμνg

þ ðα3 þ α4ÞfK3
μν − ½K�K2

μν þ U2Kμνg
− ðα3 þ α4ÞU3gμν; ð2:8Þ

YμνðgÞ ¼ −U4gμν þ ~YμνðgÞ; ð2:9Þ

~YμνðgÞ ¼ U3Kμν − U2K2
μν þ ½K�K3

μν −K4
μν: ð2:10Þ

It is straightforward to show that the tensor YμνðgÞ always
vanishes [8,29]. On the other hand, the field equations for
the f sector associated with the reference metric fμν turn
out to be [8]

ffiffiffi
f

p
M2

f

�
RμνðfÞ −

1

2
fμνRðfÞ

�
þ ffiffiffi

g
p

m2M2
effsμνðfÞ ¼ 0;

ð2:11Þ

where

sμνðfÞ ¼ −Kσ
μfσν þ f½K� þ α3U2 þ α4U3gfμν

þ ðα3 þ 1ÞfKρ
μKσ

ρ − ½K�Kσ
μgfσν

− ðα3 þ α4ÞfKρ
μKδ

ρKσ
δ − ½K�Kρ

μKσ
ρ þ U2Kσ

μgfσν
− α4fU3Kσ

μ − U2K
ρ
μKσ

ρ þ ½K�Kρ
μKδ

ρKσ
δ

−Kρ
μKδ

ρK
γ
δK

σ
γgfσν: ð2:12Þ

If we introduce new variables,

K̂μν ¼Kσ
μfσν; K̂2

μν¼Kρ
μKσ

ρfσν; K̂3
μν ¼Kρ

μKδ
ρKσ

δfσν;

K̂4
μν ¼Kρ

μKδ
ρK

γ
δK

σ
γfσν; ð2:13Þ

then the definition of sμν shown in Eq. (2.12) will be
rewritten as [8]
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sμνðfÞ ¼ −K̂μν þ f½K� þ α3U2 þ α4U3gfμν
þ ðα3 þ 1ÞfK̂2

μν − ½K�K̂μνg
− ðα3 þ α4ÞfK̂3

μν − ½K�K̂2
μν þ U2K̂μνg

− α4fU3K̂μν − U2K̂
2
μν þ ½K�K̂3

μν − K̂4
μνg: ð2:14Þ

It is straightforward to see that if fμν ¼ gμν then we will
obtain the following result:

sμνðf → gÞ ¼ −fXμνðgÞ þ α4 ~YμνðgÞ þ ðU2 þ α3U3Þgμνg
≡ tμν; ð2:15Þ

because K̂n
μνðf → gÞ ¼ Kn

μνðgÞ with n ¼ 1–4.
We would like to note that the scalar curvature of metric

fμν no longer shows up in the context of nonlinear massive
gravity. Therefore, we only have a simple equation for fμν
in the dRGT theory:

sdRGTμν ¼ 0; ð2:16Þ

provided that the unitary gauge of the Stückelberg
scalar fields is chosen [13,29]. As a result, in the
dRGT theory the constraint equation, sdRGTμν ¼ 0, leads
to tdRGTμν ¼ 0, which will reduce the Einstein field
equations to [13,29]

M2
g

�
RμνðgÞ −

1

2
gμνRðgÞ

�
−m2L0;dRGT

M gμν ¼ 0: ð2:17Þ

And the Bianchi identity indicates that the total massive
graviton term acts as an effective cosmological constant
because

∂νL0;dRGT
M ¼ 0: ð2:18Þ

This is a general feature of the massive gravity. Once
the forms of the physical and reference metrics are
given, one can derive the following value of the
effective cosmological constant in terms of the massive
graviton terms as Λ0

M ¼ −m2L0;dRGT
M as shown in

Refs. [13,29].
However, in the bimetric gravity this result might not be

valid for a large class of metrics due to the existence of the
scalar curvature of metric fμν. Note again that the reference
metric in the bimetric gravity has been promoted as a
dynamical one, in contrast to the dRGT theory. As a result,
the appearance of the scalar curvature RðfÞ will lead to
the differential equations (2.11) instead of the algebraic
equations (2.16) for the reference metric fμν. Hence, the
constantlike behavior of the massive graviton terms in the

context of the bimetric gravity theory could address more
constraints.

III. FIVE-DIMENSIONAL MASSIVE
BIGRAVITY

Following the seminal paper of Hassan and Rosen on the
four-dimensional massive bigravity [8], one can propose a
consistent higher-dimensional (n > 4) massive bigravity as
follows,1

Snd ¼ M2
g

Z
dnx

ffiffiffi
g

p
RðgÞ þM2

f

Z
dnx

ffiffiffi
f

p
RðfÞ

þ 2m2M2
eff

Z
dnx

ffiffiffi
g

p ðU2 þ α3U3 þ α4U4

þ α5U5 þ α6U6 þ α7U7 þ � � � þ αnUnÞ; ð3:1Þ

where the first three higher-dimensional graviton terms
(n ¼ 5, 6, 7) are given by [24,25,27]

U5 ¼
1

120
f½K�5 − 10½K�3½K2� þ 20½K�2½K3� − 20½K2�½K3�

þ 15½K�½K2�2 − 30½K�½K4� þ 24½K5�g; ð3:2Þ

U6¼
1

720
f½K�6−15½K�4½K2�þ40½K�3½K3�−90½K�2½K4�

þ45½K�2½K2�2−15½K2�3þ40½K3�2−120½K3�½K2�½K�
þ90½K4�½K2�þ144½K5�½K�−120½K6�g; ð3:3Þ

1After uploading the first version(s) of this paper to the
preprint website, the author received a few comments claiming
that the higher-dimensional massive graviton terms of massive
(bi)gravity have already been investigated in the published
papers, e.g., Refs. [24,25]. Therefore, it is necessary to summa-
rize briefly here what the author has done in Ref. [27] as well as in
this paper in order to avoid some misunderstanding. In particular,
the author has explicitly shown in Ref. [27] that the massive
graviton terms can be reconstructed from the characteristic
equation of square matrix, which is a consequence of the
Cayley-Hamilton theorem. As a result, this method turns out
to be very effective in building up arbitrary dimensional graviton
terms Ln. This result indicates that there is indeed a close relation
between the ghost-free property of the massive graviton terms and
the Cayley-Hamilton theorem. After constructing the higher-
dimensional Ln’s (n ¼ 5, 6, 7), the author has compared them
with that already derived in the published papers by other people
(see Secs. I and III of Ref. [27] for more details). This clearly
implies that the author has not been among the first people
[24,25] investigating higher-dimensional massive graviton terms.
However, Ref. [27] and the present paper seem to be ones of the
first papers studying explicitly nontrivial cosmological and black
hole metrics such as the FLRW, Bianchi type I, and Schwarzs-
child-Tangherlini metrics for a specific five-dimensional massive
(bi)gravity involving an additional graviton term L5 (or U5).
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U7 ¼
1

5040
f½K�7 − 21½K�5½K2� þ 70½K�4½K3�− 210½K�3½K4�

þ 105½K�3½K2�2 − 420½K�2½K2�½K3� þ 504½K�2½K5�
− 105½K2�3½K� þ 210½K2�2½K3�− 504½K2�½K5�
þ 280½K3�2½K�− 420½K3�½K4� þ 630½K4�½K2�½K�
− 840½K6�½K� þ 720½K7�g: ð3:4Þ

For the method based on the Cayley-Hamilton theorem
to construct higher-dimensional interaction terms
Un’s (n > 4), see Ref. [27] (see also Appendix A in
Ref. [11]). Note that all graviton terms Um with m > n
must vanish automatically in a given n-dimensional mas-
sive bigravity due to the requirement concerning the
absence of ghosts [1,5,24,25,27]. In this paper, we will
limit ourselves to the five-dimensional (n ¼ 5) massive
bigravity described by the following action:

S5d ¼ M2
g

Z
d5x

ffiffiffi
g

p
RðgÞ þM2

f

Z
d5x

ffiffiffi
f

p
RðfÞ

þ 2m2M2
eff

Z
d5x

ffiffiffi
g

p ðU2 þ α3U3 þ α4U4 þ α5U5Þ:

ð3:5Þ

As a result, the corresponding five-dimensional Einstein
field equations turn out to be [24,25,27]

M2
g

�
Rμν −

1

2
Rgμν

�
þm2M2

effH
ð5Þ
μν ðgÞ ¼ 0; ð3:6Þ

where

Hð5Þ
μν ðgÞ ¼ Xð5Þ

μν þ σYð5Þ
μν þ α5Wμν; ð3:7Þ

Xð5Þ
μν ¼ −ðαU2 þ βU3Þgμν þ ~Xð5Þ

μν ; ð3:8Þ

~Xð5Þ
μν ¼ Kμν − ½K�gμν − αfK2

μν − ½K�Kμνg
þ βfK3

μν − ½K�K2
μν þ U2Kμνg; ð3:9Þ

Yð5Þ
μν ¼ −U4gμν þ ~Yð5Þ

μν ; ð3:10Þ

~Yð5Þ
μν ¼ U3Kμν − U2K2

μν þ ½K�K3
μν −K4

μν; ð3:11Þ

Wμν ¼ −U5gμν þ ~Wμν; ð3:12Þ

~Wμν ¼ U4Kμν − U3K2
μν þ U2K3

μν − ½K�K4
μν þK5

μν; ð3:13Þ

with α ¼ α3 þ 1, β ¼ α3 þ α4, and σ ¼ α4 þ α5 as addi-
tional parameters defined for convenience.
It is noted that in the four-dimensional spacetime, where

Wμν no longer exists, the tensor Yμν has been shown to be
zero as a consequence of the Cayley-Hamilton theorem.

And in five-dimensional spacetime, we also have the same
result for the tensor Wμν, i.e., Wμν ¼ 0 in general as a
consequence of the Cayley-Hamilton theorem. Note again
that Yμν ≠ 0 in the higher-dimensional (n > 4) spacetime.
Of course, Wμν ≠ 0 in higher than five-dimensional
spacetimes.
For the reference metric, fμν, its Einstein field equations

can be defined as [24,25]

ffiffiffi
f

p
M2

f

�
RμνðfÞ −

1

2
fμνRðfÞ

�
þ ffiffiffi

g
p

m2M2
effs

ð5Þ
μν ðfÞ ¼ 0;

ð3:14Þ

where the tensor sð5Þμν ðfÞ is given by

sð5Þμν ðfÞ≡−K̂μν þ f½K� þ α3U2 þ α4U3 þ α5U4gfμν
þ αfK̂2

μν − ½K�K̂μνg
− βfK̂3

μν − ½K�K̂2
μν þ U2K̂μνg

− σfU3K̂μν − U2K̂
2
μν þ ½K�K̂3

μν − K̂4
μνg

− α5fU4K̂μν − U3K̂
2
μν þ U2K̂

3
μν − ½K�K̂4

μν þ K̂5
μνg:

ð3:15Þ

Here K̂5
μν ¼ Kρ

μKδ
ρK

γ
δK

σ
γKα

σfαν and K̂n
μν’s (n ¼ 1 − 4) have

been defined in Eq. (2.13).
Along with the physical and reference metric equations

defined above, there are two Bianchi identities for the
physical and reference metrics,

Dμ
gGμνðgÞ ¼ 0; ð3:16Þ

Dμ
fGμνðfÞ ¼ 0; ð3:17Þ

respectively, which lead to the following constraint
equations:

Dμ
gH

ð5Þ
μν ðgÞ ¼ 0; ð3:18Þ

Dμ
f

� ffiffiffi
g

pffiffiffi
f

p sð5Þμν ðfÞ
�
¼ 0: ð3:19Þ

Here, notations Dμ
g and Dμ

f stand for the covariant deriv-
atives in the g and f sectors, respectively.
By following the same technique shown above, one can

extend the bigravity to higher than five-dimensional sce-
narios. For example, one can propose to work with six- and
seven-dimensional bigravity models corresponding to six
and seven-dimensional graviton terms, which have been
constructed in the context of higher nonlinear massive
gravity [24,25,27]. Note also that we have shown in the
recent work [27] that the five-dimensional dRGT theory
admits the constantlike property of massive graviton terms
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for a number of physical and compatible reference metrics
as the FLRW, Bianchi type I, and Schwarzschild–
Tangherlini–(anti–) de Sitter [(A)dS] black holes metrics.
This result is basically based on the nondynamical feature
of the reference metric fab. When the reference metric
becomes dynamical in the framework of bigravity, how-
ever, we might need additional constraints in order to make
the massive graviton terms constant. Hence, the Einstein
field equations of higher-dimensional bigravity will be
more complicated to solve if such constraints are not
introduced. In the next sections, we will try to seek the
above mentioned metrics for the five-dimensional bigravity
under an assumption that the physical metrics are compat-
ible with the physical ones. It appears that the compatibility
assumption can be reduced to a special case, which leads
to constantlike behavior of UM, such that the reference
metrics are proportional to the physical ones, i.e., fμν ¼
C2gμν with a constant C, similar to the earlier works, e.g.,
[8,10,11,24,25].

IV. FIVE-DIMENSIONAL FLRW METRICS

A. Field equations

In five-dimensional spacetimes, we will consider the
FLRW physical and reference metrics given by

ds25dðgμνÞ ¼ −N2
1ðtÞdt2 þ a21ðtÞðd~x2 þ du2Þ; ð4:1Þ

ds25dðfμνÞ ¼ −N2
2ðtÞdt2 þ a22ðtÞðd~x2 þ du2Þ; ð4:2Þ

where ai’s (i ¼ 1–2) are the scale factors and u is the fifth
dimension [30]. In addition, N1 and N2 are the lapse
functions, which are introduced to get the Friedmann
equations from their Euler-Lagrange equations [1,8].
Furthermore, N1 can be set to be one after obtaining the
following Friedmann equation. However, we should not do
the same thing for N2; i.e., N2 should be regarded as a free
field variable. For convenience, we will define additional
variables [27], which will be used for further calculations,
as follows:

½K�n ¼ ðγ þ 4ΣÞn; ½Kn� ¼ γn þ 4Σn;

K̂n
00 ¼ γnf00; K̂n

ii ¼ Σnfii;

ffiffiffi
f

pffiffiffi
g

p ¼ ð1− γÞð1− ΣÞ4;

γðtÞ ¼ 1−
N2ðtÞ
N1ðtÞ

; ΣðtÞ ¼ 1−
a2ðtÞ
a1ðtÞ

: ð4:3Þ

Thanks to these definitions, the massive graviton terms
U i’s can be reduced to

U2 ¼ 2Σð2γ þ 3ΣÞ; ð4:4Þ

U3 ¼ 2Σ2ð3γ þ 2ΣÞ; ð4:5Þ

U4 ¼ Σ3ð4γ þ ΣÞ; ð4:6Þ

U5 ¼ γΣ4; ð4:7Þ

which will be used to evaluate the total graviton term
UM as

UM ≡ U2 þ α3U3 þ α4U4 þ α5U5

¼ Σ½ðα5γ þ α4ÞΣ3 þ 4ðα4γ þ α3ÞΣ2

þ 6ðα3γ þ 1ÞΣþ 4γ�: ð4:8Þ

Hence, the nonvanishing components of the tensor Hð5Þ
μν

defined in Eq. (3.7) are given by

Hð5Þ
00 ¼ −ΣðσΣ3 þ 4βΣ2 þ 6αΣþ 4Þg00; ð4:9Þ

Hð5Þ
ii ¼ −½γðσΣ3 þ 3βΣ2 þ 3αΣþ 1Þ

þ ΣðβΣ2 þ 3αΣþ 3Þ�gii: ð4:10Þ

Additionally, the nonvanishing components of the tensor

sð5Þμν shown in Eq. (3.15) turn out to be

sð5Þ00 ¼ ð1 − γÞΣðα5Σ3 þ 4α4Σ2 þ 6α3Σþ 4Þf00; ð4:11Þ

sð5Þii ¼ ð1 − ΣÞ½ðα5γ þ α4ÞΣ3 þ 3ðα4γ þ α3ÞΣ2

þ 3ðα3γ þ 1ÞΣþ γ�fii: ð4:12Þ

Armed with these results, the Einstein field equa-
tions (3.6) now become

6 ~M2
gH2

1 þ ΣðσΣ3 þ 4βΣ2 þ 6αΣþ 4Þ ¼ 0; ð4:13Þ

3 ~M2
gð _H1 þ 2H2

1Þ þ γðσΣ3 þ 3βΣ2 þ 3αΣþ 1Þ
þ ΣðβΣ2 þ 3αΣþ 3Þ ¼ 0; ð4:14Þ

where H1 ¼ _a1=a1 is the Hubble constant for the physical
metric gμν. In addition, we have set an additional variable as
~M2
g ≡M2

g=ðm2M2
effÞ and N1 ¼ 1 has been chosen for

convenience. On the other hand, the reference metric
equations (3.14) turn out to be

6 ~M2
fð1 − ΣÞ4H2

2 − Σð1 − γÞ2ðα5Σ3 þ 4α4Σ2

þ 6α3Σþ 4Þ ¼ 0; ð4:15Þ

3 ~M2
fð1 − ΣÞ3

�
_H2 þ 2H2

2 þ
_γ

1 − γ
H2

�
− ð1 − γÞ½ðα5γ þ α4ÞΣ3 þ 3ðα4γ þ α3ÞΣ2

þ 3ðα3γ þ 1ÞΣþ γ� ¼ 0; ð4:16Þ
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where H2 ¼ _a2=a2 is the Hubble constant for the reference
metric fμν, ~M2

f ≡M2
f=ðm2M2

effÞ, and γ ¼ 1 − N2 due to the
setting N1 ¼ 1.
Along with these field equations, the constraint equa-

tions (3.18) and (3.19) turn out to be

g00∂0H
ð5Þ
00 − 4g11½Γ0

11ðgÞHð5Þ
00 þ Γ1

10ðgÞHð5Þ
11 � ¼ 0 ð4:17Þ

and

f00
�
∂0

� ffiffiffi
g

pffiffiffi
f

p sð5Þ00

�
− 2

ffiffiffi
g

pffiffiffi
f

p Γ0
00ðfÞsð5Þ00

�

− 4

ffiffiffi
g

pffiffiffi
f

p f11½Γ0
11ðfÞsð5Þ00 þ Γ1

10ðfÞsð5Þ11 � ¼ 0; ð4:18Þ

respectively. Furthermore, these equations can be
reduced to

∂0½ΣðσΣ3 þ 4βΣ2 þ 6αΣþ 4Þ�
¼ −4H1ðΣ − γÞðσΣ3 þ 3βΣ2 þ 3αΣþ 1Þ ð4:19Þ

and

	
4H1−4H2þ

3_γ

1−γ
þ∂0



ð1−γÞΣðα5Σ3þ4α4Σ2þ6α3Σþ4Þ

¼−4H2ðΣ−γÞðσΣ3þ3βΣ2þ3αΣþ1Þ; ð4:20Þ

respectively.
It appears that the set of constraint equations (4.19)

and (4.20) is quite complicated to solve analytically
generally. However, simple solutions can be figured out
from this set equations if two right-hand sides of
Eqs. (4.19) and (4.20) vanish altogether. As a result, this
assumption can be achieved with one of two possible cases:

ðiÞ γ ¼ Σ; ð4:21Þ

ðiiÞ σΣ3 þ 3βΣ2 þ 3αΣþ 1 ¼ 0; ð4:22Þ

given thatHi ≠ 0 (i ¼ 1–2). Consequently, this assumption
also implies that

ΣðσΣ3 þ 4βΣ2 þ 6αΣþ 4Þ ¼ constant: ð4:23Þ

This constancy property indicates that Σ should also be
constant consistently since α, β, and σ all are constant
coefficients. In addition, the constancy of Σ, i.e., _Σ ¼ 0,
indicates that

H1 ¼ H2: ð4:24Þ

On the other hand, Eq. (4.20) leads to

_γ ¼ 0: ð4:25Þ

Therefore, this result also implies that γ acts as a
constant, similar to Σ. More interestingly, the total massive
graviton term will also act as an effective cosmological
constant ΛM due to the constancy feature of γ and Σ,

ΛM ¼ −m2M2
effUM; ð4:26Þ

where the definition of the total massive graviton term UM
has been defined in Eq. (4.8). It is apparent that once the
values of γ and Σ are solved, the corresponding value of ΛM
will be determined in terms of that of UM as shown in
Eq. (4.26). In the following subsections, therefore, we will
consider separately two possible cases shown in Eqs. (4.21)
and (4.22) in order to solve the equations of physical and
reference metrics as defined in Eqs. (4.13), (4.14), (4.15),
and (4.16). Additionally, we will show how to compute the
value of γ along with that of Σ by deriving their corre-
sponding equations.

B. Analytical solutions

1. Case 1: γ =Σ
As shown above, the variables Σ and γ should be

constant altogether. Hence, we will assume that

γ ¼ Σ ¼ Ĉ ¼ constant: ð4:27Þ

It appears that this assumption is equivalent to the choice,
which has been taken in many earlier works in the context
of bigravity theory [10,11,24,25], that the reference metric
is proportional to the physical metric:

fμν ¼ ð1 − ĈÞ2gμν: ð4:28Þ

Our goal is to define the value of the constant Ĉ, which
has been assumed to be identical to that of γ and Σ, by
considering the reference and physical field equations. As a
result, Eqs. (4.13) and (4.14) imply that

_H1 ¼ 0; ð4:29Þ

6H2
1 ¼ Λ̂g

0; ð4:30Þ

where Λ̂g
0 is an effective cosmological constant for the g

sector associated with the physical metric gμν defined as
follows:

1

~M2
g

Hð5Þ
μν ¼ Λ̂g

0gμν; ð4:31Þ

Λ̂g
0 ¼ −

Ĉ
~M2
g

ðσĈ3 þ 4βĈ2 þ 6αĈþ 4Þ: ð4:32Þ
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On the other hand, Eqs. (4.15) and (4.16) lead to

_H2 ¼ 0; ð4:33Þ

6H2
2 ¼ ð1 − ĈÞ2Λ̂f

0 ; ð4:34Þ

where Λ̂f
0 is an effective cosmological constant for the f

sector associated with the reference metric fμν given by

ffiffiffi
g

pffiffiffi
f

p
~M2
f

sð5Þμν ¼ Λ̂f
0fμν; ð4:35Þ

Λ̂f
0 ¼ Ĉ

~M2
fð1 − ĈÞ4 ðα5Ĉ

3 þ 4α4Ĉ
2 þ 6α3Ĉþ 4Þ: ð4:36Þ

It is noted that we have derived the relation H1 ¼ H2

from the constancy property of Σ. Hence, we obtain the
following relation from Eqs. (4.30) and (4.34) such as
Λ̂g
0 ¼ ð1 − ĈÞ2Λ̂f

0 , which can be expanded to give a degree
5 polynomial equation of Ĉ,

σĈ5 − 2ðσ − 2βÞĈ4 þ ðσ − 8β þ 6αþ α5 ~M
2ÞĈ3

þ 4ðβ − 3αþ α4 ~M
2 þ 1ÞĈ2

þ 2ð3αþ 3α3 ~M
2 − 4ÞĈþ 4ð ~M2 þ 1Þ ¼ 0; ð4:37Þ

with ~M2 ≡ ~M2
g= ~M2

f as a dimensionless parameter.
Mathematically, this polynomial equation admits five real
or complex solutions of Ĉ. Physically, however, Ĉ should
be real definite for expanding physical and reference
metrics. Solving Eq. (4.37) will yield the corresponding

real values of Ĉ. In the dRGT limit, where sð5Þμν ¼ 0 due to
the nondynamical property of the reference metric fμν, the
corresponding equation of Ĉ turns out to be

α5Ĉ
3 þ 4α4Ĉ

2 þ 6α3Ĉþ 4 ¼ 0; ð4:38Þ

which is identical to that investigated for the FLRWmetrics
in [27].
As a result, integrating out both Eqs. (4.29) and (4.33)

implies that

a1ðtÞ ¼ exp

2
64

ffiffiffiffiffiffi
Λ̂g
0

6

s
t

3
75; a2ðtÞ ¼ ð1 − ĈÞ exp

2
64

ffiffiffiffiffiffi
Λ̂g
0

6

s
t

3
75:

ð4:39Þ

It is apparent that these solutions will be exactly the de
Sitter expanding solution if Λ̂g

0 > 0. In this case, the
effective cosmological constant ΛM, which is associated
with the total massive graviton term UM in Eq. (4.8) as
shown in Eq. (4.26), can be evaluated as

ΛM ¼ −m2M2
effĈ½ðσĈ3 þ 4βĈ2 þ 6αĈþ 4Þ

þ ðĈ − 1Þðα5Ĉ3 þ 4α4Ĉ
2 þ 6α3Ĉþ 4Þ�

¼ Λ̂g
0½M2

g þM2
fð1 − ĈÞ3�: ð4:40Þ

The expression of ΛM shown in Eq. (4.40) indicates that it
is combined from two effective cosmological constants Λ̂g

0

and Λ̂f
0 defined in the g and f sectors, respectively. In

particular, ifM2
g > M2

fðĈ − 1Þ3 thenΛM > 0 and vice versa,

provided that Λ̂g
0 > 0. Hence, it turns out that Λ̂g

0 ≠ ΛM=M2
g

in the context of the massive bigravity theory. This is a
different point of the massive bigravity compared with the
massive gravity. It has been shown in the dRGT theory that Λ̂g

0

should be identical toΛM=M2
g if the physicalmetric is taken to

be compatible with the reference metric [27,29]. In the
bigravity theory, however, there exists the Ricci scalar
RðfÞ due to the assumption of dynamical reference metric
fμν, which leads to the differential field equations of reference
scale factors α2, σ2, and β2. Hence, in the expression ofΛM as
shown in Eq. (4.40), there are terms associated with fμν,
which can be set equal to zero if fμν is nondynamical or,
equivalently, RðfÞ ¼ 0. Indeed, in the case of the absence of
RðfÞ, the field equations for the reference metric fμν will be

sð5Þμν ðfÞ ¼ 0 rather than Eq. (3.14). The case of the non-
dynamical reference fμν is nothing but the massive gravity
theory, which has been investigated in Ref. [27] for a number
of metrics including the five-dimensional FLRW one.
Now, we would like to see whether both effective

cosmological constants, Λ̂f
0 and Λ̂g

0, and of course ΛM,
vanish. It turns out that if αi ’s (i ¼ 3–5) satisfy both the
following equations,

σĈ3 þ 4βĈ2 þ 6αĈþ 4 ¼ 0; ð4:41Þ

α5Ĉ
3 þ 4α4Ĉ

2 þ 6α3Ĉþ 4 ¼ 0; ð4:42Þ

then Λ̂f
0 ¼ Λ̂g

0 ¼ 0 as expected. As a result, these two
constraint equations can be rewritten as follows:

α4Ĉ
2 þ 3α3Ĉþ 3 ¼ 0; ð4:43Þ

α5Ĉ
3 þ 3α4Ĉ

2 þ 3α3Ĉþ 1 ¼ 0: ð4:44Þ

As a result, solving the first equation (4.43) gives us
nontrivial solutions of Ĉ,

Ĉ ¼ −3α3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð3α23 − 4α4Þ

p
2α4

; ð4:45Þ

requiring that α23 > ð4=3Þα4. Hence, the corresponding
value of α5 can be defined from the second equa-
tion (4.44) as
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α5 ¼ −
3α4Ĉ

2 þ 3α3Ĉþ 1

Ĉ3

¼ 8α24½ð9α23 − 8α4Þ∓3α3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9α23 − 12α4

p
�

ð3α3∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9α23 − 12α4

p
Þ3 : ð4:46Þ

In short, once the real value of Ĉ, or equivalently that of
Σ and γ, is solved from the following polynomial equa-
tion (4.37), the value of Λ̂g

0 will be evaluated according to
Eq. (4.31). Consequently, the scale factors a1 and a2 of the
FLRW physical and reference metrics will be determined as
shown in Eq. (4.39).

2. Case 2: σΣ3 þ 3βΣ2 þ 3αΣþ 1 = 0

As a result, the physical metric equations (4.13)
and (4.14) both imply, under this case, that

_H1 ¼ 0; ð4:47Þ

6 ~M2
gH2

1 ¼ −ΣðβΣ2 þ 3αΣþ 3Þ: ð4:48Þ

On the other hand, the reference metric equations (4.15)
and (4.16) can be solved to admit a trivial solution:

_H2 ¼ 0; ð4:49Þ

6 ~M2
fH2

2 ¼
Σð1 − γÞ2
ð1 − ΣÞ4 ðα5Σ3 þ 4α4Σ2 þ 6α3Σþ 4Þ: ð4:50Þ

As a result, we can derive the following equation for γ in
terms of Σ by using the fact that H2

1 ¼ H2
2. For conven-

ience, we rewrite Hð5Þ
00 in this case as follows,

Hð5Þ
00 ¼ Λð5Þ

g g00; ð4:51Þ

Λð5Þ
g ¼ −ΣðβΣ2 þ 3αΣþ 3Þ; ð4:52Þ

where Λð5Þ
g acts as an effective cosmological constant. On

the other hand, we obtain the following result in the four-
dimensional bigravity:

H00 ¼ Λð4Þ
g g00; ð4:53Þ

Λð4Þ
g ¼ −ΣðβΣ2 þ 3αΣþ 3Þ; ð4:54Þ

with an effective cosmological constant, Λð4Þ
g . It turns out

that if the equation, σΣ3 þ 3βΣ2 þ 3αΣþ 1 ¼ 0, holds,
then the five-dimensional effective cosmological constant

Λð5Þ
g will recover the four-dimensional one Λð4Þ

g . Moreover,
we will show later that this result is also valid for the case of
proportional metrics. Note that the case of proportional

metrics has been studied in a number of previous papers,
e.g., see [8,10,11,18,24,25]. Hence, in the rest of paper, we
will focus on the cases where the reference metrics are
taken to be proportional to the physical ones.

V. FIVE-DIMENSIONAL BIANCHI
TYPE I METRICS

A. Field equations

Now, wewould like to go beyond the isotropic spacetime
scenario, i.e., considering anisotropic spacetimes to see
whether the five-dimensional bigravity model admits them
as its cosmological solutions. In a five-dimensional space-
time scenario, the Bianchi type I physical and reference
metrics are taken to be [27,31]

ds25dðgμνÞ ¼ −N2
1ðtÞdt2 þ exp½2α1ðtÞ − 4σ1ðtÞ�dx2

þ exp½2α1ðtÞ þ 2σ1ðtÞ�ðdy2 þ dz2Þ
þ exp½2β1ðtÞ�du2; ð5:1Þ

ds25dðfμνÞ ¼ −N2
2ðtÞdt2 þ exp½2α2ðtÞ − 4σ2ðtÞ�dx2

þ exp½2α2ðtÞ þ 2σ2ðtÞ�ðdy2 þ dz2Þ
þ exp½2β2ðtÞ�du2; ð5:2Þ

where βi’s (i ¼ 1–2) are additional scale factors associated
with the fifth dimension u [31]. Now, we would like to see
if the five-dimensional bigravity admits these Bianchi type
I metrics as its anisotropic cosmological solutions. For
convenience, we will define some useful terms [27,29]:

½K�n ¼ ðγ þ Aþ 2Bþ CÞn;
½Kn� ¼ γn þ An þ 2Bn þ Cn;

γ ¼ 1 −
N2

N1

; A ¼ 1 − ϵη−2; B ¼ 1 − ϵη;

C ¼ 1 − exp ½β2 − β1�; ϵ ¼ exp ½α2 − α1�;
η ¼ exp ½σ2 − σ1�; K̂n

00 ¼ γnf00; K̂n
11 ¼ Anf11;

K̂n
22 ¼ K̂n

33 ¼ Bnf33; K̂n
44 ¼ Cnf44; ð5:3Þ

which will help us to reduce some complicated expressions
of field and constraint equations to simple ones. In
particular, the massive graviton terms U i’s can be explicitly
expanded in terms of the above notations to be

U2 ¼ Bð2Aþ BÞ þ CðAþ 2BÞ þ γðAþ 2Bþ CÞ; ð5:4Þ

U3 ¼ AB2 þ Bð2Aþ BÞðγ þ CÞ þ γCðAþ 2BÞ; ð5:5Þ

U4 ¼ B½ABðγ þ CÞ þ γCð2Aþ BÞ�; ð5:6Þ

U5 ¼ γAB2C: ð5:7Þ
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In addition, the total massive graviton term UM ≡ U2 þ
α3U3 þ α4U4 þ α5U5 turns out to be

UM ¼ AB2Cðα5γ þ α4Þ þ Bðα4γ þ α3Þ½ABþ Cð2Aþ BÞ�
þ ðα3γ þ 1Þ½Bð2Aþ BÞ þ CðAþ 2BÞ�
þ γðAþ 2Bþ CÞ: ð5:8Þ

It is straightforward to see that in the isotropic limit, i.e., the
FLRW limit corresponding to the case A ¼ B ¼ C, the
above massive graviton terms all reduce to that defined for
the FLRW metric in the previous section.
Given the above results, we arrive at the nonvanishing

components of the tensor Hð5Þ
μν appearing in the physical

metric field equation as displayed in Eq. (3.7):

Hð5Þ
00 ¼ −fσAB2Cþ βBðABþ 2ACþ BCÞ

þ α½Bð2Aþ BÞ þ CðAþ 2BÞ�
þ Aþ 2Bþ Cgg00; ð5:9Þ

Hð5Þ
11 ¼ −fγ½σB2Cþ βBðBþ 2CÞ þ αð2Bþ CÞ þ 1�

þ ½βB2Cþ αBðBþ 2CÞ þ 2Bþ C�gg11; ð5:10Þ

Hð5Þ
22 ¼ −fγ½σABCþ βðABþ ACþ BCÞ

þ αðAþ Bþ CÞ þ 1�
þ ½βABCþ αðABþ ACþ BCÞ
þ Aþ Bþ C�gg22; ð5:11Þ

Hð5Þ
33 ¼ Hð5Þ

22 ; ð5:12Þ

Hð5Þ
44 ¼ −fγ½σAB2 þ βBð2Aþ BÞ þ αðAþ 2BÞ þ 1�

þ ½βAB2 þ αBð2Aþ BÞ þ Aþ 2B�gg44: ð5:13Þ

On the other hand, the nonvanishing components of the

tensor sð5Þμν appearing in the reference metric field equation
can be shown to be

sð5Þ00 ¼ ð1 − γÞfα5AB2Cþ α4B½ABþ 2ACþ BC�
þ α3½Bð2Aþ BÞ þ CðAþ 2BÞ�
þ Aþ 2Bþ Cgf00; ð5:14Þ

sð5Þ11 ¼ ð1 − AÞfγ½α5B2Cþ α4BðBþ 2CÞ
þ α3ð2Bþ CÞ þ 1� þ α4B2C

þ α3BðBþ 2CÞ þ 2Bþ Cgf11; ð5:15Þ

sð5Þ22 ¼ ð1 − BÞfγ½α5ABCþ α4ðABþ ACþ BCÞ
þ α3ðAþ Bþ CÞ þ 1� þ α4ABC

þ α3ðABþ ACþ BCÞ þ Aþ Bþ Cgf22; ð5:16Þ

sð5Þ33 ¼ sð5Þ22 ; ð5:17Þ

sð5Þ44 ¼ ð1 − CÞfγ½α5AB2 þ α4Bð2Aþ BÞ
þ α3ðAþ 2BÞ þ 1� þ α4AB2

þ α3Bð2Aþ BÞ þ Aþ 2Bgf44: ð5:18Þ

It is noted that besides the field equations for the physical
and reference metrics, there exist some constraint equations
associated with the Bianchi identities, which should hold
in both g and f sectors. In particular, we will have the
following constraint equations for gμν and fμν coming from
the Bianchi identities shown in Eqs. (3.18) and (3.19) as
follows,

g00∂0H
ð5Þ
00 ¼ g11½Γ0

11ðgÞHð5Þ
00 þ Γ1

10ðgÞHð5Þ
11 �

þ 2g22½Γ0
22ðgÞHð5Þ

00 þ Γ2
20ðgÞHð5Þ

22 �
þ g44½Γ0

44ðgÞHð5Þ
00 þ Γ4

40ðgÞHð5Þ
44 � ð5:19Þ

and

f00
�
∂0

� ffiffiffi
g

pffiffiffi
f

p sð5Þ00

�
− 2

ffiffiffi
g

pffiffiffi
f

p Γ0
00ðfÞsð5Þ00

�

¼
ffiffiffi
g

pffiffiffi
f

p f11½Γ0
11ðfÞsð5Þ00 þ Γ1

10ðfÞsð5Þ11 �

þ 2

ffiffiffi
g

pffiffiffi
f

p f22½Γ0
22ðfÞsð5Þ00 þ Γ2

20ðfÞsð5Þ22 �

þ
ffiffiffi
g

pffiffiffi
f

p f44½Γ0
44ðfÞsð5Þ00 þ Γ4

40ðfÞsð5Þ44 �; ð5:20Þ

where we have set N1ðtÞ ¼ 1, i.e., γðtÞ ¼ 1 − N2ðtÞ for
convenience. Hence, Γ0

00ðgÞ ¼ 0, while Γ0
00ðfÞ ¼

−_γ=ð1 − γÞ ≠ 0. Similar to the isotropic FLRW case, we
will focus on a simple scenario by assuming that the right-
hand sides of Eqs. (5.19) and (5.20) vanish altogether. As a
result, this assumption can be done if we set

Γ0
11ðgÞHð5Þ

00 þ Γ1
10ðgÞHð5Þ

11 ¼ Γ0
22ðgÞHð5Þ

00 þ Γ2
20ðgÞHð5Þ

22

¼ Γ0
44ðgÞHð5Þ

00 þ Γ4
40ðgÞHð5Þ

44

¼ 0 ð5:21Þ

along with
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Γ0
11ðfÞsð5Þ00 þ Γ1

10ðfÞsð5Þ11 ¼ Γ0
22ðfÞsð5Þ00 þ Γ2

20ðfÞsð5Þ22

¼ Γ0
44ðfÞsð5Þ00 þ Γ4

40ðfÞsð5Þ44

¼ 0; ð5:22Þ

which will easily be fulfilled with the following simple
solution:

γ ¼ A ¼ B ¼ C: ð5:23Þ

Furthermore, Eq. (5.19) can be reduced, under this
assumption, to

∂0H
ð5Þ
00 ¼ 0; ð5:24Þ

which is equivalent to

Hð5Þ
00 ¼ AðσA3 þ 4βA2 þ 6αAþ 4Þ ¼ constant: ð5:25Þ

Since α, β, and σ are all constant coefficients, A must be
constant too. Hence, γ, B, and C will also act as constants
since they are all equal to A as mentioned above, resulting
that the reference metric fμν will be proportional to the
physical metric gμν, i.e.,

fμν ¼ ð1 − ~CÞ2gμν; ð5:26Þ

where ~C is a constant, which should be real definite for
expanding universes. In particular, we can set that

γ ¼ A ¼ B ¼ C ¼ ~C: ð5:27Þ

As a result, this solution implies that

η ¼ 1 ⇒ σ1 ¼ σ2: ð5:28Þ

This result indicates that both physical and reference
metrics share the same anisotropic deviation. Note that
we do not have the similar result for the other scale factors,
αi and σi. However, their time derivatives obey the same
thing due to the fact that _γ ¼ _A ¼ _B ¼ _C ¼ 0, i.e.,

_α1¼ _α2; _β1¼ _β2; α̈1¼ α̈2; β̈1¼ β̈2: ð5:29Þ

Thanks to these results, we are able to write down
explicitly the Einstein equations for the physical metric
shown in Eq. (3.6) as follows,

3ð _α21 − _σ21 þ _α1 _β1Þ ¼ ~Λg
0; ð5:30Þ

2α̈1 þ β̈1 þ 2σ̈1 þ 3_α21 þ _β21 þ 3_σ21

þ2ð _α1 _β1 þ 3_α1 _σ1 þ _β1 _σ1Þ ¼ ~Λg
0; ð5:31Þ

2α̈1 þ β̈1 − σ̈1 þ 3_α21 þ _β21 þ 3_σ21

þð2_α1 _β1 − 3_α1 _σ1 − _β1 _σ1Þ ¼ ~Λg
0; ð5:32Þ

3ðα̈1 þ 2_α21 þ _σ21Þ ¼ ~Λg
0; ð5:33Þ

where an effective cosmological constant in the g sector,
~Λg
0, is defined by

~Λg
0 ¼ −

~C
~M2
g

ðσ ~C3 þ 4β ~C2 þ 6α ~Cþ 4Þ; ð5:34Þ

with ~M2
g ¼ M2

g=ðm2M2
effÞ. Moreover, Eqs. (5.31)

and (5.32) can be further reduced to

σ̈1 þ _σ1ð3_α1 þ _β1Þ ¼ 0; ð5:35Þ

β̈1 − 2_α21 þ 2_σ21 þ _β21 þ _α1 _β1 ¼ 0; ð5:36Þ

with the help of Eqs. (5.30) and (5.33).
Similarly, we have the following field equations from the

Einstein equations (3.14) for the dynamical reference
metric fμν:

3ð _α22 − _σ22 þ _α2 _β2Þ ¼ ð1 − ~CÞ2 ~Λf
0 ; ð5:37Þ

2α̈2 þ β̈2 þ 2σ̈2 þ 3_α22 þ _β22 þ 3_σ22

þ 2ð _α2 _β2 þ 3_α2 _σ2 þ _β2 _σ2Þ ¼ ð1 − ~CÞ2 ~Λf
0 ; ð5:38Þ

2α̈2 þ β̈2 − σ̈2 þ 3_α22 þ _β22 þ 3_σ22

þ ð2_α2 _β2 − 3_α2 _σ2 − _β2 _σ2Þ ¼ ð1 − ~CÞ2 ~Λf
0 ; ð5:39Þ

3ðα̈2 þ 2_α22 þ _σ22Þ ¼ð1 − ~CÞ2 ~Λf
0 ; ð5:40Þ

where the expression of an effective cosmological constant
~Λf
0 in the f sector is given by

~Λf
0 ¼

~C
~M2
fð1 − ~CÞ4 ðα5

~C3 þ 4α4 ~C
2 þ 6α3 ~Cþ 4Þ; ð5:41Þ

with ~M2
f ¼ M2

f=ðm2M2
effÞ as defined in the previous section

for convenience. Additionally, the solution _γ ¼ 0 has been
used in order to derive the above equations for fμν.
Moreover, we can obtain simplified equations from
Eqs. (5.38) and (5.39),

σ̈2 þ _σ2ð3_α2 þ _β2Þ ¼ 0; ð5:42Þ

β̈2 − 2_α22 þ 2_σ22 þ _β22 þ _α2 _β2 ¼ 0; ð5:43Þ

with the help of the other ones, Eqs. (5.37) and (5.40).
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Now, by noting the result _α1 ¼ _α2, α̈1 ¼ α̈2, _σ1 ¼ _σ2,
σ̈1 ¼ σ̈2, _β1 ¼ _β2, and β̈1 ¼ β̈2, we come to a conclusion
that

~Λg
0 ¼ ð1 − ~CÞ2 ~Λf

0 ; ð5:44Þ

which implies an equation of ~C,

σ ~C5 − 2ðσ − 2βÞ ~C4 þ ðσ − 8β þ 6αþ α5 ~M
2Þ ~C3

þ 4ðβ − 3αþ α4 ~M
2 þ 1Þ ~C2

þ 2ð3αþ 3α3 ~M
2 − 4Þ ~Cþ 4ð ~M2 þ 1Þ ¼ 0; ð5:45Þ

with the dimensionless parameter ~M2 ≡ ~M2
g= ~M2

f as defined
in the FLRW case. This equation turns out to be identical to
Eq. (4.37) of Ĉ for the FLRW metric. Hence, ~Λg

0 will be
equal to Λ̂g

0 for the FLRW metric if ~C ¼ Ĉ. In addition, it
appears in the isotropic limit corresponding the setting
σi ¼ 0 and βi ¼ αi that all above field equations will be
identical to that found in the previous section for the FLRW
metric.
In conclusion, we have ended up with two sets of

differential field equations: (i) Eqs. (5.30), (5.33), (5.35),
and (5.36) for the g sector of metric gμν and (ii) Eqs. (5.37),
(5.40), (5.42), and (5.43) for the f sector of metric fμν. As a
result, two sets become identical to each other due to the
solution that fμν ¼ ð1 − ~CÞ2gμν, where the value of the

constant ~C has been determined by Eq. (5.45). Therefore,
we only need to solve one of these two sets of field
equations for the scale factors, which might describe the
evolution of our current Universe.

B. Analytical solutions

It turns out that the field equations (5.30), (5.33), (5.35),
and (5.36) look similar to that investigated in the five-
dimensional dRGT theory with the five-dimensional
Bianchi type I metrics [27]. Hence, we will employ the
method used in Refs. [27,29] to solve one of two sets of
differential field equations shown above for the Bianchi
type I metrics. As a result, we can obtain from Eqs. (5.30),
(5.33), and (5.36) two equations of two scale factors of the
physical metric,

3β̈1 þ 3_β21 þ 9_α1 _β1 ¼ 2 ~Λg
0; ð5:46Þ

6α̈1 − 3β̈1 þ 18_α21 − 3_α1 _β1 − 3_β21 ¼ 2 ~Λg
0; ð5:47Þ

which can be used to deduce a helpful relation:

18ðα̈1 þ 3_α21Þ − 6ðβ̈1 þ _β21Þ ¼ 8 ~Λg
0: ð5:48Þ

Now, we introduce additional variables such as

V1 ¼ exp½3α1�; V2 ¼ exp½β1�; ð5:49Þ

as used in Refs. [27,29]. As a result, this introducing will
lead Eq. (5.48) to

V̈1

V1

−
V̈2

V2

¼ 4 ~Λg
0

3
; ð5:50Þ

which will be reduced to

V̈1 ¼ 9 ~H2
1V1; ð5:51Þ

V̈2 ¼ 9H̄2
1V2 ð5:52Þ

if we assume that

V̈2

V2

¼ Vg
0

V̈1

V1

; ð5:53Þ

where Vg
0 is a constant, ~H2

1 ¼ 4 ~Λg
0=27ð1 − Vg

0Þ and
H̄2

1 ¼ Vg
0
~H2
1 with a requirement that 0 < Vg

0 < 1 due
to the positivity of ~H2

1. Furthermore, solving Eqs. (5.51)
and (5.52) gives us analytic solutions for V1 and V2

[27,29],

V1 ≡ exp½3α1� ¼ exp½3α01�

×

�
cosh ð3 ~H1tÞ þ

_α01
~H1

sinh ð3 ~H1tÞ
�
; ð5:54Þ

V2 ≡ exp½β1� ¼ exp½β01�

×

�
cosh ð3H̄1tÞ þ

_β01
3H̄1

sinh ð3H̄1tÞ
�
; ð5:55Þ

where α01 ≡ α1ðt ¼ 0Þ, _α01 ≡ _α1ðt ¼ 0Þ, β01 ≡ β1ðt ¼ 0Þ,
and _β01 ≡ _β1ðt ¼ 0Þ are initial values. Thanks to these
explicit solutions, we now define the value of the last scale
factor of the physical metric σ1 by integrating out Eq. (5.35)
to be

_σ1 ¼ k exp½−3α1 − β1�; ð5:56Þ

where k is an integration constant. And integrating out this
equation leads to its solution,

σ1 ¼ σ01 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_α201 þ _α01 _β01 −

~Λg
0

3

s

×
Z ��

cosh ð3 ~H1tÞ þ
_α01
~H1

sinh ð3 ~H1tÞ
�

×

�
cosh ð3H̄1tÞ þ

_β01
3H̄1

sinh ð3H̄1tÞ
��

−1
dt; ð5:57Þ

TUAN Q. DO PHYSICAL REVIEW D 94, 044022 (2016)

044022-12



where σ01 ≡ σ1ðt ¼ 0Þ acts as an initial value. In addition,
we have used the initial condition coming from the
Friedmann equation (5.30),

_α201 þ _α01 _β01 −
~Λg
0

3
¼ k2 exp ½−6α01 − 2β01�; ð5:58Þ

in order to derive the above solution of σ1.
For the reference metric fμν, we obtain the correspond-

ing solutions for its scale factors as follows,

exp½α2� ¼ ð1 − ~CÞ exp½α1�; ð5:59Þ

exp½β2� ¼ ð1 − ~CÞ exp½β1�; ð5:60Þ

σ2 ¼ σ1; ð5:61Þ

since it has been assumed to be proportional to the physical
metric, i.e., fμν ¼ ð1 − ~CÞ2gμν, in order to satisfy the
Bianchi identities.
In conclusion, we have derived analytical Bianchi type I

solutions for the corresponding differential field equations:
(i) Eqs. (5.30), (5.33), (5.35), and (5.36) for the g sector and
(ii) Eqs. (5.37), (5.40), (5.42), and (5.43) for the f sector, as
promised.

C. Stability analysis

Given the above analytical anisotropic solutions of the
physical metric, we would like to study their stability to see
whether they respect the well-known cosmic no-hair con-
jecture proposed by Hawking and his colleagues a long
time ago [32–34]. In particular, this conjecture postulates
that the final state of the Universe must be isotropic. In
other words, if this conjecture holds, then any anisotropic
cosmological solution describing either early or current
universes must be unstable and then decay to an isotropic
state at late time. However, it is worth noting that a
complete proof for this conjecture has not been done up
to now. A partial proof for Bianchi spaces by Wald can be
found in Ref. [32]. The proof of Wald deals with strong and
dominant energy conditions without explicit perturbation
analysis. Hence, in some models, in which the energy
conditions do not hold clearly, this proof might not gives us
valid conclusions on the validity of the no-hair conjecture.
It turns out that stability analysis based on perturbation
approaches for anisotropic solutions should be performed,
even when the energy conditions hold explicitly, in order to
get correct conclusions of the fate of the no-hair conjecture.
For example, it has been shown by perturbation analysis in
Refs. [33,34] that the no-hair conjecture turns out to be
violated in supergravity-motivated models, where a scalar
field, either canonical or noncanonical, is coupled with a
Uð1Þ field. As a result, these models have admitted Bianchi
type I inflationary solutions, which have been shown to be

stable against field perturbations. Besides this scalar-vector
model, the no-hair conjecture has also faced other counter-
examples in the context of the massive gravity as inves-
tigated in [27,29]. Note also that the cosmic no-hair
conjecture has been examined in the context of four-
dimensional bigravity in [20]. As a result, the cosmic
no-hair conjecture seems to be valid for de Sitter spacetimes
in the bigravity [20].
Hence, we now would like to perturb Eqs. (5.30), (5.35),

and (5.36) by taking exponential perturbations: δα1 ¼
Cα1 exp½ωt�, δσ1 ¼ Cσ1 exp½ωt� and δβ1 ¼ Cβ1 exp½ωt�.
Consequently, we will have the following perturbation
equations, which can be written as a matrix equation,

D

0
B@

Cα1
Cσ1
Cβ1

1
CA≡

2
64
A11 A12 A13

A21 A22 A23

A31 A32 A33

3
75
0
B@

Cα1
Cσ1
Cβ1

1
CA ¼ 0; ð5:62Þ

where

A11 ¼ ð2_α1 þ _β1Þω; A12 ¼ −2_σ1ω; A13 ¼ _α1ω;

ð5:63Þ

A21¼3_σ1ω; A22¼ω2þð3_α1þ _β1Þω; A23¼ _σ1ω;

ð5:64Þ

A31 ¼ −ð4_α1 − _β1Þω; A32 ¼ 4_σ1ω; ð5:65Þ

A33 ¼ ω2 þ ð _α1 þ 2_β1Þω: ð5:66Þ

Mathematically, Eq. (5.62) will admit nontrivial solutions
only when

detD ¼ 0: ð5:67Þ

It turns out that the determinant equation, detD ¼ 0, can be
rewritten as an equation of ω,

A1ω
2 þ B1ωþ C1 ¼ 0; ð5:68Þ

where

A1 ¼ 2_α1 þ _β1; ð5:69Þ

B1 ¼ 3½ _αð4_α1 þ 3_β1Þ þ _β21 þ 2_σ21�; ð5:70Þ

C1 ¼ 18_α21ð _α1 þ _β1Þ þ 2_β21ð5_α1 þ _β1Þ þ 6_σ21ð3_α1 þ _β1Þ:
ð5:71Þ

Note that we have ignored the trivial solution, ω ¼ 0, of
this determinant equation. Now, we would like to point out
whether the quadratic equation of ω shown above admits

HIGHER DIMENSIONAL MASSIVE BIGRAVITY PHYSICAL REVIEW D 94, 044022 (2016)

044022-13



only nonpositive roots by observing that if all coefficients
A1, B1, and C1 act as non-negative parameters, then
Eq. (5.68) will no longer admit any nonpositive root. As
a result, for expanding universes with _α1 > 0 and _α1 > _σ1,
_β1 then the above requirement can easily be satisfied,
meaning that the anisotropically expanding universes in
the five-dimensional massive gravity with small spatial
anisotropies are indeed stable against field perturbations. It
is noted that we have obtained four- and five-dimensional
stable Bianchi type I solutions for the corresponding
four- and five-dimensional massive gravity models in
Refs. [27,29]. The result in this section provides one more
counter-example to the cosmic no-hair conjecture [32–34].

VI. SCHWARZSCHILD-TANGHERLINI-(A)DS
BLACK HOLES

A. Field equations

In the previous sections, we have studied the five-
dimensional massive bigravity for both homogeneous
metrics, the isotropic FLRW metric and the anisotropic
Bianchi type I metric. As a result, we have shown that a
simple choice to make the total graviton term UM constant
is choosing that the reference metrics are proportional to
the physical metrics, i.e., fμν ¼ ð1 − CÞ2gμν, where C is a
constant: C ¼ Ĉ for the FLRW metric and C ¼ ~C for the
Bianchi type I metric. More interestingly, the following
equations of Ĉ and ~C, which will give us the values of the
corresponding constants, have been derived to be identical
to each other as shown in Eqs. (4.37) and (5.45). Hence,
one could expect that these equations would be a unique
equation for determining value of proportional constants
between the reference and physical metrics even when the
metrics are more complicated than the FLRW and Bianchi
type I ones, e.g., the Schwarzschild-Tangherlini black
hole [35–37], which will be studied in the rest of this
section.
Following our recent work [27], we would like to seek

the Schwarzschild-Tangherlini black hole for the five-
dimensional massive bigravity by considering spherically
symmetric metrics for both g and f sectors,

g5dμνdxμdxν ¼ −N2
1ðrÞdt2 þ

dr2

F2
1ðrÞ

þ r2dΩ2
3

H2
1ðrÞ

; ð6:1Þ

f5dμνdxμdxν ¼ −N2
2ðrÞdt2 þ

dr2

F2
2ðrÞ

þ r2dΩ2
3

H2
2ðrÞ

; ð6:2Þ

with

dΩ2
3 ¼ dθ2 þ sin2 θdφ2 þ sin2 θ sin2 φdψ2: ð6:3Þ

Here NiðrÞ, FiðrÞ, and HiðrÞ (i ¼ 1–2) are arbitrary
functions of the radial coordinate r. In addition,
ðθ;φ;ψÞ with allowed ranges: 0 ≤ θ ≤ π, 0 ≤ φ ≤ π,

and 0 ≤ ψ ≤ 2π are the spherical coordinates. Note that
according to the discussion in Ref. [27] we have set the
nondiagonal element of metrics associated with the non-
diagonal components g0r (and f0r) to be zero due to the
following constraint,

g0rR00 − g00R0r ¼ 0; ð6:4Þ

for simplicity. Of course, one might seek nondiagonal
solutions for the five-dimensional bigravity as investigations
for the four-dimensional massive gravity in Refs. [16,17].
For convenience, let us recall some useful definitions

defined in Ref. [27]. In particular, the nonvanishing
components of Kμ

ν turn out to be

K0
0ðrÞ ¼ 1 −

N2

N1

; K1
1ðrÞ ¼ 1 −

F1

F2

;

K2
2ðrÞ ¼ K3

3ðrÞ ¼ K4
4ðrÞ ¼ 1 −

H1

H2

: ð6:5Þ

On the other hand, these nonvanishing components con-
tribute to the massive graviton terms as follows:

U2 ¼ 2½K0
0ðK1

1 þ 3K2
2Þ þ 3K2

2ðK1
1 þK2

2Þ�; ð6:6Þ

U3 ¼ 2K2
2½3K0

0ðK1
1 þK2

2Þ þK2
2ð3K1

1 þK2
2Þ�;

ð6:7Þ

U4 ¼ 2ðK2
2Þ2½K0

0ð3K1
1 þK2

2Þ þK1
1K2

2�; ð6:8Þ

U5 ¼ 2K0
0K1

1ðK2
2Þ3: ð6:9Þ

Hence, the total massive graviton term UM ≡ U2 þ α3U3 þ
α4U4 þ α5U5 turns out to be

UM ¼ 2fK0
0K1

1½α5ðK2
2Þ3 þ 3α4ðK2

2Þ2 þ 3α3K2
2 þ 1�

þK2
2½α4ðK2

2Þ2 þ 3α3K2
2 þ 3�ðK0

0 þK1
1Þ

þ ðK2
2Þ2ðα3K2

2 þ 3Þg: ð6:10Þ

Similar to the previous sections, we are going to
determine the nonvanishing components of the tensor

Hð5Þ
μν defined in Eq. (3.7). As a result, they turn out to be

Hð5Þ
00 ¼ −½σK1

1ðK2
2Þ3 þ βðK2

2Þ2ð3K1
1 þK2

2Þ
þ 3αK2

2ðK1
1 þK2

2Þ þK1
1 þ 3K2

2�g00; ð6:11Þ

Hð5Þ
11 ¼ −½σK0

0ðK2
2Þ3 þ βðK2

2Þ2ð3K0
0 þK2

2Þ
þ 3αK2

2ðK0
0 þK2

2Þ þK0
0 þ 3K2

2�g11; ð6:12Þ
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Hð5Þ
22 ¼ −fσK0

0K1
1ðK2

2Þ2
þ βK2

2ð2K0
0K1

1 þK0
0K2

2 þK1
1K2

2Þ
þ α½K0

0K1
1 þK2

2ð2K0
0 þ 2K1

1 þK2
2Þ�

þK0
0 þK1

1 þ 2K2
2gg22; ð6:13Þ

Hð5Þ
44 ¼ Hð5Þ

33 ¼ Hð5Þ
22 : ð6:14Þ

It is noted that along with the tensor Hð5Þ
μν for the physical

metric gμν, there exists the tensor sð5Þμν for the reference
metric fμν, whose nonvanishing components read

sð5Þ00 ¼ ð1 −K0
0Þ½α5K1

1ðK2
2Þ3

þ α4ðK2
2Þ2ð3K1

1 þK2
2Þ þ 3α3K2

2ðK1
1 þK2

2Þ
þK1

1 þ 3K2
2�f00; ð6:15Þ

sð5Þ11 ¼ ð1 −K1
1Þ½α5K0

0ðK2
2Þ3

þ α4ðK2
2Þ2ð3K0

0 þK2
2Þ þ 3α3K2

2ðK0
0 þK2

2Þ
þK0

0 þ 3K2
2�f11; ð6:16Þ

sð5Þ22 ¼ ð1 −K2
2Þfα5K0

0K1
1ðK2

2Þ2
þ α4K2

2ð2K0
0K1

1 þK0
0K2

2 þK1
1K2

2Þ
þ α3½ðK2

2Þ2 þ 2K2
2ðK0

0 þK1
1Þ þK0

0K1
1�

þK0
0 þK1

1 þ 2K2
2gf22; ð6:17Þ

sð5Þ44 ¼ sð5Þ33 ¼ sð5Þ22 : ð6:18Þ

Armed with these explicit definitions, we will seek ana-
lytical solutions for both physical and reference field
equations in the next subsection.

B. Analytical solutions

Now, let us come back the Bianchi constraints for the
physical and reference metrics as shown in Eqs. (3.18)
and (3.19). As a result, Eq. (3.18) leads to a set of
nonvanishing component equations:

g11½∂rH
ð5Þ
11 − 2Γ1

11ðgÞHð5Þ
11 �

¼ g00½Γ1
00ðgÞHð5Þ

11 þ Γ0
01ðgÞHð5Þ

00 �
þ g22½Γ1

22ðgÞHð5Þ
11 þ Γ2

21ðgÞHð5Þ
22 �

þ g33½Γ1
33ðgÞHð5Þ

11 þ Γ3
31ðgÞHð5Þ

33 �
þ g44½Γ1

44ðgÞHð5Þ
11 þ Γ4

41ðgÞHð5Þ
44 �; ð6:19Þ

g33½Γ2
33ðgÞHð5Þ

22 þ Γ3
32ðgÞHð5Þ

33 �
þ g44½Γ2

44ðgÞHð5Þ
22 þ Γ4

42ðgÞHð5Þ
44 � ¼ 0; ð6:20Þ

g44½Γ3
44ðgÞHð5Þ

33 þ Γ4
43ðgÞHð5Þ

44 � ¼ 0: ð6:21Þ

On the other hand, Eq. (3.19) implies another set of
nonvanishing component equations:

f11
�
∂r

� ffiffiffi
g

pffiffiffi
f

p sð5Þ11

�
− 2

ffiffiffi
g

pffiffiffi
f

p Γ1
11ðfÞsð5Þ11

�

¼
ffiffiffi
g

pffiffiffi
f

p f00½Γ1
00ðfÞsð5Þ11 þ Γ0

01ðfÞsð5Þ00 �

þ
ffiffiffi
g

pffiffiffi
f

p f22½Γ1
22ðfÞsð5Þ11 þ Γ2

21ðfÞsð5Þ22 �

þ
ffiffiffi
g

pffiffiffi
f

p f33½Γ1
33ðfÞsð5Þ11 þ Γ3

31ðfÞsð5Þ33 �

þ
ffiffiffi
g

pffiffiffi
f

p f44½Γ1
44ðfÞsð5Þ11 þ Γ4

41ðfÞsð5Þ44 �; ð6:22Þ

f33½Γ2
33ðfÞsð5Þ22 þ Γ3

32ðfÞsð5Þ33 �
þ f44½Γ2

44ðfÞsð5Þ22 þ Γ4
42ðfÞsð5Þ44 � ¼ 0; ð6:23Þ

f44½Γ3
44ðfÞsð5Þ33 þ Γ4

43ðfÞsð5Þ44 � ¼ 0: ð6:24Þ

Similar to the previous studies for the FLRWand Bianchi
metrics, a simple solution to both Eqs. (6.20) and (6.21) can
be solved as

K2
2 ¼ K1

1 ¼ K0
0; ð6:25Þ

which also makes the right-hand side of Eq. (6.19) zero. As
a result, the left-hand side of Eq. (6.19) now reduces to

∂r½σðK0
0Þ4 þ 4βðK0

0Þ3 þ 6αðK0
0Þ2 þ 4K0

0� ¼ 0: ð6:26Þ

This equation can be integrated out to give an equation
of K0

0:

σðK0
0Þ4 þ 4βðK0

0Þ3 þ 6αðK0
0Þ2 þ 4K0

0 ¼ constant:

ð6:27Þ

Hence, once this equation is solved the corresponding
solutions K0

0 must be constant since all coefficients σ, β,
and α are also constant. Therefore, we will set that

K2
2 ¼ K1

1 ¼ K0
0 ¼ C̄; ð6:28Þ

where C̄ is a constant, whose value will be figured out
later. Furthermore, this solution is equivalent to the
scenario that the physical metric is proportional to the
reference metric,

fμν ¼ ð1 − C̄Þ2gμν; ð6:29Þ

HIGHER DIMENSIONAL MASSIVE BIGRAVITY PHYSICAL REVIEW D 94, 044022 (2016)

044022-15



which has been discussed extensively for a number
black hole solutions of the four-dimensional massive
(bi)gravity, e.g., see some review papers in Ref. [18]. It is
straightforward to check that the solution shown in
Eq. (6.28) is also a solution of Eqs. (6.22), (6.23),
and (6.24) for the reference metric.
It is noted that the solution displayed in Eq. (6.28) also

implies that the massive graviton terms U i’s (i ¼ 2–5)
along with the total graviton term UM all turn out to be
nothing but constants. In particular, we have the corre-
sponding effective cosmological constant for the physical
metric,

Λ̄g
0 ¼ −

C̄
~M2
g

ðσC̄3 þ 4βC̄2 þ 6αC̄þ 4Þ; ð6:30Þ

along with that for the reference metric:

Λ̄f
0 ¼ C̄

~M2
fð1 − C̄Þ4 ðα5C̄

3 þ 4α4C̄2 þ 6α3C̄þ 4Þ: ð6:31Þ

Thanks to these results, the Einstein field equations for the
g and f sectors now reduce to simple forms:

RμνðgÞ −
1

2
gμνRðgÞ þ Λ̄g

0gμν ¼ 0; ð6:32Þ

RμνðfÞ −
1

2
fμνRðfÞ þ Λ̄f

0fμν ¼ 0: ð6:33Þ

As found in Refs. [35,36], the field Einstein equations (6.32)
with the effective cosmological constant Λ̄g

0 admit nontrivial
solutions:

N2
1ðrÞ ¼ F2

1ðrÞ ¼ fðrÞ ¼ 1 −
μ

r2
−
Λ̄g
0

6
r2; ð6:34Þ

H2
1ðrÞ ¼ 1; ð6:35Þ

which correspond to the following metric,

g5dμνdxμdxν ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
3; ð6:36Þ

where μ≡ 8G5M=ð3πÞ is a mass parameter withM and G5

standing for the mass of source and the five-dimensional
Newton constant, respectively. Furthermore, the metric
shown in Eq. (6.37) will be regarded as the
Schwarzschild–Tangherlini–de Sitter or Schwarzschild–
Tangherlini–anti–de Sitter black hole if Λ̄g

0 > 0 or
Λ̄g
0 < 0, respectively. On the other hand, we will have the

pure Schwarzschild-Tangherlini black hole for the case of
vanishing Λ̄g

0.
It is noted that we have worked on a specific scenario,

where the reference metric is taken to be proportional to the

physical metric such as fμν ¼ ð1 − C̄Þ2gμν, in order to
satisfy the Bianchi constraints. Consequently, this choice
leads to the constantlike behavior of the massive graviton
terms in both g and f sectors as shown above. Therefore, it
is straightforward to obtain the corresponding reference
metric:

f5dμνdxμdxν ¼ ð1 − C̄Þ2
�
−fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
3

�
:

ð6:37Þ

Here, the value of the constant C̄ can be figured out from
the constraint that the effective cosmological constant Λ̄g

0

must be equal to ð1 − C̄Þ2Λ̄f
0 . As a result, this requirement

implies the following equation of C̄,

σC̄5 − 2ðσ − 2βÞC̄4 þ ðσ − 8β þ 6αþ α5 ~M
2ÞC̄3

þ 4ðβ − 3αþ α4 ~M
2 þ 1ÞC̄2

þ 2ð3αþ 3α3 ~M
2 − 4ÞC̄þ 4ð ~M2 þ 1Þ ¼ 0; ð6:38Þ

which looks identical to that of Ĉ for the FLRW metric
and that of ~C for the Bianchi type I metric derived in the
previous sections.
For the stability of the Schwarzschild- Tangherlini-(A)dS

black holes in the context of five-dimensional massive
bigravity, one might follow some recent investigations
within four-dimensional spacetimes, which have been done
in Ref. [17]. In particular, the authors of papers in Ref. [17]
have found by a systematic stability analysis that the
four-dimensional Schwarzschild black holes turn out to
be unstable against radial perturbations whatever the
reference metric is dynamical or not. Therefore, the
Schwarzschild-Tangherlini-(A)dS black holes of five- (or
higher) dimensional massive (bi)gravity theory might also
be expected to be unstable. However, it is noted that the
existence of new graviton terms such as U5 might affect on
the stability of black holes of higher-dimensional massive
(bi)gravity theory. Hence, it addresses further investigations
to obtain valid conclusions for the stability of the
Schwarzschild-Tangherlini-(A)dS black holes in the con-
text of five-dimensional massive bigravity. On the other
hand, if one would like to have stable black holes to the
five-dimensional massive (bi)gravity theory, one might
think of nonbidiagonal metrics according to the last paper
in Ref. [17], which has focused only on four-dimensional
spacetimes.

VII. FOUR-DIMENSIONAL LIMIT

As a result, we have shown that one of choices to make
the graviton terms constant is that the dynamical reference
metric fμν is taken to be proportional to the physical one gμν
under the relation fμν ¼ ð1 − CÞ2gμν with C ¼ Ĉ, ~C, and C̄
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for the FLRW, Bianchi type I, and Schwarzschild-
Tangherlini metrics, respectively. Moreover, the equations
of proportional factors, Ĉ, ~C, and C̄, which will give us
their corresponding values, have appeared to be in the same
form as displayed in Eqs. (4.37), (5.45), and (6.38):

σC5 − 2ðσ − 2βÞC4 þ ðσ − 8β þ 6αþ α5 ~M
2ÞC3

þ 4ðβ − 3αþ α4 ~M
2 þ 1ÞC2

þ 2ð3αþ 3α3 ~M
2 − 4ÞC þ 4ð ~M2 þ 1Þ ¼ 0: ð7:1Þ

We might expect that this equation might be valid for a
number of reference and physical metrics, which are
diagonal and proportional to each other, of the five-
dimensional massive bigravity. Once again, we note that

in the dRGT limit, where sð5Þμν ¼ 0 due to the nondynamical
property of the reference metric fμν, the corresponding
equation of C turns out to be identical to that investigated
in [27]:

α5C3 þ 4α4C2 þ 6α3C þ 4 ¼ 0: ð7:2Þ

Note that the four-dimensional limit of the bigravity
cannot be recovered by simply setting α5 ¼ 0 in the five-
dimensional scenario. The reason is that the graviton terms
living in five-dimensional spacetimes contain more terms
than that in four-dimensional spacetimes. Therefore, setting
α5 ¼ 0 does not kill extra terms in U i’s. Following the
investigations done in Ref. [27], the coefficient α5 asso-
ciated with the existence of U5 should be fine-tuned in
order to recover effective cosmological constants of four-
dimensional models.
To improve this claim, we now consider an example, in

which the four-dimensional FLRW metric is adopted for
both physical and reference metrics of the following four-
dimensional massive bigravity as follows:

ds24dðgμνÞ ¼ −N2
1ðtÞdt2 þ a21ðtÞd~x2; ð7:3Þ

ds24dðfμνÞ ¼ −N2
2ðtÞdt2 þ a22ðtÞd~x2: ð7:4Þ

For details of four-dimensional massive bigravity, one can
see Sec. II. As a result, the corresponding four-dimensional
graviton terms U i’s (i ¼ 2–4) are defined to be

U2 ¼ 3Σðγ þ ΣÞ; U3 ¼ Σ2ðγ þ ΣÞ; U4 ¼ γΣ3;

ð7:5Þ

UM ¼ Σ½ðα4γ þ α3ÞΣ2 þ 3ðα3γ þ 1ÞΣþ 3γ�: ð7:6Þ

Note again that U5 ¼ 0 in all four-dimensional spacetimes.
Additionally, the following components of tensor HμνðgÞ
appearing in the four-dimensional Einstein field equations
for the physical metric gμν turn out to be

H00 ¼ −ΣðβΣ2 þ 3αΣþ 3Þg00; ð7:7Þ

Hii ¼ − ½γðβΣ2 þ 2αΣþ 1Þ þ ΣðαΣþ 2Þ�gii; ð7:8Þ

along with that of tensor sμνðfÞ in the f sector given by

s00 ¼ −ðγ − 1ÞΣðα4Σ2 þ 3α3Σþ 3Þf00; ð7:9Þ

sii ¼ − ðΣ − 1Þ½ðα4γ þ α3ÞΣ2 þ 2ðα3γ þ 1ÞΣþ γ�fii:
ð7:10Þ

Similar to the five-dimensional case, we will focus on the
solution making the graviton terms constant,

γ ¼ Σ ¼ C0; ð7:11Þ

where C0 is a constant, whose equation will be figured out
later. Note that this solution corresponds to the proportional
metrics, i.e.,

fμν ¼ ð1 − C0Þ2gμν: ð7:12Þ

Hence, the corresponding effective cosmological constants
in the g and f sectors can be evaluated as follows:

Λg
0 ¼ −

C0

~M2
g

ðβC2
0 þ 3αC0 þ 3Þ; ð7:13Þ

Λf
0 ¼

C0

~M2
fð1 − C0Þ3

ðα4C2
0 þ 3α3C0 þ 3Þ: ð7:14Þ

As a result, the following equation of C0 reads from an
equality Λg

0 ¼ ð1 − C0Þ2Λf
0 as

βC3
0 þ ðβ þ 3α − α4 ~M

2ÞC2
0 − 3α3ð ~M2 þ 1ÞC0

− 3ð ~M2 þ 1Þ ¼ 0: ð7:15Þ

It turns out that in the dRGT limit, this equation will reduce
to that derived in [29]

α4C2
0 þ 3α3C0 þ 3 ¼ 0: ð7:16Þ

Once the value of C0 is solved from the above equation, the
effective cosmological constants Λg

0 and Λf
0 shown in

Eqs. (7.13) and (7.14) will be calculated accordingly. It
appears that these constants are consistent with that inves-
tigated in previous papers on the Schwarzschild solutions
of massive bigravity, e.g., see Eqs. (20) and (23) in the first
paper listed in [18]. Hence, it might be expected that the
expressions in Eqs. (7.13) and (7.14) along with the
corresponding equation (7.15) might also be valid for other
metrics fμν proportional to gμν of the four-dimensional
bigravity.
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It appears that Λf
0 for the f sector as defined in Eq. (7.14)

vanishes when

α4C2
0 þ 3α3C0 þ 3 ¼ 0; ð7:17Þ

assuming that C0 ≠ 1. Solving this equation gives us
nontrivial solutions of C0,

C0 ¼
−3α3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð3α23 − 4α4Þ

p
2α4

; ð7:18Þ

with the requirement that α23 > ð4=3Þα4. Note that the
corresponding Λg

0 should also be zero. This implies that

C0 ¼ −
3

α3
: ð7:19Þ

Equating Eq. (7.18) to Eq. (7.19) leads to a relation
between α3 and α4:

α4 ¼
2α23
3

: ð7:20Þ

As a result, these results are consistent with that inves-
tigated in the four-dimensional massive gravity [27,29],
where the reference metric is assumed to be nondynamical.
Indeed, the effective cosmological constant derived
from the following massive graviton terms in the four-
dimensional dRGT gravity will be zero if the α4 ¼
2α23=3 [27,29].
Now, we will see whether the effective cosmological

constants of five-dimensional massive bigravity reduce to
that of the four-dimensional one, assuming they share the
same proportional factor, i.e., C0 ¼ C. As a result, it turns
out that if the condition

σC3 þ 3βC2 þ 3αC þ 1 ¼ 0; ð7:21Þ

holds, then both Λg
0 and Λ

f
0 shown in Eqs. (7.13) and (7.14)

will be recovered from that defined in the context of
five-dimensional massive bigravity as shown in Eqs. (4.31)
and (4.35), respectively.

VIII. CONCLUSIONS

In this paper, we would like to study some
higher-dimensional scenarios of the massive bigravity
[8,11,24,25]. In particular, a five-dimensional massive
bigravity model has been investigated systematically in
this paper for some well-known metrics such as the FLRW,
Bianchi type I, and Schwarzschild-Tangherlini ones, which
have also been discussed in the context of five-dimensional
dRGT gravity [27]. Due to the dynamical feature of the
reference metric fμν in the context of massive bigravity, its
field equations turn out to be more complicated than that

derived in the dRGT gravity, where the reference metric is
assumed to be nondynamical. In particular, the general
expression of the Einstein field equations of the reference
metric has been derived along with that of the physical
metric [24,25]. Additionally, the following Bianchi iden-
tities for both physical and reference metrics have also been
addressed consistently. As a result, the Bianchi constraints,
especially ones for fμν, have played an important role in
order to simplify the Einstein field equations in both g and
f sectors by making all graviton terms constant.
It appears that the obtained solutions in the present paper

are slightly different from those investigated in the five-
dimensional massive gravity [27] due to the dynamical
property of the reference metric fμν. In particular, the field
equations of the reference metric in the dRGT theory are
algebraic such that they can easily be solved. The corre-
sponding graviton terms calculated from the physical and
reference metrics, which are taken to be compatible with
each other, are then automatically constant without intro-
ducing any further constraint. In the massive bigravity, the
Bianchi identities have been applied for a number of physical
and compatible reference metrics. As a result, one of
possible solutions satisfying the Bianchi constraints is that
the reference metric is proportional to the physical metric,
i.e., fμν¼ð1−CÞ2gμν with C is a proportional factor [24,25].
Note that this solution has been shown to be valid for all
metrics studied in this paper. This result is also valid for the
four-dimensional massive gravity studied in many published
papers [10,11,18]. Note that the equation determining the
value of C in the five-dimensional bigravity has been defined
in Eq. (7.1). Thanks to the constantlike behavior of massive
graviton terms under the assumption that the reference
metrics are proportional to the physical metrics, we have
been able to derive some cosmological solutions for both the
g and f sectors. We have also examined whether the effective
cosmological constants derived from four-dimensional mas-
sive graviton terms can be recovered in the context of five-
dimensional massive bigravity.
Similar to the massive gravity [27,29], the stability

analysis has been performed for the Bianchi type I in
order to test the validity of the no-hair conjecture proposed
by Hawking and his colleagues long time ago [32–34]. As a
result, we have shown that the obtained five-dimensional
Bianchi type I metrics are indeed stable against field
perturbations. This means that the cosmic no-hair con-
jecture is indeed violated not only in the massive gravity
[27,29,38] but also in the massive bigravity. For the
stability of the Schwarzschild-Tangherlini-(A)dS black
holes, it needs further investigations, which should
follow the results analyzed in papers [17] for the four-
dimensional Schwarzschild black holes in the context of
massive (bi)gravity. One should also be aware of the
stability analysis done in Refs. [36], which deal only with
massless gravitons, for the Schwarzschild-Tangherlini-(A)
dS black holes.
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Besides the Schwarzschild-Tangherlini-(A)dS black
holes, one could expect that other higher-dimensional
black holes [37] such as the Myers-Perry black holes
[39] might also exist in the five-dimensional massive
bigravity since the Kerr black holes have been shown to
appear in the four-dimensional massive bigravity [16]. One
could also consider five- (or higher) dimensional scenarios
for some interesting extensions of the massive bigravity
such as the fðRÞ bigravity [21], the scalar-tensor bigravity
[22], and the massive bigravity with nonminimal coupling
of matter [23]. A higher-dimensional version of the multi-
metric gravity [9,10] should also be investigated in the
near future. Finally, we would like to note that a detailed
confirmation of the ghost-free property of higher-
dimensional massive (bi)gravity should be done one way
or the other, although this task might be straightforward as

claimed in Ref. [24] since one might follow the proofs for
the four-dimensional massive (bi)gravity [5,11].
We hope that the present study along with that in [27]

will shed more light on the nature of massive (bi)gravity as
well as its extensions.
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