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We consider a Weyl-invariant formulation of gravity with a cosmological constant in d-dimensional
spacetime and show that near two dimensions the classical action reduces to the timelike Liouville action.
We show that the renormalized cosmological term leads to a nonlocal quantum momentum tensor which
satisfies the Ward identities in a nontrivial way. The resulting evolution equations for an isotropic,
homogeneous universe lead to slowly decaying vacuum energy and power-law expansion. We outline the
implications for the cosmological constant problem, inflation, and dark energy.
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I. INTRODUCTION

It was pointed out recently [1] that the inclusion of Weyl
anomalies can have striking consequences for the gravita-
tional dynamics on cosmological scales. In particular, it
offers a new perspective on inflation, dark energy, and the
cosmological constant problem. To deal with these anoma-
lies it is convenient to use a Weyl-invariant formulation of
gravity [1]. In this paper we analyze this formalism and the
consequences of Weyl anomalies near two dimensions.
The Weyl-invariant formulation is obtained by intro-

ducing a Weyl compensator field and a fiducial metric
which scale appropriately, keeping the physical metric
Weyl invariant. The resulting theory has an extra scalar
degree of freedom but also an enlarged gauge symmetry
which includes Weyl symmetry in addition to diffeo-
morphisms. The number of degrees of freedom remains
the same upon imposing Weyl invariance. See [2–13] for
related earlier work.
This formalism is convenient for studying the renorm-

alization of the quantum gravity path integral because it
separates general coordinate invariance from Weyl invari-
ance. On general grounds, Weyl invariance can have
anomalies in the quantum theory because renormalization
introduces a scale. An essential requirement of the enlarged
gauge principle is that all such potential anomalies cancel
because Weyl symmetry is a gauge symmetry. General
coordinate invariance of the original theory then becomes
equivalent to general coordinate invariance plus quantum
Weyl invariance of the modified theory. This provides a
useful guiding principle.
In two spacetime dimensions, the Weyl-invariant for-

mulation is particularly advantageous because the metric
tensor has only three components. With the enlarged gauge
symmetry, one can choose a gauge in which the fiducial
metric is completely fixed, with no dynamics. The entire
quantum dynamics then resides in the dynamics of the
scalar Weyl compensator in the background of the fixed

fiducial metric. Moreover, the classical action for the Weyl
compensator reduces to an analytic continuation of the
well-studied Liouville action.
Even with this simplification, the quantization of two-

dimensional gravity presents many difficulties because the
path integral measure is not shift invariant and the cosmo-
logical constant term is a nontrivial exponential interaction.
Moreover, the kinetic term for the Weyl compensator is
negative or “timelike,” so the Weyl compensator is related
to the Liouville field by a subtle analytic continuation
which is not yet fully understood in the quantum theory
[14–21]. As a result, the quantum gravitational dynamics
is highly nontrivial even in two dimensions.1 Some of
the subtleties of the nonperturbative quantization and the
question of the existence of the quantum theory are
discussed in Sec. IV C.
Fortunately, the full machinery of timelike Liouville

theory is not necessary to address the physical questions
that we are interested in. Our main aim is to study the
cosmological consequences of the anomalous gravitational
dressing of quantum operators, especially the cosmological
constant operator. We would like to use the two-
dimensional model to draw some general lessons that
may be applicable in four dimensions. We expect that
the semiclassical approximation should be reliable on
cosmological scales in four dimensions. Any effect in
the two-dimensional model that could be relevant for
four-dimensional physics must manifest itself in the semi-
classical limit and should not depend on special properties
of two dimensions. For this reason, we confine ourselves to
the semiclassical limit of timelike Liouville theory.
One of the surprising results we find is that the quantum

corrections lead to a slow decay of vacuum energy in an
isotropic and homogeneous universe and a slowing down of

1There is extensive literature on both spacelike and timelike
Liouville theory. See [19,22–26] for reviews that emphasize
different aspects of quantum Liouville theory.
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the exponential de Sitter expansion. Since the essential
mechanism relies purely on the infrared physics, we
expect that this two-dimensional example can serve as
an interesting model for possible generalizations to higher
dimensions.
The idea of vacuum energy decay caused by infrared

quantum effects has been explored earlier in four-
dimensional gravity by several physicists.2 There is con-
siderable divergence in the literature about the final result
[39–45] and more generally about infrared effects in nearly
de Sitter spacetime [46–57]. The advantage of our two-
dimensional model is that the important quantum effects
can be computed explicitly with relative ease and without
ambiguities to all orders in perturbation theory. The main
lesson is that the physical coupling constants are the
couplings of the gravitationally dressed operators. The
anomalous dimensions of the dressed operators are, in
principle, different from the anomalous dimensions of the
undressed operators. For example, the cosmological con-
stant, which is usually regarded as the coupling constant of
the identity operator, is really the coupling constant of the
square root of the determinant of the metric with a non-
trivial anomalous gravitational dressing. This anomalous
dressing introduces additional dependence on the metric
and affects the gravitational dynamics. This is the essential
idea that we wish to generalize to four dimensions.
Another novelty of our approach is that we summarize

the quantum effects in terms of a nonlocal effective action
for a general background metric correctly incorporating the
Weyl anomalies. The advantage of this approach is that it
separates the computation of quantum effects from the
analysis of the effective dynamics that follows from the
nonlocal action. In four dimensions the quantum action can
be deduced3 as a solution to the local renormalization group
equation [1]. The cosmological solutions of the resulting
equations of motion in four dimensions will be presented in
[59]. However, our two-dimensional quantum model
already captures many of the essential features in a much
simpler context. We hope that this way of organizing the
calculations will prove useful for future explorations.
The paper is organized as follows. In Sec. II we

summarize relevant aspects of the Weyl-invariant formu-
lation of classical gravity and cosmology in d spacetime
dimensions and show that near two dimensions the action

reduces to the timelike Liouville action. In Sec. III we
discuss the renormalization of the cosmological constant
operator and compute the nonlocal momentum tensor
which satisfies the Ward identities. In Sec. IV we study
the evolution of an isotropic and homogeneous universe
without matter in the presence of this nonlocal momentum
tensor. We then discuss the consequences of the quantum
decay of vacuum energy for the cosmological constant
problem, inflation, and dark energy.

II. CLASSICAL GRAVITY NEAR TWO
DIMENSIONS

To obtain a Weyl-invariant formulation of classical
gravity in d dimensions, one introduces a fiducial metric
hμν and a Weyl compensator field Ω to write the physical
metric as

gμν ¼ e2Ωhμν: ð1Þ

Given any action which is a functional of the physical
metric, one can substitute (1) to obtain an action as a
functional of the fiducial metric and the Weyl compensator.
The rewriting of (1) of the metric is invariant under a local
Weyl transformation:

hμν → e2ξðxÞhμν; ΩðxÞ → ΩðxÞ − ξðxÞ:

We call this symmetry “fiducial Weyl symmetry” to
underscore the fact that even though the fiducial metric
transforms under it, the physical metric is invariant. This
somewhat trivial rewriting will help us make contact with
Liouville theory in two dimensions and prepare the ground
for the quantum theory.

A. Classical gravity in the Weyl-invariant
formulation

1. Action

The Einstein-Hilbert gravitational action in d spacetime
dimensions is given by

IK½g� ¼
Md−2

p

2

Z
ddx

ffiffiffiffiffiffi
−g

p
R½g� ð2Þ

where Mp is the reduced Planck mass and R½g� is the Ricci
scalar for the physical metric gμν. The cosmological
constant term is given by the action

IΛ½g� ¼ −Md−2
p Λ

Z
ddx

ffiffiffiffiffiffi
−g

p ð3Þ

where Λ is the cosmological constant. Given a UV cutoff
M0, the Planck scale Mp and the cosmological constant Λ
correspond to dimensionless “coupling constants” κ2 and λ
defined by

2An interesting related idea explored in the literature concerns
possible nontrivial fixed points of gravity in the UV [27–36] and
in the IR [37,38]. This is a different regime than what we
consider. Our interest is in the long-distance physics on cosmo-
logical scales in weakly coupled gravity near the trivial Gaussian
fixed point. Some of the methods developed in these inves-
tigations could nevertheless be useful for the computation of
Weyl anomalies especially in the very early universe.

3Unlike in two dimensions, the anomalous dressing of the
cosmological term cannot be computed exactly in four dimen-
sions, but can be computed perturbatively in a given microscopic
theory [58].
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Md−2
p ≔

Md−2
0

κ2
; Λ ≔ λκ2M2

0: ð4Þ

Substituting (1) in (2) and (3), we obtain

IK½Ω; h� ¼
Md−2

p

2

Z
ddx

ffiffiffiffiffiffi
−h

p
eðd−2ÞΩðR½h�

þ ðd − 2Þðd − 1Þhμν∇μΩ∇νΩÞ ð5Þ

for the gravitational action and

IΛ½Ω; h� ¼ −Md−2
p Λ

Z
ddx

ffiffiffiffiffiffi
−h

p
edΩ ð6Þ

for the cosmological term. Henceforth, unless stated
otherwise, all contractions and covariant derivatives are
using the fiducial metric. The actions (5) and (6) are
invariant under the fiducial Weyl transformation by
construction.

2. Ward identities

The new actions (5) and (6) are each independently
invariant under Weyl transformations in addition to coor-
dinate transformations. As a result, they each satisfy two
Ward identities.
Under a general coordinate transformation xμ → x0μ ¼

xμ þ ξμðxÞ, a scalar field transforms as Ω0ðx0Þ ¼ ΩðxÞ with
infinitesimal diffeomorphism variation given by

δΩ ≔ Ω0ðxÞ −ΩðxÞ ¼ −ξμðxÞ∇μΩ: ð7Þ

Similarly, the variation of the metric is given by

δhμν ¼ −ð∇μξν þ∇νξμÞ; δhμν ¼ ∇μξν þ∇νξμ: ð8Þ

Invariance of the action functional implies

δI ¼
Z

ddx

�
2

�
δI
δhμν

�
∇νξμ −

δI
δΩ

ξμ∇μΩ
�
≡ 0: ð9Þ

Consequently, both IK and IΛ satisfy the Ward identities for
coordinate invariance:

∇ν

�
−2δIaffiffiffiffiffiffi
−h

p
δhμν

�
−

1ffiffiffiffiffiffi
−h

p δIa
δΩ

∇μΩ≡ 0 ða ¼ K;ΛÞ:

ð10Þ

Similarly, the infinitesimal Weyl variation is given by

δhμν ¼ 2ξðxÞhμν; δhμν ¼ −2ξðxÞhμν; δΩ ¼ −ξðxÞ
ð11Þ

and the corresponding Ward identity is

hμν
�

−2δIaffiffiffiffiffiffi
−h

p
δhμν

�
−

1ffiffiffiffiffiffi
−h

p δIa
δΩ

≡ 0 ða ¼ K;ΛÞ: ð12Þ

3. Equations of motion

To write the equations of motion following from the total
action IG ¼ IK þ IΛ, we define4

Eμν½h� ≔ Rμν½h� −
1

2
hμνR½h�; ð13Þ

Dμν½Ω; h� ≔ −ðd − 2Þ
�
∇μ∇νΩ − ð∇μΩÞð∇νΩÞ

− hμν

�
∇2Ωþ d − 3

2
j∇Ωj2

��
: ð14Þ

It is easy to check that

Eμν½h� þDμν½Ω; h� ¼ Eμν½g�: ð15Þ

The equations of motion for the fiducial metric give the
fiducial Einstein equations

Eμν½h� ¼
κ2

Md−2
0

ðTΩ
μν þ TΛ

μνÞ ð16Þ

with

κ2

Md−2
0

TΩ
μν ≔ −Dμν½Ω; h�;

κ2

Md−2
0

TΛ
μν ¼ −Λhμνe2Ω:

ð17Þ

The equation of motion for the Ω field is

− 2ðd − 1Þ∇2Ω − ðd − 1Þðd − 2Þj∇ΩÞj2 þ R½h�

¼ 2dΛ
d − 2

e2Ω: ð18Þ

As a consequence of the Ward identities, the equation of
motion for Ω is automatically satisfied if the fiducial
Einstein equations are satisfied. In terms of the physical
metric, Eq. (16) becomes

Eμν½g� ¼ −Λgμν; ð19Þ

which is the physical Einstein equation. Similarly, Eq. (18)
can be recognized as the trace of the physical Einstein
equation:

R½g� ¼ 2dΛ
d − 2

: ð20Þ

4A detailed discussion of relevant conformal geometry will
appear in [1].
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B. Classical cosmology

A homogeneous and isotropic universe is described by
the Robertson-Walker metric. For a spatially flat spacetime,
one can choose a gauge in which the fiducial line element is
of the form

ds2 ¼ −dτ2 þ δijdxidxj ð21Þ

on the product space R ×Rd−1 where δij is the flat metric
on the spatial slice and τ is the conformal time. The
physical metric has a scale factor

aðτÞ ¼ eΩðτÞ: ð22Þ

The conformal time τ is related to the comoving cosmo-
logical time by

dτ ¼ dt
aðtÞ : ð23Þ

Consider a universe filled with a perfect fluid of energy
density ρ and pressure p. The classical evolution of the
universe is governed by the first Friedmann equation

H2 ¼ 2κ2ρ

ðd − 2Þðd − 1ÞMd−2
0

; ð24Þ

and conservation of the momentum tensor implies

_ρ ¼ −ðd − 1Þðpþ ρÞH; ð25Þ

whereH ≔ _a=a as usual. If the fluid satisfies the barotropic
equation of state p ¼ wρ for some constant barotropic
index w, then the solutions to (24) and (25) are given by

ρðtÞ ¼ ρ�

�
a
a�

�
−γ
; aðtÞ ¼ a�

�
1þ γ

2
H�t
�2

γ

; ð26Þ

where ρ�, H�, a� are the initial values of various quantities
at t ¼ 0, and γ ≔ ðd − 1Þð1þ wÞ. For the classical momen-
tum tensor of the cosmological term, we have ρ� ¼ λMd

0 ,
w ¼ −1 and γ ¼ 0. As γ → 0, one obtains nearly de Sitter
spacetime with nearly constant density.

C. Classical gravity and cosmology near
two dimensions

Consider the total gravitational action IG in the Weyl-
invariant formulation, which is the sum of the Einstein-
Hilbert action (5) and the cosmological term (6). We would
like to analyze the renormalization of this action near two
dimensions. For this purpose, we first consider the classical
action in d ¼ 2þ ϵ. To simplify the notation we henceforth
use Rh instead of R½h� for the Ricci scalar associated with

the metric h. Keeping only terms at most linear in ϵ and
using the rescaling (4) for the constants, we find

IG ¼ Mϵ
0

2κ2

Z
d2þϵx

ffiffiffiffiffiffi
−h

p
ðRh þ ϵðj∇Ωj2 þ RhΩÞ þ…Þ

− λM2þϵ
0

Z
d2þϵx

ffiffiffiffiffiffi
−h

p
eð2þϵÞΩ: ð27Þ

To make contact with Liouville theory in the next sub-
section, we define q and μ by

κ2 ¼ 2πϵ

q2
; λM2

0 ¼ μ: ð28Þ

The action then takes the form

IG ¼ q2

4π

Z
d2x

ffiffiffiffiffiffi
−h

p �
Rh

ϵ
þ j∇Ωj2 þ RhΩ−

4πμ

q2
e2Ω
�

þOðϵÞ: ð29Þ

This action is manifestly coordinate invariant and alsoWeyl
invariant to this order in ϵ. As a result it satisfies both Ward
identities (10) and (12).
Note that the cosmological evolution equations depend

analytically on d, so one can “dimensionally continue”
them. Near two dimensions, they can be derived either by
varying this action or, directly, by taking the limit of (24)
and (25) to obtain

H2 ¼ 2κ2

ϵ
ρΛ ¼ 4π

q2
ρΛ ð30Þ

and

_ρΛ ¼ −ð1þ wΛÞHρΛ: ð31Þ

For the classical cosmological fluid wΛ ¼ −1, the energy
density is constant, ρΛðtÞ ¼ μ, and the Hubble scale is
given byH2 ¼ 4πμ=q2. The physical metric corresponds to
the de Sitter metric in cosmological coordinates with scale
factor aðtÞ ¼ a�eHt.

D. Relation to timelike Liouville theory

To compare with the Liouville action, we define χ ≔ qΩ
so that the kinetic term is canonically normalized. The
ϵ-independent part of our action (29) then becomes

ITL½χ; h� ¼
1

4π

Z
d2x

ffiffiffiffiffiffi
−h

p
ðj∇χj2 þ qRhχ − 4πμe2βχÞ:

ð32Þ

Note that the kinetic term has a “wrong sign” because in our
conventions the metric has mostly positive signature.
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For this reason, χ is called “timelike” by analogy with the
field corresponding to the time coordinate of target space-
time on the two-dimensional world sheet of a string
[14–16,18,19,21]. In the classical theory β ¼ 1=q, but
we keep it as a free parameter in anticipation of quantum
corrections.
To “analytically continue” to the usual “spacelike”

Liouville theory we define

Q ¼ iq; φ ¼ iχ; b ¼ −iβ; ð33Þ

to obtain an action with the right-sign kinetic term:

IL½φ; h� ¼ −
1

4π

Z
d2x

ffiffiffiffiffiffi
−h

p
ðj∇φj2 þQRhφþ 4πμe2bφÞ:

ð34Þ

The Weyl transformations are given by

hμν → e2ξðxÞhμν; χ → χ − qξðxÞ; φ → φ −QξðxÞ:
ð35Þ

The charges are determined by requiringWeyl invariance of
the first two terms of the actions (32) and (34). Note though
that these two terms are not strictly Weyl invariant under
(35), but their Weyl variation is field independent with this
charge assignment. Hence the equations of motion are Weyl
invariant. This is the origin of the conformal invariance of
Liouville theory. Since we are interested in the analogy to
the higher-dimensional Weyl compensator, it is preferable
to include the first term of order 1=ϵ in (29) so that not just
the equations of motion but the action itself is manifestly
invariant under (35). Weyl invariance of the cosmological
term then requires that, classically, q ¼ 1=β or Q ¼ 1=b.
As we discuss in Sec. III, this relation is modified in the
quantum theory because of the anomalous Weyl dimension
of the cosmological constant operator.
To discuss renormalization in the quantum theory, it is

convenient to work in Euclidean space, obtained by doing a
Wick rotation.5 We denote the Lorentzian actions by I and
the Euclidean actions by S. The Euclidean action for
timelike Liouville is

STL½χ; h� ¼
1

4π

Z
d2x

ffiffiffi
h

p
ð−j∇χj2 − qRhχ þ 4πμe2βχÞ:

ð36Þ

For spacelike Liouville it is

SL½φ; h� ¼
1

4π

Z
d2x

ffiffiffi
h

p
ðj∇φj2 þQRhφþ 4πμe2bφÞ:

ð37Þ

Timelike Liouville theory as a two-dimensional model for
cosmology was considered earlier from different perspec-
tives in [60–63].

III. QUANTUM GRAVITY NEAR TWO
DIMENSIONS

We work “near” two dimensions in the spirit of the ϵ
expansion near four dimensions [64]. Practically, this
means we renormalize the theory in two dimensions but
keep ϵ nonzero. As noted earlier, the first term of order 1=ϵ
in the action (29) makes the Weyl invariance manifest just
as in higher dimensions. This makes the generalization to
higher dimensions more apparent.

A. Renormalization of the cosmological
constant operator

The cosmological constant operator e2βχ is a composite
operator and must be renormalized in the quantum theory. It
is most convenient to carry out this renormalization in
spacelike Liouville theory in Euclidean space. The analytic
continuation of these results to timelike Liouville and its
Lorentizan interpretation will be discussed later.
The Liouville action SL contains a nonpolynomial

exponential interaction. The cosmological constant oper-
ator should, in principle, be regularized in the interacting
theory defined by this action. However, it is well known
[65–70] that free-field normal ordering removes all short-
distance divergences of the theory. In other words, the
anomalous dimension of the cosmological constant oper-
ator in the fully interacting theory is the same as for a much
simpler theory of a free boson. Ultimately, this claim is
justified by exact results obtained using the conformal
bootstrap [24,71–74] and agrees with the Knizhnik-
Polyakov-Zamolodchikov critical exponents [75] com-
puted using matrix models [76–78], light-cone quantization
[79], and canonical quantization [80–83].
Anomalous dimensions of exponentials of free fields

have been studied extensively in string theory and two-
dimensional quantum gravity [84]. By the state-operator
correspondence, such exponentials correspond to momen-
tum eigenstates. To obtain the anomalous dimension, it is
usually adequate to perform renormalization in flat space
by normal ordering [85,86]. However, we are interested
here in all three components of the quantum momentum

5To perform a Wick rotation in curved spactime, it is
convenient to regard Euclidean space and Lorentzian spacetime
as different real slices of a complexified spacetime. Wick rotation
is then a complex coordinate transformation t ¼ −itE under
which all tensors transform as usual. In Lorentzian spacetime,
the path integral measure is eiI and the spacetime measure isffiffiffiffiffiffi
−h

p
. In Euclidean space the path integral measure is e−S and the

spacetime measure is
ffiffiffiffiffiffi
hE

p
. Using the fact that

ffiffiffiffiffiffiffiffiffi
−hE

p ¼ −i
ffiffiffiffiffiffi
hE

p
,

we obtain I → −S with all tensors the same except
ffiffiffiffiffiffi
−h

p
replaced

by
ffiffiffiffiffiffi
hE

p
.
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tensor given by metric variation of the quantum effective
action. We thus require the metric dependence of the
renormalized operator for an arbitrary curved metric.
Renormalization of the cosmological constant operator

in curved spacetime has been well studied in the literature
[84,85,87–89]. Since it is of crucial importance for our
conclusions, we present below a somewhat lengthy deri-
vation taking into account some of the subtleties, both in
the UV and in the IR. New conceptual questions of
interpretation arise in continuing the Euclidean computa-
tions to Lorentzian spacetime, which we discuss in
Sec. III B. We then write down the quantum effective
action for this renormalized term, compute the quantum
momentum tensor and check explicitly that the Ward
identities are satisfied.6

Consider the correlation function of exponentials in a
free theory in a curved background:

A0ðx1;…; xnÞ ≔
�Yn

i¼1

e2aiφðxiÞ
�

¼
Z

Dφe−S½φ;h�
Yn
i¼1

e2aiφðxiÞ

¼
Z

Dφe−Sþ
R

d2x
ffiffi
h

p
JðxÞφ: ð38Þ

The superscript “0” is a reminder that this is a bare
correlation function with the action

S½φ; h� ¼ 1

4π

Z
d2x

ffiffiffi
h

p
j∇φj2;

JðxÞ ¼ 2
Xn
i¼1

aiδð2Þðx; xiÞ: ð39Þ

We have set Q ¼ 0 in (37) so that the Liouville field is
neutral under (35). While the classical dimension depends
on Q, the anomalous dimension of our interest is inde-
pendent of Q. Using Wick’s theorem one obtains

A0ðx1;…; xnÞ ¼ exp

�
4π
X
i;j

aiajGhðxi; xjÞ
�

ð40Þ

where Gh is the scalar Green function7:

−∇2
hGhðx; yÞ ¼ δð2Þh ðx; yÞ ¼ δð2Þðx − yÞffiffiffi

h
p : ð41Þ

In general, the Green function for an arbitrary metric
hμν is hard to compute. However, in two dimensions,

∇2
h ¼ e−2Σh∇2

δ , and hence the (noncompact) Green equa-
tion is Weyl invariant. Moreover, in two dimensions one
can always choose a conformal coordinate frame so that

hμν ¼ e2ΣhðxÞδμν: ð42Þ

The Green function is then given by the flat space Green
function. The latter is known to be infrared divergent.8

To regulate this divergence, consider the class of asymp-
totically flat metrics so that ΣhðxÞ → 0 as jxj → ∞.
Introduce an IR cutoff by restricting R2 to a disk in the
flat metric

jxj2 ≔ δμνxμxν ≤ R2 ≔ 1=m2 ð43Þ

and impose Dirichlet boundary conditions at jxj ¼ R.
The resulting Green function is

Ghðx; yÞ ¼ Gδðx; yÞ ¼ −
1

4π
ln ðm2jx − yj2Þ for x ≠ y;

ð44Þ

where we have ignored the contribution from image
charges which are negligible in the limit R → ∞. The
boundary condition and the Green equation are both
invariant under Weyl transformations that asymptote to
unity for jxj → ∞. For all metrics related by such Weyl
transformations, the Green function is the same as above.
The Green function is also invariant under constant Weyl
transformations if we scale the IR cutoff at the same time.
Naively, the Weyl invariance of the Green function

implies that the IR-regulated n-point function is Weyl
invariant. But on general grounds, one expects that regu-
larization of UV divergences will introduce a dependence
on the metric that can violate the Weyl symmetry.
To compute this anomalous Weyl variation, we rewrite
the n-point function as

A0ðx1;…; xnÞ ¼
Y
i

e4πa
2
i G

0
hðxi;xiÞ

· exp
�
4π
X
i≠j

aiajGhðxi; xjÞ
�
: ð45Þ

As it stands, this is only a formal expression that is not well
defined. The prefactor is a product over exponentials of
Green functions evaluated at the same points, which are
divergent. We have therefore added a superscript to under-
score the fact that the coincident Green functions are bare
quantities. The origin of the UV divergence is clear from
(45): each exponential is a composite operator involving
products of the fundamental scalar field with divergent

6In Sec. III F we reverse the logic and compute the stress tensor
from the anomalous trace using the Ward identities.

7We define the Laplacian as −∇2
h so that it is a positive

operator.

8On a compact manifold there is no need for an IR regulator,
but the Laplacian has a zero mode which has to be treated
carefully [87,89].
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self-contractions. This is shown diagrammatically in Fig. 1
for a two-point function.
To regulate this divergence we rewrite the coincident

Green function as

Gε
hðx; xÞ ¼

Z
d2y

ffiffiffi
h

p
δð2Þh ðx; yÞGhðy; xÞ

¼
Z

d2y
ffiffiffi
h

p
Khðx; y; εÞGhðy; xÞ; ð46Þ

where we have replaced the delta function by the heat
kernel with a short time cutoff9 ε since

Khðx; y; εÞ → δð2Þh ðx; yÞ as ε → 0: ð47Þ

The short-time expansion of the heat kernel can be obtained
using standard methods in terms of Seely-deWitt coeffi-
cients. The computations are simpler in the conformal
frame (42). The leading behavior is given by

Khðx; y; εÞ ¼
1

4πε
exp

�
e2ΣhðxÞjx − yj2

4ε

�
ð1þ � � �Þ: ð48Þ

The regularization separates the two points by a distance of
order

ffiffiffi
ε

p
. Using this expansion one obtains

Gε
hðx; xÞ ¼

1

2π
ΣhðxÞ −

1

4π
lnð4e−γm2εÞ; ð49Þ

where γ is the Euler-Mascheroni constant. More details and
an alternative derivation in dimensional regularization are
given in Appendix A.
The final expression (49) for the regulated coincident

Green function is not yet completely coordinate invariant
because ΣhðxÞ is the conformal factor of the metric only in
the conformal frame. One might be tempted to write ΣhðxÞ
in terms of the determinant of the metric, but this cannot be
correct because Gε

hðx; xÞ must be a scalar, whereas the
determinant of the metric is a scalar density. To obtain a
manifestly coordinate-invariant scalar expression we note
that

Rh ¼ e−2ΣhðxÞðRδ − 2∇2
δΣhðxÞÞ ¼ −2∇2

hΣhðxÞ: ð50Þ

By solving this Poisson equation, the conformal factor can
be written as

ΣhðxÞ ¼
1

2

Z
d2y

ffiffiffi
h

p
Ghðx; yÞRhðyÞ: ð51Þ

A manifestly coordinate-invariant and regularized coinci-
dent Green function is then

Gε
hðx; xÞ ¼

1

4π

Z
d2y

ffiffiffi
h

p
Ghðx; yÞRhðyÞ

−
1

4π
lnð4e−γm2εÞ: ð52Þ

Renormalization now consists in simply adding
1
4π lnð4e−γM2εÞ so the divergent term with ε is removed.
Since ε is a pure number10 independent of coordinates and
the metric, this procedure is manifestly coordinate invariant
and local. Renormalization has introduced an arbitrary
scale M. The renormalized coincident Green function is
then given by

Ghðx; xÞ ¼
1

4π

Z
d2y

ffiffiffi
h

p
Ghðx; yÞRhðyÞ þ

1

4π
lnðM2=m2Þ

ð53Þ
which, however, is not a local functional of the metric.11

The renormalized n-point function can now be obtained
simply by replacing the bare coincident Green function
G0

hðx; xÞ in (45) by the renormalized coincident Green
function (53). The resulting answer is finite and indepen-
dent of ε, but it depends on the renormalization scale. It
corresponds to a multiplicative renormalization of each of
the bare exponentials:

½e2aφðxÞ�εh ≔ e−a
2 ln ð4e−γM2εÞ½e2aφðxÞ�h

≔ ZaðMÞ½e2aφðxÞ�h ð54Þ

where the notation ½O�εh indicates an operatorO regularized
using the metric h and cutoff ε, whereas ½O�h without a
superscript indicates the renormalized version of the same
operator. We have defined the multiplicative operator
renormalization ZaðMÞ to make contact with the usual
flat-space renormalization. Even though this procedure is
manifestly local and coordinate invariant, it is not Weyl
invariant because it depends on the background metric.
With this renormalization prescription, the n-point function
renormalized using the h metric is given by

FIG. 1. The red daisies at each point come from self-
contractions. Each petal of a daisy is a coincident Green function,
and the sum over these daisies gives a divergent exponential.

9We use ε for the short-time cutoff and ϵ for the dimensional
regulator.

10It is convenient to regard all quantities including spacetime
coordinates and mass scales likem as dimensionless, measured in
units of the fundamental UV scale M0 introduced earlier, which
we can set to one.

11This nonlocality was emphasized earlier in [90].
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Ahðx1;…; xnÞ ¼ m−2ð
P

i
aiÞ2
Y
i

ðMeΣhðxiÞÞ2a2i

· exp

�
−
X
i≠j

aiaj log jxi − xjj2
�
: ð55Þ

The first factor simply imposes momentum conservation:
the correlation function vanishes unless the total momen-
tum is zero.12 This is to be expected because momentum is
the charge corresponding to a continuous global symmetry
φ → φþ c which cannot be spontaneously broken in two
dimensions by the Coleman-Mermin-Wagner theorem.
Imposing momentum conservation, the final expression
for the renormalized n-point function is given by

Ahðx1;…; xnÞ ¼
Y
i

e2a
2
i ΣhðxiÞ

Y
i≠j

1

ðMjxi − xjjÞ2aiaj
: ð56Þ

For ΣhðxÞ ¼ − logðMÞ, we obtain the familiar answer from
flat-space conformal field theory.
The n-point correlators renormalized in two different

metrics are related by

Ah0 ðx1;…; xnÞ ¼
Y
i

e2a
2
i ðΣh0 ðxiÞ−ΣhðxiÞÞAhðx1;…; xnÞ: ð57Þ

This follows from (56) and the fact that the noncoincident
Green function given by (44) is independent of the metric.
Interpreting the correlation function in operator language,
we conclude that the exponential operator renormalized
using the metric h0 is related to the one renormalized using
the metric h by

½e2aφ̂ðxÞ�h0 ¼ e2a
2ðΣh0 ðxÞ−ΣhðxÞÞ½e2aφ̂ðxÞ�h ð58Þ

where the hatted variable denotes a quantum operator rather
than a classical field.
The cosmological constant operator in Liouville theory

corresponds to a ¼ b. The Weyl transformation of the
renormalized cosmological constant operator has an
anomalous contribution from (58) as computed above
because of the implicit dependence on the metric through
renormalization. In addition, for nonzero Q, there is also a
classical contribution because of the explicit dependence
on φ which transforms as in (35). The net Weyl trans-
formation is

½e2bφ̂ðxÞ�h → e−ð2bQ−2b2ÞξðxÞ½e2bφ̂ðxÞ�h: ð59Þ

We interpret 2bQ as the classical Weyl weight and −2b2 as
the anomalous Weyl weight.

B. Lorentzian interpretation

At a formal level, analytic continuation to timelike
Liouville in Lorentzian spacetime is straightforward using
(33) and a Wick rotation. We use the same covariant
expression for Σh:

ΣhðxÞ ¼
1

2

Z
d2y

ffiffiffiffiffiffi
−h

p
Ghðx; yÞRhðyÞ ð60Þ

where the Green function13 is the solution of the Lorentzian
Green equation without any i:

−∇2Ghðx; yÞ ¼ δð2Þh ðx; yÞ ¼ δð2Þðx − yÞffiffiffiffiffiffi
−h

p : ð61Þ

Physical interpretation in the Lorentzian signature is
subtle. We discuss below some of the puzzles that one
encounters in interpreting the Lorentzian action and their
resolutions.

(i) Choice of the Green function: The Lorentzian Green
function appearing in the expression (60) for the Σh
depends on the choice of the boundary condition.
The Euclidean Green function in Sec. III is unique,
and usually it would continue to the Feynman
propagator under a Wick rotation. However, one
could equally well choose retarded or advanced
boundary conditions, which would lead to very
different physics. Which of these Green functions
is physically relevant? We are eventually interested
in using the quantum effective action to study
classical evolution equations. Appearance of Feyn-
man propagators in the effective action would lead to
noncausal dynamics because it would involve neg-
ative energy modes traveling backward in time. Such
an effective action would be unphysical. However, in
time-dependent situations as in cosmology, the in-
vacuum and the out-vacuum are, in general, differ-
ent. A natural object to consider is not the usual
in-out effective action, but the in-in effective action
in the Schwinger-Keldysh formalism [91,92]. It is
known that one can obtain the in-in effective action
from the in-out one by replacing Feynman propa-
gators by retarded Green functions [93–96].

(ii) Choice of the vacuum: In canonical formalism in the
Lorentzian theory, the choice of the metric used
for renormalization corresponds to the choice of
the vacuum, as we discuss below. We choose the
Minkowski metric ημν as a reference metric, which
corresponds to δμν under Euclidean continuation.

12Operators with positive Weyl weight are defined only for
ai ¼ iki for real ki. They correspond to normalizable charge
eigenstates in the Hilbert space. The prefactor is then a positive
power of m which vanishes as m → 0. For operators with
negative weight the correlation functions diverge at large sepa-
ration. The corresponding states are not normalizable and have to
be interpreted using an analog of the Gelfand triple [24].

13AWick rotation would give a factor of i for the measure and a
factor of −i for the Green function. In (60) and (61) we drop both
factors.
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Continuation of (58) gives the following equation
for the renormalized cosmological constant operator
in Lorentzian spacetime:

½e2βχ̂ðxÞ�h ¼ e−2β
2ΣhðxÞ½e2βχ̂ðxÞ�η: ð62Þ

As it stands, Eq. (62) is an operator equation with
a quantum operator χ̂ðxÞ in the exponent. In the
cosmological term in the quantum effective action,
we would like to regard χðxÞ as a classical field. This
is achieved using the background field method by
replacing χ̂ðxÞ by χðxÞ þ χ̂qðxÞ. The unhatted var-
iable is a classical background field, and the hatted
variable is the fluctuating quantum field. For the free
action, χ̂qðxÞ is also a free field.14 We then have the
relation

½e2βðχðxÞþχ̂qðxÞÞ�h ¼ e2βχðxÞ−2β2ΣhðxÞ½e2βχ̂qðxÞ�η: ð63Þ
The passage to the in-in effective action still requires
a choice of the in-vacuum to compute the in-in
matrix element of this operator. Which state should
one choose as the in-vacuum? The choice of the
vacuum is a deep and unresolved question in
cosmology since it concerns the initial state in which
the universe “got prepared.” Even in a free theory,
there are many possible Fock vacua that are a priori
equally valid as initial states. In general, the Fock
vacuum depends on the metric used to define the
Klein-Gordon inner product. This inner product is
essential to obtain the division of the modes of the
Klein-Gordon operator (on a globally hyperbolic
spacetime) into positive-frequency and negative-
frequency modes, and hence to determine the class
of annihilation operators that should annihilate the
vacuum. A conventional choice is the “Bunch-
Davies” vacuum jηi, obtained using the Klein-
Gordon inner product defined with respect to the
flat Minkowski metric η. This would coincide with
the conformal or the adiabatic vacuum [99].

In summary, a physically reasonable interpretation of the
Lorentzian continuation requires that we consider the in-in
quantum effective action and hence use retarded Green
functions. The cosmological term can be regarded as the
expectation value in the η vacuum of the operator renor-
malized using the hμν metric. We denote this classical
quantity by Oβ

h:

Oβ
h ≔ hηj½e2βðχðxÞþχ̂qðxÞÞ�hjηi
¼ e2βχðxÞ−2β2ΣhðxÞhηj½e2βχ̂qðxÞ�ηjηi
¼ e2βχðxÞ−2β2ΣhðxÞ; ð64Þ

where in the second equality we have used the fact that, in
the Hamiltonian formalism, renormalization in the metric η
corresponds to normal ordering with respect to the η
vacuum; hence, the expectation value of the exponential
equals one.
With these ingredients, the integrated renormalized

cosmological term in the quantum effective action takes
the final form

IΛ½χ; h� ¼ −μ
Z

d2x
ffiffiffiffiffiffi
−h

p
Oβ

h: ð65Þ

The Weyl transformation of Oβ
h is given by

Oβ
h → e−ð2βqþ2β2ÞξðxÞOβ

h: ð66Þ

Since the integration measure
ffiffiffiffiffiffi
−h

p
has Weyl weight −2,

quantum Weyl invariance of the integrated cosmological
term implies

2βqþ 2β2 − 2 ¼ 0 or q ¼ 1

β
− β: ð67Þ

In the Liouville literature, 2β2 is sometimes referred to as
the “anomalous gravitational dressing” of the identity
operator. Recall that, classically, Weyl invariance required
that β ¼ 1=q. We can regard 1=q as the coupling constant
and interpret our results as quantum corrections to β so that
Weyl invariance is maintained at the quantum level:

β ¼ q
2

 
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

q2

s !
¼ 1

q
−

1

q3
þ 2

q5
þ � � � : ð68Þ

C. Nonlocal quantum effective action

With this interpretation, the cosmological term in
Lorentzian spacetime in terms of Ω becomes

IΛ½Ω; h� ¼ −μ
Z

d2x
ffiffiffiffiffiffi
−h

p
e−2β

2Σhe2βqΩ

¼ −μ
Z

d2x
ffiffiffiffiffiffi
−h

p
e−2β

2ðΩþΣhÞe2Ω: ð69Þ

The total gravitational effective action for the background
fields is given by

Ieff ½Ω; h� ¼
q2

4π

Z
d2x

ffiffiffiffiffiffi
−h

p �
Rh

ϵ
þ j∇Ωj2 þ RhΩ

−
4πμ

q2
e2Ωe−2β

2ðΩþΣhÞ
�
: ð70Þ

One can choose a gauge in whichΩ ¼ 0 so that the fiducial
metric can be identified directly with the physical metric
defined by (1). In this physical gauge, the action takes the
form

14In the background field method one chooses an external
source as a functional of the background field in such a way as to
cancel all tadpoles. See [97,98] for a concise summary.
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Ieff ½g� ¼
q2

4π

Z
d2x

ffiffiffiffiffiffi
−g

p �
Rg

ϵ
−
4πμ

q2
e−2β

2Σg

�
: ð71Þ

The effective action is nonlocal, and one might worry
about possible ghosts. In fact, in the local formulation
described in Sec. IV E, one of the auxiliary fields has a
negative kinetic term. Quantization of this degree of free-
dom would typically lead to a violation of both causality
and unitarity. The correct point of view is to regard the
quantum effective action as the result of having evaluated a
path integral in the presence of a classical background
field. Thus, this effective action is not to be quantized
further but rather to be used to study effective dynamics
classically. After imposing appropriate initial conditions,
one expects a ghost-free causal evolution because the
original path integral is well defined.
In addition to the anomalous Weyl dimension of the

cosmological constant operator, there is the usual source of
Weyl anomaly which is proportional to the central charge.
We consider gravity coupled to conformal matter with
central charge cm. The Fadeev-Popov ghosts have central
charge −26, and the Liouville field has central charge 1.
Quantum Weyl invariance then requires that the total
anomalous central charge vanishes:

ctotal ¼ cm − 26þ 1 ¼ 0: ð72Þ
Note that when the first term of order 1=ϵ in (70) is
included, the classical Liouville action is invariant under
Weyl transformations. As a result, the central charge of the
Liouville field is 1 and not ð1 − 6q2Þ, and q2 is a free
parameter independent of cm even after imposing quantum
Weyl invariance. The semiclassical limit corresponds to
large q independent of cm. This is more natural from the
point of view of dimensional continuation to d dimensions.

D. Quantum momentum tensor

The quantum momentum tensor associated with the
effective action (69) is given by15

TΛ
μνðxÞ ≔

−2ffiffiffiffiffiffi
−h

p δIΛ
δhμνðxÞ ¼ −μOβ

hðxÞhμν

− 4μβ2
Z

dyΣμνðx; yÞOβ
hðyÞ: ð73Þ

The second term is the variation of the nonlocal term:

Σμνðx; yÞ ≔
1ffiffiffiffiffiffi
−h

p δΣðyÞ
δhμνðxÞ

¼ 1ffiffiffiffiffiffi
−h

p δ

δhμνðxÞ
1

2

Z
dzGyzRhðzÞ ð74Þ

whereGxy is shorthand forGhðx; yÞ and dy is shorthand for
d2y

ffiffiffiffiffiffi
−h

p
. Using the variation of the Green function

computed in Appendix B, we obtain

2Σμνðx; yÞ ¼ hμν∇2Gxy −∇μ∇νGxy−
Z

dzRhðzÞ

×

�
∇ðμGyx∇νÞGxz −

1

2
hμν∇αGyx∇αGxz

�
ð75Þ

where all derivatives and unspecified arguments of fields
such as hμν correspond to the variable x, and we have used
the fact that the Einstein tensor in two dimensions vanishes.
The final expression for the quantummomentum tensor can
be written as

TΛ
μνðxÞ ¼ −μð1 − β2ÞhμνOβ

hðxÞ þ 2μβ2SμνðxÞ ð76Þ

where Sμν is nonlocal and traceless:

SμνðxÞ ¼
Z

dy

�
∇μ∇ν −

1

2
hμν∇2

�
GxyO

β
hðyÞ

þ
Z

dydz½∇ðμGyx∇νÞGxz:

− :
1

2
hμνhαβ∇αGyx∇βGxz�Oβ

hðyÞRhðzÞ: ð77Þ

E. Quantum Ward identities

We first check the Ward identity (12) for Weyl invariance
for the renormalized cosmological term (69). The left-hand
side of (12) evaluates to

hμνTΛ
μν −

1ffiffiffiffiffiffi
−h

p δIΛ
δΩ

¼ −2μð1 − β2ÞOβ
h þ 2μβqOβ

h: ð78Þ

It vanishes precisely when β is related to q by (67). This is
to be expected because theWeyl Ward identity is simply the
infinitesimal version of invariance under finite Weyl trans-
formations which is what was used to obtain (67). The
important point is that unless we modify β as in (68) away
from its classical value, the full quantum theory would be
anomalous. Anomalies in Weyl invariance are unavoidable
because of the necessity to regularize the path integral. In
the present context, we manage to maintain Weyl invari-
ance at the quantum level by starting with a value of β such
that the theory is notWeyl invariant at the classical level but
it becomes Weyl invariant at the quantum level once the
anomalous variations are taken into account.
For diffeomorphisms, we do not expect any anomalies

because the renormalization procedure is manifestly coor-
dinate invariant. To explicitly check the Ward identity we
compute the covariant derivative of (76). Using the com-
mutator in two dimensions,

15In two dimensions, the momentum tensor obtained by
varying the fiducial metric hμν for fixed Ω is the same as the
momentum tensor obtained by varying the physical metric gμν.
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½∇μ;∇ν�Vμ ¼ RμνVμ ¼ 1

2
RhVν; ð79Þ

and the Green equation to cancel terms, we obtain

∇μTΛ
μν ¼ −μ∇νO

β
h − μβ2Oβ

hðxÞ
Z

dzRhðzÞ∇νGxz

¼ −2μβqOβ
h∇νΩ ð80Þ

where in the last step we have integrated by parts and
used the expression for the renormalized operator (64).
This coincides with the Ω variation of the action,

1ffiffiffiffiffiffi
−h

p δIΛ
δΩ

∇νΩ ¼ −2μβqOβ
h∇νΩ: ð81Þ

F. Quantum momentum tensor from
the Weyl anomaly

One can derive the momentum tensor directly using the
Weyl anomaly by reversing the logic of the previous
subsection. We assume the diffeomorphism Ward identities
rather than verify them. Our assumption is justified by the
fact that our renormalization scheme used for computing
the anomalous Weyl dimension is manifestly coordinate
invariant, and hence there is no possibility of diffeomor-
phism anomalies. The advantage of this method is that one
can avoid the intermediate step of deducing the quantum
effective action and directly obtain the quantummomentum
tensor required in the equations of motion.
For this purpose it is convenient to use the conformal

frame (42) with lightcone coordinates.16 The only non-
vanishing Christoffel symbols are

Γþ
þþ ¼ 2∂þΣh; Γ−

−− ¼ 2∂−Σh: ð82Þ

In two dimensions, the momentum tensor has only three
independent components. Diffeomorphism Ward identities
(10) give two equations. From the Weyl anomaly one
obtains

Tþ− ¼ 1

2
μð1 − β2Þe2ΣhOβ

hðxÞ: ð83Þ

Together we obtain three equations for all three unknowns.
The diffeomorphism Ward identity for the ν ¼ þ compo-
nent gives

∂−Tþþ þ ∂þT−þ − 2∂þΣhT−þ ¼ μð1 − β2Þ∂þΩe2ΣhOβ
h

ð84Þ

which after use of (83) becomes

∂−Tþþ ¼ 1

2
μβ2∂þðe2ΣhOβ

hÞ:

Taking a derivative with respect to þ on both sides we
obtain

−∇2
hTþþ ¼ 2μβ2e−2Σh∂2þðe2ΣhOβ

hÞ ð85Þ

where −∇2
h is the scalar Laplacian. Solving this Poisson

equation we obtain

TþþðxÞ ¼ 2μβ2
Z

dy∂2þGxyO
β
hðyÞ: ð86Þ

We rewrite the partial derivatives as covariant ones and use
the expression (51) for the Σh factors in the Christoffel
symbols (82) to obtain a covariant expression

TþþðxÞ ¼ 2μβ2
Z

dy∇þ∇þGxyO
β
hðyÞ

þ 2μβ2
Z

dydz∇þGyx∇þGxzO
β
hðyÞRhðzÞ ð87Þ

in agreement with (76). The component T−− can be
computed similarly.

IV. QUANTUM COSMOLOGY NEAR TWO
DIMENSIONS

In this section we examine the cosmological conse-
quences of the quantum anomalies summarized by this
effective action (70) assuming a positive cosmological
constant μ > 0.

A. Quantum evolution equations for cosmology

The quantum momentum tensor appearing on the right-
hand side of the Einstein equation is nonlocal. The quantum
evolution equations for cosmology are no longer given by
the usual Friedmann-Lemaître equations but rather by a set
of integro-differential equations.
Surprisingly, the quantum momentum tensor simplifies

considerably for the isotropic and homogeneous universes
when the fiducial metric is flat andΩ depends only on time.
The retarded Green’s function of the Laplacian in two-
dimensional flat spacetime is given by

Gretðx; yÞ ¼
1

2
Θðτx − τy − jrx − ryjÞ: ð88Þ

For flat fiducial metrics, the second term in the expression
(77) for Sμν vanishes and the first term gives Sμν ¼
ðδτμδτν þ 1

2
ημνÞOβ

hðτÞ. The total momentum tensor is given by

TΛ
μνðτÞ ¼ −μðð1 − 2β2Þημν − 2β2δτμδ

τ
νÞOβ

hðτÞ: ð89Þ

16We use the (þþþ) conventions of Misner, Thorne, and
Wheeler. Our light-cone coordinates are x� ≔ t� x. The flat
metric in these coordinates is ηþ− ¼ − 1

2
with

ffiffiffiffiffiffi−ηp ¼ 1
2
and

∇2
η ¼ −4∂þ∂−.
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From the components of TΛ
μν we can identify its density and

pressure as

ρΛðτÞ ¼ μe−2β
2ΩðτÞ;

pΛðτÞ ¼ −μð1 − 2β2Þe−2β2ΩðτÞ ð90Þ

which imply the equation of state

pΛ ¼ wΛρΛ with wΛ ¼ −1þ 2β2: ð91Þ

Thus, in the semiclassical limit of small β, the barotropic
index is slightly bigger than −1.
Remarkably, the nonlocal quantum cosmological

momentum tensor has reduced to a local one with a
particularly simple form corresponding to a barotropic
perfect fluid. The net effect of the nonlocal quantum
contribution to the momentum tensor is simply to modify
the barotropic index from −1 to −1þ 2β2. With this
simplification for the momentum tensor, the complicated
integro-differential equations for cosmological evolution
reduce to the familiar Friedmann equations for a perfect
fluid, but with an unusual barotropic index. Applying the
formulas from our discussion of classical cosmology, in
particular (26), we see that γ ¼ 2β2 for the vacuum fluid.
We arrive at the conclusion that the quantum cosmological
term leads to an expanding universe with decaying vacuum
energy density and power-law expansion

ρðtÞ ¼ ρ�

�
a
a�

�
−2β2

; aðtÞ ¼ a�ð1þ β2H�tÞ
1

β2 : ð92Þ

B. Cosmological implications of the quantum decay
of vacuum energy

These theoretical conclusions have potentially far-reach-
ing implications for addressing some of the fundamental
puzzles in modern cosmology [1]. We briefly comment on
some of these consequences that can generalize to higher
dimensions in a model-independent way. An analogous
analysis of four-dimensional quantum cosmology will be
presented in [1,59].
The quantum decay of vacuum energy can provide a

dynamical solution to the cosmological constant problem
[100–104]. One can imagine that the universe starts off
with a very large cosmological constant. The initial
magnitude ρ� of the vacuum energy density is of the order
of M2

0 for the cutoff scale M0 which can be of the order of
the string scale or the scale of supersymmetry breaking.
Classically, one would obtain exactly de Sitter spacetime
with exponential expansion and constant energy density.
With even a very small value of the anomalous gravitational
dressing, the dynamics of the universe is very different and
one would obtain instead a slowly rolling, inflating uni-
verse. The exponential expansion is slowed down to a
power-law expansion. The density is no longer constant but

keeps decreasing and can become arbitrarily small com-
pared to its initial value. For an observer at a very late time,
the effective vacuum energy density is much smaller
than ρ�.
This quantum dynamics of the Omega field can drive

slow-roll inflation in the early universe. It is convenient to
define slow-roll parameters as usual in terms of the frac-
tional change in the Hubble parameter and its derivative:

εH ≔ −
_H
H2

¼ −
d lnH
Hdt

and ηH ≔
_εH
HεH

¼ d ln εH
Hdt

:

ð93Þ

For our model we find

εH ¼ β2 and ηH ¼ 0: ð94Þ
Slow-roll inflation that lasts long enough requires that
εH ≪ 1 and ηH ≪ 1. Since β is small in the semiclassical
approximation, these conditions are satisfied. Note that the
Omega field is not really a physical scalar but simply a
mode of the metric in a particular gauge. Thus, the universe
undergoes slow-roll inflation without a fundamental scalar,
driven entirely by vacuum energy through the nontrivial
quantum dynamics of the Omega field. Our model thus
provides a two-dimensional realization of Omega-driven
inflation or “omflation” in [1]. As it stands, our model leads
to an empty universe because it simply keeps inflating.
With matter fields, it would be possible to construct more
realistic scenarios with graceful exit and primordial
perturbations.
In our two-dimensional model, dark energy in the

present era is fundamentally no different than the “dark
energy” that drives omflation in the early universe. In
particular, both decay slowly, and the slow-roll parameter
would be given by εH as above. Of course, this is far from a
realistic model for the history of the universe. We have not
attempted to construct a graceful exit that can start a hot big
bang. However, it raises the interesting possibility that dark
energy today would also be slowly varying, perhaps with
measurable variation. It would be interesting to construct a
complete two-dimensional model of cosmology with these
ingredients. We leave this problem for the future.

C. Existence of the quantum theory

We have treated the timelike Liouville theory semiclassi-
cally. It would be very interesting if one can make sense of
the quantum theory as a solvable model. It is well known
that the conformal factor of the metric has a “wrong-sign”
kinetic term [105]. For this reason, timelike Liouville
theory is a better model [60–63] of four-dimensional
gravity rather than the much-studied spacelike Liouville
theory.
Path integral quantization of timelike Liouville theory is

complicated because the action is unbounded from below
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and the measure is not shift invariant. Fortunately, in two
dimensions, the framework of conformal bootstrap [71]
offers another approach to defining the theory in terms of
the spectrum of operators together with the two- and three-
point functions satisfying the bootstrap constraints. All higher
point functions can, in principle, be constructed by gluing.
There has been steady progress over the past decade in
solving the timelike Liouville theory within this framework.
In particular, the three-point function which solves the
Teschner relations [24] was obtained in [16,17]. This exact
result can be reproduced from semiclassical computations
[19] and using Coulomb gas methods [20]. Moreover, it has
recently been shown numerically that these three-point
functions solve the full bootstrap constraints [21].
Given this state of knowledge, one may hope that all

ingredients required for defining two-dimensional quantum
gravity are in place. As a first step towards this goal, a no-
ghost theorem can be proven by studying the BRST
cohomology of matter and ghosts coupled to timelike
Liouville [106]. However, several subtleties remain as
we summarize below.

(i) The Weyl-invariant measure of the quantum gravity
path integral is induced by the norm

ðδχ; δχÞ ≔
Z

d2x
ffiffiffiffiffiffi
−h

p
e2βχδχðxÞδχðxÞ: ð95Þ

This measure on field space suppresses quantum
fluctuations from the regions where χ is very
negative. In Liouville theory, on the other hand,
one uses a shift-invariant measure which has no
such suppression. This raises the question of
whether Liouville theory is the correct model for
two-dimensional quantum gravity [69]. In the case
of spacelike Liouville, the theory possesses a non-
trivial duality symmetry under b → 1=b. This sug-
gests that the action contains the dual cosmological
term in addition to the usual cosmological term [73].
This term in the action grows exponentially for very
negative φ and can suppress the unwanted quantum
fluctuations. The situation is more complicated for
timelike Liouville. Even though the theory possesses
an analogous β → 1=β duality symmetry, the dual
cosmological term is imaginary along the integration
cycle that renders the path integral well defined.
Hence, it is not clear if it suppresses the undesirable
quantum fluctuations.

(ii) Regions of very negative χ correspond to very short
distances in the physical metric. If one wishes to
suppress the quantum fluctuations by hand, then one
would have to restrict the range of the field χ in the
path integral. This is a generic problem in defining a
path integral over metrics. A nonrenormalizable
effective field theory such as gravity in four dimen-
sions is well defined only up to some distance scale.

When the metric is dynamical, putting a physical
cutoff such as the Planck length at short distances
really requires putting a boundary in field space.
This is again a UV problem.

(iii) One can regard two-dimensional gravity as a model
for supercritical bosonic string theory. From the
target space perspective, the bosonic (super)critical
string theory contains a tachyon in the spectrum. The
cosmological constant can be viewed as the expect-
ation value of the tachyon field. In the target space, a
field with a tachyonic potential implies an instability
of the vacuum, which is related to the c ¼ 1 barrier
[68,107]. Any nonzero expectation value away from
the top of the potential will cause the system to roll
away from the unstable extremum. The renormali-
zation group beta function equations on the two-
dimensional “world-sheet,” which correspond to
classical equations of motion in target space, seem
to support this conclusion [61]. One may interpret
the decaying value of the effective cosmological
constant as rolling down the tachyon potential. It is
possible that this renders even the semiclassical
analysis unreliable, as argued in [61]. However,
one must be cautious with such a naive interpreta-
tion. Timelike Liouville theory apparently makes
sense for all values of the cosmological constant.
Moreover, the mass of the tachyon is comparable to
the mass of other string modes. It is not meaningful
to ignore these modes in the beta function analysis.
A satisfactory treatment should take all modes into
account, perhaps using closed string field theory.

The presence of tachyons has been identified with a UV
problem of the world-sheet theory corresponding to too-
rapid asymptotic growth of density of states at high energy
[107]. One possibility is that the tachyonic instability and
the above-mentioned problems are the analogs of the
nonrenormalizability of higher dimensional quantum grav-
ity. It is otherwise difficult to imagine an analog of the
tachyonic instability in higher dimensions in “target space”
with multiple universes joining and splitting. We hope to
return to these questions in [106].
In any case, the main lesson that we wish to abstract away

is the observation that when gravity is dynamical, various
operators coupled to gravity such as the identity operator can
have anomalous gravitational dressings, independent of the
problem of nonrenormalizability. Even small values for these
gravitational dressings can have observable effects in the
cosmological setting when the universe undergoes expo-
nential expansion with several e-foldings.

D. Local form of the on-shell quantum
momentum tensor

If the fiducial metric is flat, then it is possible to obtain a
local expression for the quantum momentum tensor upon
using the equations of motion for the Ω field:
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∇2Ω −
1

2
Rh þ

4π

q
μβOβ

h ¼ 0 ð96Þ

where we have used qβ ¼ 1 − β2. Using this equation with
Rh ¼ 0, Sμν in (77) becomes

Sμν ¼ −
q

4πμβ

�
∇μ∇ν −

1

2
ημν∇ · ∇

�Z
dyGxy∇2

yΩðyÞ

¼ q
4πμβ

�
∇μ∇ν −

1

2
ημν∇2

�
ΩðxÞ: ð97Þ

The total quantum momentum tensor can be obtained from
the variation of the Ω-dependent part of the quantum
effective action (70):

Tq
μν ¼ q2

2π

�
1

βq

�
∇μ∇ν −

1

2
ημν∇2

�
ΩðxÞ

−∇μΩ∇νΩþ 1

2
ημνð∇ΩÞ2

�
: ð98Þ

Interestingly, the original nonlocal expression has reduced
to a local expression. It is instructive to compare this local
expression with the classical momentum tensor

Tcl
μν ¼

q2

2π

��
∇μ∇ν −

1

2
ημν∇2

�
ΩðxÞ

−∇μΩ∇νΩþ 1

2
ημνð∇ΩÞ2

�
: ð99Þ

Both tensors are properly traceless, and hence Tþ− ¼ 0.
The ðþþÞ components are

Tclþþ ¼ −
q2

2π
½ð∂þΩÞ2 − ∂2þΩ�; βq ¼ 1; ð100Þ

Tq
þþ ¼ −

q2

2π

�
ð∂þΩÞ2 −

1

βq
∂2þΩ

�
; βq ¼ 1 − β2:

ð101Þ

Imposing the Virasoro constraint corresponds to solving
Einstein equations for spatially flat metrics near two
dimensions. We see that the solution is given by

eΩðτÞ ¼ eΩ�

�
τ

τ�

�−1
βq ¼ eΩ�

�
τ

τ�

� 2
γ−2
: ð102Þ

In the classical case we have βq ¼ 1 and γ ¼ 0, whereas in
the quantum case we have βq ¼ 1 − β2 and γ ¼ 2β2. With
aðτÞ ≔ eΩðτÞ and after writing the conformal time in terms
of the comoving time, the solution is in agreement
with (26).

E. Local formulation with auxiliary fields

The nonlocal action (69) can be rewritten in a local form
[108,109] by introducing two auxiliary fields ΣðxÞ and
ΨðxÞ with the action

IΛ ¼ −μ
Z

d2x
ffiffiffiffiffiffi
−h

p
½e2ð1−β2ÞΩe−2β2Σ þΨð2∇2Σþ RhÞ�:

ð103Þ

The equations of motion for the auxiliary fields are

−∇2Σ ¼ 1

2
Rh; ð104Þ

−∇2Ψ ¼ −β2e2Ωe−2β2ðΩþΣÞ: ð105Þ

The first equation enforces the field ΣðxÞ to be the
conformal factor of the fiducial metric hμν ¼ e2Σημν.
After eliminating the auxiliary fields by using their
equations of motion, we recover our nonlocal action
(69). The action is invariant under the Weyl transformation

Σ → Σþ ξ; Ω → Ω − ξ;

hμν → e2ξhμν; Ψ → Ψ: ð106Þ

The local momentum tensor resulting from this action is

TΛ
μν ¼ −μ½hμνðe2Ωe−2β2ðΩþΣÞ − 2∇Ψ · ∇ΣÞ

þ 4∇ðμΨ∇νÞΣþ 2ð∇μ∇ν − hμν∇2ÞΨ� ð107Þ

which again reduces to (76) after using (104) and (105).
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APPENDIX A: REGULARIZED COINCIDENT
GREEN FUNCTION

We now compute the coincident Green function, first
using a short-time cutoff and then using dimensional
regularization. Both methods are manifestly local and
coordinate invariant.17 A common basic ingredient is the
d-dimensional heat kernel Khðx; y; sÞ satisfying the heat
equation

ð∂s −∇2
hÞKhðx; y; sÞ ¼ δðsÞδðdÞðx; yÞ ðA1Þ

with the initial condition

Khðx; y; 0Þ ¼ δðdÞðx; yÞ: ðA2Þ

In flat space, the solution is given by

Kδðx; y; sÞ ¼
e−

jy−xj2
4s

ð4πsÞd=2 : ðA3Þ

Since the divergence of the coincident Green function
comes from short distances, it suffices to consider the
adiabatic expansion of the heat kernel assuming small
curvature

Khðx; y; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δhðx; yÞ

p e−σðx;yÞ=2s

ð4πsÞd=2
· ½1þ a1ðx; yÞsþ a2ðx; yÞs2 þ � � ��; ðA4Þ

where the function σðx; yÞ is half the square of the geodesic
distance between the two points and Δðx; yÞ is the Van
Vleck determinant

Δhðx; yÞ ¼
det ½∂μ∂νσðx; yÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðyÞhðxÞp : ðA5Þ

The adiabatic expansion parameter is effectively s=L2,
where L2 is the typical radius of curvature. In two
dimensions, in the conformal frame one obtains, in this
approximation,

σðx; yÞ ¼ 1

2
e2ΣðxÞjx − yj2; Δhðx; yÞ ¼ 1; ðA6Þ

where the exponential factor in (A4) ensures that correc-
tions are of order OðεÞ. This reproduces the leading
behavior of (48).
For the diagonal heat kernel, the geodesic distance

vanishes and the coefficients of the expansion ajðxÞ are

the so-called Seeley–de Witt coefficients given in terms of
local curvature tensors. The Van Vleck determinant can be
put to unity in Riemann normal coordinates. Therefore, the
short-time expansion of the diagonal heat kernel in d
dimensions reads

Khðx; x; sÞ ¼
1

ð4πsÞd=2 ð1þ a1ðxÞsþ a2ðxÞs2 þ � � �Þ:

ðA7Þ

1. Short-proper-time cutoff

As discussed below (46) the coincident Green function
can be regularized as [89]

Gε
hðx; xÞ ¼

Z
d2y

ffiffiffi
h

p
δð2Þh ðx; yÞGhðy; xÞ

¼
Z

d2y
ffiffiffi
h

p
Khðx; y; εÞGhðy; xÞ ðA8Þ

where the short-time ε effectively puts a cutoff on the
distance between the two points. For small ε we need to
keep only the leading term of the adiabatic expansion (A4).
So in the conformal frame, using (A6) and the explicit
expression for the Green function (44),

Gε
hðx; xÞ ¼ −

1

4π

Z
d2y

ffiffiffi
h

p 1

4πε
lnðm2jy − xj2Þ

· exp

�
−
e2ΣðxÞjx − yj2

4ε

�
þOðεÞ:

The
ffiffiffiffiffiffiffiffiffi
hðyÞp

factor in the integrand is approximated by its
value at point x up to terms of higher order in ε. Going to
polar coordinates r ¼ jy − xj,

Gε
hðx; xÞ ¼ −

1

16π2ε

Z
πdr2e2ΣðxÞ lnðm2r2Þ

· exp

�
−e−2ΣðxÞr2

4ε

�
: ðA9Þ

A straightforward integration finally gives

Gε
hðx; xÞ ¼

1

2π
ΣðxÞ − 1

4π
lnð4e−γm2εÞ; ðA10Þ

where γ is the Euler-Mascheroni constant.

2. Dimensional regularization

The Green function is related to the heat kernel by

Ghðx; yÞ ¼
Z

∞

0

dsKhðx; y; sÞ: ðA11Þ

The coincident Green function is formally obtained by
taking x ¼ y as the integral of the diagonal of the heat

17Other common methods use point splitting [86] which is not
manifestly covariant because of the choice of the direction used
for point splitting. One obtains the correct final answer by
averaging over directions.
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kernel (A7). Near two dimensions, only the first term of this
integral has an ultraviolet logarithmic divergence from the
lower end of the integral. This can be regularized by
continuing the integral to d ¼ 2þ ϵ dimensions with ϵ
negative and small:

Gd
hðx; xÞ → Gϵ

hðx; xÞ ¼
Z

∞

0

ds
1

ð4πsÞ1þϵ
2

: ðA12Þ

There is an infrared divergence from the upper end of the
integral which can be regularized by introducing a mass
term. Near two dimensions in the conformal frame the
metric can be written as hμν ¼ e2Σhδμν. Moreover, since
only the first term in the adiabatic expansion (A7) matters,
we can take Σh to be a constant equal to its value at the
point x. The infrared divergence can be regulated by
considering the massive Green equation in a flat metric
hμν Weyl equivalent to δμν by a constant rescaling
e2ΣhðxÞ:

ð−e−2ΣhðxÞδμν∂μ∂ν þm2
hÞGhðx; yÞ

¼ e−2ΣhðxÞδð2Þðx − yÞ: ðA13Þ

Let m2
h ¼ m2e−2ΣhðxÞ. For fixed m the massive Green

equation is Weyl invariant and the infrared regulator does
not break Weyl invariance. The regulated Green function is
given by

Gϵ
hðx; xÞ ¼

1

ð4πÞ1þϵ
2

Z
∞

0

ds
s1þϵ

2

e−m
2e−2ΣhðxÞs ðA14Þ

for fixed m. Following the discussion below (42), this m
can be identified with the IR cutoff 1=R introduced in that
section. The integral evaluates to

Gϵ
hðx; xÞ ¼

1

4π

�
1 −

ϵ

2
ln

�
4πe2ΣðxÞ

m2

�
þOðϵÞ

�
Γ
�
−
ϵ

2

�

¼ −
1

2πϵ
þ ΣðxÞ

2π
−

1

4π
ln

�
m2eγ

4π

�
þOðϵÞ:

ðA15Þ

APPENDIX B: VARIATION OF THE SCALAR
GREEN FUNCTION

To compute the metric variation of the scalar Green
function (74), we vary the Green equation (41) to obtain

δð−∇2ÞGyz −∇2δGyz ¼
1

2
δð2Þðy; zÞhμνδhμν ðB1Þ

where the right-hand side follows from the variation of the
1=

ffiffiffiffiffiffi
−h

p
factor of the delta function. Using the variation of

the Laplacian

δ∇2 ¼ −
1

2
∇αðhμνδhμνÞ∇α þ ð∇μδhμνÞ∇ν þ δhμν∇μ∇ν

ðB2Þ

we obtain a Poisson equation for δGyz whose solution, after
an integration by parts, is given by

δGyz ¼
Z

dwδhμνðwÞ

×

�
1

2
hμν∇αðGyw∇αGwzÞ −∇μGyw∇νGwz

�

þ 1

2
hμνδhμνðzÞGyz ðB3Þ

where all derivatives inside the integral are taken with
respect to the variable w. The final expression for the
functional derivative is given by

1ffiffiffiffiffiffi
−h

p δGyz

δhμνðxÞ ¼ −∇x
ðμGyx∇x

νÞGxz þ
1

2
hμνhαβ∇x

αGyx∇x
βGxz:

ðB4Þ

Note that this variation is traceless, as expected from the
Weyl invariance of the Green equation.
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