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We propose the modified version of the canonical energy which was introduced originally by Hollands
and Wald. Our construction depends only on the Euler-Lagrange expression of the system and thus is
independent of the ambiguity in the Lagrangian. After some comments on our construction, we briefly
mention on the relevance of our construction to the boundary information metric in the context of the AdS/
CFT correspondence. We also study the stability of three-dimensional hairy extremal black holes by using
our construction.
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I. INTRODUCTION

Black hole stability has been one of the important
persisting issues in black hole physics, whose study has
realistic implications, for instance, that the observed black
holes would be stable ones if they are found experimentally.
This also has interesting applications in the context of the
AdS/CFT correspondence since the stability or unitarity of
the finite temperature field theory system would be dual to
the stability of black holes or branes according to the
AdS/CFT dictionary. It has been well known that there are
at least two kinds of stability concepts in black holes, one
of which is known as the dynamical stability and the other
is the thermodynamic one. At the linearized level, the
dynamical stability is determined by mode analysis for
perturbing black hole solutions, while the thermodynamics
stability is concerned about the stability of black holes
relative to other thermodynamic states in an appropriate
ensemble. Interestingly, it has been conceived that two
kinds of stability have different natures and so do not
coincide in general. However, there was a conjecture by
Gubser and Mitra that the thermodynamics instability
implies the dynamical one at least for black branes [1,2].
Since this conjecture relates two different kinds of analysis
on black holes, it may indicate a possibility of another
approach to the dynamical stability different from the
standard mode analysis.
Recently, another method for the linear dynamical

stability of black holes was developed by Hollands and
Wald (HW) [3], which uses the machinery in the covariant
phase space through the second variation of the covariant
symplectic form, named the canonical energy. By using the
canonical energy method, HW have proved the Gubser-
Mitra conjecture and showed the consistency of their
method with another important criterion for the black hole
stability known as the local Penrose inequality [4]. This
canonical energy method has been applied successfully

to the extremal black holes and the asymptotic AdS space
[5–7]. More recently, the HW canonical energy in AdS
space is conjectured to be dual to the Fisher information
metric on the dual quantum system [8]. This conjecture is
based on several interesting properties of the HW canonical
energy and is checked explicitly in concrete examples.
Though the HW canonical energy method has a great

advantage in some aspects over the standard mode analysis,
it raises the following question. Basically, the HW canoni-
cal energy method is not based on the equations of motion
(EOM) but on the Lagrangian, while other methods for the
stability criterion utilize (linearized) EOM or the solutions
themselves. Therefore, it seems to be better if we could
construct the canonical energy or the modified canonical
energy by using EOM or the Euler-Lagrange expression,
not the Lagrangian. This construction may be relevant
especially when only the EOM are known, for example, as
in the type IIB supergravity case. In this paper, we attempt
to construct the modified version of the HW canonical
energy by using the Euler-Lagrange expression only.
Through this construction, it is realized that the canonical
energy may have some freedom in its definition, which may
be relevant in its interpretation as the dual to the Fisher
information metric.
The paper is organized as follows. In Sec. II, we review

on the quasilocal formalism for charges developed in
[9–13], which may be regarded as the EOM alternative
to the covariant phase space approach. Then we introduce a
modified canonical energy based on the quasilocal Abbott-
Deser-Tekin (ADT) formalism and see its relation to the
canonical energy introduced by HW [3] in Sec. III. In pure
Einstein gravity, we show that our modified canonical
energy leads to the bulk expression only, in contrast to the
HW canonical energy. In fact, it turns out that one can add
the boundary terms without destroying the properties for
the canonical energy and so this seems to indicate that there
is freedom in the definition of the canonical energy. In
Sec. IV, we study the stability of extremally rotating hairy
black holes in three dimensions by using the canonical
energy method.
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II. REVIEW: QUASILOCAL FORMALISM
FOR CHARGES

In this section, we review the quasilocal ADT formalism
based on the identically conserved current and summarize
some properties of the generalized ADT current [9–14],
which relies on EOM or Euler-Lagrange expression. To
summarize our conventions and present results succinctly,
let us denote the metric and matter fields collectively as
Ψ ¼ ðg;ψÞ. The Euler-Lagrange expression can also be
written collectively as EΨ ¼ ðEμν; Eψ Þ. The Bianchi or
Noether identity for a diffeomorphism parameter ζμ may
be written as

∇μð2EμνζνÞ ¼ −EΨ£ζΨ; ð1Þ

where £ζ denotes the Lie derivative along the vector field ζμ

and Eμν ≡ Eμν − 1
2
Zμν. Here, the Z-tensor is given by a

linear combination of the product of the matter field ψ and
the matter Euler-Lagrange expression Eψ . Concretely, for
an lth rank tensor field ψμ1…μl , one can see that the Z-
tensor is given by

ZμνðEψ ;ψÞ ¼ Eμα2α3…αl
ψ ψν

α2α3…αl

þ Eα1μα3…αl
ψ ψν

α1α3…αl þ � � � ; ð2Þ

which will be represented schematically as Zμν ¼ Eμ
ψ∘ψν.

Note that the Z-tensor vanishes for minimally coupled
scalar fields.
In the quasilocal ADT formalism, the on-shell ADT

current [15–18] is generalized to the off-shell level. The off-
shell conserved current Jμ is composed of two pieces, the
generalized off-shell ADT current J μ

ADT and the additional
term J μ

Δ, as

Jμðζ;Ψ; δΨÞ ¼ J μ
ADTðζ;Ψ; δΨÞ þ J μ

ΔðΨj£ζΨ; δΨÞ; ð3Þ

where the ADT current is defined by (see [11,12] for some
details)

ffiffiffiffiffiffi
−g

p
J μ

ADTðζ;Ψ; δΨÞ ¼ δð ffiffiffiffiffiffi
−g

p
EμνζνÞ −

ffiffiffiffiffiffi
−g

p
Eμ

νδζν

þ 1

2

ffiffiffiffiffiffi
−g

p
ζμEΨδΨ: ð4Þ

The additional term J μ
Δ, which vanishes when ζ is a Killing

vector, is introduced to preserve the off-shell conservation
property of the current even for an asymptotic Killing
vector ζμ. This additional term is given by the iterative
integration by parts on a specific combination of the Euler-
Lagrange expression [11] and the current Jμ can be shown
to be conserved at the off-shell level (see Appendix A for its
derivation). The additional current J μ

Δ is symplectic and
vanishes for a Killing vector ζμ, which can be related to the
symplectic current ωμ in the covariant phase space [19] as
given in Eq. (A5). Despite its relation to the symplectic

current, we would like to emphasize that the additional
current J μ

Δ is constructed solely from the Euler-Lagrange
expression.
Since the off-shell current Jμ is conserved identically, it

can be written in terms of the (antisymmetric) off-shell
potential Qμν as

ffiffiffiffiffiffi
−g

p
Jμ ¼ ∂νð

ffiffiffiffiffiffi
−g

p
QμνÞ; ð5Þ

and the linearized quasilocal ADT charges for an asymp-
totic Killing vector ζμ are defined by

δQðζÞ ¼ 1

8πG

Z
dxμν

ffiffiffiffiffiffi
−g

p
Qμνðζ;Ψ; δΨÞ; ð6Þ

where this expression should be evaluated on shell at the
final stage of computation. Here, we would like to
emphasize that the off-shell current Jμ and potential Qμν

are constructed from the Euler-Lagrange expression and
thus they are free from the ambiguity or the noncovariance
in the Lagrangian. As is derived in Appendix A, the off-
shell potential Qμν can be related to the Noether potential
Kμν and the surface term Θμ of the Lagrangian, up to a total
derivative term, as

2
ffiffiffiffiffiffi
−g

p
Qμνðζ;Ψ; δΨÞ ¼ δKμνðζÞ − KμνðδζÞ − 2ζ½μΘν�ðδΨÞ

þ ffiffiffiffiffiffi
−g

p
AμνðΨj£ζΨ; δΨÞ: ð7Þ

For a Killing vector, the charge expression is completely
consistent with the conventional ADT expression at the
asymptotic infinity and is also consistent with the covariant
phase space formalism, for instance, in the computation of
the black hole entropy. Furthermore, for asymptotic Killing
vectors, this charge expression can be used to obtain
asymptotic symmetry generators [11].
Before going ahead, we would like to remark the special

properties of the ADT current J μ
ADT and the additional

current J μ
Δ. Firstly, one may note that the ADT current,

J μ
ADTðζ;Ψ; δΨÞ, is off-shell conserved when ζ is a Killing

vector, and that it depends linearly on ζ. This ADT current
can be written in terms of a differential operator DΨ acting
on the field variation δΨ as

J μ
ADTðζ;Ψ; δΨÞ ¼ ζνðDΨδΨÞμν: ð8Þ

When the background configuration Ψ satisfies EOM,
EΨ ¼ 0, the current reduces to

J μ
ADTðζ;Ψ; δΨÞjEΨ¼0 ¼ δEμνζν

¼
�
δEμν −

1

2
δEμ

ψ∘ψν

�
ζν; ð9Þ

which vanishes for an arbitrary ζμ when we impose that δΨ
also satisfies linearized EOM, δEΨ ¼ 0. This property will
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be called the “on-shell” vanishing property of the ADT
current J μ

ADT in the following. In summary, the generalized
off-shell ADT current J μ

ADT has the off-shell conservation
property for a Killing vector and the on-shell vanishing
property for an arbitrary ζ as

∇μJ
μ
ADTðζ;Ψ; δΨÞ ¼ 0 off shell for aKilling vector ζ;

ð10Þ

J μ
ADTðζ;Ψ; δΨÞ ¼ 0 on shell for arbitrary ζ: ð11Þ

Since J μ
Δ ¼ 0 for a Killing vector K, the above off-

shell conservation property for a Killing vector can be
rephrased as

J μ
ADTðKÞ ¼ JμðKÞ ¼ ∇νQμνðKÞ:

Now, let us consider the second variation of the ADT
current for an arbitrary vector ζμ, which would be relevant
for the construction of the bilinear form on the first order
variation space. Note that the variation of the ADT current
J μ

ADTðζ;Ψ; δ1ΨÞ can be written in terms of three pieces as

δ2ðJ μ
ADTðζ;Ψ; δ1ΨÞÞ ¼ J μ

ADTðδ2ζ;Ψ; δ1ΨÞ
þ J μ

ADTðζ; δ2Ψ; δ1ΨÞ
þ J μ

ADTðζ;Ψ; δ2δ1ΨÞ; ð12Þ

where the first and the last term in the right-hand side are
given through the representation of the ADT current J μ

ADT
in Eq. (8), explicitly by

J μ
ADTðδ2ζ;Ψ; δ1ΨÞ ¼ δ2ζ

νðDΨδ1ΨÞμν ;
J μ

ADTðζ;Ψ; δ2δ1ΨÞ ¼ ζνðDΨδ2δ1ΨÞμν : ð13Þ

Therefore the second term in the right-hand side may be
thought of as defined by the variations of the ADT current
as

J μ
ADTðζ; δ2Ψ; δ1ΨÞ≡ δ2ðJ μ

ADTðζ;Ψ; δ1ΨÞÞ
− J μ

ADTðδ2ζ;Ψ; δ1ΨÞ
− J μ

ADTðζ;Ψ; δ2δ1ΨÞ; ð14Þ

which would be a good candidate for a symmetric bilinear
form on the space of on-shell first order variations or linear
perturbations. Note also that this current expression
J μ

ADTðζ; δ2Ψ; δ1ΨÞ depends linearly on the vector ζμ while
it is independent of the derivatives of ζμ, as can be inferred
from the representation of the ADT current given in Eq. (8).

III. MODIFIED CANONICAL ENERGY

By using the ADT current J μ
ADT, we would like to

introduce a modified canonical energy Eðδ1Ψ; δ2ΨÞ, whose

original form was defined in [3]. The essential properties of
the canonical energy proposed in [3] may be summarized as
follows. It is a symmetric bilinear form on the first field
variation δΨ, gauge-invariant, monotonic along the “time
evolution” and conserved in the sense that it does not
depend on the choice of the Cauchy surface for given
boundaries. As will be shown in the following, one may use
the ADT current J μ

ADT instead of the symplectic current ωμ

to construct a canonical energy with the alluded properties.
Let us denote the Killing vector for the background Ψ as

K. The modified canonical energy for an exact Killing
vector K can be introduced through the second variation of
the ADT current by1

EðK; δ1Ψ; δ2ΨÞ≡ −
1

8πG

Z
Σ
dxμ

ffiffiffiffiffiffi
−g

p
J μ

ADTðK; δ2Ψ; δ1ΨÞ;

ð15Þ

which is different, at least apparently, from the definition
given in Ref. [3]. Here, Σ denotes a Cauchy surface
extending from the bifurcation surface B to the spacelike
infinity. Nevertheless, the essential features for the canoni-
cal energy will be shown to be satisfied. To this purpose, let
us look into the properties of the current expression
J μ

ADTðK; δ2Ψ; δ1ΨÞ: symmetric form, conservation, gauge
invariance, and the monotonicity. In the following, we take
K as the horizon Killing vector whenever the choice is
convenient to present.

A. Symmetric bilinear form

By using EOM, EΨ ¼ 0 and linearized EOM, δEΨ ¼ 0
with the interchangeability of two generic variations δ1 and
δ2, such as δ2δ1Ψ ¼ δ1δ2Ψ and δ2δ1EΨ ¼ δ1δ2EΨ, one can
see that the second variations of the ADT current satisfy the
relation as2

δ2ðJ μ
ADTðζ;Ψ;δ1ΨÞÞjon-shell ¼ ðδ2δ1Eμ

νÞζνjon-shell
¼ δ1ðJ μ

ADTðζ;Ψ;δ2ΨÞÞjon-shell;
ð16Þ

where we have used the definition of the (off-shell) ADT
current given in Eq. (4). Because of the interchangeability
of two generic variations, J μ

ADTðζ;Ψ; δ2δ1ΨÞ is also
symmetric over two variations, δ1 and δ2. Thus, by using

1In the context of the stability of black holes or branes [3,5],
we need to impose the axisymmetric condition for linear
perturbations and the Killing vector K can be chosen as the
stationary one KT ¼ ∂

∂t in the asymptotically flat case. In the
asymptotically AdS case, we can take the Killing vector K as
the horizon Killing vector KH without imposing the axisym-
metric conditions.

2Here, “on-shell” means that EOM EΨ ¼ 0 and linearized
EOM δEΨ ¼ 0 are satisfied without requiring the second order
variation of EOM to be satisfied.
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the defining relation for J μ
ADTðζ; δ2Ψ; δ1ΨÞ in Eq. (14) and

by using the “on-shell” vanishing property of the ADT
current J μ

ADTðδ2ζ;Ψ; δ1ΨÞ in Eq. (11), one can see that the
current expression J μ

ADTðζ; δ2Ψ; δ1ΨÞ is a symmetric
bilinear form on the space of on-shell first order variations
for an arbitrary vector ζμ, while it is independent of the
second order field variations.

B. Conservation

Recall that, for the exact Killing vector K for the
arbitrary backgroundΨwith the arbitrary δΨ, the additional
current J μ

Δð£KΨ; δΨÞ vanishes and so the off-shell current
JμðK;Ψ; δΨÞ reduces to the ADT current J μ

ADTðK;Ψ; δΨÞ.
Thus, just by replacing the arbitrary δΨ with δ2δ1Ψ in
Eq. (5), one obtains

ffiffiffiffiffiffi
−g

p
J μ

ADTðK;Ψ; δ2δ1ΨÞ ¼ ∂νð
ffiffiffiffiffiffi
−g

p
QμνðK;Ψ; δ2δ1ΨÞÞ;

ð17Þ

which shows us that the last term in the right-hand side of
Eq. (14) is identically conserved in the Killing vector case.
The second term in the right-hand side of Eq. (14) vanishes
identically when the on-shell condition is imposed. By
using the Killing property of the background £KΨ ¼ 0 and
using Eq. (A4), one can see that the variation of the ADT
current for the Killing vector K is also on-shell conserved:

∂μ½δ2ð
ffiffiffiffiffiffi
−g

p
J μ

ADTðK;Ψ; δ1ΨÞÞ�on-shell
¼ ffiffiffiffiffiffi

−g
p ðδ2δ1EΨÞ£KΨjon-shell ¼ 0; ð18Þ

where the on-shell vanishing property of the current
J μ

ADTðK;Ψ; δΨÞ is also used. Note that the variation of
the ADT current δð ffiffiffiffiffiffi−gp

J μ
ADTðK;Ψ; δΨÞÞ is conserved

without the requirement that the second order variation
of field Ψ satisfy EOM.3 Collecting the above conservation
and/or vanishing properties of each term in the right-hand

side in Eq. (14), one can see that the current expression
J μ

ADTðK; δ2Ψ; δ1ΨÞ is conserved at the on-shell level.

C. Gauge invariance

The previously established two properties of the current
expression, J μ

ADTðK; δ2Ψ; δ1ΨÞ, motivate the introduction
of the modified canonical energy EðK; δ1Ψ; δ2ΨÞ for a
Killing vector K in Eq. (15). To see the diffeomorphism
transformation property of the current expression
J μ

ADTðK; δ2Ψ; δ1ΨÞ and the gauge invariance of the modi-
fied canonical energy, note that the Lie derivative of the
ADT current can be written as

£ϵJ
μ
ADTðK;Ψ; δΨÞ ¼ J μ

ADTð£ϵK;Ψ; δΨÞ
þ J μ

ADTðK; £ϵΨ; δΨÞ
þ J μ

ADTðK;Ψ; £ϵδΨÞ; ð19Þ

where the first term in the right-hand side vanishes when
the on-shell conditions are imposed because of the on-shell
vanishing property of J μ

ADTðζ;Ψ; δΨÞ for an arbitrary ζμ.
One may note that the Lie derivative of the ADT current
can also be written as

£ϵJ
μ
ADTðK;Ψ; δΨÞ ¼ ∇νð2ϵ½νJ μ�

ADTðK;Ψ; δΨÞÞ
− J μ

ADTðK;Ψ; δΨÞ∇νϵ
ν

þ ϵμ∇νJ ν
ADTðK;Ψ; δΨÞ; ð20Þ

where the second term in the right-hand side vanishes when
the on-shell conditions are imposed and the last term
vanishes because of the conservation property of the
ADT current J μ

ADTðK;Ψ; δΨÞ for the Killing vector K.
Combining two expressions in Eq. (19) and (20), one can
show that

−
Z

dxμ
ffiffiffiffiffiffi
−g

p
J μ

ADTðK; £ϵΨ; δΨÞjon-shell ¼
Z

dxμ
ffiffiffiffiffiffi
−g

p ½J μ
ADTðK;Ψ; £ϵδΨÞ − £ϵJ

μ
ADTðK;Ψ; δΨÞ�on-shell

¼
Z

dxμν
ffiffiffiffiffiffi
−g

p ½QμνðK;Ψ; £ϵδΨÞ þ 2ϵ½μJ ν�
ADTðK;Ψ; δΨÞ�on-shell;

where we have used J μ
ADTðK;Ψ; £ϵδΨÞ ¼

∇νQμνðK;Ψ; £ϵδΨÞ for the Killing vector K. Note also
that the last term in the second equality also vanishes by the
on-shell vanishing condition of the ADT current J μ

ADT. In
the end, one obtains

EðK;£ϵΨ;δΨÞ¼ 1

8πG

Z
∂Σ
dxμν

ffiffiffiffiffiffi
−g

p
QμνðK;Ψ;£ϵδΨÞjon-shell;

ð21Þ
which shows us that a generic diffeomorphism transforma-
tion leads to a total boundary term and the modified
canonical energy becomes invariant for the local, com-
pactly supported diffeomorphism parameter ϵμ on Σ.
More generically, ϵμ may not be local, compactly

supported, which could be present in our setup. In pure

3When the second order variation of the field Ψ also satisfies
EOM, the variation of the ADT current itself vanishes, i.e.,
δð ffiffiffiffiffiffi−gp

J μ
ADTðδΨÞÞ ¼ 0.
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Einstein gravity, as was done in Ref. [3], one may choose
gauges of the metric near the horizon such that the linear
perturbation does not change the expansion of the bifurca-
tion surface B as δϑjB ¼ 0 and δA ¼ 0 for the area A of the
surface B. Concretely, on the near horizon, one can take the
metric in the Gaussian null coordinates [3,20,21] generi-
cally as

ds2NH ¼ 2duðdr − r2αdu − rβadxaÞ þ μabdxadxb; ð22Þ

where u and r correspond to affine parameters along the
null directions and μαβ denotes the metric on the sphere part
in Gaussian null coordinates. Here, two null coordinate
vectors n≡ nμ∂μ ¼ ∂

∂u and l≡ lμ∂μ ¼ ∂
∂r commute and nμ

is normal to the horizon with the relation nμlμ ¼ 1. In the
chosen gauge, the horizon Killing vector field for the
background near the horizon is given by

KH ¼ κ

�
u
∂
∂u − r

∂
∂r

�
; ð23Þ

where κ denotes the surface gravity and the perturbed
metric becomes

hμνdxμdxν ¼ −2r2δαdu2 − 2rδβadxadu

þ δμabdxadxb; ð24Þ

where hμν ≡ δgμν. At infinity in the asymptotic flat case, the
“Bondi gauge” is chosen with a further choice as was done
by Geroch-Xanthopoulos [21,22], where the “unphysical
metric” at infinity may be taken as

d~s2 ¼ ~Ω2ds2 ¼ 2d ~Ωd ~uþ ~μabd~xad~xb þOð ~ΩÞ; ð25Þ

and the linearized metric satisfies ~gμν ~hμν ¼ Oð ~ΩÞ. In the
case of the asymptotically AdS boundary conditions, the
unphysical metric is taken as [6,23]

d~s2 ¼ d ~Ω2 þ ~γμνdxμdxν þOð ~Ω2Þ; ð26Þ

where ~γμν denotes the metric on the boundary, i.e., the
metric of the Einstein static universe.
And then, further conditions are imposed such that the

charges QðζÞ for the asymptotic symmetry generator ζ are
not changed under linear perturbations. This imposition is
related to the perturbation toward stationary black holes,
which would generate unwanted contributions [3]. There
are still remnant gauge transformations preserving the
chosen gauge conditions, of which gauge parameter ϵμ

becomes tangent to the horizon and corresponds to the
asymptotic symmetry generators near infinity. For such a
noncompact gauge parameter ϵμ, one can show the gauge
invariance of the modified canonical energy by using the
results given in Appendix B. To phrase it simply, under the
same assumptions as in Ref. [3] on the horizon and

asymptotic behavior of the gauge parameter ϵ, one can
argue that

EðK; £ϵΨ; δΨÞ

¼ 1

8πG

�Z
∞
−
Z
B

�
dxμν

ffiffiffiffiffiffi
−g

p
QμνðK;Ψ; £ϵδΨÞjon-shell

¼ 0: ð27Þ

In summary, the modified canonical energy is also gauge
invariant when the appropriate conditions are taken.

D. Monotonic property

To consider the monotonic property along the time
evolution of the canonical energy, Hollands et al. evaluated
the canonical energy on the four sectors4 Iðt1Þ ∪ Iðt2Þ ∪
H12 ∪ J 12 with t1 < t2, where H12 and J 12 denote the
regions in the future horizon and future null/spacelike
infinity, respectively. In order to obtain rigorous statements
about the behavior of the canonical energy, some machi-
nery is utilized for taking care of the null infinity and the
horizon. Briefly speaking, one needs to choose appropriate
gauges and falloff conditions [3,5,6]. In the asymptotic flat
spacetime, the null infinity should be managed carefully
and the statement is proven only for the even-dimensional
case. As was alluded before, K is taken as the stationary
Killing vector KT in this case. To the contrary, in the
asymptotic AdS spacetime, the asymptotic infinity is
timelike and flux cannot leak away. In this case, the
contribution from the asymptotic infinity is trivial and
there is no restriction on the dimensionality.
Instead of performing this analysis directly in our

construction, we would like to relate our modified canoni-
cal energy to the original expression of the canonical
energy given in [3] and borrow the monotonicity property
of the HW canonical energy to show the monotonicity of
the modified canonical energy in our construction. Recall
that the symplectic formWΣ in the covariant phase space is
defined by

WΣðΨjδ1Ψ; δ2ΨÞ≡ 1

16πG

Z
Σ
dxμωμðΨjδ1Ψ; δ2ΨÞjon-shell;

ð28Þ

and that the HW canonical energy for the Killing vector K
is defined by

EHWðK; δ1Ψ; δ2ΨÞ≡WΣðΨj£Kδ2Ψ; δ1ΨÞ; ð29Þ

where δKμ ¼ 0 is assumed as before for simplicity.
Therefore, the difference between our modified canonical
energy and its expression in the HW canonical energy turns

4See the second figure in Ref. [3] and Fig. 2 in Ref. [5].
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out to be just surface terms, as is shown in Appendix C.
Explicitly, the difference is given by

EHWðK; δΨ; δΨÞ − EðK; δΨ; δΨÞ

¼ 1

16πG

Z
∂Σ

dxμν½2
ffiffiffiffiffiffi
−g

p
QμνðK; δΨ; δΨÞ

−
ffiffiffiffiffiffi
−g

p
AμνðΨj£KδΨ; δΨÞ�on-shell; ð30Þ

where the boundary ∂Σ is composed of two parts,R
∂Σ ¼ R

∞ −
R
B. Basically, these boundaries are sphere parts

of geometry on the horizon and the infinity. The contri-
bution from the infinity vanishes as can be inferred from the
linearized charge expression in Eq. (6), which is finite and
taken to vanish for linear perturbations. In pure Einstein
gravity, one can infer from Eq. (C3) that the above
boundary term at BðtÞ is given by5

Z
BðtÞ

≡ 1

8πG

Z
BðtÞ

dxμν
ffiffiffiffiffiffi
−g

p
QμνðKH;δg;δgÞjon-shell

¼ 1

8πG

Z
BðtÞ

dx
ffiffiffi
μ

p �
κδμαβδμαβ −

3

2
δμαβ£KH

δμαβ

�
on-shell

:

ð31Þ

Note that the second term in the right-hand side of the last
equality vanishes on the bifurcation surface Bðt ¼ 0Þ
because of KH → 0, while it would vanish at BðtÞ when
the perturbed shear vanishes as was argued in Ref. [3].
The absence of the contribution from the infinity implies

that there would no difference between E and EHW on the
sector J 12, while they may be different on other sectors
Iðt1Þ; Iðt2Þ, and H12 up to boundary terms given by the
integral over Bðt1Þ and Bðt2Þ. Schematically, the difference
on these sectors can be written as

EHWjIðt1;2Þ ¼ EjIðt1;2Þ −
Z
Bðt1;2Þ

;

EHWjH12
¼ EjH12

þ
Z
Bðt2Þ

−
Z
Bðt1Þ

; ð32Þ

where we have abused the notation to denote the symplectic
form and its counterpart on the sector H12 as EHW and E,
respectively. This is consistent with the individual con-
servation of EHW and E.
To show the monotonicity of the canonical energy in

Ref. [3], the appropriate boundary terms are subtracted
from the canonical energy to modify EHW as ĒHW and then
it was shown that this barred canonical energy satisfies for
t1 ≤ t2

ĒHWðt2Þ − ĒHWðt1Þ ≤ 0: ð33Þ

Simply by defining our barred quantity as ĒðtÞ ¼ ĒHWðtÞ,
one can establish immediately the monotonicity property of
our barred canonical energy. The actual application of the
canonical energy comes from the fact that ĒHWðtÞ →
EHWðt ¼ 0Þ as t → 0, which can be used to argue that
EHWðt ¼ 0Þ < 0 implies the instability.
In order to see how to use our canonical energy for the

stability, it is useful to introduce the boundary term
composed solely of the first term in the last equality in
Eq. (31) by denoting it as

R 0
BðtÞ, which is negative semi-

definite. Note that our barred canonical energy is different
from the unbarred one even at t ¼ 0:

Ē ¼ ĒHW ¼ EHW ¼ E −
Z 0

B
; ð34Þ

where we have used the relation between EHW and E and
the fact that ĒHW ¼ EHW at t ¼ 0. Because of this relation,
Eðt ¼ 0Þ < 0 may not imply the instability for a generic
noncompact perturbation. However, we may prepare the
initial data at t ¼ t1, which are compactly supported such
that Eðt1Þ ¼ Ēðt1Þ ¼ ĒHWðt1Þ. Then, at later time we can
conclude that

Ēðt2Þ ¼ ĒHWðt2Þ ≤ ĒHWðt1Þ ¼ Ēðt1Þ ¼ Eðt1Þ; ð35Þ

Thus, for the compactly supported initial data, the insta-
bility argument works in our modified canonical energy:
Eðt¼0Þ<0 implies the instability just as EHWðt¼0Þ<0
does.
Now, we would like to give various comments on our

construction and its meaning. In our construction the
symmetric bilinear property of the modified canonical
energy on the first order variations is manifest even on
ΣðtÞ, in contrast to the expression of the canonical energy in
the HW construction. In the HW construction, the appro-
priate gauges at the asymptotic infinity and the horizon are
used to show this property on Σðt ¼ 0Þ, only. As can be
inferred from Eq. (14) and the property of the ADT current,
our modified canonical energy can also be written, when
the second order variation of field Ψ satisfies second order
EOM, as

EðK; δΨ; δΨÞ

¼ 1

8πG

Z
∂Σ

dxμν
ffiffiffiffiffiffi
−g

p
QμνðK;Ψ; δ2ΨÞjEΨ¼δEΨ¼δ2EΨ¼0;

ð36Þ

which means that the bulk expression of the modified
canonical energy expression becomes the total surface
term. More concretely, the second order variation of
conserved charges in our construction can be read from
Eq. (6) as

5The similar expression at Bðt ¼ 0Þwas obtained in Eq. (85) in
Ref. [3].
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δ2QðKÞ ¼ 1

8πG

Z
∂Σ

dxμνδ½
ffiffiffiffiffiffi
−g

p
QμνðK;Ψ; δΨÞ�

¼ 1

8πG

Z
∂Σ

dxμν
ffiffiffiffiffiffi
−g

p ½QμνðK; δΨ; δΨÞ

þQμνðK;Ψ; δ2ΨÞ�; ð37Þ

where we used δK ¼ 0 and δ
ffiffiffiffiffiffi−gp ¼ 0 at ∂Σ. By using the

second order perturbation satisfying EOM and falloff
conditions of δΨ, one can see that

EðKH; δΨ; δΨÞ ¼ δ2M∞ −ΩHδ
2J∞ −

κ

2π
δ2SBH

−
1

8πG

Z
B
dxμν

ffiffiffiffiffiffi
−g

p
QμνðKH; δΨ; δΨÞ;

ð38Þ

where the last term in pure Einstein gravity is given
by Eq. (C3).
On the sector J 12 in Einstein gravity without matter

fields, one may obtain directly the expression of our
modified canonical energy, which is nothing but the second
order Einstein tensor in this case, by choosing the Geroch-
Xanthopoulos gauge with additional falloff conditions as in
[24]. The final expression given in Eq. (4.13) in Ref. [24]
shows us that our modified energy also gives the same
expression as the original canonical energy on this sector.
Therefore, there is no difference between EHW and E on the
sector J 12 in Einstein gravity without matter fields, indeed.
This direct computation reinforces our argument for the
absence of the difference at the infinity between our
modified canonical energy and the HW canonical energy.
One may perform the similar direct computation on H12,
since the expressions on H12 and J 12 may be parallel. In
the above, the difference is indirectly shown to reside only
on the surface Bðt1;2Þ in Appendix C.
Though our expression of linearized conserved charges

is completely consistent with the one in the covariant phase
space approach and the one from the conventional ADT
formalism, the second order variation of conserved charges
in our construction may be different from the one in the
covariant phase space approach since

δ2δ1QðKÞ¼ δ2δ1QcovðKÞ

þ 1

16πG

Z
∂Σ
dxμν

ffiffiffiffiffiffi
−g

p
Aμνð£Kδ2Ψ;δ1ΨÞ; ð39Þ

where Qcov denotes the charge in the covariant phase space
approach and we have used the relation given in Eq. (A8)
with the condition δKμ ¼ 0. Indeed, in some higher
derivative gravity it was noticed that the additional con-
tribution to the covariant phase space charge expression is
important in the context of the Kerr/CFT correspondence
[25]. The combination in the second order variations in the
canonical energy may also be affected by this difference.

This is reflected in the following representation of the HW
canonical energy,

EHWðK; δΨ; δΨÞ ¼ δ2Mcov
∞ −ΩHδ

2Jcov∞ −
κ

2π
δ2Scov

BH ;

which is consistent with the difference given in Eq. (30)
and Eq. (38).
Practically, the modified canonical energy can be

obtained simply by keeping the first order variation terms
in the expression of δ2δ1Eμν. By using EOM EΨ ¼ 0 and
linearized EOM δEΨ ¼ 0, respectively, one can see that

δ2ð
ffiffiffiffiffiffi
−g

p
J μ

ADTðK;Ψ; δ1ΨÞÞ ¼ ffiffiffiffiffiffi
−g

p ðδ2δ1EμνÞKνjon-shell:
ð40Þ

As a result, the modified canonical energy is given by

EðK; δ1Ψ; δ2ΨÞ≡ −
1

8πG

Z
Σ
dxμ

ffiffiffiffiffiffi
−g

p ðδ2δ1EμνÞKνjδ2Ψ¼0
on-shell;

ð41Þ

where δ2Ψ ¼ 0 denotes that we should keep the first order
variation terms. This expression clearly shows us that our
modified canonical energy is related to the direct gener-
alization of the second order Einstein tensor. Our con-
struction may be regarded as providing the generalization
of the construction by the second order Einstein tensor in
Ref. [24] beyond Einstein gravity. Furthermore, our con-
struction shows clearly the dependence of the modified
canonical energy only on EOM and it makes the covariance
of the expression manifest. It would be useful to deal with
the odd-dimensional case with the gravitational Chern-
Simons term. Besides, our expression of the canonical
energy clarifies the relation between the traditional ADT
expression and the canonical energy by Hollands andWald.
One may worry that our form of the canonical energy

might have some drawbacks compared to the HW con-
struction since it differs from the HW canonical energy in
the boundary term and the HW canonical energy is shown
to be consistent with other criteria of the black hole
stability. Nevertheless, as was shown in the above, all
the essential properties of the canonical energy also hold in
our modified version and there are various cases in which
such a boundary term does not contribute. In fact, our
construction reveals the interesting aspect that the addi-
tional boundary term at the horizon may be allowed in
defining the canonical energy. Namely, when we define the
canonical energy, we may relax its relation to the Hessian in
thermodynamic stability, up to the boundary term. More
concretely, we may have defined the modified canonical
energy by adding the boundary term coming from
JμðK; δΨ; δΨÞ. For instance, we may have introduced
the modified canonical energy by using the current
expression −J μ

ADT þ Jμ ¼ J μ
Δ as
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~EðK; δΨ; δΨÞ≡ 1

8πG

Z
Σ
dxμ

ffiffiffiffiffiffi
−g

p
J μ

ΔðΨj; £KδΨ; δΨÞ;

which also satisfies all the properties discussed in the
above. This canonical energy can be shown to be different
from the HW canonical energy as

EHWðK; δΨ; δΨÞ − ~EðK; δΨ; δΨÞ

¼
Z
B
dxμν

ffiffiffiffiffiffi
−g

p
AμνðΨj£KδΨ; δΨÞjon-shell;

and satisfies the relation, when the second order EOM are
imposed, as

~EðKH; δΨ; δΨÞ ¼ δ2M∞ −ΩHδ
2J∞ −

κ

2π
δ2SBH; ð42Þ

which is consistent even with the Hessian in thermody-
namic stability consideration.
Recently, there was a suggestion that the canonical

energy is dual to the so-called Fisher quantum information
metric in the context of the AdS/CFT correspondence [8].
As is clear from our construction, our modified canonical
energy E or ~E is also a good candidate like those dual to the
information metric, since our modified canonical energy
does not give any difference from the HW canonical energy
on the pure AdS background. The difference between them
comes from the boundary contribution at the bifurcation
surface B or more correctly at BðtÞ, which is related to the
deep infrared physics in the boundary theory. The freedom
of adding the boundary term

R
B to the canonical energy

with arbitrary coefficients may be useful in this duality.
In the following section, we consider hairy black holes in

the asymptotic AdS space. In the asymptotic AdS space, the
roles of boundary terms at infinity are irrelevant because of
the AdS nature and one can take K as the horizon Killing
vector. We apply our modified canonical energy to study
the stability issue on hairy extremally rotating black holes.

IV. HAIRY ADS BLACK HOLES

In this section we consider three-dimensional extremally
rotating hairy AdS black holes admitted in Einstein gravity
with a cosmological constant and a scalar field, whose
analytic solutions are given in [26–28]. Interestingly, there
are two arguments for the stability of the above extremally
rotating hairy black holes that could give us opposite
conclusions. The argument for their stability may be given
as follows. Since there are no propagating degrees of
freedom in three-dimensional Einstein gravity and the
scalar field involved in the above solutions satisfies the
Breitenlohner-Freedman bound [29], the extremal hairy
black holes should be stable, at least, perturbatively.
Moreover, there seems to be no mechanism for the
instability in this extremal configuration in the AdS/CFT
context since it is dual to the renormalization group flow

interpolating two CFTs, which does not seem to allow the
other end points. The opposite argument comes from the
no-hair conjecture for AdS black holes [30,31], which was
made only for the four-dimensional case but seems to hold
even in the three-dimensional case. Though there is a
numerical attempt to construct rotating hairy black holes
deformed from BTZ black holes [32], those hairy black
holes require special conditions on the asymptotic behavior
of the scalar field [33] that are not satisfied by the hairy
extremal black holes under consideration. Furthermore, the
extremally rotating black holes in higher than four dimen-
sions are shown to be unstable [5,34]. Of course, all the
opposite arguments rely on the higher-dimensional ana-
logues and so may not be so persuasive. In the following we
adopt the canonical energy method and show the stability
of three-dimensional extremally rotating hairy black holes.
Before presenting the specific models under consider-

ation, let us present some general setup for the Einstein
gravity with Uð1Þ gauge and scalar fields φI and summa-
rize some results. The Lagrangian for this system consists
of three parts, the Einsten-Hilbert one LEH, the scalar one,
and the Uð1Þ gauge part, respectively, as

LEH ¼ R − 2Λ; Lφ ¼ −
1

2
GIJ∂μφ

I∂μφJ − VðφÞ;

LA ¼ −
1

4
N ðφÞFμνFμν: ð43Þ

The Euler-Lagrange expressions for metric, gauge and
scalar fields are given by

Eμν ¼ GΛ
μν − Tμν; Eμ

A ¼ ∇μðNFμνÞ;
Eφ ¼ GIJðφÞð□φJ þ ΓJ

KL∂μφ
K∂μφLÞ − ∂φIVðφÞ

−
1

4
∂φINFμνFμν;

where GΛ
μν ¼ Rμν − 1

2
Rgμν þ Λgμν and the energy-

momentum tensor Tμν is composed of Tφ
μν and TA

μν as

Tφ
μν ¼ 1

2
½GIJ∂μφ

I∂νφ
J þ gμνLφ�;

TA
μν ¼

1

2
½NFμαFν

α þ gμνLA�:

Note that there is the off-shell identity for a generic
diffeomorphism parameter ζ as

0 ¼ −2Tμν
A ζν þ ζμLA −Θμ

Að£0ζAÞ;
0 ¼ −2Tμν

φ ζν þ ζμLφ −Θμð£ζφÞ;

where £0ζA ¼ −Fμνζ
ν denotes the Lie derivative augmented

by a gauge transformation and the surface terms for the
generic variations are given by
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Θμ
gðδgÞ ¼ 2gα½μ∇β�δgαβ; ΘμðδφÞ ¼ −GIJðφÞδφI∂μφJ;

Θμ
A ¼ −NFμνδAν:

By using this identity under the assumption δKμ ¼ 0, one
can see that the scalar field and the Abelian gauge field
parts for the modified canonical energy can be extracted
from the surface term Θμ as

J μ
ADTðK; δφ; δφÞjon-shell
¼ 1

2
½−Kμ∇νδφΘν

φðδφÞ þ δ2φΘμð£KφÞ�jδ
2φ¼0
on-shell;

J μ
ADTðK; δA; δAÞjon-shell
¼ 1

2
½−Kμ∇νδAΘν

AðδAÞ þ δ2AΘμð£KAÞ�jδ2A¼0
on-shell:

As was emphasized before, one can obtain the same
expression solely from the expression of Eμν, i.e. a
combination of EOM, but we have provided the shortcut
to the results by using the relation between EOM and the
surface term Θμ.
Now, let us stick to the three-dimensional Einstein

gravity with a minimally coupled scalar field, whose
Lagrangian can be written as

L ¼ R −
1

2
∂μφ∂μφ − VðφÞ: ð44Þ

Our interest is in the hairy deformed three-dimensional
extremal black holes [26,27]. One can obtain the solutions
by assuming that the scalar potential V is taken in the
form of

VðφÞ ¼ 1

2L2
ð∂φWÞ2 − 1

2L2
W2; W ¼ WðφÞ: ð45Þ

By taking the generic ansatz for the metric and scalar as

ds2 ¼ −e2AðrÞdt2 þ e2BðrÞdr2 þ r2ðdθ þ eCðrÞdtÞ2;
φ ¼ φðrÞ; ð46Þ

where the radius of the asymptotic AdS3 space is taken to
be unity, one can show that the metric functions and the
scalar field satisfying the following first order ordinary
differential equations solve the full EOM:

φ0 ¼ −eB∂φW; A0 ¼ 1

r
þ eBW;

ðeCÞ0 ¼
�
1

r
eA
�0
; A0 þ B0 ¼ r

2
φ02: ð47Þ

For instance, the simplest case among analytic solutions is

φðrÞ ¼ φ0

r2
; W ¼ α½4þ φ2ðrÞ� þ βe

φ2

4 ; ð48Þ

where the coefficients α and β are given, in terms of the
constant φ0 and the position of the horizon rH, by

α ¼ 1

2

1

1 − e−φ
2
0
=4r2H

; β ¼ −
2e−φ

2
0
=4r2H

1 − e−φ
2
0
=4r2H

: ð49Þ

In this case, the metric functions can be obtained as

eA ¼ r

�
2αe−φ

2
0
=4r2 þ β

2

�
; eB ¼ e−φ

2
0
=4r2e−A;

eC ¼ 1

r
eA: ð50Þ

The near horizon geometry of all these configurations
satisfying the first order EOM is given generically by

ds2NH ¼ L2
NH

�
−ρ2dt2 þ 1

ρ2
dρ2

�
þ r2H

�
dθ −

LNH

rH
ρdt

�
2

;

ð51Þ

which is known as the self-dual orbifold of AdS3 space
[35]. Here, LNH denotes the radius of the orbifold of AdS3
space defined by

LNH ¼ 1

WðφHÞ
:

The scalar potential near the horizon can be expanded as

V ¼ −
1

2
WðφHÞ2 þWðφHÞ2ðφ − φHÞ2 þ � � � ; ð52Þ

which comes from the generic expansion of the super-
potential W as

W ¼ WðφHÞ −
1

2
WðφHÞðφ − φHÞ2 þ � � � : ð53Þ

Note that the first term of the superpotential W plays the
role of the cosmological constant on the near horizon
geometry. The horizon Killing vector is taken by K ¼ ∂

∂t in
these coordinates. The effective Lagrangian on the near
horizon geometry is given by

L ¼ R − 2ΛNH −
1

2
ð∂μ ~φÞ2 −

1

2
m2

NHð ~φÞ2 þ � � � ; ð54Þ

where ΛNH and m2
NH denote the near horizon effective

cosmological constant and effective mass square of the
scalar field ~φ≡ φ − φH as

ΛNH≡−
1

4L2
NH

¼−
WðφHÞ2

4
; m2

NH ¼ 2WðφHÞ2 ¼
2

L2
NH

:

The effective mass of the scalar field is greater than the
Breitenlohner-Freedman bound in the near horizon
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geometry and so the scalar field could be thought of as stable
in the near horizon geometry. We would like to confirm this
argument explicitly by using the canonical energy method.
Let us consider linear perturbations of the metric and

scalar fields and compute the modified canonical energy on
the near horizon geometry in order to see the stability of the
above hairy deformed extremal black holes. Combined
with the stability argument at infinity, one may say that the
whole configuration is stable for linear perturbations. As is
obvious from the three-dimensional nature of our configu-
rations, the metric variation should be just pure gauge and
so its role is trivial. From now on, let us take all the
functions to depend on the radial coordinate ρ instead of r
on the near horizon geometry. Indeed, by taking the metric
perturbation as

δgμν ¼ ∇ðμζνÞ; ζμ ¼ ζμðt; ρ; θÞ; ð55Þ

we will show that the metric perturbation does not
contribute to the canonical energy.
Instead of solving the linearized EOM on the given

background, we would like to analyze the form of
modified canonical energy itself, which is composed of
four parts as

EðK; δ1Ψ; δ2ΨÞ ¼ EðK; δ1g; δ2gÞ þ EðK; δ1g; δ2φÞ
þ EðK; δ1φ; δ2gÞ þ EðK; δ1φ; δ2φÞ:

ð56Þ

By using our result given in Eq. (41), one can compute
each term directly without difficulty. Firstly, the contri-
bution from the metric perturbation to the canonical
energy is given by6

EðK; δg; δgÞ ¼ −
1

8πG

Z
Σ
dxμ

ffiffiffiffiffiffi
−g

p ��
−hρσ∇μ∇νhρσ þ 2hρσ∇ρ∇ðμhνÞσ −

1

2
∇μhρσ∇νhρσ − 2∇ρhσμ∇½ρhσ�ν

−∇ρðhρσ∇σhμνÞ þ
1

2
∇ρh∇ρhμν þ 2

�
∇ρhρσ −

1

2
∇σh

�
∇ðμhνÞσ

�
−
1

2
gμν½trace�

�
Kν

����
δ2Ψ¼0

on-shell
; ð57Þ

where hμν ≡ δgμν, h≡ gμνhμν, and ½trace� denotes the
trace of the expression in front of it. This part is
consistent with Eq. (85) in [3]. Since the metric perturba-
tion is given by a pure gauge transformation, i.e.,
δgμν ¼ £ζgμν, this part has nothing to do with canonical
energy and can be checked to vanish by a direct compu-
tation, as was shown generically in Eq. (27). The cross
terms can be shown to vanish as follows:

EðK; δg; δφÞ þ EðK; δφ; δgÞ

¼ 1

8πG

Z
Σ
dxμ

ffiffiffiffiffiffi
−g

p ½m2
Hð2hμν − gμνhÞφδφ�Kνjδ2Ψ¼0

on-shell

¼ 0: ð58Þ

Hence, the contribution to canonical energy comes only
from the scalar perturbation part as

EðK; δφ; δφÞ ¼ −
1

8πG

Z
Σ
dxμ

ffiffiffiffiffiffi
−g

p �
−∇μδφ∇νδφþ 1

2
gμνð∇λδφ∇λδφþm2

Hδφ
2Þ
�
Kν

����
δ2Ψ¼0

on-shell

¼ 1

8πG

Z
Σ
dρdθ

rNH
2ρ2

�
2ρ2δφ2 þ ρ4

�∂δφ
∂ρ

�
2

þ
�∂δφ

∂t
�

2
�
: ð59Þ

Since rNH > 0, EðK; δφ; δφÞ could not be negative at any
time. This confirms the linear stability of the extremally
rotating hairy black holes under consideration.

V. CONCLUSION

Wehave constructed themodified versionof the canonical
energy that was introduced originally by HW in [3]. Our
construction is based on the off-shell adaptation of the ADT

current and so connects the various conceptually different
constructions. Briefly speaking, it can be regarded as the
generalization of the second order Einstein tensor method in
pure Einstein gravity or the effective energy-momentum
tensor method in the original ADT approach. By showing
explicitly the relation between our construction and the
original HWone, we have showed that one may construct a
quantity that differs from the HW canonical energy in the
boundary term over the spatial section of the future horizon.
Through this relation, we have also explained clearly why
the second order Einstein tensor method in the literature
could give the same information as theHWcanonical energy
at the asymptotic infinity. In other words, our results imply

6It would be meaningful to check the gauge invariance
explicitly since the gauge choice may be different in the extremal
case and in our form of the near horizon geometry.
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that the second order contribution to theBondi energy can be
computed by using the ADT current expression.
In fact, the modified canonical energy can be constructed

while sharing all the properties of the HW canonical energy
as given in Eq. (42) and may be distinguished from the HW
canonical energy only in the higher derivative theory of
gravity. The essential point of our construction is that one
may have freedom in constructing the canonical energy
equippedwith the relevant properties. This possibilitywould
give us a better chance to match the canonical energy to the
Fisher information metric in the context of the AdS/CFT
correspondence.Our results show that onemaybe able to use
the freedom in the construction of the canonical energy with
the required properties under consideration.
We have also considered the three-dimensional extrem-

ally rotating hairy AdS black holes that were not yet proven
to be stable or not. Since there are conflicting arguments
about their stability, it would be a good exercise to use the
(modified) canonical energy method in this example, as is
done in the main text. We have verified that the canonical
energy is positive definite on the near horizon geometry and
concluded that the extremally rotating hairy black holes in
three dimensions are stable at least under the linear
perturbations. It would be very interesting to explore
whether or not one can distinguish the various possible
forms of the canonical energy from the physical consid-
eration in the context of the AdS/CFT correspondence,
especially as a dual to the Fisher information metric. In the
context of the black hole stability, it would also be
interesting to consider a higher derivative theory of gravity
and the stability of its black hole solutions by using the
(modified) canonical energy method.
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APPENDIX A: RELATION TO
SYMPLECTIC CURRENT

Generic variation of the action can be expressed as

δI½Ψ� ¼ 1

16πG

Z
dDxδð ffiffiffiffiffiffi

−g
p

LÞ

¼ 1

16πG

Z
dDx½ ffiffiffiffiffiffi

−g
p

EΨδΨþ ∂μΘμðΨ; δΨÞ�: ðA1Þ

Identifying the diffeomorphism transformation of the
parameter ζ with the above generic variation leads to the
following relation:

∂μðζμ
ffiffiffiffiffiffi
−g

p
LÞ ¼ ffiffiffiffiffiffi

−g
p

EΨ£ζΨþ ∂μΘμðΨj£ζΨÞ: ðA2Þ

The symplectic current with the variation of the diffeo-
morphism parameter ζμ under a generic variation δ can be
defined by

ωμðΨj£ζΨ; δΨÞ≡ £ζΘμðΨ; δΨÞ
− ½δfΘμðΨ; £ζΨÞg − ΘμðΨ; £δζΨÞ�

¼ Θμð£ζΨ; δΨÞ − ΘμðδΨ; £ζΨÞ;

which reduces to the conventional one when δζμ ¼ 0.
By combining the definition of the symplectic current
ωμðΨj£ζΨ; δΨÞ, the double variation of the action as
ðδ£ζ − £ζδÞI½Ψ� ¼ £δζI½Ψ�, and the relation in (A2) for
the diffeomorphism parameter δζμ, one obtains

∂μω
μðΨj£ζΨ; δΨÞ ¼ ½δð ffiffiffiffiffiffi

−g
p

EΨ£ζΨÞ − ð ffiffiffiffiffiffi
−g

p
EΨ£δζΨÞ�

− £ζð
ffiffiffiffiffiffi
−g

p
EΨδΨÞ: ðA3Þ

By using the identity in Eq. (1), the relation of δ∂μ ¼ ∂μδ
for a generic variation δ, and the property of the Lie
derivative on the scalar density £ζð ffiffiffiffiffiffi−gp

EΨδΨÞ ¼
∂μðζμ ffiffiffiffiffiffi−gp

EΨδΨÞ, one can see that

∂μð
ffiffiffiffiffiffi
−g

p
J μ

ADTÞ ¼ −
1

2
½δð ffiffiffiffiffiffi

−g
p

EΨ£ζΨÞ − ffiffiffiffiffiffi
−g

p
EΨ£δζΨ�

þ 1

2
£ζð

ffiffiffiffiffiffi
−g

p
EΨδΨÞ: ðA4Þ

The additional current J μ
Δ can be related to the sym-

plectic current ωμ in the covariant phase space [19] as

2
ffiffiffiffiffiffi
−g

p
J μ

ΔðΨj£ζΨ; δΨÞ ¼ ωμðΨj£ζΨ; δΨÞ
þ ∂νð

ffiffiffiffiffiffi
−g

p
AμνðΨj£ζΨ; δΨÞÞ;

ðA5Þ

where Aμν is an antisymmetric tensor defined by

δΘμð£ζΨÞ ¼ £ζΘμðδΨÞ þ ffiffiffiffiffiffi
−g

p ∇νðAμνðΨj£ζΨ; δΨÞ
− 2SμνðΨj£ζΨ; δΨÞÞ þ δΨ½� � ��;

where Sμν ≡ SðμνÞ and ½� � �� denotes the irrelevant expres-
sions in our presentation. As a result, the additional current
J μ

Δ is symplectic just as ωμ and vanishes for a Killing
vector. The relation in Eq. (A5) between the additional
current term J μ

Δ and the symplectic current ωμ implies that

∂μð
ffiffiffiffiffiffi
−g

p
J μ

ΔÞ ¼
1

2
∂μω

μ: ðA6Þ
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Now, the identical conservation of the current Jμ follows
from the identity given in Eq. (A3),

∂μð
ffiffiffiffiffiffi
−g

p
JμÞ ¼ ∂μð

ffiffiffiffiffiffi
−g

p
J μ

ADTÞ þ ∂μð
ffiffiffiffiffiffi
−g

p
J μ

ΔÞ

¼ −
1

2
½δð ffiffiffiffiffiffi

−g
p

EΨ£ζΨÞ − ffiffiffiffiffiffi
−g

p
EΨ£δζΨ�

þ 1

2
£ζð

ffiffiffiffiffiffi
−g

p
EΨδΨÞ þ 1

2
∂μω

μðΨj£ζΨ; δΨÞ
¼ 0:

For a covariant Lagrangian LðΨÞ, the off-shell Noether
current and potential may be introduced as

Jμ ¼ ζμ
ffiffiffiffiffiffi
−g

p
LðΨÞ þ 2

ffiffiffiffiffiffi
−g

p
Eμνζν − Θμð£ζΨÞ

¼ ∂νKμνðζÞ: ðA7Þ

After some manipulation by using the relation in Eq. (A5),
one can obtain the off-shell relation

2
ffiffiffiffiffiffi
−g

p
Qμνðζ;Ψ; δΨÞ ¼ δKμνðζÞ − KμνðδζÞ − 2ζ½μΘν�ðδΨÞ

þ ffiffiffiffiffiffi
−g

p
AμνðΨj£ζΨ; δΨÞ: ðA8Þ

Note that there may be additional terms in the right-hand
side in the above relation when the Lagrangian contains
noncovariant terms [10]. By recalling the relations Eqs. (3),
(A5), and (5), one may note that

ωμðΨj£ζΨ; δΨÞ þ 2
ffiffiffiffiffiffi
−g

p
J μ

ADTðζ;Ψ; δΨÞ
¼ ∂ν½2

ffiffiffiffiffiffi
−g

p
Qμνðζ;Ψ; δΨÞ − ffiffiffiffiffiffi

−g
p

AμνðΨj£ζΨ; δΨÞ�
¼ ∂ν½δKμνðζÞ − KμνðδζÞ − 2ζ½μΘν�ðδΨÞ�; ðA9Þ

where we used the off-shell identity (A8) in the second
equality.
It is straightforward to repeat the same procedure

in [36] to derive the first law of black hole thermodynamics.
Let us introduce the integral V of the off-shell current
Jμ as7

VΣðζ;Ψ; δΨÞ≡ 1

8πG

Z
Σ
dxμ

ffiffiffiffiffiffi
−g

p
Jμðζ;Ψ; δΨÞ

¼ 1

8πG

Z
∞
dxμν

ffiffiffiffiffiffi
−g

p
Qμν

−
1

8πG

Z
B
dxμν

ffiffiffiffiffiffi
−g

p
Qμν: ðA10Þ

To see the implication of this integral, take the on-shell
condition and ζ as a Killing vector K. Then, the off-shell
current JμADT reduces to the ADT current J μ

ADT. The on-
shell condition implies J μ

ADT ¼ 0 and the Killing condition

leads to J μ
Δ ¼ 0 and Aμν ¼ 0, and so the integral VΣ

vanishes in this case. For the horizon Killing vector KH,

KH ≡ ∂
∂tþ ΩH

∂
∂θ ;

the conserved charges are given by

1

8πG

Z
∞
dxμν

ffiffiffiffiffiffi
−g

p
QμνðKH;Ψ; δΨÞ ¼ δM∞ −ΩHδJ∞

1

8πG

Z
B
dxμν

ffiffiffiffiffiffi
−g

p
QμνðKH;Ψ; δΨÞ ¼ κ

2π
δSBH;

and so one can see that the integral gives us the first law of
black hole thermodynamics as

0 ¼ δM∞ − ΩHδJ∞ −
κ

2π
δSBH: ðA11Þ

APPENDIX B: GAUGE INVARIANCE

Just like two expressions of the Lie derivative of the
ADT current in Eq. (19) and (20), the Lie derivative of the
potential Qμν can be written in two ways. Firstly, it can be
written as

£ϵQμνðK;Ψ; δΨÞ ¼ Qμνð£ϵK;Ψ; δΨÞ þQμνðK; £ϵΨ; δΨÞ
þQμνðK;Ψ; £ϵδΨÞ: ðB1Þ

Secondly, it can also be written as

£ϵQμνðK;Ψ; δΨÞ ¼ ∇αð3ϵ½αQμν�Þ −Qμν∇αϵ
α

− ϵμ∇αQνα − ϵν∇αQαμ;

¼ ∇αð3ϵ½αQμν�Þ −Qμν∇αϵ
α

− 2ϵ½μJ ν�
ADT; ðB2Þ

where we have used that J μ
ADTðKÞ ¼ JμðKÞ ¼ ∇νQμνðKÞ

for a Killing vector K. Combining the above two expres-
sions for the Lie derivative of the potentialQμν, one obtains

QμνðK;Ψ; £ϵδΨÞjon-shell ¼ ½∇αð3ϵ½αQμν�ðK;Ψ; £ϵδΨÞÞ
−QμνðK;Ψ; δΨÞ∇αϵ

α

−QμνðK; £ϵΨ; δΨÞ
−Qμνð£ϵK;Ψ; δΨÞ�on-shell;

ðB3Þ

where the on-shell vanishing condition of the ADT current
J μ

ADT is used. By inserting this equality in Eq. (21), one can
see that there are contributions from two boundaries: the
spacelike infinity and the bifurcation surface B. The first
term in the right-hand side of the above equality does not

7Since we use a Killing vector in the derivation of the first law,
one can employ J μ

ADT instead of Jμ.
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contribute to the modified canonical energy since we
integrate over the closed space at both boundaries. Now,
let us consider the leftover terms in the right-hand side.
Since ϵ corresponds to the asymptotic symmetry gen-

erators at infinity, one can see that ∇αϵ
α → 0 and £ϵΨ → 0

sufficiently fast near infinity compared to the field Ψ itself,
which would come from the definition of the asymptotic
symmetry generators. As can be inferred from the defi-
nition of the charge in Eq. (6), it turns out that δQðKÞ≃R
dxμν

ffiffiffiffiffiffi−gp
QμνðK;Ψ; δΨÞ is finite (in fact, taken as zero

for linear perturbations) at the spacelike infinity. Therefore,
the second and third terms in the right-hand side vanish at
the spacelike infinity. Furthermore, £ϵK ¼ ½ϵ; K� ¼ ϵ0 cor-
responds to another asymptotic Killing vector and
δQðϵ0Þ≃ R

dxμν
ffiffiffiffiffiffi−gp

Qμνðϵ0;Ψ; δΨÞ ¼ 0 under the chosen
condition that the charge is invariant for the linear pertur-
bations. As a result, the last term does not contributes at the
spacelike infinity.
Since we are taking the same gauge conditions in

Ref. [3], our gauge parameter ϵ satisfies the same property
as there. Thus, at the bifurcation surface B, the gauge
transformation satisfies ∇αϵ

αjB ¼ μαβ∇αϵβjB ¼ 0 (see
Remark below Lemma 1 in Ref. [3]). Therefore, the second
term in the right-hand side in Eq. (B3) does not contribute.
At the bifurcation surface B, therefore, the relevant
expression in Eq. (B3) can be written as

2
ffiffiffiffiffiffi
−g

p
QμνðK;Ψ; £ϵδΨÞjon-shell

¼ −2
ffiffiffiffiffiffi
−g

p ½QμνðK; £ϵΨ; δΨÞ þQμνð£ϵK;Ψ; δΨÞ�on-shell:
ðB4Þ

For simplicity, let us focus on pure Einstein gravity, in
which the potential Qμν is given by [11]

Qμνðζ; g; hÞ ¼ 1

2
h∇½μζν� − ζ½μ∇αhν�α þ ζα∇½μhν�α þ ζ½μ∇ν�h

−
1

2
hα½μ∇αζ

ν� þ 1

2
hα½μ∇ν�ζα: ðB5Þ

By using the metric perturbation near the horizon given in
Eq. (24), one can see that the perturbation metric hμν
satisfies n½μlν�hμα → 0 as r → 0, that is to say, n½μlν�hμα
vanishes on the future horizon. Therefore, the last two
terms in the above potential Qμνðζ; g; δgÞ do not contribute
after the integration over the spatial section BðtÞ. This is the
case even for the second variation in the form
of Qμνðζ; δ2g; δ1gÞ.
Let us consider the contribution from the first term

QμνðK; £ϵg; δgÞ in the right-hand side of Eq. (B4). By
incorporating KH → 0 at the bifurcation surface B, this
term reduces to

QμνðKH; £ϵg; hÞjB ¼ −
1

2
hαβ£ϵgαβ∇½μKν�

HjB: ðB6Þ

Note that the gauge parameter ϵμ is tangent to the future
horizon and, in fact, its admissible form is given by [5,6]

ϵμ ¼ fϵnμ þ rYμ
ϵ ; nμ∇μfϵ ¼ 0: ðB7Þ

Then, the direct computation in the chosen coordinates in
Eq. (24) shows us that hμν∇½μϵν� → 0 as r → 0. Hence, the
first term gives zero contribution.
In the chosen gauge near the horizon, ξ≡ £ϵK ¼ −½K; ϵ�

becomes normal to the future horizon at the surface B, since
the gauge parameter ϵμ is tangent to the horizon. By using
the property of ξ, one can set [3]

ξμ ¼ fnμ þ uXμ þ rYμ: ðB8Þ

Noting that nμ∇αhαμ → 0 as r → 0, with the expression of ξ
near the horizon, one can show that the second term
Qμνð£ϵK;Ψ; δΨÞ in the right-hand side of Eq. (B4) reduces
at the surface B to

Qμνðξ; g; δgÞ ¼ 1

2
δμαα∇½μξν� þ ξα∇½μhν�α þ ξ½μ∇ν�h: ðB9Þ

Since hμνξν ¼ hμνnν ¼ 0 at the surface B, one can see
that n½μlν�ξα∇½μhν�α ¼ 0 for the metric perturbation hμν at B
and that nμ∇μh ∝ μab∂uδμab ∝ δϑ ¼ 0. Thus, we obtain
the following result:

2
ffiffiffiffiffiffi
−g

p
QμνðK; g; £ϵδgÞjon-shell ¼ −

ffiffiffiffiffiffi
−g

p
δμαα∇½μξν�: ðB10Þ

Since the gauge is chosen as μαβδμαβ ¼ δμαα ¼ 0, we
immediately see that

EðK; £ϵg; δgÞ ¼
1

16πG

Z
B
dxμν

ffiffiffiffiffiffi
−g

p
δμαα∇½μξν� ¼ 0: ðB11Þ

Now, we would like to give comments on the relation to
the derivation in Ref. [3]. In short, our derivation is
completely parallel and consistent to the one in
Appendix A of Ref. [3]. In fact, one can show that

2
ffiffiffiffiffiffi
−g

p
QμνðK;Ψ; £ϵδΨÞjon-shell

¼ −½2 ffiffiffiffiffiffi
−g

p
QμνðK; £ϵΨ; δΨÞ − δKμνðξÞ þ 2ξ½μΘν�ðδΨÞ

−
ffiffiffiffiffiffi
−g

p
AμνðΨj£ξΨ; δΨÞ�on-shell:

In pure Einstein gravity, the first term is already shown to
give no contribution. Note that the Aμν-tensor is given by

Aμνð£ξg; δgÞ ¼ −ðgμðαgβÞðρgσÞν − gνðαgβÞðρgσÞμÞ
× ð£ξgαβhρσ − hαβ£ξgρσÞ; ðB12Þ

from which one can see that the aboveAμν-tensor term does
not contribute to the canonical energy through Eqs. (B3),
(B4), and (21). The absence of the contribution from

CANONICAL ENERGY AND HAIRY ADS BLACK HOLES PHYSICAL REVIEW D 94, 044014 (2016)

044014-13



δKμνðξÞ − 2ξ½μΘν�ðδΨÞ is the main result in Appendix A
in [3].

APPENDIX C: RELATION TO HW
CONSTRUCTION

In the case of the Killing vector K with δK ¼ 0, one can
show that the current expression J μ

ADTðK; δ2Ψ; δ1ΨÞ is
related to the symplectic current as follows. The variation
of the ADT current J μ

ADT can also be written under the
condition δK ¼ 0 as

δ2ð
ffiffiffiffiffiffi
−g

p
J μ

ADTðK;Ψ; δ1ΨÞÞ ¼ ffiffiffiffiffiffi
−g

p
J μ

ADTðK; δ2Ψ; δ1ΨÞ
þ ffiffiffiffiffiffi

−g
p

J μ
ADTðK;Ψ; δ2δ1ΨÞ

¼ ffiffiffiffiffiffi
−g

p
J μ

ADTðK; δ2Ψ; δ1ΨÞ
þ ∂ν½

ffiffiffiffiffiffi
−g

p
QμνðK;Ψ; δ2δ1ΨÞ�;

where we used in the first equality the on-shell vanishing
condition of J μ

ADTðζ;Ψ; δΨÞ and used in the second
equality J μ

ADTðKÞ ¼ ∇νQμνðKÞ. Under the condition

δK ¼ 0, the generic variation leads to δ£KΨ ¼ £KδΨ.
And thus, the variation of the symplectic current becomes
δ2ω

μðΨj£KΨ; δ1ΨÞ ¼ ωμðΨj£Kδ2Ψ; δ1ΨÞ, because of
£KΨ ¼ 0. By taking into account the second variation
of the relation in Eq. (A9) with the above second variation
of the ADT current J μ

ADT for the Killing vector K, one can
see that

½ωμðΨj£Kδ2Ψ;δ1ΨÞþ2
ffiffiffiffiffiffi
−g

p
J μ

ADTðK;δ2Ψ;δ1ΨÞ�on-shell
¼∂ν½2

ffiffiffiffiffiffi
−g

p
QμνðK;δ2Ψ;δ1ΨÞþ2ðδ2

ffiffiffiffiffiffi
−g

p ÞQμνðK;Ψ;δ1ΨÞ
−

ffiffiffiffiffiffi
−g

p
AμνðΨj£Kδ2Ψ;δ1ΨÞ�on-shell; ðC1Þ

where we have used Aμνð£KΨ; δΨÞ ¼ 0. Under the chosen
gauges near the horizon and the asymptotic infinity, it turns
out that δ

ffiffiffiffiffiffi−gp jBðtÞ ¼ 0 at the future horizon and all the
terms vanish at infinity because δΨ decays sufficiently fast
at infinity. Thus, one concludes that the difference is written
eventually as

Z
Σ
dxμ½ωμðΨj£Kδ2Ψ; δ1ΨÞ þ 2

ffiffiffiffiffiffi
−g

p
J μ

ADTðK; δ2Ψ; δ1ΨÞ�on-shell

¼ −
Z
B
dxμν

ffiffiffiffiffiffi
−g

p ½2QμνðK; δ2Ψ; δ1ΨÞ −AμνðΨj£Kδ2Ψ; δ1ΨÞ�on-shell; ðC2Þ

which holds for any Cauchy surface ΣðtÞ, not just at
Σðt ¼ 0Þ. As a result, one obtains the relation given in
Eq. (30). It is interesting to observe that the above relation
reproduces the same expression given by Eq. (B3) and
Eq. (B4) by taking δ2 ¼ £ϵ, which might be just a
coincidence not warranted from the construction. In pure
Einstein gravity, one can show, by the explicit computation
as done in Appendix B, that the Aμν-tensor term does not
contribute at the surface BðtÞ in the chosen coordinates near
the horizon as (22) and (24). By using the form of the
perturbed metric in Eq. (24) and the fact that n½μlν�hνα → 0
at the future horizon, i.e., at r ¼ 0, one can see that the
relevant potential term for the horizon Killing vector KH is
given by

QμνðKH; δ2g; δ1gÞjBðtÞ ¼
1

2
δ2gαβδ1gαβ∇½μKν�

H

−
1

2
δ1gαβK

½μ
H∇ν�δ2gαβ

þ K½μ
H∇ν�ðδ2gαβδgαβÞjBðtÞ;

where we have used that KH is normal to the future horizon
and n½μlν�hμα → 0 as r → 0. Thus, we obtain

2n½μlν�QμνðKH; δg; δgÞjBðtÞ
¼

�
κδμαβδμαβ −

3

2
δμαβ£KH

δμαβ

�
BðtÞ

: ðC3Þ

The above relation may also be written as

Z
∂Σ

dxμν½ωμðΨj£Kδ2Ψ; δ1ΨÞ þ 2
ffiffiffiffiffiffi
−g

p
J μ

ADTðK; δ2Ψ; δ1ΨÞ�on-shell
¼ ∂ν½δ2δ1KμνðKÞ − 2K½μδ2Θν�ðδ1ΨÞ − 2

ffiffiffiffiffiffi
−g

p
QμνðK;Ψ; δ2δ1ΨÞ�on-shell: ðC4Þ

From the relation in Eq. (A8), one can see that the last term in the right-hand side in the equality cancels the second order
perturbation terms in the proceeding terms. Explicitly, it can be written as
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2
ffiffiffiffiffiffi
−g

p
QμνðK;Ψ; δ2δ1ΨÞ ¼ δ2δ1KμνðKÞjδ2δ1Ψ

− 2K½μΘν�ðΨ; δ2δ1ΨÞ; ðC5Þ

where the subscript δ2δ1Ψ means that we should keep the
second order variations. Schematically, one can write the
above relation of the current expression as

½ωμðΨj£Kδ2Ψ; δ1ΨÞ þ 2
ffiffiffiffiffiffi
−g

p
J μ

ADTðK; δ2Ψ; δ1ΨÞ�on-shell
¼ ∂ν½δ2δ1KμνðKÞ − 2K½μδ2Θν�ðδ1ΨÞ�δ2δ1Ψ¼0

on-shell ; ðC6Þ

where δ2δ1Ψ ¼ 0 in the superscript denotes the absence of
second order variations in the expressions.
On the bifurcation surface B, the contribution comes

from the first term δ2Kμν, only. In fact, the essentially same
relation has already been obtained in Ref. [3] [see Eq. (81)
there], though its derivation and interpretation seem to be
different. In the end, the difference between EHW and E is
given by

EHWðK; δΨ; δΨÞ − EðK; δΨ; δΨÞ

¼ −
1

16πG

Z
B
dxμν½δ2KμνðKÞ�δ2Ψ¼0

on-shell; ðC7Þ

which can also be written, through Eq. (C3), at least in
Einstein gravity as

EHWðK; δΨ; δΨÞ − EðK; δΨ; δΨÞ

¼ −
1

8πG

Z
B
dxμν

ffiffiffiffiffiffi
−g

p
QμνðK; δΨ; δΨÞjon-shell: ðC8Þ

By noting that the modified canonical energy differs from
the HW canonical energy only on the bifurcation surface B,
whenever δ1Ψ or δ2Ψ are taken in such a way that
δ1;2QðKÞ ¼ 0 at infinity, one can see that our modified
canonical energy satisfies the same properties with the HW
canonical energy for the perturbation toward stationary
black holes.
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