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In this work, we study the effects of magnetic fields and rotation on the structure and composition of
proto-neutron stars. A hadronic chiral SU(3) model is applied to cold neutron stars and proto-neutron stars
with trapped neutrinos and at fixed entropy per baryon. We obtain general relativistic solutions for neutron
and proto-neutron stars endowed with a poloidal magnetic field by solving Einstein-Maxwell field
equations in a self-consistent way. As the neutrino chemical potential decreases in value over time, this
alters the chemical equilibrium and the composition inside the star, leading to a change in the structure and
in the particle population of these objects. We find that the magnetic field deforms the star and significantly
alters the number of trapped neutrinos in the stellar interior, together with strangeness content and
temperature in each evolution stage.
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I. INTRODUCTION

Proto-neutron stars (PNSs) are newborn compact stars
generated immediately after the gravitational collapse of
the core of massive stars, which cool down and contract to
become neutron stars (NS). On a time scale of 10–20 s,
PNSs cool significantly and lose their high lepton content
mainly through electron neutrino (ν) emission [1,2]. The
entropy per baryon in PNSs is of the order of 1 or 2, making
them, therefore, very hot stars (T up to 50 MeV in the
center). The environment in these stars is so extreme that
neutrinos can be trapped on dynamical time scales and
develop a finite chemical potential [3]. In addition, it has
been shown that rotation can play an important role in the
description of these objects [4,5].
Although the initial evolution of PNSs from hot,

ν-trapped, and lepton-rich to cold and ν-free NSs is far
from equilibrium and characterized by strong instabilities,
just a few seconds after the bounce, they can be approx-
imately considered as a sequence of equilibrium configu-
rations. This is the so-called Kelvin-Helmholtz phase [2,6].
During this process, the structure of the PNS can be divided
into a core region, that will be studied in this work, and an
envelope with entropy per baryon much higher than in the
core. In the core, the entropy per baryon can reach values of
sB ⋍ 1; 2. A fixed entropy per baryon allows one to model a
temperature increase toward the center of the star. These

properties make PNSs quite different objects from the
ordinary neutron stars, which are usually observed as radio
pulsars. However, as NSs are born from PNSs, one expects
that some features currently presented in neutron stars, as,
for example, magnetic fields and rotation rates, are related
to their progenitors.
It is generally believed that certain classes of neutron

stars possess very strong magnetic fields on their surfaces
on the other of 1012–15 G [7]. Such fields are usually
estimated from observations of the stars’ period and period
derivative. However, the internal magnetic field in these
stars can be even stronger. For example, according to the
virial theorem, they can have central magnetic fields of the
order of 1018 G [8–11].
According to Ref. [12], such strong magnetic fields

originate from the conservation of magnetic flux during the
collapse of the core of a supernova. But this idea is not
suitable for highly magnetized neutron stars, since a surface
magnetic field of the order of 1015 Gwould require a radius
less than the Schwarzschild radius for a canonical neutron
star with M ∼ 1.4 M⊙. Another idea was suggested by
Thompson and Duncan [13], in which a proto-neutron star
can combine convection and differential rotation in order to
generate a dynamo process, which is able to produce fields
as large as 1015 G. However, as shown in Ref. [14], this
explanation does not explain the supernova remnants
associated with these objects.
Recently, it was shown that magnetorotational instabil-

ities (MRIs) in proto-neutron stars can amplify small seed
magnetic fields over very short time scales [15–20].
However, the limit of this amplification is still unknown.
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As stated in Ref. [21], the amplification factor seems to be
small, and therefore the magnetic field cannot be amplified
through MRI channel modes. In this case, the authors in
Ref. [21] suggest that another physical process, such as a
MRI-driven turbulent dynamo, could further amplify small
seed magnetic fields in PNSs.
In Ref. [22], we studied the effects of strong magnetic

fields on hybrid stars by using a full general-relativity
approach, solving the coupled Maxwell-Einstein equation
in a self-consistent way. The magnetic field was assumed to
be axisymmetric and poloidal. We took into consideration
the anisotropy of the energy-momentum tensor due to the
magnetic field, magnetic field effects on the equation of
state, the interaction between matter and the magnetic field
(magnetization), and the anomalous magnetic moment of
the hadrons. The equation of state used was an extended
hadronic and quark chiral SU(3) nonlinear realization of the
sigma model that describes hybrid stars containing nucle-
ons, hyperons, and quarks (see Refs. [23–26]). According
to our results, the effects of the magnetization and the
magnetic field on the EoS do not play an important role for
global properties of these stars. On the other hand, the
magnetic field causes the central density in these objects to
be reduced, inducing major changes in the populated
degrees of freedom and, potentially, converting a hybrid
star with hadronic and quark phases into a hadronic star.
The composition and the structure of PNSs are strongly

related to the number of trapped neutrinos. As the neutrino
chemical potential decreases over time, this alters the
chemical equilibrium, leading to an impact on the structure
and on the composition of these stars. In this context, as we
showed in Ref. [22], strong magnetic fields have a huge
impact not only on the structure of NSs, but also on the
particle population inside cold NSs. In this work, we study
the effects of strong magnetic fields on a hot and rapidly
rotating proto-neutron star, since the magnetic field can
affect the amount of trapped neutrinos and prevent or favor
exotic phases with hyperons or quarks. For this purpose, we
make use of the hadronic chiral SU(3) model [23–26]
explicitly including trapped neutrinos and fixed entropy per
baryon. The cold and hot EoSs are then calculated at finite
temperature and over a range of entropies and neutrino
fractions. Finally, we construct proto-neutron star models
by using the LORENE C++ library, which solves numerically
the Einstein-Maxwell equations by means of a pseudo-
spectral method as in Refs. [27,28]. Recently, we applied
this approach to magnetized hybrid stars in Ref. [22] and to
magnetized and fast rotating white dwarfs in Ref. [29].
In Ref. [30], the authors addressed the importance of

quarks in the evolution process of PNSs. The appearance of
quarks softens the equation of state and may lead to less
massive and smaller stars [31]. In addition, quarks would
alter the neutrino emissivities and, therefore, influence
other properties like the surface temperature in PNSs
and NSs. In a future work, we will investigate the role

played by phase transitions from quark to hadronic matter
inside the stars, but in this work, we neglect possible effects
of a quark phase. However, in our hadronic model, we
include hyperons as the “exotic matter” component that
can, potentially, soften the EoS. Note that there is no reason
to ignore the appearance of hyperons, as they should appear
at about two times saturation density, and their presence
might produce distinct neutrinos signals that can detected in
the next generation neutrino detectors [32].
The article is organized as follows. In Sec. II, we present

the equation of state and the model Lagrangian used in the
work. In Sec. III, we briefly discuss how to solve the
Einstein-Maxwell field equations. In Sec. IV, we report our
results and discuss their consequences. Finally in Sec. V,
we summarize our findings and present conclusions.

II. STELLAR INTERIOR: EQUATION OF STATE

Chiral sigma models are effective relativistic models that
describe hadrons interacting via meson exchange and, most
importantly, are constructed from symmetry relations. They
are constructed in a chirally invariant manner since the
particle masses originate from interactions with the
medium and, therefore, go to zero at high density and/or
temperature.
The nonlinear realization of the sigma model is an

improvement over the widely used sigma model, as it
includes the pseudoscalar mesons as the angular parameters
for the chiral transformation. In this case, these mesons
only appear if the symmetry is broken or in terms with
derivatives of the fields. As a result, the scalar and
pseudoscalar sectors decouple from each other, leading
to a greater freedom in the manner in which baryons and
mesons couple to each other. As a consequence of those
couplings, the nonlinear realization of the sigma model is in
very good agreement with nuclear physics data, such as the
vacuum masses of the baryons, saturation properties,
hyperon potentials, pion and kaon decay constants fπ
and fk, etc [24,33].
The Lagrangian density of the SU(3) nonlinear

realization of the sigma model in the mean field approxi-
mation, applied to neutron star matter, can be found in
Refs. [25,34,35]. A recent extension of this model also
includes quarks as dynamical degrees of freedom
[23,26,36–38]. In this work, we make use of the simple
hadronic version of the model, as it was shown in Ref. [22]
that strong magnetic fields strongly suppress deconfine-
ment to quark matter in neutron stars. The Lagrangian
density of the model we use in this work reads

L ¼ LKin þ LInt þ LSelf þ LSB; ð1Þ

where, besides the kinetic energy term for hadrons and
leptons (included to ensure charge neutrality), the terms
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LInt ¼ −
X
i

ψ̄ i½γ0ðgiωωþ giϕϕþ giρτ3ρÞ þM�
i �ψ i;

LSelf ¼ þ 1
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ðm2
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2 þm2

ρρ
2 þm2

ϕϕ
2Þ
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σ4

2
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2
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�
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ðσ2 − δ2Þζ

σ20ζ0
þ g4ðω4 þ 3ω2ϕ2 þ ϕ4=4

þ 4ω3ϕ=
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2

p
þ 2ωϕ3=

ffiffiffi
2

p
Þ;

LSB ¼ −m2
πfπσ −

� ffiffiffi
2

p
m2

kfk −
1ffiffiffi
2

p m2
πfπ

�
ζ ð2Þ

represent the interactions between baryons and vector and
scalar mesons, the self-interactions of scalar and vector
mesons, and an explicit chiral symmetry breaking term,
which is responsible for producing the masses of the
pseudoscalar mesons. The index i denotes the states of
the baryon octet. The electrons and muons are included as a
free Fermi gas. The meson fields included are the vector-
isoscalars ω and ϕ (strange quark-antiquark state), the
vector-isovector ρ, the scalar-isoscalars σ and ζ (strange
quark-antiquark state), and the scalar-isovector δ, with τ3
being twice the isospin projection of each particle. The
isovector mesons affect isospin-asymmetric matter and,
thus, are important for neutron star physics. Also, the δ
meson has a contrary but complementary role to the ρ
meson, much like the σ and ω mesons.
The effective masses of the baryons are simply generated

by the scalar mesons, except for a small explicit mass
term M0:

M�
i ¼ giσσ þ giδτ3δþ giζζ þM0i

: ð3Þ
The scalar sector of the coupling constants (gNσ ¼ −9.83,
gNδ ¼ −2.34, gNζ ¼ 1.22, k0 ¼ 1.19χ2, k1 ¼ −1.40,
k2¼5.55, k3¼2.65χ, and k4¼−0.06χ4, with χ ¼
401.93 MeV, M0 ¼ 150, and 354 MeV for nucleons and
hyperons, respectively) is connected through SU(3) sym-
metry and determined to reproduce the vacuum masses of
the baryons and scalar mesons and the pion and kaon decay
constants fπ and fκ. The vector sector of the model
(gNω ¼ 11.90, gNρ ¼ 4.03, gNϕ ¼ 0, and g4 ¼ 38.90) is
connected mainly through SU(6) symmetry and determined
to reproduce nuclear saturation properties (ρ0 ¼ 0.15 fm−3,
B=A¼−16.00MeV, K¼297.32MeV, Esym ¼ 32.5 MeV,
L ¼ 93.85 MeV) and astrophysical observations. We also
reproduce reasonable values for the hyperon potentials
UΛ¼−28MeV, UΣ¼5.35MeV, and UΞ ¼ −18.36 MeV,
which are calculated as Ui ¼ M�

i þ giωωþ giϕϕ −M0i for
symmetric matter at saturation.
In order to obtain values for the mesonic fields at a

certain temperature and baryon chemical potential, we

solve a system of coupled equations, including the equa-
tions of motion for the mesonic fields [25]. We further
impose charge neutrality ΣiQeini ¼ 0 (with Qe being the
electric charge and ni the number density of each species)
and chemical equilibrium on the system. Finite-temperature
calculations include the heat bath of hadronic quasiparticles
within the grand canonical potential of the system. To
simulate proto-neutron star conditions, we include trapped
neutrinos by fixing the lepton fraction Yl ¼ ΣiQlini=nB
(with the lepton numberQl being nonzero only for leptons)
[39–41]. We also fix the entropy per baryon sB ¼ S=A ¼
s=nB in the core of the star [2,30,39,42].
The temperature is not expected to be constant in the

interior of compact stars. Sophisticated approaches have
realistic profiles for temperature [43,44], but, in this work,
we do not attempt to make use of them since our aim is only
to investigate magnetic field effects on different approxi-
mate stages of the star evolution. For this reason, as an
approximation, we are going to consider different values of
fixed entropy per baryon throughout the star. In Fig. 1, we
show the three equations of state used in this work.

III. GENERAL RELATIVISTIC CALCULATION

The formalism used in this work was first applied to
rotating and nonrotating magnetized neutron stars in
Refs. [27,28,45] and more recently in Ref. [22]. It allows
us to obtain equilibrium configurations by solving the
Einstein-Maxwell field equations for spherical polar coor-
dinates with the origin at the stellar center and with the
pole along the axis of symmetry. For more details on the
gravitational equations and numerical procedure, see
Ref. [46]. Here, we present the basic electromagnetic
equations that, together with the gravitational equations,
are required to be solved numerically. In this context, the
stress-energy tensor Tαβ contains both the matter (without
the magnetic field effects) and electromagnetic source
terms,
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FIG. 1. Equations of state for proto-neutron and neutron stars.
Note that the T ¼ 0 and sB ¼ 1 in β-equilibrium lines almost
overlap.
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Tαβ ¼ ðeþ pÞuαuβ þ pgαβ

þ 1

μ0

�
FαμF

μ
β −

1

4
FμνFμνgαβ

�
; ð4Þ

with Fαμ being the antisymmetric Faraday tensor defined
as Fαμ ¼ ∂αAμ − ∂μAα, where Aμ is the electromagnetic
4-potential. As we are dealing with stars endowed with
poloidal magnetic fields, one has At and Aϕ as the two
nonzero components of the electromagnetic 4-potential,
Aμ ¼ ðAt; 0; 0; AϕÞ. The total energy density of the system
is e, the isotropic contribution to the pressure is denoted by
p, uα is the fluid 4-velocity, and the metric tensor is gαβ.
The first term in Eq. (4) represents the isotropic matter
contribution to the energy-momentum tensor, while the
second term is the anisotropic electromagnetic field con-
tribution. Note that we are not including anisotropies due to
the magnetization as done in Refs. [22,45]. This is due to
the fact that in this work we are not taking into account
magnetic field effects in the EoS. In Ref. [45] and later in
Ref. [22], it was already shown that there is no or a small
contribution when taking into account the magnetic field
corrections in the equation of state through the magneti-
zation. The metric tensor in these axisymmetric spherical-
like coordinates ðr; θ;ϕÞ can be expressed as

ds2 ¼ −N2dt2 þΨ2r2sin2θðdϕ − NϕdtÞ2
þ λ2ðdr2 þ r2dθ2Þ; ð5Þ

with N, Nϕ, Ψ, and λ being functions of the coordi-
nates ðr; θÞ.
According to Ref. [47], the electric field components can

be written as

Eα ¼
�
0;

1

N

�∂At

∂r þ Nϕ
∂Aϕ

∂r
�
;
1

N

�∂At

∂θ þ Nϕ
∂Aϕ

∂θ
�
; 0

�
;

ð6Þ

and the magnetic field reads

Bα ¼
�
0;

1

Ψr2 sin θ

∂Aϕ

∂θ ;−
1

Ψ sin θ

∂Aϕ

∂r ; 0

�
: ð7Þ

The Faraday tensor Fαμ can be derived from the
electromagnetic 4-potential Fαμ ¼ Aα;μ − Aμ;α, so that the
homogeneous Maxwell equation

Fαμ;γ þ Fμγ;α þ Fγα;μ ¼ 0; ð8Þ

is automatically satisfied. According to Ref. [28], the
inhomogeneous Maxwell equation

∇μFαμ ¼ μ0jα; ð9Þ

can be expressed in terms of the two nonvanishing
components of the electromagnetic potential Aμ through
the Maxwell-Gauss equation,

Δ3At ¼ −μ0λ2ðjt þ jϕÞ −
Ψ2

N2
Nϕr2sin2θ∂At∂Nϕ

−
�
1þΨ2

N2
r2sin2θðNϕÞ2

�
∂Aϕ∂Nϕ

− ð∂At þ 2Nϕ∂AϕÞ∂ðβ − νÞ

− 2
Nϕ

r

�∂Aϕ

∂r þ 1

tan θ

∂Aϕ

∂θ
�
; ð10Þ

and through the Maxwell-Ampère equation as

~Δ3

�
Aϕ

r sin θ

�
¼ −μ0λ2Ψ2ðjϕ − NϕjtÞr sin θ

þΨ2

N2
r sin θ∂Nϕð∂At þ Nϕ∂AϕÞ

þ 1

r sin θ
∂Aϕ∂ðβ − νÞ; ð11Þ

with the notation

Δ3 ¼
∂2

∂r2 þ
2

r
∂
∂rþ

1

r2
∂2

∂θ2 þ
1

r2 tan θ
∂
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~Δ3 ¼ Δ3 −
1

r2sin2θ
;

ν ¼ lnA; β ¼ lnΨ; α ¼ ln λ;
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∂r2 þ
1

r
∂
∂rþ

1

r2
∂2

∂r2 ;

∂a∂b ¼ ∂a
∂r

∂b
∂r þ

1

r2
∂a
∂θ

∂b
∂θ :

Within the 3þ 1 decomposition and under the assumptions
of stationary and axisymmetric space-time, the Einstein
equations for the metric potentials in Eq. (5) are given by
[27,45,46]

Δ3ν ¼ 4πGλ2ðEþ SiiÞ þ
Ψ2r2sin2θ

2N2
ð∂NϕÞ2 − ∂ν∂ðνþ βÞ;

ð12Þ

~Δ3ðNϕr sin θÞ ¼ −16πG
Nλ2

Ψ

Jϕ
r sin θ

− r sin θ∂Nϕ∂ð3β − νÞ;
ð13Þ

Δ2½ðNΨ − 1Þr sin θ� ¼ 8πGNλ2Ψr sin θðSrr þ SθθÞ; ð14Þ

Δ2ðνþ αÞ ¼ 8πGλ2Sϕϕ þ
3Ψ2r2sin2θ

4N2
ð∂NϕÞ2 − ð∂νÞ2;

ð15Þ
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with E being the total energy density of the fluid given by

E ¼ Γ2ðeþ pÞ − p; ð16Þ
while the momentum density flux is

Jϕ ¼ Γ2ðeþ pÞU: ð17Þ

The 3-tensor stress components are expressed as

Srr ¼ Sθθ ¼ p ð18Þ

and

Sϕϕ ¼ pþ ðEþ pÞU2; ð19Þ

where the Lorentz factor is given by Γ ¼ ð1 −U2Þ−1
2 with

U being the fluid velocity defined as

U ¼ Ψr sin θ
N

ðΩ − NϕÞ; ð20Þ

with the lapse function Nϕ and the angular velocity Ω, as
measured by an observer at infinity (see Refs. [11,27,46]
for more details). As in Ref. [27], the equation of motion
(∇μTμν ¼ 0) reads

Hðr; θÞ þ νðr; θÞ − lnΓðr; θÞ þMðr; θÞ ¼ const: ð21Þ

As shown in Ref. [4], the equation of motion, Eq. (21),
remains the same when describing proto-neutron stars at
fixed entropies per baryon sB. In this case, there is no
entropy gradient throughout the star, i.e., ∂isB ¼ 0, where i
stands for the spatial coordinates ðr; θ;ϕÞ. Consequently,
the additional term Te−H∂isB present in the equation of
motion (see Eq. (4) in Ref. [4]) for hot stars disappears, and
the standard numerical procedure (as described here) can be
used both for cold and hot stars. Finally, let us notice that
the special case with T ¼ const is not realistic, since one
expects higher temperatures at higher densities in stars.
The logarithm of the dimensionless relativistic enthalpy

per baryon Hðr; θÞ is

H ¼ ln

�
eþ p
mbnbc2

�
; ð22Þ

with the mean baryon mass mb ¼ 1.66 × 10−27 kg and the
baryon number density nb. At last, the magnetic potential
Mðr; θÞ in Eq. (21), which is associated with the Lorentz
force, can be expressed as

Mðr; θÞ ¼ MðAϕðr; θÞÞ ≔ −
Z

0

Aϕðr;θÞ
fðxÞdx; ð23Þ

with a current function fðxÞ as defined in Ref. [27] [see
Eq. (5.29)]. The magnetic star models are obtained by

assuming a constant value for the dimensionless current
functions f0. For higher values of the current function f0,
the magnetic field in the star increases proportionally. In
addition, f0 is related to the macroscopic electric current
through the relation jϕ ¼ ΩAt þ ðeþ pÞf0. According to
Ref. [28], other choices for fðxÞ different from a constant
value are possible, but the general conclusions remain
the same.

IV. RESULTS

In order to model stationary and axisymmetric neutron
and proto-neutron stars in the presence of strong poloidal
magnetic fields, we solve the coupled Einstein-Maxwell
field equations by using the equations of state shown in
Fig. 1. As we are interested in studying how the internal
properties of isolated proto-neutron stars change over time,
we have fixed the stellar baryonic mass to be
MB ¼ 2.35 M⊙. This value of MB represents a star of
which the gravitational mass is close to the maximum mass
allowed by Tolman-Oppenheimer-Volkoff (TOV) solutions
[48,49]of neutron and proto-neutron stars described within
this model. At a fixed baryon mass, one can compare how
strangeness (through the presence of hyperons) and neu-
trinos are distributed inside the star according to the star’s
temporal evolution.
The magnetic equilibrium configurations are determined

by the choice of the current function f0. In Table I, we show
the corresponding central baryon number density and the
central magnetic field reached in stars of a given f0.
Increasing the value of f0 arbitrarily, we will find a point
where the magnetic force will push the matter off center so
strongly that a topological change to a toroidal configura-
tion takes place [11]. As our current numerical tools do not
enable us to solve such equilibrium configurations, there is
a limit for the magnetic field strength that one can obtain
within this approach. In this work, we obtain a maximum
current function close to f0 ¼ 39000, which corresponds to

TABLE I. Relation between the current function f0, central
baryon number density ncB, the central Bc and the surface
magnetic field Bs, and the gravitaional mass Mg for a star at
fixed baryon mass of MB ¼ 2.35 M⊙. We considered three
different approximate evolution states to a hot proto-neutron
star from a cold neutron star.

EoS f0 ncBðfm−3Þ Bcð1018 GÞ Bsð1018 GÞ MgðM⊙Þ
0 0.694 0 0 2.03

T ¼ 0 35000 0.509 1.01 0.36 2.07
39000 0.424 1.07 0.46 2.09

0 0.721 0 0 2.04
sB ¼ 1 35000 0.514 1.02 0.34 2.08
β 39000 0.402 1.06 0.45 2.11

0 0.790 0 0 2.01
sB ¼ 2 35000 0.575 1.04 0.37 2.04
YL ¼ 0.4 39000 0.474 1.10 0.47 2.06

INTERNAL COMPOSITION OF PROTO-NEUTRON STARS … PHYSICAL REVIEW D 94, 044018 (2016)

044018-5



a central magnetic field ∼1018 G (see Table I) in all three
approximate stages of evolution.
Throughout this work, we make use of equations of state

with hyperon degrees of freedom. Hyperons are usually not
stable and decay into nucleons through the weak interaction
in vacuum. However, the condition of β-equilibrium
naturally leads to the existence of hyperons in compact
stars, as their decay is Pauli blocked [3,50–53]. The
maximum gravitational mass of a cold beta-equilibrated
matter TOV solution with hyperons is 2.08 M⊙ (the
corresponding baryon mass is MB ¼ 2.41 M⊙), while
without hyperons the gravitational mass reaches 2.14M⊙
(the corresponding baryon mass is MB ¼ 2.50 M⊙). In
order to investigate the effects of hyperons in proto-neutron
stars, in Fig. 2, we show equations of state with and without
hyperons for the hadronic chiral SU(3) model with sB ¼ 2,
YL ¼ 0.4. From Fig. 2, as the baryon number density
increases, the EoS with hyperons becomes colder than the
nucleonic one, as already pointed out in Ref. [54]. This is
an effect of the increased number of degrees of freedom and
the softening of the EOS with hyperons.
Hyperons contain one or more strange quarks as their

internal constituents. This enables us to study how strange-
ness is distributed inside stars. For example, in Fig. 3, we
depict the strangeness density ns, which is defined as
the sum over the amount of strangeness of each baryon
species multiplied by its number density, as a function
of the stellar coordinate radius r for a cold neutron star
(T ¼ 0 in β-equilibrium) and at fixed baryon mass of
MB ¼ 2.35 M⊙. In this figure, the vertical line represents
the stellar surface with the corresponding equatorial coor-
dinate radius of req ¼ 9.13 km. The circular coordinates
radius Rcirc represents the equatorial star radius as measured
by an observer at infinity and is defined as

Rcirc ¼ B
�
req;

π

2

�
req; ð24Þ

with Bðr; θÞ being a metric potential (see e.g. Ref. [27]
for more details). For the star in Fig. 3, one has
Rcirc ¼ 12.37 km. We have chosen to show all quantities
as a function of the coordinate radius since there is no
appropriate definition for the circular coordinate radius in
the polar direction.
Hyperons are supposed to appear inside cold, beta-

equilibrated, neutrino-free stellar matter at a density of
about two times nuclear saturation density. According to
Fig. 3, the magnetic field changes significantly the amount
of strange matter in neutron stars. In particular, strangeness
disappears completely for a central magnetic field strength
of ∼1018 G (see Table I). The Lorentz force acts outward
and reduces the stellar central baryon density, so that its
value is below the threshold for the creation of hyperons,
which are, therefore, suppressed inside the star.
In Figs. 4 and 5, we depict the strangeness density

profile as a function of the coordinate radius for proto-
neutron star matter in two situations: hot with sB ¼ 1 and in
β-equilibrium and at very high entropy per baryon sB ¼ 2
with trapped neutrinos YL ¼ 0.4. In Figs. 3, 4, and 5, we
show the strangeness density profile on equatorial
(θ ¼ π=2) and polar directions (θ ¼ 0). For spherical stars,
the amount of strangeness is the same in all directions.
However, since the magnetic field breaks the spherical
symmetry, magnetized stars will be deformed with respect
to the symmetry axis and they will become oblate with the
polar radius (θ ¼ 0) smaller than the equatorial radius
(θ ¼ π=2), which will be larger than in the case without
magnetic fields. As a result, strangeness will be asymmet-
rically distributed throughout the star. For higher values of
the magnetic field, the strangeness density can be consid-
ered almost constant for a large range of radii; see e.g.
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correspond to different current functions and characterize differ-
ent magnetic field profiles. For the largest f0 values, the stars
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Fig. 4 for a central field of ∼1018 G (f0 ¼ 39000)
and θ ¼ π=2.
The presence of hyperons in neutron or proto-neutron

stars may change the neutron star cooling rates [55–57].
Moreover, hyperons may also couple to a superfluid state in
high density matter [58]. Since the strangeness is directly
related to the amount of hyperons and the corresponding
channels for neutrino emission, it will affect the cooling
behavior of the star due to the magnetically induced
deformation of the star. A related conclusion was already
pointed out in Ref. [59] for a spherical star.
As stated in Refs. [11,29], the Lorentz force can reverse

its direction in the equatorial plane in magnetized stars. The
Lorentz force is obtained from the derivative of the
magnetic potential Mðr; θÞ (see Fig. 3 in Ref. [29]), which
has a minimum at some radius inside the star. This means
that the Lorentz force will chance its sign inside the star

and, therefore, act differently in different parts of the star. In
addition, if we suppose that the magnetic field decays over
time during the magnetic field evolution in proto-neutron
stars, we see from Figs. 4 and 5 that the amount of
strangeness becomes higher in the inner core of the star,
but it is reduced in the outer layers (crossing lines). This
behavior is not seen for cold neutron stars, where the
strangeness increases in all directions as the magnetic field
decays (see Fig. 3).
Note that, for the most magnetized stars studied here (see

larger f0 in Table I), the maximum density can be reached
away from the stellar center. In Fig. 6, we show the baryon
number density profile in the equatorial plane for a star
with MB ¼ 2.35 M⊙ assuming 3 different approximate
evolution states: 1) T ¼ 0 and β-equilibrium, 2) sB ¼ 1 and
β-equilibrium, and 3) sB ¼ 2 with YL ¼ 0.4. In the second
case, the maximum baryon number density is not at the
stellar center. The others cases do not present this behavior.
This is because stars with lower densities in the inner core
become easily more deformed due magnetic fields. Note
that the numerical technique presented in Refs. [27,28]
does not handle toroidal configurations as the one in
Ref. [11]. This represents a limit of magnetic field strength
that we can obtain within this approach. As one can see
from Fig. 6, the maximum baryon number density is shifted
away from the center (for the second case); however, this
tiny effect is not enough to change the particle population
inside stars. Nevertheless, a more comprehensive study of
the subject would be very desirable by using the formalism
from Ref. [11].
Neutrinos are mainly produced by electron capture as the

progenitor star collapses. However, most of them are
temporarily prevented from escaping because their mean
free paths are considerably smaller than the radius of the
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star. This is the well-known trapped-neutrino era, where the
entropy per baryon is about 1–2 through most of the star
and the total number of leptons per baryon YL ⋍ 0.4. As
before, we consider neutrino-free and trapped-neutrino
equations of state either at zero temperature or fixed
entropies. In order to model PNSs in their hottest state,
we have used sB ¼ 2 at fixed lepton fraction of YL ¼ 0.4.
In this case, the neutrinos are trapped and do not leave the
star. The amount of neutrinos, on the other hand, depends
on the EOS used [60].
In Fig. 7, we show the electron neutrino number density

profile as a function of the coordinate radius for a star at
fixed baryon mass of MB ¼ 2.35 M⊙. This same star is
depicted in Fig. 5. The magnetic field reduces the amount
of neutrinos present at the center of the star. For example,
for the free magnetic field solution, the maximum electron
neutrino density is ∼ 0.048 fm−3 at the center of the star. In
the maximally magnetized case, this value is reduced to
∼ 0.030 fm−3. Note that, according to Fig. 7, the amount of
trapped neutrinos decreases as the magnetic field signifi-
cantly drops for coordinate radii ≳5 km (in the equatorial
plane, θ ¼ π=2). However, the opposite effect is seen for
radii ≲5 km. In addition, since the stars are deformed due
to the magnetic field, they become oblate, with a polar
radius smaller than the equatorial one. As a consequence,
the neutrino flux leaving the PNSs will be asymmetric,
having different values in the polar and equatorial direc-
tions. These differences may have an observable impact on
the neutrino flux from magnetized PNSs. This will be
addressed in a future publication.
In Figs. 8 and 9, we show the temperature throughout a

PNS for two approximate stages that reproduce significant
temporal evolution stages. In Fig. 9, the expected initial star
(just after the bounce) is lepton rich and extremely hot. For
a nonmagnetized and spherical star, the temperature at the

center reaches values close to 50 MeV (see Fig. 9). On the
other hand, when the strong magnetic field is included, the
central temperature reaches values below 40 MeV. This
same effect is observed (with lower values) for a hot and
β-equilibrated PNS model (see Fig. 8).
In Fig. 8, the difference in the central temperature

between the nonmagnetized and the highest magnetized
solution is of the order of 2 MeV, much less than in the
neutrino ν-trapped era. This is related to the stiffness of the
equation of state. According to our model, the equation of
state describing the first approximate stage of evolution is
softer than in the other stages.
According to Refs. [44,61,62], the larger lepton fraction

YL disfavors a hyperonic degree of freedom in the stellar
interior. As a result, the respective EOS becomes stiffer.
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This can be seen in Ref. [61], where a lot of hyperons were
present in a β-equilibrated matter. In our approach, the
couplings do not favor a large amount of hyperons in
β-equilibrated matter. In this case, the main effect of fixing
YL is to make the star more isospin symmetric and, as a
consequence of a softer EOS, less massive.
For a PNS with sB ¼ 2 and YL ¼ 0.4, the surface

temperature of the core is ∼13 MeV, while for sB ¼ 1
and β-equilibrium, it is ∼2 MeV. However, in both cases,
with the decay of the magnetic field, the temperature
increases in the inner layers of the star and decreases in
the outer layers. Note that the same effect was observed for
the strangeness density and neutrino distribution inside
the star.
The presence of strong magnetic fields affects the star

surface thermal distribution (see for example Ref. [63]).
The knowledge of the correct temperature distribution in
PNSs and NSs is crucial for modelling the cooling of these
stars. Thus, models that include the presence of high
magnetic fields should be reconsidered, not only to inves-
tigate the effects of the anisotropy of the energy-momentum
tensor due to the magnetic field but also to include the
asymmetric temperature distribution in these objects.
In addition to magnetic fields, rotation can contribute to

the breaking of the spherical symmetry. In the cases studied
here, we have seen that the magnetic field not only affects
the macroscopic structure of stars, but also it impacts their
microscopic compositions. Such a study is extremely
important if one wants to understand the thermal evolution
of stellar systems where spherical symmetry is broken.
The structure of rotating stars is much more compli-

cated than the structure of their nonrotating counterparts
[27,64–67]. The complication comes from a flattening at
the poles with an increase of the radius in the equatorial
plane. As in the magnetized case, this deformation leads to
a dependence of the star’s metric both on the polar
coordinate θ and the radial coordinate r.
Although PNSs are probably strongly differentially

rotating [68–70], we model uniformly rotating stars in
order to estimate the effect of rotation on strongly mag-
netized stellar models within a fully general relativity
calculation. The effect of the centrifugal force due to
rotation in neutron stars was considered already by many
authors; see e.g. Refs. [65,66,71–74]. However, only few
works presented self-consistent calculations taking into
account both magnetic field and rotation effects on the
neutron star structure [28,75,76].
In Fig. 10, we show the internal composition of proto-

neutron stars in three scenarios:
(A) A nonrotating and nonmagnetized proto-neutron star

at fixed baryon mass of MB ¼ 2.35 M⊙. Matter is
described by the EOS with sB ¼ 2 and trapped
neutrinos YL ¼ 0.4.

(B) The same star as in A but rotating at a frequency of
900Hz. This frequency is used since the star becomes

strongly deformed and it allows us to better study the
effects of rotation on the microscopic properties of
proto-neutron stars. The results of this analysis can be
generalized to other frequencies.

(C) By including the magnetic field in the solution B, a
rotating and magnetized proto-neutron star model
for the maximum value of the magnetic field
achieved with the code. In this star, the maximum
central magnetic field is 3.76 × 1017 G. Note that
this maximum magnetic field lies below the value
obtained for nonrotating proto-neutron stars
∼1018 G for the same baryon mass. In Fig. 10,
the particles on the left side of the dashed black lines
A, B, and C represent the populated degrees of
freedom inside the corresponding PNS.

The centrifugal force due to rotation pushes the matter
outward. As a consequence, the star expands in the
equatorial direction and decreases the central number
density. For example, in the case A the baryon density at
the center is 0.790 fm−3. But if this star rotates at 900 Hz
(case B), one obtains a central density of 0.541 fm−3. And,
finally, the corresponding rotating and magnetized star C
yields a central baryon number density of 0.497 fm−3. For
stronger magnetic fields, such an effect is further increased.
FromFig. 10,we see that the amount of electron neutrinos

is not reduced in rotating PNSs. On the other hand, exotic
particles are almost suppressed inside these objects. They
might vanish completely in stars rotating faster than in the
case considered here. Moreover, the magnetic field (in
case C) further reduces the central number density and,
therefore, further modifies the internal degrees of freedoms.
In order to visualize the magnetic field distribution, in

Fig. 11, we show the electromagnetic potential lines At
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isocontours in the ðx; zÞ plane for the star C. This star
corresponds to a gravitational mass ofMg ¼ 2.05 M⊙. The
centrifugal and magnetic forces act against gravity, which
allows stars to be more massive than their nonmagnetized
or nonrotating counterparts.

V. CONCLUSION

We have computed models of massive and highly
magnetized neutron and proto-neutron stars in a fully
general relativistic framework. Under the standard
assumption that PNSs undergo a more quiet and quasista-
tionary evolution after their birth, we investigated the role
played by magnetic fields and rotation on the surface
deformation and on their internal matter distribution. This
study represents the first step toward a fully self-consistent
treatment of the cooling of neutron stars that have their
spherical symmetry broken due to strong magnetic fields.
In order to do so, we solved the Einstein-Maxwell

equations self-consistently for stars at fixed baryon mass
of MB ¼ 2.35 M⊙. We have chosen to do so because this
value represents a stellar mass close to the maximum mass
for nonmagnetized and spherical configurations. We
included poloidal magnetic fields which are generated by
macroscopic currents taking into account the anisotropies
associated with such a field. In this study, we have not
included the effects of the magnetic field on the equation of
state through the effects of Landau quantization of the
charged particles in the presence of a magnetic field, since

it was already found that this contribution to the macro-
scopic properties of stars is small compared to the pure field
contribution of the energy-momentum tensor [22,45].
We investigated the equation of state of cold NS and

warm PNS matter in the neutrino-free and neutrino-trapped
scenarios making use of the hadronic chiral SU(3) model.
We then determined the properties of PNSs and NSs
consisting of hadronic matter with hyperons. The calcu-
lations were performed for zero temperature and at fixed
entropy per baryon. Our results indicate that spherical hot
stars with trapped neutrinos, i.e, sB ¼ 2 and YL ¼ 0.4, are
less massive than the same stars in β-equilibrium or their
cold counterparts.
The primary effect of the magnetic field decay is to

increase the amount of neutrinos and the strangeness at the
stellar core. As the magnetic field decreases, we see also an
increase of the temperature at the stellar center. Note that,
assuming that the magnetic field decays over time, the
temperature in the equatorial plane increases in the inner
core while it decreases in the outer core. This fact is related
to the Lorenz force, which reverses its direction in the
equatorial plane.
As shown in Refs. [77–79], magnetic field geometries

with purely poloidal or purely toroidal magnetic field
configurations undergo the so-called Tayler instability.
Recently, such instabilities were confirmed both in
Newtonian numerical simulations [80–83] and in the
general relativity framework in Refs. [84–87]. According
to Refs. [82,88–91], equilibrium magnetic field configu-
rations are possible for a twisted-torus geometry, with
poloidal and toroidal magnetic field components. It is to be
noted that the magnetic flux might change its strength and,
therefore, its distribution in the star due to dissipation of the
electric current [92]. Although we have assumed a purely
poloidal magnetic field in this work, we can have a fair idea
of the maximummagnetic field strength that can be reached
inside these objects and also understand the effects of
strong magnetic field on the microphysics of PNSs.
We further studied the properties of PNSs subjected to fast

rotation. Our results indicate that the electron neutrino
distribution of rotating proto-neutron stars does not differ
much from their nonrotating counterpart. This is possible
due to the fact that the centrifugal forces (fc ∝ rΩ2) act
mainly on the outer layers of the star.However, the amount of
hyperons is reduced inside these objects, which may affect
the cooling of these stars. We have also included magnetic
fields in the rotating PNSmodel. As expected, the reduction
in the central densities is even more pronounced, and
magnetic fields suppress exotic phases in rotating PNS even
further, as in the case of cold neutron stars. A combination of
both magnetic field and rotation effects can impact, for
example, the nucleosynthesis of the winds in PNSs [93].
In addition, the scenario of transformation of a proto-

neutron star into a neutron star could be influenced by a
quark-hadron phase transition due to the presence of high

FIG. 11. Isocontours of electromagnetic potential lines for a
star at fixedMB ¼ 2.35 M⊙ assuming sB ¼ 2 and YL ¼ 0.4 (star
C in Fig. 10). This star rotates at a frequency of 900 Hz and has a
central magnetic field of 3.76 × 1017 G (the corresponding sur-
face magnetic field is 1.37 × 1017 G). The ratio between the polar
and equatorial radii is rp=req ¼ 0.74.
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temperatures, in which case the transition happens at lower
densities. Such stars would be composed of hot quark and
hadronic matter at different leptons fractions and fixed
entropies. It would be interesting to couple our results to a
hybrid star scenario with a quark-hadron phase transition in
the star core. Moreover, the cooling behavior strongly
depends on the particle composition of the star, which
determines neutrino emission channels. This will also be
considered in a future work together with effects related to
the proto-neutron star crust.
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