
Analytic treatment of complete geodesics in a static cylindrically symmetric
conformal spacetime

Bahareh Hoseini,1 Reza Saffari,1,* Saheb Soroushfar,1 Saskia Grunau,2 and Jutta Kunz2
1Department of Physics, University of Guilan, 41335-1914 Rasht, Iran

2Institut für Physik, Universität Oldenburg, Postfach 2503 D-26111 Oldenburg, Germany
(Received 25 May 2016; revised manuscript received 12 July 2016; published 12 August 2016)

We consider the motion of test particles and light rays in a static cylindrically symmetric conformal
spacetime given by Said et al. [Phys. Rev. D 85, 104054 (2012)]. We derive the equations of motion and
present their analytical solutions in terms of the Weierstrass ℘ function and the Kleinian σ function. Using
parametric diagrams and effective potentials, we analyze the possible orbits and characterize them in terms
of the energy and the angular momentum of the test particles. Finally, we show some examples of orbits.
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I. INTRODUCTION

Conformal Gravity (CG) (see e.g. Ref. [1]) represents an
interesting alternative gravity theory to Einstein’s General
Relativity (GR). While GR has formidably passed all
experimental and observational tests so far, our under-
standing of the composition of galaxies and of the evolution
of the Universe within GR is based on the assumption of the
existence of dark matter and dark energy, making up 95%
of the content of the Universe.
Like GR, CG is a completely covariant metric theory of

gravity. However, CG is based on an additional symmetry
principle, namely local conformal invariance. The presence
of conformal symmetry inhibits both the Einstein-Hilbert
action and a cosmological term in the action. Instead, the
action is defined in terms of the Weyl tensor,

SCG ¼ −αg
Z

d4x
ffiffiffiffiffiffi
−g

p
CκλμνCκλμν: ð1Þ

Being conformally invariant, the theory is sensitive to
angles, but not to distances, where the conformal trans-
formation of the metric is given by gμν → Ω2ðxÞgμν.
In contrast to GR, the gravitational coupling constant αg of

CG is a dimensionless constant, making the theory power
counting renormalizable. This allows one to consider CG as
a quantum theory of gravity [1]. However, the CG action (1)
leads to fourth-order equations of motion, which implies the
presence of ghosts. Ways to eliminate these ghosts have been
considered in Refs. [2,3]. On the other hand, fourth-order
equations of motion imply more integration constants and
thus solutions with more parameters.
A static spherically symmetric vacuum solution of CG

with metric

ds2 ¼ −BðrÞdt2 þ dr2

BðrÞ þ r2ðdθ2 þ sin2θdφ2Þ; ð2Þ

where

BðrÞ ¼ 1 −
βð2 − 3βγÞ

r
− 3βγ þ γr − kr2; ð3Þ

was studied by Mannheim and Kazanas [4,5]. Here, β, γ,
and k are three integration constants, where the choice
γ ¼ k ¼ 0 yields the Schwarzschild solution and γ ¼ 0 the
Schwarzschild-de Sitter solution. Thus, β corresponds to
the mass of the solution, while γ characterizes the deviation
from GR. So, for sufficiently small γ (and r), both theories
yield similar results.
On the one hand, this suggests that the Newtonian limit

is reproduced, and the well-known physics in the Solar
System is recovered. On the other hand, the linear term will
not be negligible at large distance scales, allowing the
fitting of rotation curves of galaxies without the need for
dark matter, when the parameter γ is associated with the
inverse Hubble length [6,7]. At the same time, the constant
k acts like a cosmological constant, which, however, enters
in CG only at the level of the solutions, whereas in GR it
enters as part of the action.
The solutions of the geodesic equations in a given

spacetime provide crucial information on the spacetime.
For instance, one can obtain the properties of a black hole
by using the observation of the black hole shadow [8], one
can model the inspirals of stellar mass objects toward
supermassive black holes leading to gravitational waves
models for extreme mass ratio inspirals to be observed at
LISA [9], or model the inspiralling motion of two stellar
mass black holes employing the effective one-body for-
malism [10], to find the corresponding gravitational waves
models as recently observed at LIGO [11]. Analytic
solutions of the geodesic equations allow one to precisely
identify homoclinic orbits [12], to test numerical codes for
binary systems, etc. Moreover, analytic solutions can also
be of use for practical applications like geodesy.
In 1931, Hagihara [13] solved the geodesic equations in

a Schwarzschild gravitational field, where he applied the*rsk@guilan.ac.ir
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elliptic Weierstrass function. The solutions for the Kerr and
Kerr-Newman spacetimes have the same mathematical
structure [14] and can be solved analogously. The math-
ematical method to solve the hyperelliptic equations of
motion in the Schwarzschild-(anti-)de Sitter spacetime is
based on the solution of the Jacobi inversion problem
restricted to the θ divisor [15,16]. Also, these more
advanced methods were applied to obtain solutions of
the geodesic equations in various spacetimes (see e.g.
Refs. [17–23]). Moreover, the geodesic equations were
solved analytically in the spacetimes of fðRÞ gravity,
Banados-Teitelboim-Zanelli and Gibbons, Maeda-
Garfinkle-Horowitz-Strominger black holes [24–26].
Here, we are interested in the geodesic equations of CG

spacetimes. For the description of the motion of stars and
gas in galaxies, timelike geodesics should be considered, in
principle, though basically Newtonian dynamics has been
applied in this case [6,7]. Timelike geodesics in the static
spherically symmetric CG metric (2) have been calculated
to determine the perihelion shift of the planets in the solar
system [27], where the effect of the linear term in the metric
has suggested a constraint for the integration constant γ.
Another recent calculation of timelike geodesics [28] has
employed the rotating generalization of the CG metric (2)
[5]. Exploiting separability, it has addressed the flyby
anomaly in this CG spacetime.
We note that applicability and interpretation of the

geodesic equations and their solutions has remained a
matter of debate for CG, including considerations that only
null geodesics are physically meaningful in CG, since they
do not involve a mass scale, while various amendments
have been suggested for the description of massive particles
(see e.g. Refs. [29–33]).
In this paper, we discuss the geodesic motion of test

particles and light in a conformal cylindrically symmetric
spacetime obtained in Ref. [34]. It represents a CG
generalization of the anti-de Sitter (AdS) black string
metric obtained in GR by Lemos [35] (for earlier work,
see Refs. [36,37]). We present here the results in terms of
Weierstrass elliptic functions and derivatives of Kleinian
sigma functions.
Our paper is organized as follows. First, in Sec. II, we

give a brief review of the field equations in CG and review
some general properties of the cylindrical spacetime.
In Sec. III, we present the geodesic equations for this
spacetime. In Sec. IV, we derive the analytical solution of
the equations of motion and describe test particle motion in
this spacetime. We exhibit a set of possible orbits in Sec. V
and conclude in Sec. VI.

II. CYLINDRICAL SOLUTION IN CONFORMAL
WEYL GRAVITY

The main element of CG is the substitution of the
Einstein-Hilbert action with the Weyl action (1) based
on the Weyl tensor Cκλμν,

Cκλμν ¼ Rκλμν −
1

2
ðgκμRλν − gκνRλμ þ gλνRκμ − gλμRκνÞ

þ R
6
ðgκμgλν − gκνgλμÞ; ð4Þ

defined as the totally traceless part of the Riemann tensor.
The CG field equations are similar to the Einstein

equations, where the source term on the right-hand side
is given by the energy-momentum tensor Tμν, while on the
left-hand side the Bach tensor Wμν,

Wμν ¼
1

3
∇μ∇νR −∇λ∇λRμν þ

1

6
ðR2 þ∇λ∇λR

− 3RκλRκλÞgμν þ 2RκλRμκνλ −
2

3
RRμν; ð5Þ

replaces the Einstein tensor, leading to

2αgWμν ¼
1

2
Tμν: ð6Þ

In vacuum, the right-hand side vanishes.
Static and stationary CG solutions were investigated

in detail in Refs. [4,5]. The case of static cylindrically
symmetric solutions was studied by Brihaye and Verbin
[38,39] and subsequently by Said et al. [34].
Here, we consider the static cylindrically symmetric

vacuum metric as given in Ref. [34],

ds2 ¼ −BðrÞdt2 þ dr2

BðrÞ þ r2dφ2 þ α2r2dz2; ð7Þ

where BðrÞ was derived by solving Eq. (6) in vacuum,
yielding

BðrÞ ¼ β

r
þ

ffiffiffiffiffiffiffiffi
3βγ

4

r
þ γr

4
þ k2r2; ð8Þ

with β, γ, and k being integration constants.
For comparison with GR, we briefly recall the AdS

black string solution of Lemos [35], which has the metric
function BðrÞ,

BðrÞ ¼ α2r2 −
b
αr

: ð9Þ

Here, α2 ¼ −Λ=3 > 0 is related to the negative cosmo-
logical constant Λ, and b is proportional to the mass,
b ¼ M=2. Clearly, setting γ ¼ 0 in the CG expression (8),
we recover the GR result (9) for

k ¼ αβ ¼ −
b
α
: ð10Þ

The metric (8) possesses horizons when BðrhÞ ¼ 0 [34].
In contrast to GR, the sign of Λ is not predetermined here.
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So, for positive Λ, also a cosmological horizon may be
present. As discussed in Ref. [39], also regular spacetimes
are among the possible set of solutions. Unfortunately,
however, the gauge chosen in Ref. [39] makes a direct
comparison of the solutions unfeasible. This also holds for
the solutions of the null geodesics presented in Ref. [39].

III. GEODESIC EQUATION

In this section, we derive the equations of motion for test
particles and light. The geodesic motion in such a space-
time of Eq. (7) is described by

d2xμ

ds2
þ Γμ

ρσ
dxρ

ds
dxσ

ds
¼ 0; ð11Þ

where Γμ
ρσ are the Christoffel symbols. The first constant

of motion is given by the normalization condition ds2 ¼
1
2
gμν

dxμ
ds

dxν
ds ¼ − 1

2
ϵ, where for massive particles ϵ ¼ 1 and

for light ϵ ¼ 0. The conserved energy and the angular
momentum are

E ¼ −gtt
dt
ds

¼ dt
ds

�
β

r
þ

ffiffiffiffiffiffiffiffi
3βγ

4

r
þ γr

4
þ k2r2

�
; ð12Þ

L ¼ gφφ
dφ
ds

¼ r2
dφ
ds

: ð13Þ

A further constant of motion is the momentum in the
z-direction,

J ¼ gzz
dz
ds

¼ α2r2
dz
ds

: ð14Þ

From Eq. (11), we obtain equations for r as a functions of
τ;ϕ; t, and z which describe the dynamics of test particles
and light,

�
dr
dτ

�
2

¼ E2 −
�
β

r
þ

ffiffiffiffiffiffiffiffi
3βγ

4

r
þ γr

4
þ k2r2

��
ϵþ L2

r2
þ J2

α2r2

�
; ð15Þ

�
dr
dϕ

�
2

¼ r4

L2

�
E2 −

�
β

r
þ

ffiffiffiffiffiffiffiffi
3βγ

4

r
þ γr

4
þ k2r2

��
ϵþ L2

r2
þ J2

α2r2

��
¼ RðrÞ; ð16Þ

�
dr
dt

�
2

¼ 1

E2

�
β

r
þ

ffiffiffiffiffiffiffiffi
3βγ

4

r
þ γr

4
þ k2r2

��
E2 −

�
β

r
þ

ffiffiffiffiffiffiffiffi
3βγ

4

r
þ γr

4
þ k2r2

��
ϵþ L2

r2
þ J2

α2r2

��
; ð17Þ

�
dr
dz

�
2

¼ α4r4

J2

�
E2 −

�
β

r
þ

ffiffiffiffiffiffiffiffi
3βγ

4

r
þ γr

4
þ k2r2

��
ϵþ L2

r2
þ J2

α2r2

��
: ð18Þ

Equation (15) suggests the introduction of an effective
potential:

Veff ¼
�
β

r
þ

ffiffiffiffiffiffiffiffi
3βγ

4

r
þγr

4
þk2r2

��
ϵþL2

r2
þ J2

α2r2

�
: ð19Þ

IV. ANALYTICAL SOLUTION OF
GEODESIC EQUATIONS

In this section, we present the analytical solution of
geodesic equations of test particles and light rays in
conformal Lemos-like spacetime. We solve the ~r-ϕ-
equation (16) and the ~r-z-equation (18), which can then
be used to plot the orbits. For null geodesics, the solutions
are given in terms of the elliptic Weierstrass ℘ function.
The case of timelike geodesics is more complicated; here,
the equations are of hyperelliptic type, and the Kleinian σ
function is needed to solve the equations.

A. ~r-ϕ-equation

With the dimensionless quantities, ~r ¼ r=M, ~β ¼ β=M,
~γ ¼ Mγ, ~k ¼ kM, ~α ¼ Mα, and L ¼ M2=L2, Eq. (16) can
be written as

�
d~r
dϕ

�
2

¼ −~k2ϵL~r6 −
~γϵL
4

~r5

−

 ffiffiffiffiffiffiffiffi
3~β ~γ

4

s
ϵLþ k2 þ

~k2J2L
~α2

− E2L

!
~r4

−
�
ϵ ~βLþ ~γ

4
þ ~γJ2L

4~α2

�
~r3

−

 ffiffiffiffiffiffiffiffi
3~β ~γ

4

s
þ

ffiffiffiffiffiffiffiffi
3~β ~γ

4

s
J2L
~α2

!
~r2

−
�
~β þ

~βJ2L
~α2

�
~r ¼ Rð~rÞ: ð20Þ
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Equation (20) implies that Rð~rÞ ≥ 0 is a necessary con-
dition for the existence of a geodesic. We also observe that
~r ¼ 0, where the singularity is located, is a zero of Rð~rÞ for
all values of the parameters. The real and positive zeros of
Rð~rÞ are the turning points of the geodesics and determine
the possible types of orbits.
In general, Rð~rÞ is a polynomial of order 6, but in the

special case ϵ ¼ 0, it simplifies to order 4. Therefore, we
will treat null geodesics and timelike geodesics separately.

1. Null geodesics

For ϵ ¼ 0, Eq. (20) is of elliptic type. The polynomial
Rð~rÞ can be reduced to third order by substituting ~r ¼ 1

u,�
du
dφ

�
2

¼−
�
~βþ

~βJ2L
~α2

�
u3

−

 ffiffiffiffiffiffiffiffi
3~β ~γ

4

s
þ

ffiffiffiffiffiffiffiffi
3~β ~γ

4

s
J2L
~α2

!
u2−

�
ϵ ~βLþ ~γ

4
þ ~γJ2L

4~α2

�
u

−
�
~k2þ

~k2J2L
~α2

−E2L
�

¼P3ðuÞ¼
X3
i¼0

aiui: ð21Þ

A further substitution,

u ¼ 1

a3

�
4y −

a2
3

�

¼ 1

ð ~β þ ~βJ2L
~α2

Þ

 
4yþ 1

3

 ffiffiffiffiffiffiffiffi
3~β ~γ

4

s
þ

ffiffiffiffiffiffiffiffi
3~β ~γ

4

s
J2L
~α2

!!
; ð22Þ

transforms P3ðuÞ into the Weierstrass form, so that Eq. (21)
turns into

�
dy
dφ

�
2

¼ 4y3 − g2y − g3 ¼ P3ðyÞ; ð23Þ

with

g2 ¼
a22
12

−
a1a3
4

¼ 1

12

 ffiffiffiffiffiffiffiffi
3~β ~γ

4

s
þ

ffiffiffiffiffiffiffiffi
3~β ~γ

4

s
J2L
~α2

!
2

−
1

4

�
ϵ ~βLþ ~γ

4
þ ~γJ2L

4~α2

��
~β þ

~βJ2L
~α2

�
; ð24Þ

g3 ¼
a1a2a3
48

−
a0a23
16

−
a32
216

¼ −
1

216

� ffiffiffiffiffiffiffiffi
3~β ~γ

4

s
þ

ffiffiffiffiffiffiffiffi
3~β ~γ

4

s
J2L
~α2

�
2

−
�
ϵ ~βLþ ~γ

4
þ ~γJ2L

4~α2

�� ffiffiffiffiffiffiffiffi
3~β ~γ

4

s
þ

ffiffiffiffiffiffiffiffi
3~β ~γ

4

s
J2L
~α2

��
~βþ

~βJ2L
~α2

�

þ 1

16

�
~k2 þ

~k2J2L
~α2

− E2L
��

~βþ
~βJ2L
~α2

�
2

: ð25Þ

Equation (23) is solved by the Weierstrass function
[16,40,41],

yðφÞ ¼ ℘ðφ − φin; g2; g3Þ; ð26Þ

where φin ¼ φ0 þ
R∞
y0

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4y3−g2y−g3

p , with

y0 ¼
a3
4~r0

þ a2
12

¼ −
1

4~r0

�
~β þ

~βJ2L
~α2

�
−

1

12

 ffiffiffiffiffiffiffiffi
3~β ~γ

4

s
þ

ffiffiffiffiffiffiffiffi
3~β ~γ

4

s
J2L
~α2

!
:

ð27Þ

Then, the solution of Eq. (20) in the case ϵ ¼ 0 acquires the
form

~rðφÞ ¼ a3
4℘ðφ − φin; g2; g3Þ − a2

3

¼ −ð ~β þ ~βJ2L
~α2

Þ
2℘ðφ − φin; g2; g3Þ þ 1

3

� ffiffiffiffiffiffi
3~β ~γ
4

q
þ

ffiffiffiffiffiffi
3~β ~γ
4

q
J2L
~α2

� :
ð28Þ

2. Timelike geodesics

Considering the case ϵ ¼ 1, Eq. (20) is of hyperelliptic
type. Using the substitution ~r ¼ 1

u, it can be rewritten as
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�
u
du
dφ

�
2

¼ −
�
~β þ

~βJ2L
~α2

�
u5 −

 ffiffiffiffiffiffiffiffi
3~β ~γ

4

s
þ

ffiffiffiffiffiffiffiffi
3~β ~γ

4

s
J2L
~α2

!
u4 −

�
ϵ ~βLþ ~γ

4
þ ~γJ2L

4~α2

�
u3

−

 ffiffiffiffiffiffiffiffi
3~β ~γ

4

s
ϵLþ ~k2 þ

~k2J2L
~α2

− E2L

!
u2 −

~γϵL
4

u − ~k2ϵL

¼ P5ðuÞ ¼
X5
i¼0

aiui: ð29Þ

This problem is a special case of the Jacobi inversion
problem and can be solved when restricted to the θ divisor,
the set of zeros of the Riemann θ function. The solution
procedure is extensively discussed in e.g. Refs. [16,17].
The analytic solution of Eq. (29) is given in terms of
derivatives of the Kleinian σ function,

uðφÞ ¼ σ1ðφ∞Þ
σ2ðφ∞Þ

����
σðφ∞Þ¼0

; ð30Þ

with

φ∞ ¼
�

φ2

φ − φ0
in

�
; ð31Þ

and φ0
in ¼ φin þ

R∞
φin

udu0ffiffiffiffiffiffiffiffiffi
P5ðu0Þ

p . The component φ2 is deter-

mined by the condition σðφ∞Þ ¼ 0. The function σi is the
ith derivative of Kleinian σ function, and σz is

σðzÞ ¼ Ceztkzθ½g; h�ð2ω−1z; τÞ; ð32Þ

which is given by the Riemann θ function with characteristic
½g; h�. A number of parameters enter here: the symmetric
Riemann matrix τ, the period matrix ð2ω; 2ώÞ, the period
matrix of the second kind ð2η; 2ήÞ, the matrix κ ¼ ηð2ωÞ−1,
and the vector of Riemann constants with base point at
infinity 2½g; h� ¼ ð0; 1Þt þ ð1; 1Þtτ. The constant C can be
given explicitly, see e.g. Ref. [42], but does not matter here.
Finally, the analytical solution of Eq. (20) is

rðφÞ ¼ σ2ðφ∞Þ
σ1ðφ∞Þ

����
σðφ∞Þ¼0

: ð33Þ

This is the analytic solution of the equation of motion of a
test particle in cylindrical space time in conformal gravity.
The solution is valid in all regions of this spacetime.

B. ~r-z-equation

Again, with the substitution, ~r ¼ r=M, ~β ¼ β=M,
~γ ¼ Mγ, ~k ¼ kM, ~α ¼ Mα, and L ¼ M2=L2, the
z-equation (18) becomes

�
d~r
dz

�
2

¼ −
�
~α4 ~k2ε
J2

�
~r6 −

�
~α4 ~γε

4J2

�
~r5

−

 
~α4E2

J2
−

~α4 ~k2

LJ2
− ~α2 ~k2 þ ~α4ε

~J2

ffiffiffiffiffiffiffiffi
3~β ~γ

4

s !
~r4

−
�

~α2 ~γ

4LJ2
þ ~α2 ~γ

4
þ ~α4 ~βε

J2

�
~r3

−

 
~α4

J2L

ffiffiffiffiffiffiffiffi
3~β ~γ

4

s
þ ~α2

ffiffiffiffiffiffiffiffi
3~β ~γ

4

s !
~r2

−
�
~α2 ~β

LJ2
þ ~α2 ~β

�
~r ¼ Qð~rÞ: ð34Þ

Qð~rÞ is a polynomial of order 6 if ϵ ¼ 1 and of order 4 if
ϵ ¼ 0. For all values of the parameters, ~r ¼ 0 as a zero of
Qð~rÞ. As before, we will treat null and timelike geodesics
separately. The solutions can be found analogously to
Sec. IVA.

1. Null geodesics

For ε ¼ 0, Eq. (34) is of elliptic type, and the polynomial
Qð~rÞ can be reduced to third order by substituting ξ ¼ 1

~r:

�
dξ
dz

�
2

¼ −
�
~α2 ~β

LJ2
þ ~α2 ~β

�
ξ3

−

 
~α4

J2L

ffiffiffiffiffiffiffiffi
3~β ~γ

4

s
þ ~α2

ffiffiffiffiffiffiffiffi
3~β ~γ

4

s !
ξ2

−
�

~α2 ~γ

4LJ2
þ ~α2 ~γ

4

�
ξ

−
�
~α4E2

J2
−

~α4 ~k2

LJ2
− ~α2 ~k2

�

¼ P3ðξÞ ¼
X3
i¼0

aiξi: ð35Þ

A further substitution,
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ξ ¼ 1

a3

�
4y −

a2
3

�

¼ −1

ð ~α2 ~βLJ2 þ ~α2 ~βÞ

0
B@4yþ

�
~α4

J2L

ffiffiffiffiffiffi
3~β ~γ
4

q
þ ~α2

ffiffiffiffiffiffi
3~β ~γ
4

q �
3

1
CA; ð36Þ

transforms P3ðξÞ into the Weierstrass form, so that Eq. (35)
turns into

�
dy
dz

�
2

¼ 4y3 − g2y − g3 ¼ P3ðyÞ; ð37Þ

with

g2 ¼
a22
12

−
a1a3
4

¼ 1

12

 
~α4

J2L

ffiffiffiffiffiffiffiffi
3~β ~γ

4

s
þ ~α2

ffiffiffiffiffiffiffiffi
3~β ~γ

4

s !
2

−
1

4

�
~α2 ~γ

4LJ2
þ ~α2 ~γ

4
þ α4βε

J2

��
~α2 ~β

LJ2
þ ~α2 ~β

�
; ð38Þ

g3 ¼
a1a2a3
48

−
a0a23
16

−
a32
216

¼ −
1

216

 
~α4

J2L

ffiffiffiffiffiffiffiffi
3~β ~γ

4

s
þ ~α2

ffiffiffiffiffiffiffiffi
3~β ~γ

4

s !
3

−
1

48

�
~α2 ~β

LJ2
þ ~α2 ~β

� 
~α4

J2L

ffiffiffiffiffiffiffiffi
3~β ~γ

4

s
þ ~α2

ffiffiffiffiffiffiffiffi
3~β ~γ

4

s !

×
�

~α2 ~γ

4LJ2
þ ~α2 ~γ

4
þ ~α4 ~βε

J2

�

þ 1

16

�
~α4E2

J2
−

~α4 ~k2

LJ2
− ~α2 ~k2

��
~α2 ~β

LJ2
þ ~α2 ~β

�
2

: ð39Þ

Equation (37) is solved by the Weierstrass function
[16,40,41]

yðzÞ ¼ ℘ðz − zin; g2; g3Þ; ð40Þ

where zin ¼ z0 þ
R∞
y0

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4y3−g2y−g3

p with

y0 ¼
a3
4~r0

þ a2
12

¼ −
1

4~r0

�
~α2 ~β

L~J2
þ ~α2 ~β

�

−
1

12

 
~α4

~J2L

ffiffiffiffiffiffiffiffi
3~β ~γ

4

s
þ ~α2

ffiffiffiffiffiffiffiffi
3~β ~γ

4

s !
: ð41Þ

Then, the solution of Eq. (34) in the case ϵ ¼ 0 acquires the
form

~rðzÞ ¼ a3
4℘ðz − zin; g2; g3Þ − a2

3

¼ −ð ~α2 ~βLJ2 þ ~α2 ~βÞ
2℘ðz − zin; g2; g3Þ þ 1

3

�
~α4

J2L

ffiffiffiffiffiffi
3~β ~γ
4

q
þ ~α2

ffiffiffiffiffiffi
3~β ~γ
4

q � :
ð42Þ

2. Timelike geodesics

For ϵ ¼ 1, Eq. (34) is of hyperelliptic type. With the
substitution ξ ¼ 1

~r, it can be rewritten as

�
ξ
dξ
dz

�
2

¼−
�
~α2 ~β

LJ2
þ ~α2 ~β

�
ξ5−

 
~α4

J2L

ffiffiffiffiffiffiffiffi
3~β ~γ

4

s
þ ~α2

ffiffiffiffiffiffiffiffi
3~β ~γ

4

s !
ξ4

−
�

~α2 ~γ

4LJ2
þ ~α2 ~γ

4
þα4βε

J2

�
ξ3

−

 
~α4E2

J2
−
~α4 ~k2

LJ2
− ~α2 ~k2þ ~α4ε

J2

ffiffiffiffiffiffiffiffi
3~β ~γ

4

s !
ξ2

−
�
~α4 ~γε

4J2

�
ξ−
�
~α4 ~k2ε
J2

�

¼P5ðξÞ¼
X5
i¼0

biξi: ð43Þ

Analogously to Sec. IVA, we can write the analytic
solution of Eq. (43) as in e.g. Refs. [16,17],

ξðzÞ ¼ σ1ðz∞Þ
σ2ðz∞Þ

����
σðz∞Þ¼0

; ð44Þ

with

z∞ ¼
�

z2
z − z0in

�
ð45Þ

and z0in¼ zinþ
R∞
zin

ξdξ0ffiffiffiffiffiffiffiffiffi
P5ðξ0Þ

p . The component z2 is determined

by the condition σðz∞Þ ¼ 0.
Finally, the analytical solution of Eq. (34) is

rðzÞ ¼ σ2ðz∞Þ
σ1ðz∞Þ

����
σðz∞Þ¼0

: ð46Þ

V. ORBITS

In this section, we analyze the possible orbits and
characterize them in terms of the parameters of the metric

BAHAREH HOSEINI et al. PHYSICAL REVIEW D 94, 044021 (2016)

044021-6



and the test particles. Therefore, we use parametric dia-
grams and effective potentials. Finally, we show some
example plots of the possible orbits, which are escape
orbits (EO) that approach the black hole and then escape its
gravity, bound orbits (BO) that move between two turning
points, and terminating orbits that end in the singularity at
~r ¼ 0. Here, we distinguish between terminating escape

orbits (TEO) and terminating bound orbits (TBO). To
analyze the possible orbits, we consider the ~r-ϕ-equation�

d~r
dϕ

�
2

¼ Rð~rÞ; ð47Þ

with

Rð~rÞ ¼ −~k2ϵL~r6 −
~γϵL
4

~r5 −

 ffiffiffiffiffiffiffiffi
3~β ~γ

4

s
ϵLþ k2 þ

~k2J2L
~α2

− E2L

!
~r4 −

�
ϵ ~βLþ ~γ

4
þ ~γJ2L

4~α2

�
~r3 −

 ffiffiffiffiffiffiffiffi
3~β ~γ

4

s
þ

ffiffiffiffiffiffiffiffi
3~β ~γ

4

s
J2L
~α2

!
~r2

−
�
~β þ

~βJ2L
~α2

�
~r: ð48Þ

The polynomial R determines the possible orbit types, since its zeros are the turning points of the geodesics. The number of
zeros changes, if double zeros appear, that is,

Rð~rÞ ¼ 0;
dR
d~r

¼ 0: ð49Þ

From Eq. (49), we obtain two conditions,

L ¼ −
~αð~r2 ~γ þ 4~r

ffiffiffiffiffiffiffiffi
3~β ~γ

q
þ12~βÞ

−8~α2 ~r5 − ~γ ~α ~r4 þ 4~α ~β ~r2 þ ~γJ2 ~r2 þ 4

ffiffiffiffiffiffiffiffiffi
3~β ~α

q
J2 ~rþ 12~βJ2

;

E2 ¼ 16~β
ffiffiffiffiffiffiffiffi
3~β ~γ

q
~rþ 16~α

ffiffiffiffiffiffiffiffi
3~β ~γ

q
~r4 þ 4~γ

ffiffiffiffiffiffiffiffi
3~β ~γ

q
~r3 þ 20~β ~γ ~r2 þ 16~β2 þ 16~α2 ~r6 þ 32~α ~β ~r3 þ ~γ2 ~r4

þ 8~α ~γ ~r5=2~r
�
~γ~r2 þ 4

ffiffiffiffiffiffiffiffi
3~β ~γ

q
~rþ 12~β

�
; ð50Þ

which can be used to draw parametric diagrams, that divide the E2-L-plane into several regions.
As ~r ¼ 0 is a zero of Rð~rÞ for all values of the parameters, it is neglected in the following analysis, and

R�ð~rÞ ¼ −~k2ϵL~r5 −
~γϵL
4

~r4 −

 ffiffiffiffiffiffiffiffi
3~β ~γ

4

s
ϵLþ ~k2 þ

~k2J2L
~α2

− E2L

!
~r3 −

�
ϵ ~βLþ ~γ

4
þ ~γJ2L

4~α2

�
~r2 −

 ffiffiffiffiffiffiffiffi
3~β ~γ

4

s
þ

ffiffiffiffiffiffiffiffi
3~β ~γ

4

s
J2L
~α2

!
~r

−
�
~β þ

~βJ2L
~α2

�
ð51Þ

is considered instead.

A. Special case k=α

First, we investigate the special case k ¼ α to compare
with the general relativistic solution γ ¼ 0 where α ¼ k ¼ffiffiffiffiffiffiffi
−Λ

p
is related to the cosmological constant.

In Figs. 1 and 2, we show parametric L-E2-diagrams
based on Eq. (50). Up to five regions with a different
number of zeros can be distinguished. In Fig. 1, the
cosmological constant is positive, and in Fig. 2, it is
negative. Additionally, we consider the effective potential
in each region given by Eq. (19) to visualize the orbits.

Some plots of the effective potential with energies corre-
sponding to certain orbits are depicted in Fig. 3.
Taking all the information into account, we find all

possible orbits in the static cylindrically symmetric con-
formal spacetime.
First, we consider the case of a positive cosmological

constant Λ > 0. In this case, there is no event horizon, so
that the singularity is naked. In the parametric L-E2-
diagram (Fig. 1), we recognize five regions with a different
number of zeros. This number also depends on the sign of β
and γ. To obtain real values in the function BðrÞ, either
β; γ > 0 or β; γ < 0 can be chosen. If the sign of βγ is
reversed, then the polynomial RðrÞ [or R�ð~rÞ] is mirrored
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with respect to the ordinate so that all zeros change their
sign. Since the curvature singularity is at ~r ¼ 0, we are
interested in the positive zeros only. Table I shows an
overview of the different regions and the possible orbit
types in following regions (below, we assume that
ri < riþ1):
(1) Region I:

(a) β; γ > 0: R�ð~rÞ has a single positive zero r1, and
R�ð~rÞ > 0 for ~r ∈ ½r1;∞Þ. Here, only an escape
orbit exists.

(b) β; γ < 0: There are no positive zeros, and
R�ð~rÞ > 0 for all ~r ≥ 0. The corresponding orbit
is a terminating escape orbit.

(2) Region II:
(a) β; γ > 0: R�ð~rÞ has two positive zeros r1 and r2.

R�ð~rÞ > 0 for ~r ∈ ½0; r1� and for ~r ∈ ½r2;∞Þ.
Therefore, terminating bound orbits and escape
orbits are possible.

(b) β; γ < 0: R�ð~rÞ has a single positive zero r1, and
R�ð~rÞ > 0 for ~r ∈ ½r1;∞Þ. Here, an escape orbit
exists.

(3) Region III:
(a) β; γ > 0: R�ð~rÞ has three positive real zeros r1,

r2, and r3, and R�ð~rÞ > 0 for ~r ∈ ½r1; r2� and for
~r ∈ ½r3;∞Þ. Here, we find bound orbits and
escape orbits.

(b) β; γ < 0: There are no positive zeros, and
R�ð~rÞ > 0 for all ~r ≥ 0. The corresponding orbit
is a terminating escape orbit.

(4) Region IV:
(a) β; γ > 0: There are no positive zeros, and

R�ð~rÞ > 0 for all ~r ≥ 0. The corresponding orbit
is a terminating escape orbit.

(b) β; γ < 0: R�ð~rÞ has a single positive zero r1, and
R�ð~rÞ > 0 for ~r ∈ ½r1;∞Þ. Here, an escape orbit
exists.

(5) Region V:
(a) β; γ > 0: There are four positive zeros r1, r2, r3,

and r4, and R�ð~rÞ > 0 for ~r ∈ ð0; r1�, for ~r ∈
½r2; r3� and for ~r ∈ ½r4;∞Þ. The corresponding
orbits are terminating escape orbit, bound orbit,
and escape orbit.

(b) β; γ < 0: R�ð~rÞ has a single positive zero r1, and
R�ð~rÞ > 0 for ~r ∈ ½r1;∞Þ. Here, an escape orbit
exists.

Note that for lightlike geodesics ϵ ¼ 0, only the regions I,
II, and IV are present. Furthermore, for ϵ ¼ 0, the number
of zeros in region II changes. For β; γ > 0, a single zero
exists in region II so that only TBOs are possible and bound
orbits do not exist for lightlike geodesics. For β; γ < 0,
geodesic motion is not possible at all in region II.
In the corresponding GR case γ ¼ 0, a solution with

Λ > 0 does not exist. Therefore, Λ > 0 solutions and the
orbit configurations shown in Table I are features of CG.
However, in the case α2 ¼ k2 ¼ −Λ < 0, a negative α2

negative makes the z coordinate a timelike coordinate. We
include this case for the sake of completeness and math-
ematical curiosity.
Let us now turn to the case of a negative cosmological

constant Λ < 0. As before, we will consider β; γ > 0 and
β; γ < 0. An event horizon is only present for β; γ < 0.
In the parametric L-E2-diagram (Fig. 2), two different
regions can be seen (to avoid confusion with the Λ > 0

case, we name them regions VI and VII). Table II and the
following list give all possible orbits for Λ < 0. Comparing
the General Relativity case γ ¼ 0 and the conformal gravity
case γ ≠ 0, we find that qualitatively the same orbit types
occur in the GR case and the CG case if Λ < 0 and k ¼ α:

FIG. 2. Parametric L-E2-diagram with the parameters ε ¼ 1,
~β ¼ 1, ~γ ¼ 0.05, J ¼ 0.1, ~α2 ¼ ~k2 ¼ −Λ ¼ 3 × 10−5. There are
two regions with a different number of zeros (see the text).

FIG. 1. Parametric L-E2-diagram with the parameters ε ¼ 1,
~β ¼ 3, ~γ ¼ 0.05, ; J ¼ 0.1, ~α2 ¼ ~k2 ¼ −Λ ¼ −3 × 10−5. There
are five regions with a different number of zeros (see the text).
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(1) Region VI:
(a) β; γ > 0: There are no positive zeros, and

R�ð~rÞ < 0 for all ~r ≥ 0. Therefore, geodesic
motion is not possible.

(b) β; γ < 0: R�ð~rÞ has a single positive zero r1, and
R�ð~rÞ > 0 for ~r ∈ ð0; r1Þ. Here, a terminating
bound orbit exists.

(2) Region VII:
(a) β; γ > 0: In the case ϵ ¼ 1, R�ð~rÞ has a two

positive zeros r1 and r2, and R�ð~rÞ > 0 for
~r ∈ ½r1; r2Þ. If ϵ ¼ 0, then R�ð~rÞ has a single
positive zero r1, and R�ð~rÞ > 0 for ~r ∈ ½r1;∞Þ.
This means a bound orbit exist for particles, but
lightlike geodesics move on an escape orbit.

(b) β; γ < 0: In the case ϵ ¼ 1, R�ð~rÞ has a single
positive zero r1, and R�ð~rÞ > 0 for ~r ∈ ð0; r1Þ. If
ϵ ¼ 0, then there are no positive zeros, and
R�ð~rÞ > 0 for all ~r ≥ 0. So, there are terminating
bound orbits for particles and terminating escape
orbits for lightlike geodesics.

B. General case k ≠ α

In contrast to GR, the CG case allows a wider range
of parameters, namely four. Here, we study the general

case k ≠ α. We assume α2 > 0 so that the z coordinate is
spacelike.
First, we investigate the case k2 < 0 where an event

horizon does not exist and the singularity is naked. The
parametric diagram is similar to Fig. 1, although there are
fewer different regions. Taking α2 > 0 causes regions II, IV,
and V to vanish. Therefore, only the orbit types of regions I
and III are present. These orbit types cannot be found
for γ ¼ 0.
Next, we consider the case k2 > 0. An event horizon is

only present for β; γ < 0. Since k2 and α have the same
sign, the parametric diagram and the effective potential are
similar to the case k ¼ α. Qualitatively, we find the same
regions and orbit types as shown in Fig. 2 and Table II.

C. Examples of the effective potential
and orbit plots

Some plots of the effective potentials for region of Fig. 1
are shown in Fig. 3. Also, examples of orbit types are
demonstrated in Fig. 4. Note that the effective potentials in
Figs. 3(c) and 3(d), and also the orbit type in Figs. 4(c), are
not possible for GR. However, other effective potentials
and orbit types are similar for GR and CG.

TABLE I. Types of orbits (ϵ ¼ 1) in the cylindrical symmetric spacetime in CG in the case of a positive
cosmological constant Λ > 0. The range of the orbits is represented by thick lines. The dots show the turning points
of the orbits. The single vertical line indicates the singularity at ~r ¼ 0. An event horizon is not present for Λ > 0. We
do not display the cosmological horizon here, as it is not relevant for the orbits.

Region Sign of β, γ Positive zeros Range of ~r Orbit

I β; γ > 0 1 EO
β; γ < 0 0 TEO

II β; γ > 0 2 TBO, EO
β; γ < 0 1 EO

III β; γ > 0 3 BO, EO
β; γ < 0 0 TEO

IV β; γ > 0 0 TEO
β; γ < 0 1 EO

V β; γ > 0 4 TBO, BO, EO
β; γ < 0 1 EO

TABLE II. Types of orbits (ϵ ¼ 1) in the cylindrical symmetric spacetime in CG in the case of a negative
cosmological constant Λ < 0. The range of the orbits is represented by thick lines. The dots show the turning points
of the orbits. The single vertical line indicates the singularity at ~r ¼ 0. The event horizon, which is present for
β; γ < 0, is marked by a double vertical line.

Region Sign of β, γ Positive zeros Range of ~r Orbit

VI β; γ > 0 0 No orbit
β; γ < 0 1 TBO

VII β; γ > 0 2 BO
β; γ < 0 1 TBO
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(a) (b)

(c) (d)

(e) (f)

FIG. 3. Examples of effective potentials for geodesic motion with the parameters given in Table III. The horizontal green dashed line
represents the squared energy parameter. (a) correspond to region II, (b) correspond to region III, (c) correspond to region V,
(d) correspond to region I with β; γ < 0, (e) correspond to region VII with β; γ < 0 and (f) correspond to region VI with β; γ < 0.
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FIG. 4. Example of orbit types TBO, EO, TEO, BO, EO, and TBO for a, b, c, d, e, and f respectively, corresponding to Tables I–III.
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VI. CONCLUSIONS

In this paper, we derived the equations of motion in a
static cylindrically symmetric spacetime in conformal
gravity. The geodesic equations can be solved in terms

of Weierstrass elliptic functions in the case of null
geodesics and derivatives of Kleinian sigma functions
in the case of timelike geodesics. Using effective
potential techniques and parametric diagrams, we stud-
ied the possible types of orbits, which are bound orbits,
escape orbits, or terminating orbits. The analytic sol-
utions of this paper can be used to calculate the exact
orbits and their properties. Furthermore, observables
like the periastron shift of bound orbits or the light
deflection of escape orbits could be calculated. Also, it
would be interesting to use the analytical solutions to
study the shadow of a static cylindrically symmetric
black hole in conformal gravity. Another project for
future work could be the solution of the equations of
motion in the charged and rotating version of this black
hole spacetime.
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