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Canonical energy and hairy AdS black holes
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We propose the modified version of the canonical energy which was introduced originally by Hollands
and Wald. Our construction depends only on the Euler-Lagrange expression of the system and thus is
independent of the ambiguity in the Lagrangian. After some comments on our construction, we briefly
mention on the relevance of our construction to the boundary information metric in the context of the AdS/
CFT correspondence. We also study the stability of three-dimensional hairy extremal black holes by using

our construction.
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I. INTRODUCTION

Black hole stability has been one of the important
persisting issues in black hole physics, whose study has
realistic implications, for instance, that the observed black
holes would be stable ones if they are found experimentally.
This also has interesting applications in the context of the
AdS/CFT correspondence since the stability or unitarity of
the finite temperature field theory system would be dual to
the stability of black holes or branes according to the
AdS/CFT dictionary. It has been well known that there are
at least two kinds of stability concepts in black holes, one
of which is known as the dynamical stability and the other
is the thermodynamic one. At the linearized level, the
dynamical stability is determined by mode analysis for
perturbing black hole solutions, while the thermodynamics
stability is concerned about the stability of black holes
relative to other thermodynamic states in an appropriate
ensemble. Interestingly, it has been conceived that two
kinds of stability have different natures and so do not
coincide in general. However, there was a conjecture by
Gubser and Mitra that the thermodynamics instability
implies the dynamical one at least for black branes [1,2].
Since this conjecture relates two different kinds of analysis
on black holes, it may indicate a possibility of another
approach to the dynamical stability different from the
standard mode analysis.

Recently, another method for the linear dynamical
stability of black holes was developed by Hollands and
Wald (HW) [3], which uses the machinery in the covariant
phase space through the second variation of the covariant
symplectic form, named the canonical energy. By using the
canonical energy method, HW have proved the Gubser-
Mitra conjecture and showed the consistency of their
method with another important criterion for the black hole
stability known as the local Penrose inequality [4]. This
canonical energy method has been applied successfully
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to the extremal black holes and the asymptotic AdS space
[5-7]. More recently, the HW canonical energy in AdS
space is conjectured to be dual to the Fisher information
metric on the dual quantum system [8]. This conjecture is
based on several interesting properties of the HW canonical
energy and is checked explicitly in concrete examples.

Though the HW canonical energy method has a great
advantage in some aspects over the standard mode analysis,
it raises the following question. Basically, the HW canoni-
cal energy method is not based on the equations of motion
(EOM) but on the Lagrangian, while other methods for the
stability criterion utilize (linearized) EOM or the solutions
themselves. Therefore, it seems to be better if we could
construct the canonical energy or the modified canonical
energy by using EOM or the Euler-Lagrange expression,
not the Lagrangian. This construction may be relevant
especially when only the EOM are known, for example, as
in the type IIB supergravity case. In this paper, we attempt
to construct the modified version of the HW canonical
energy by using the Euler-Lagrange expression only.
Through this construction, it is realized that the canonical
energy may have some freedom in its definition, which may
be relevant in its interpretation as the dual to the Fisher
information metric.

The paper is organized as follows. In Sec. II, we review
on the quasilocal formalism for charges developed in
[9-13], which may be regarded as the EOM alternative
to the covariant phase space approach. Then we introduce a
modified canonical energy based on the quasilocal Abbott-
Deser-Tekin (ADT) formalism and see its relation to the
canonical energy introduced by HW [3] in Sec. III. In pure
Einstein gravity, we show that our modified canonical
energy leads to the bulk expression only, in contrast to the
HW canonical energy. In fact, it turns out that one can add
the boundary terms without destroying the properties for
the canonical energy and so this seems to indicate that there
is freedom in the definition of the canonical energy. In
Sec. IV, we study the stability of extremally rotating hairy
black holes in three dimensions by using the canonical
energy method.

© 2016 American Physical Society
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II. REVIEW: QUASILOCAL FORMALISM
FOR CHARGES

In this section, we review the quasilocal ADT formalism
based on the identically conserved current and summarize
some properties of the generalized ADT current [9-14],
which relies on EOM or Euler-Lagrange expression. To
summarize our conventions and present results succinctly,
let us denote the metric and matter fields collectively as
U = (g,y). The Euler-Lagrange expression can also be
written collectively as £y = (€,,.&,). The Bianchi or
Noether identity for a diffeomorphism parameter {¥ may
be written as

V”(ZEl“/é’D) - —Sq,fé'\l/, (1)

where £, denotes the Lie derivative along the vector field ¢*
and E# =&MW — %Z"”. Here, the Z-tensor is given by a
linear combination of the product of the matter field y and
the matter Euler-Lagrange expression &,,. Concretely, for
an ¢th rank tensor field v, _, , one can see that the Z-
tensor is given by

ZEy ) = " W
+ Silzllﬂ(z3...aflllgla3ma/ + cee, (2)

which will be represented schematically as Z# = & oy”.
Note that the Z-tensor vanishes for minimally coupled
scalar fields.

In the quasilocal ADT formalism, the on-shell ADT
current [15—18] is generalized to the off-shell level. The off-
shell conserved current J# is composed of two pieces, the
generalized off-shell ADT current %y and the additional
term J', as

J(E0.89) = Tiypr(8: W, 6V) + TR (V[£,9.69).  (3)

where the ADT current is defined by (see [11,12] for some
details)

V=9T o1 (85 W, 8) = 5(,/—gE*¢,) — \/—gELSL”
1
5 VI EdY. (4)

The additional term 7%, , which vanishes when { is a Killing
vector, is introduced to preserve the off-shell conservation
property of the current even for an asymptotic Killing
vector {*. This additional term is given by the iterative
integration by parts on a specific combination of the Euler-
Lagrange expression [11] and the current J# can be shown
to be conserved at the off-shell level (see Appendix A for its
derivation). The additional current J’; is symplectic and
vanishes for a Killing vector {#, which can be related to the
symplectic current @ in the covariant phase space [19] as
given in Eq. (AS5). Despite its relation to the symplectic
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current, we would like to emphasize that the additional
current 7% is constructed solely from the Euler-Lagrange
expression.

Since the off-shell current J# is conserved identically, it
can be written in terms of the (antisymmetric) off-shell
potential Q* as

V=¥ = 9,(y/=9Q"). (5)

and the linearized quasilocal ADT charges for an asymp-
totic Killing vector ¥ are defined by

50(0) = ¢ / 0 /GQ (0. 50),  (6)

where this expression should be evaluated on shell at the
final stage of computation. Here, we would like to
emphasize that the off-shell current J# and potential Q¥
are constructed from the Euler-Lagrange expression and
thus they are free from the ambiguity or the noncovariance
in the Lagrangian. As is derived in Appendix A, the off-
shell potential Q" can be related to the Noether potential
K* and the surface term ©* of the Lagrangian, up to a total
derivative term, as

2/=gQ" (530, 8W) = 5K (L) — K™ (80) — 206" (50)
+ /—gA (V£ 5F). (7)

For a Killing vector, the charge expression is completely
consistent with the conventional ADT expression at the
asymptotic infinity and is also consistent with the covariant
phase space formalism, for instance, in the computation of
the black hole entropy. Furthermore, for asymptotic Killing
vectors, this charge expression can be used to obtain
asymptotic symmetry generators [11].

Before going ahead, we would like to remark the special
properties of the ADT current 7% and the additional
current J;. Firstly, one may note that the ADT current,
Jhor(& ¥, 8D), is off-shell conserved when ¢ is a Killing
vector, and that it depends linearly on ¢. This ADT current
can be written in terms of a differential operator Dy, acting
on the field variation 6V as

Tapr(§: 0, 89) =, (Dydv)™. (8)

When the background configuration W satisfies EOM,
Ey = 0, the current reduces to

Taor(6: 9, 5‘I’)|£q,=o = 6E"¢,

1
~ (e~ Josten ) ©

which vanishes for an arbitrary {# when we impose that 60
also satisfies linearized EOM, 6£y = 0. This property will
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be called the “on-shell” vanishing property of the ADT
current 7% in the following. In summary, the generalized
off-shell ADT current 7% has the off-shell conservation
property for a Killing vector and the on-shell vanishing
property for an arbitrary ¢ as

V,Thor(£: 0, 6V) =0 off shell for aKilling vector ,
(10)

"pr(& W, 6W) =0 onshell for arbitrary .  (11)

Since j’g =0 for a Killing vector K, the above off-
shell conservation property for a Killing vector can be
rephrased as

Taor(K) = J(K) = V,Q"(K).

Now, let us consider the second variation of the ADT
current for an arbitrary vector {#, which would be relevant
for the construction of the bilinear form on the first order
variation space. Note that the variation of the ADT current
Jhpr($: W, 8, P) can be written in terms of three pieces as

82(Tapr(8: 0. 6,¥)) = Tapr(6:28: V. 6, ¥)
+ Tapr(6:6,9,6,9)
+t7£DT(C§‘I”5251‘1’)’ (12)
where the first and the last term in the right-hand side are
given through the representation of the ADT current 7%y
in Eq. (8), explicitly by
Tapr(6285 9,6, V) = 6,8 (Dyd V),
Wt (8 0, 6,6, V) = (*(Dy6,6, 9. (13)
Therefore the second term in the right-hand side may be

thought of as defined by the variations of the ADT current
as

jl;\DT(C; 5V, 6,¥) = 52(‘7};\DT(C; v, 6,¥))
_jl/iDT(52C;\I/75l\IJ)
- Thor(6: ¥, 6,6, 9), (14)

which would be a good candidate for a symmetric bilinear
form on the space of on-shell first order variations or linear
perturbations. Note also that this current expression
Thor(8: 6,0, 8, ¥) depends linearly on the vector ¢ while
it is independent of the derivatives of ¥, as can be inferred
from the representation of the ADT current given in Eq. (8).

III. MODIFIED CANONICAL ENERGY

By using the ADT current J%py, we would like to
introduce a modified canonical energy £(5, ¥, 6, ¥), whose
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original form was defined in [3]. The essential properties of
the canonical energy proposed in [3] may be summarized as
follows. It is a symmetric bilinear form on the first field
variation 0V, gauge-invariant, monotonic along the “time
evolution” and conserved in the sense that it does not
depend on the choice of the Cauchy surface for given
boundaries. As will be shown in the following, one may use
the ADT current [, r instead of the symplectic current @*
to construct a canonical energy with the alluded properties.

Let us denote the Killing vector for the background W as
K. The modified canonical energy for an exact Killing
vector K can be introduced through the second variation of
the ADT current by1

1
5(K,51\IJ,52\I/) = —%/2dxw/—gj’;DT(K;é)'z\If,&l\I/),
(15)

which is different, at least apparently, from the definition
given in Ref. [3]. Here, X denotes a Cauchy surface
extending from the bifurcation surface B to the spacelike
infinity. Nevertheless, the essential features for the canoni-
cal energy will be shown to be satisfied. To this purpose, let
us look into the properties of the current expression

o1 (K; 6,0, 8, ¥): symmetric form, conservation, gauge
invariance, and the monotonicity. In the following, we take
K as the horizon Killing vector whenever the choice is
convenient to present.

A. Symmetric bilinear form

By using EOM, £y = 0 and linearized EOM, 6&y = 0
with the interchangeability of two generic variations 6; and
b, such as 6,6,V = 6,6,V and 6,6,Ey = 6,6,Ey, one can
see that the second variations of the ADT current satisfy the
relation as”

52(jI14\DT(é’; \II’ 51 \I,)) ‘on—shell = (5251E£4)Cy|on—shell
= 61 ( I/l\DT(é’; \117 52\:[/)) |0n—shcll?
(16)

where we have used the definition of the (off-shell) ADT
current given in Eq. (4). Because of the interchangeability
of two generic variations, Jhpr($5W,58,6,%) is also
symmetric over two variations, §; and &,. Thus, by using

n the context of the stability of black holes or branes [3,5],
we need to impose the axisymmetric condition for linear
perturbations and the Killing vector K can be chosen as the
stationary one Ky = % in the asymptotically flat case. In the
asymptotically AdS case, we can take the Killing vector K as
the horizon Killing vector Ky without imposing the axisym-
metric conditions.

2Here, “on-shell” means that EOM &£y = 0 and linearized
EOM 6&y = 0 are satisfied without requiring the second order
variation of EOM to be satisfied.
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the defining relation for J/ 7 (; 8, V, 6, ¥) in Eq. (14) and
by using the “on-shell” vanishing property of the ADT
current J' 51 (8,83 ¥, 8, ¥) in Eq. (11), one can see that the
current expression Japr(£36,V,6,¥) is a symmetric
bilinear form on the space of on-shell first order variations
for an arbitrary vector ¥, while it is independent of the
second order field variations.

B. Conservation

Recall that, for the exact Killing vector K for the
arbitrary background W with the arbitrary 6V, the additional
current J, (£x¥, 5¥) vanishes and so the off-shell current
JHK; U, 6\11) reduces to the ADT current J/p7(K; ¥, 7).
Thus, just by replacing the arbitrary oW with 6,0, ¥ in
Eq. (5), one obtains

V=9I apr(K: W. 5,8, ¥) = 0, (/=gQ" (K: V. 5,6, 7)),

(17)

which shows us that the last term in the right-hand side of
Eq. (14) is identically conserved in the Killing vector case.
The second term in the right-hand side of Eq. (14) vanishes
identically when the on-shell condition is imposed. By
using the Killing property of the background £, ¥ = 0 and
using Eq. (A4), one can see that the variation of the ADT
current for the Killing vector K is also on-shell conserved:

[52(\/ jADT(K; W, 6,¥))]onshell
=V _9(52515\I/)£K\I]|0n—shell = 07 (18)

where the on-shell vanishing property of the current
ot (K; ¥, 80) is also used. Note that the variation of
the ADT current (/=97 \pr(K; ¥,6V)) is conserved
without the requ1rement that the second order variation
of field W satisfy EOM.” Collecting the above conservation
and/or vanishing properties of each term in the right-hand
|
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side in Eq. (14), one can see that the current expression
Jhor(K;8,9,6,7) is conserved at the on-shell level.

C. Gauge invariance

The previously established two properties of the current
expression, Jhpr(K; 8,7, 5, %), motivate the introduction
of the modified canonical energy &(K;6,¥,5,¥) for a
Killing vector K in Eq. (15). To see the diffeomorphism
transformation property of the current expression

o1 (K; 6,0, 5, ¥) and the gauge invariance of the modi-
fied canonical energy, note that the Lie derivative of the
ADT current can be written as

Thor(K; ¥, 89) = jADT(feK;\IJ,(S\II)

DT(K; £.0,60)
+ jADT(K; W, £.00), (19)

where the first term in the right-hand side vanishes when
the on-shell conditions are imposed because of the on-shell
vanishing property of Jpr({; W, 8¥) for an arbitrary ¢¥.
One may note that the Lie derivative of the ADT current
can also be written as

£.T" o (KW, 50) = V, (26l T4 (K U, 57))

H (KU, SU)V e
+ eV, T4y (K: W, 60), (20)

where the second term in the right-hand side vanishes when
the on-shell conditions are imposed and the last term
vanishes because of the conservation property of the
ADT current J\pr(K; ¥, 8P) for the Killing vector K.
Combining two expressions in Eq. (19) and (20), one can
show that

/dxﬂ\/ jADT(K; £e\Ij’ 5\Il)|on-shell = /dxﬂv _g[ ADT(K \II £ 5\11) £ jADT(K; \Il75\11)]0n—shell

= / dx;w Vv _g[Qm/(K; v, £66\Ij) + 26[’4\72DT(I<; v, 6‘1[)}on-shell’

where  we  have used  Jhpp(K;V,£.87) =
V, Q" (K; W, £.6¥) for the Killing vector K. Note also
that the last term in the second equality also vanishes by the
on-shell vanishing condition of the ADT current J% r. In
the end, one obtains

3When the second order variation of the field U also satisfies
EOM, the variation of the ADT current itself vanishes, i.e.,

(\/_jADT( )):0-

[
1
E(K;fe\lf,5\1f) :—/ dx;w \Y4 _QQW(K;Wafeéql)'on—she]l’
87G oz

(1)

which shows us that a generic diffeomorphism transforma-
tion leads to a total boundary term and the modified
canonical energy becomes invariant for the local, com-
pactly supported diffeomorphism parameter ¢ on X.
More generically, ¢ may not be local, compactly
supported, which could be present in our setup. In pure
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Einstein gravity, as was done in Ref. [3], one may choose
gauges of the metric near the horizon such that the linear
perturbation does not change the expansion of the bifurca-
tion surface B as 69| = 0 and A = 0 for the area A of the
surface B. Concretely, on the near horizon, one can take the
metric in the Gaussian null coordinates [3,20,21] generi-
cally as

dsky = 2du(dr — rPadu — r,dx) + p,dx®dx?, (22)

where u and r correspond to affine parameters along the
null directions and y,3 denotes the metric on the sphere part
in Gaussian null coordinates. Here, two null coordinate
vectors n = nt0,, = % and 7 = 40, = % commute and n*
is normal to the horizon with the relation n##, = 1. In the
chosen gauge, the horizon Killing vector field for the
background near the horizon is given by

0 0
KHK'<M%—TE) (23)

where k denotes the surface gravity and the perturbed
metric becomes

h,dxtdx? = =2r*6adu® — 2r&f,dx"du
+ Oppdx®dx?, (24)

where h,,, = 6g,,. Atinfinity in the asymptotic flat case, the
“Bondi gauge” is chosen with a further choice as was done
by Geroch-Xanthopoulos [21,22], where the “unphysical
metric” at infinity may be taken as

ds* = Qds* = 2dQdii + jipdx*di® + O(Q),  (25)

and the linearized metric satisfies A, = O(Q). In the
case of the asymptotically AdS boundary conditions, the
unphysical metric is taken as [6,23]

d5? = dQ* +7,,dx*dx* + O(Q), (26)

where y,, denotes the metric on the boundary, i.e., the
metric of the Einstein static universe.

And then, further conditions are imposed such that the
charges Q(¢) for the asymptotic symmetry generator ¢ are
not changed under linear perturbations. This imposition is
related to the perturbation toward stationary black holes,
which would generate unwanted contributions [3]. There
are still remnant gauge transformations preserving the
chosen gauge conditions, of which gauge parameter €*
becomes tangent to the horizon and corresponds to the
asymptotic symmetry generators near infinity. For such a
noncompact gauge parameter €/, one can show the gauge
invariance of the modified canonical energy by using the
results given in Appendix B. To phrase it simply, under the
same assumptions as in Ref. [3] on the horizon and
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asymptotic behavior of the gauge parameter ¢, one can
argue that

E(K:£,T,50)

(/ J )

In summary, the modified canonical energy is also gauge
invariant when the appropriate conditions are taken.

V=9Q" (K U, £.50)

| on-shell

(27)

D. Monotonic property

To consider the monotonic property along the time
evolution of the canonical energy, Hollands ef al. evaluated
the canonical energy on the four sectors’ Z(7;) U Z(1,) U
Hy, U Jy, with t; < t,, where H,, and J, denote the
regions in the future horizon and future null/spacelike
infinity, respectively. In order to obtain rigorous statements
about the behavior of the canonical energy, some machi-
nery is utilized for taking care of the null infinity and the
horizon. Briefly speaking, one needs to choose appropriate
gauges and falloff conditions [3,5,6]. In the asymptotic flat
spacetime, the null infinity should be managed carefully
and the statement is proven only for the even-dimensional
case. As was alluded before, K is taken as the stationary
Killing vector Ky in this case. To the contrary, in the
asymptotic AdS spacetime, the asymptotic infinity is
timelike and flux cannot leak away. In this case, the
contribution from the asymptotic infinity is trivial and
there is no restriction on the dimensionality.

Instead of performing this analysis directly in our
construction, we would like to relate our modified canoni-
cal energy to the original expression of the canonical
energy given in [3] and borrow the monotonicity property
of the HW canonical energy to show the monotonicity of
the modified canonical energy in our construction. Recall
that the symplectic form Wy in the covariant phase space is
defined by

Wz(\I/|51\IJ, 62\:[/) = dx”a)”(\I/|51\I/, 62\11)

|on—shell ’

1
167G b
(28)

and that the HW canonical energy for the Killing vector K
is defined by

Enw(K;6,V,5,¥) = Wy (¥|£45,0,6,7),  (29)
where 0K* =0 is assumed as before for simplicity.

Therefore, the difference between our modified canonical
energy and its expression in the HW canonical energy turns

*See the second figure in Ref. [3] and Fig. 2 in Ref. [5].
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out to be just surface terms, as is shown in Appendix C.
Explicitly, the difference is given by

Euw (K60, 50) — £(K; 50, 60)
1
_ dx, [2/=3Q" (K: 5T 5T
167[G1)2 X [2v/=9Q )

— J=gA" (U |£,8T, 50)]

on-shell » (30)
where the boundary OX is composed of two parts,
Jos = [ — [5- Basically, these boundaries are sphere parts
of geometry on the horizon and the infinity. The contri-
bution from the infinity vanishes as can be inferred from the
linearized charge expression in Eq. (6), which is finite and
taken to vanish for linear perturbations. In pure Einstein
gravity, one can infer from Eq. (C3) that the above
boundary term at B(z) is given by’

1
/B(I) ~ 8x2G B(t

- 872G Jp()

x;w AV _gQMD (KH; 697 59) |on-shell

3
dx\/u [Kéﬂaﬁ Oftap — 55/”/} £k, 0lap

on-shell

(31)

Note that the second term in the right-hand side of the last
equality vanishes on the bifurcation surface B(t =0)
because of Ky — 0, while it would vanish at B(z) when
the perturbed shear vanishes as was argued in Ref. [3].

The absence of the contribution from the infinity implies
that there would no difference between £ and Exy on the
sector J1,, while they may be different on other sectors
Z(t1),Z(ty), and Hy, up to boundary terms given by the
integral over B(t,) and B(t,). Schematically, the difference
on these sectors can be written as

gHW|I (t12) g|I (t12) /

112
Enwlrg, = Elrg, + / / (32)
B(1)

where we have abused the notation to denote the symplectic
form and its counterpart on the sector H;, as Eyw and &,
respectively. This is consistent with the individual con-
servation of Eyw and &.

To show the monotonicity of the canonical energy in
Ref. [3], the appropriate boundary terms are subtracted
from the canonical energy to modify Eyy as Eyw and then
it was shown that this barred canonical energy satisfies for
t 1 S t2

>The similar expression at B(r=
Ref. [3].

0) was obtained in Eq. (85) in
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Enw(ty) — Euw(ty) < 0. (33)

Simply by defining our barred quantity as £(t) = Eyw (1),
one can establish immediately the monotonicity property of
our barred canonical energy. The actual application of the
canonical energy comes from the fact that Epw(7) —
Euw(t =0) as t — 0, which can be used to argue that
Enuw(t = 0) < 0 implies the instability.

In order to see how to use our canonical energy for the
stability, it is useful to introduce the boundary term
composed solely of the first term in the last equality in
Eq. (31) by denoting it as f B(1) which is negative semi-
definite. Note that our barred canonical energy is different
from the unbarred one even at 7 = 0:

(E;_(E;HW_gHW_E_//v (34)
B

where we have used the relation between Eyy and £ and
the fact that Eyw = Epw at t = 0. Because of this relation,
E(t =0) < 0 may not imply the instability for a generic
noncompact perturbation. However, we may prepare the
initial data at ¢ = 1, which are compactly supported such
that £(¢;) = £(1;) = Epw(11). Then, at later time we can
conclude that

E() =

Thus, for the compactly supported initial data, the insta-
bility argument works in our modified canonical energy:
E(t=0) <0 implies the instability just as Eyw(r=0)<0
does.

Now, we would like to give various comments on our
construction and its meaning. In our construction the
symmetric bilinear property of the modified canonical
energy on the first order variations is manifest even on
%(1), in contrast to the expression of the canonical energy in
the HW construction. In the HW construction, the appro-
priate gauges at the asymptotic infinity and the horizon are
used to show this property on X(7 = 0), only. As can be
inferred from Eq. (14) and the property of the ADT current,
our modified canonical energy can also be written, when
the second order variation of field W satisfies second order
EOM, as

Enw(tr) < Eqw(t) = E(ty) = E(ry),  (35)

E(K; 60, 5)

dx/u/ V _gQﬂU(K; \I]’ 62\1’)

= — _ _S2€ (),
S”G o% gq,fégwf(s 5\1170

(36)

which means that the bulk expression of the modified
canonical energy expression becomes the total surface
term. More concretely, the second order variation of
conserved charges in our construction can be read from
Eq. (6) as
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1
POK) = ¢ /) 0l (K: 0.0

=—— | d —g|Q"(K; oW, 6¥
87G oy P/ ~91Q( )
+ Q" (K; U, 5°W)], (37)
where we used 6K = 0 and 6,/—g = 0 at OZ. By using the

second order perturbation satisfying EOM and falloff
conditions of dW, one can see that

E(Ky: 0. 6%) = Mo = Qo = 56 Spu
T

dx A/ —9QH (K 3 60, 60),

(38)

872G

where the last term in pure FEinstein gravity is given
by Eq. (C3).

On the sector J, in Einstein gravity without matter
fields, one may obtain directly the expression of our
modified canonical energy, which is nothing but the second
order Einstein tensor in this case, by choosing the Geroch-
Xanthopoulos gauge with additional falloff conditions as in
[24]. The final expression given in Eq. (4.13) in Ref. [24]
shows us that our modified energy also gives the same
expression as the original canonical energy on this sector.
Therefore, there is no difference between Eyy and £ on the
sector 71, in Einstein gravity without matter fields, indeed.
This direct computation reinforces our argument for the
absence of the difference at the infinity between our
modified canonical energy and the HW canonical energy.
One may perform the similar direct computation on H,,
since the expressions on H;, and 7, may be parallel. In
the above, the difference is indirectly shown to reside only
on the surface B(f;,) in Appendix C.

Though our expression of linearized conserved charges
is completely consistent with the one in the covariant phase
space approach and the one from the conventional ADT
formalism, the second order variation of conserved charges
in our construction may be different from the one in the
covariant phase space approach since

5251 Q(K) = 6251 QCOV(K)

1
dx,,/—gA" (£ 6,¥,6,V), (39
+16”G_/0): x;w g ( K92 1 ) ( )

where Q... denotes the charge in the covariant phase space
approach and we have used the relation given in Eq. (A8)
with the condition 0K” = 0. Indeed, in some higher
derivative gravity it was noticed that the additional con-
tribution to the covariant phase space charge expression is
important in the context of the Kert/CFT correspondence
[25]. The combination in the second order variations in the
canonical energy may also be affected by this difference.
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This is reflected in the following representation of the HW
canonical energy,

Eqw (K; 80, 60) = 8> MY — Q62T — %528103‘}3{,
which is consistent with the difference given in Eq. (30)
and Eq. (38).

Practically, the modified canonical energy can be
obtained simply by keeping the first order variation terms
in the expression of 6,6, E**. By using EOM &£y = 0 and
linearized EOM 6&y = 0, respectively, one can see that

<\/_*7ADT(K;\11751\IJ)> = /=9(6:6,

E® ) KI/ | on-shell *
(40)

As a result, the modified canonical energy is given by

E(K;6,,5,0) = dx A/ —9(8,8 EF)K, |20

on-shell’

(41)

872G

where 5 = 0 denotes that we should keep the first order
variation terms. This expression clearly shows us that our
modified canonical energy is related to the direct gener-
alization of the second order Einstein tensor. Our con-
struction may be regarded as providing the generalization
of the construction by the second order Einstein tensor in
Ref. [24] beyond FEinstein gravity. Furthermore, our con-
struction shows clearly the dependence of the modified
canonical energy only on EOM and it makes the covariance
of the expression manifest. It would be useful to deal with
the odd-dimensional case with the gravitational Chern-
Simons term. Besides, our expression of the canonical
energy clarifies the relation between the traditional ADT
expression and the canonical energy by Hollands and Wald.

One may worry that our form of the canonical energy
might have some drawbacks compared to the HW con-
struction since it differs from the HW canonical energy in
the boundary term and the HW canonical energy is shown
to be consistent with other criteria of the black hole
stability. Nevertheless, as was shown in the above, all
the essential properties of the canonical energy also hold in
our modified version and there are various cases in which
such a boundary term does not contribute. In fact, our
construction reveals the interesting aspect that the addi-
tional boundary term at the horizon may be allowed in
defining the canonical energy. Namely, when we define the
canonical energy, we may relax its relation to the Hessian in
thermodynamic stability, up to the boundary term. More
concretely, we may have defined the modified canonical
energy by adding the boundary term coming from
JH(K;6,5T). For instance, we may have introduced
the modified canonical energy by using the current
expression —Jhpr + J¥ = T as
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~ 1
E(K:oU.6) = o L dx, /=Ty (¥

£, 80, 50),

which also satisfies all the properties discussed in the
above. This canonical energy can be shown to be different
from the HW canonical energy as

= /B dx,,m/ —QAMD(\IJ|£K6\P? 5\11) |on—shell’

and satisfies the relation, when the second order EOM are
imposed, as

E(K 60, 80) = My, — Q62T — 2562831{, (42)
T

which is consistent even with the Hessian in thermody-
namic stability consideration.

Recently, there was a suggestion that the canonical
energy is dual to the so-called Fisher quantum information
metric in the context of the AdS/CFT correspondence [8].
As is clear from our construction, our modified canonical
energy & or £ is also a good candidate like those dual to the
information metric, since our modified canonical energy
does not give any difference from the HW canonical energy
on the pure AdS background. The difference between them
comes from the boundary contribution at the bifurcation
surface B or more correctly at B(z), which is related to the
deep infrared physics in the boundary theory. The freedom
of adding the boundary term [, to the canonical energy
with arbitrary coefficients may be useful in this duality.

In the following section, we consider hairy black holes in
the asymptotic AdS space. In the asymptotic AdS space, the
roles of boundary terms at infinity are irrelevant because of
the AdS nature and one can take K as the horizon Killing
vector. We apply our modified canonical energy to study
the stability issue on hairy extremally rotating black holes.

IV. HAIRY ADS BLACK HOLES

In this section we consider three-dimensional extremally
rotating hairy AdS black holes admitted in Einstein gravity
with a cosmological constant and a scalar field, whose
analytic solutions are given in [26—28]. Interestingly, there
are two arguments for the stability of the above extremally
rotating hairy black holes that could give us opposite
conclusions. The argument for their stability may be given
as follows. Since there are no propagating degrees of
freedom in three-dimensional Einstein gravity and the
scalar field involved in the above solutions satisfies the
Breitenlohner-Freedman bound [29], the extremal hairy
black holes should be stable, at least, perturbatively.
Moreover, there seems to be no mechanism for the
instability in this extremal configuration in the AdS/CFT
context since it is dual to the renormalization group flow
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interpolating two CFTs, which does not seem to allow the
other end points. The opposite argument comes from the
no-hair conjecture for AdS black holes [30,31], which was
made only for the four-dimensional case but seems to hold
even in the three-dimensional case. Though there is a
numerical attempt to construct rotating hairy black holes
deformed from BTZ black holes [32], those hairy black
holes require special conditions on the asymptotic behavior
of the scalar field [33] that are not satisfied by the hairy
extremal black holes under consideration. Furthermore, the
extremally rotating black holes in higher than four dimen-
sions are shown to be unstable [5,34]. Of course, all the
opposite arguments rely on the higher-dimensional ana-
logues and so may not be so persuasive. In the following we
adopt the canonical energy method and show the stability
of three-dimensional extremally rotating hairy black holes.

Before presenting the specific models under consider-
ation, let us present some general setup for the Einstein
gravity with U(1) gauge and scalar fields ¢’ and summa-
rize some results. The Lagrangian for this system consists
of three parts, the Einsten-Hilbert one Lgy, the scalar one,
and the U(1) gauge part, respectively, as

1
Ley = R —2A, L,= —EGuaﬂ(Pla”q’J - V(gp),

1
‘CA = _ZN((/))F;MJFMH' (43)

The Euler-Lagrange expressions for metric, gauge and
scalar fields are given by

gﬂu = g//l\u - Tﬂw Eﬁ = vﬂ (NFW)’
Ep = Gpy(@)(Op’ + T, 0,0509") = 0,1V (9)
1
B Za‘/]’NF#DF”’

where G)\ =R, —iRg, +Ag, and the energy-
momentum tensor 7, is composed of T}, and Tj},, as

1

Tffy - E [Gllay(plau§01 + g;w‘c(p}?
1

Tﬁy = 3 [NFWF,J“ + gm,EA].

Note that there is the off-shell identity for a generic
diffeomorphism parameter ¢ as

0=-2T¢, + Ly — @’;(f’gA),
0=-2T,¢, + 'L, — O (£:0),
where £,A = —F,,¢" denotes the Lie derivative augmented

by a gauge transformation and the surface terms for the
generic variations are given by
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0,(39) = 29"¥Vég,5. O (0) = Gy ()59 09
@, = -NFMSA,.

By using this identity under the assumption 6K* = 0, one

can see that the scalar field and the Abelian gauge field

parts for the modified canonical energy can be extracted
from the surface term @ as

J lfxDT (K580, 60)|on-shen

1 _
— ~[-KHV,8,0%(89) + 20" (£4)] 200

E on-shell?
jl;\DT (K’ 0A ’ 5A) |on»shell
1 _
= 3 KV, 5,04 (54) + F0 (£xA) 750,

As was emphasized before, one can obtain the same
expression solely from the expression of E*, ie. a
combination of EOM, but we have provided the shortcut
to the results by using the relation between EOM and the
surface term @,

Now, let us stick to the three-dimensional Einstein
gravity with a minimally coupled scalar field, whose
Lagrangian can be written as

1
L=R- Eaﬂcpaﬂcp - V(p). (44)

Our interest is in the hairy deformed three-dimensional
extremal black holes [26,27]. One can obtain the solutions
by assuming that the scalar potential V is taken in the
form of

Vip) = 55 (O~

=3 W2, W=W(g). (45)

By taking the generic ansatz for the metric and scalar as
ds? = —e*di? 4 e dr? 4 12(df + € dr)?,
@ = o(r), (46)

where the radius of the asymptotic AdS; space is taken to
be unity, one can show that the metric functions and the
scalar field satisfying the following first order ordinary
differential equations solve the full EOM:

1
¢ =—eBo, W, Al =—+ B,
r
Cy _ 1A ' l T n
(e“) = ;e ) A-l—B—E(p . (47)

For instance, the simplest case among analytic solutions is

Do

o) =B, W=alk+g2()]+peT. (48)
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where the coefficients a and f are given, in terms of the
constant ¢, and the position of the horizon ry, by

1 1 2e~ 45/
= p=—C " (49)

- 21— e—(pg/4r,_, 1— e—q)g/4r%_,

In this case, the metric functions can be obtained as

eA=r [Zae_(/’g/‘”2 + ﬂ ; B = e /4 emA,
c_1
et =—et. (50)
r

The near horizon geometry of all these configurations
satisfying the first order EOM is given generically by

1 L 2
dsty = Ly [—p%zﬂ + ;dpz] + 1% <d9 - % pdt) :
H

(51)

which is known as the self-dual orbifold of AdS; space
[35]. Here, Lny denotes the radius of the orbifold of AdS;
space defined by

Lygy=——.
N W((PH>

The scalar potential near the horizon can be expanded as

V= = W)+ Won o= guf + o (52

which comes from the generic expansion of the super-
potential W as

W= Wipn) ~ s Wign)p—gul +-. (53
Note that the first term of the superpotential W plays the
role of the cosmological constant on the near horizon
geometry. The horizon Killing vector is taken by K = % in
these coordinates. The effective Lagrangian on the near
horizon geometry is given by

1. 1 .

L=R-2Ay - 5 (0,0)* = EmIZ\IH((p)z +oe, 0 (54)
where Ay and miy; denote the near horizon effective
cosmological constant and effective mass square of the
scalar field ¢ = ¢ — @y as

1 W((PH)2 2

A = — = — 2 :2 2:—_
NH 4L12\IH 4 RGN Wi(pn) L%H

The effective mass of the scalar field is greater than the
Breitenlohner-Freedman bound in the near horizon
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geometry and so the scalar field could be thought of as stable
in the near horizon geometry. We would like to confirm this
argument explicitly by using the canonical energy method.

Let us consider linear perturbations of the metric and
scalar fields and compute the modified canonical energy on
the near horizon geometry in order to see the stability of the
above hairy deformed extremal black holes. Combined
with the stability argument at infinity, one may say that the
whole configuration is stable for linear perturbations. As is
obvious from the three-dimensional nature of our configu-
rations, the metric variation should be just pure gauge and
so its role is trivial. From now on, let us take all the
functions to depend on the radial coordinate p instead of r
on the near horizon geometry. Indeed, by taking the metric
perturbation as

¢ =g (t.p.0), (55)

59/41/ = v(ﬂ Cy) >

E(K;69,69) =

=V, (h°V h") + %Vphvph”” +2 (vphﬂa - % V"h) V(/‘h”>,,] - % ot [trace]] K,

where h,, = 8g,,, h=g¢"“h,,. and [trace] denotes the
trace of the expression in front of it. This part is
consistent with Eq. (85) in [3]. Since the metric perturba-
tion is given by a pure gauge transformation, i.e.,
09 = £79,u- this part has nothing to do with canonical
energy and can be checked to vanish by a direct compu-
tation, as was shown generically in Eq. (27). The cross
terms can be shown to vanish as follows:

E(K;69,6¢) =
871'G

Since ryyg > 0, E(K; 8¢, 6¢) could not be negative at any
time. This confirms the linear stability of the extremally
rotating hairy black holes under consideration.

V. CONCLUSION

We have constructed the modified version of the canonical
energy that was introduced originally by HW in [3]. Our
construction is based on the off-shell adaptation of the ADT

°It would be meaningful to check the gauge invariance
explicitly since the gauge choice may be different in the extremal
case and in our form of the near horizon geometry.

“5.C /E dx”\/—_gH WO b, + 2PN V0 R)

- _G/z dx,\/—g [—V”&(pvl’éqo + lg“’“(v,ﬁ(pvﬂé(p + mi,égoz)} K

08¢ AN
9ﬂ2252 == 1.
[avaoRt s+t (2) + (1) )
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we will show that the metric perturbation does not
contribute to the canonical energy.

Instead of solving the linearized EOM on the given
background, we would like to analyze the form of
modified canonical energy itself, which is composed of
four parts as

E(K;6,V,6,V) = E(K;8,9,6,9) + E(K; 819, 6,00)
+ E(K;619,6,9) + E(K; 6,9, 6,0).
(56)

By using our result given in Eq. (41), one can compute
each term directly without difficulty. Firstly, the contri-
bution from the metric perturbation to the canonical
energy is given by’

1
o =5 VoV by = 297 1Y) by

V=0

on-shell

I
E(K;8g,69) + E(K; 8¢, 59)

1
=G dx V=9lm%(2h,,

= 0. (58)

g/wh)(pé(p} K |on sgell

Hence, the contribution to canonical energy comes only
from the scalar perturbation part as

V=0

on-shell

|

current and so connects the various conceptually different
constructions. Briefly speaking, it can be regarded as the
generalization of the second order Einstein tensor method in
pure Einstein gravity or the effective energy-momentum
tensor method in the original ADT approach. By showing
explicitly the relation between our construction and the
original HW one, we have showed that one may construct a
quantity that differs from the HW canonical energy in the
boundary term over the spatial section of the future horizon.
Through this relation, we have also explained clearly why
the second order Einstein tensor method in the literature
could give the same information as the HW canonical energy
at the asymptotic infinity. In other words, our results imply
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that the second order contribution to the Bondi energy can be
computed by using the ADT current expression.

In fact, the modified canonical energy can be constructed
while sharing all the properties of the HW canonical energy
as given in Eq. (42) and may be distinguished from the HW
canonical energy only in the higher derivative theory of
gravity. The essential point of our construction is that one
may have freedom in constructing the canonical energy
equipped with the relevant properties. This possibility would
give us a better chance to match the canonical energy to the
Fisher information metric in the context of the AdS/CFT
correspondence. Our results show that one may be able to use
the freedom in the construction of the canonical energy with
the required properties under consideration.

We have also considered the three-dimensional extrem-
ally rotating hairy AdS black holes that were not yet proven
to be stable or not. Since there are conflicting arguments
about their stability, it would be a good exercise to use the
(modified) canonical energy method in this example, as is
done in the main text. We have verified that the canonical
energy is positive definite on the near horizon geometry and
concluded that the extremally rotating hairy black holes in
three dimensions are stable at least under the linear
perturbations. It would be very interesting to explore
whether or not one can distinguish the various possible
forms of the canonical energy from the physical consid-
eration in the context of the AdS/CFT correspondence,
especially as a dual to the Fisher information metric. In the
context of the black hole stability, it would also be
interesting to consider a higher derivative theory of gravity
and the stability of its black hole solutions by using the
(modified) canonical energy method.
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APPENDIX A: RELATION TO
SYMPLECTIC CURRENT

Generic variation of the action can be expressed as

1
162G
1

162G

SI[0] dPx8(\/~gL)

/ dPx[\/GE4V + 0,04(1, 51)]. (A1)
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Identifying the diffeomorphism transformation of the
parameter { with the above generic variation leads to the
following relation:

The symplectic current with the variation of the diffeo-
morphism parameter {# under a generic variation ¢ can be
defined by

(A2)

o (V|£,0,6V) = £,0¢4(F, 6V)

~ [B{OM(. £,)} - O4(V. £;,0)

= O (£,V,60) — O (6V, £, V),

which reduces to the conventional one when 6% = 0.
By combining the definition of the symplectic current
o (V|£,¥,6¥), the double variation of the action as
(6£; — £:6)I[V] = £5-1[V], and the relation in (A2) for
the diffeomorphism parameter 6(¥, one obtains

— £ =GEBY). (A3)
By using the identity in Eq. (1), the relation of 60, = 9,6
for a generic variation 9§, and the property of the Lie

derivative on the scalar density £:(,/=g€y0V) =
0,(8"\/=gEy6¥), one can see that

0478 hor) = =5 B/ G W) =~ /=Gt V]

+ %fc(\/—_gé'q,é\ll). (A4)

The additional current .7’ ’2 can be related to the sym-
plectic current @w* in the covariant phase space [19] as
2(/=9TN(V|£,0,8V) = (T |£,V,50)

+ 0,(V=gA™ (V|£,D, 50)),
(A5)

where A" is an antisymmetric tensor defined by

SO (£,1) = £,04(50) + /=gV, (AM(D|£,T, 50)
—28H(W|£,W,50)) + 60 - ],

where 8 =S¥ and [ -] denotes the irrelevant expres-
sions in our presentation. As a result, the additional current

‘s is symplectic just as @* and vanishes for a Killing
vector. The relation in Eq. (AS5) between the additional

current term 'y and the symplectic current @* implies that

0,(/=aT) = 3 0. (6)
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Now, the identical conservation of the current J# follows
from the identity given in Eq. (A3),

9, (v/=93) =0 (\/— aor) + 9, (vV=9T4)
~3 [5(\/—_9541554‘1’) - V=9E w5 V]
+ %fc(\/—_gé'q,é\ll) + %aﬂwﬂ(mfg\y, 50)
=0.

For a covariant Lagrangian L (), the off-shell Noether
current and potential may be introduced as

I = 0 ZGLT) + 2,/ GBI, — 04(£,T)

= 9,K"(¢). (A7)

After some manipulation by using the relation in Eq. (A5),
one can obtain the off-shell relation

2y/=gQ" (¢ W, W) = KM ({) — K™ (8¢) — 241 (50)
+ JgAR (U|£,0,60).  (AS)

Note that there may be additional terms in the right-hand
side in the above relation when the Lagrangian contains
noncovariant terms [10]. By recalling the relations Eqgs. (3),
(AS5), and (5), one may note that

(V£ V,6F) + 2./=gT \pr (L5 ¥, 67)
= 0,[2/=gQ"(; ¥, 8V) — \/=gA* (U |£,T, 5T)]
= 9,[5K"(¢) — KM (8¢) — 2010 (50)], (A9)

where we used the off-shell identity (A8) in the second
equality.

It is straightforward to repeat the same procedure
in [36] to derive the first law of black hole thermodynamics.
Let us introduce the integral V' of the off-shell current
JV as

Vs (&0, 50) —L/ dx,/=gJ*(; U, 50)

872G
v
= 812G . PmV/79Q
—— | ax. J=50m. A10
8:G /. X/—9Q (A10)

To see the implication of this integral, take the on-shell
condition and ¢ as a Killing vector K. Then, the off-shell
current Ji, pr reduces to the ADT current 7', pr. The on-
shell condition implies J' ,r = 0 and the Killing condition

"Since we use a Kﬂhng vector in the derivation of the first law,
one can employ J4pp instead of J¥.
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leads to J% =0 and A* =0, and so the integral Vy
vanishes in this case. For the horizon Killing vector K,

0 0

the conserved charges are given by

G dxﬂw/“Qﬂv(KH,\If 8U) = M, — QydT .,

K
A/ =GQ (K1 W, 5) =
3G dx gQ" (K, W, 6V) 2ﬂ5SBH,

and so one can see that the integral gives us the first law of
black hole thermodynamics as
0=06M, —QyudJ,

— X S (A1)
2

APPENDIX B: GAUGE INVARIANCE

Just like two expressions of the Lie derivative of the
ADT current in Eq. (19) and (20), the Lie derivative of the
potential Q*¥ can be written in two ways. Firstly, it can be
written as

£.Q(K; W, 60) = QW(£,K; U, 60) + Q*(K; £.1,5)

+ Q"(K;, W, £.67). (B1)
Secondly, it can also be written as
£Q"(K; W, 60) = V,(3el*Qm) — QMV e
_ euanurx _ €Dan(Z/4’
= V,(3el" Q) — Q¥V e
- ze[ﬂjﬂmv (B2)
where we have used that 7%y (K) = J#(K) = V,Q*(K)

for a Killing vector K. Combining the above two expres-
sions for the Lie derivative of the potential Q#*, one obtains

Qﬂl/(K; \Il’ £e5\11) |0n—shell = [va(?’e[aQ’w] (K’ \I}’ £65\II))
— Q®(K; U, 50)V ¢
— Q"(K; £, V,57)
— Q®(£.K; U, 50)]

on-shell »

(B3)

where the on-shell vanishing condition of the ADT current
J'pr is used. By inserting this equality in Eq. (21), one can
see that there are contributions from two boundaries: the
spacelike infinity and the bifurcation surface B. The first
term in the right-hand side of the above equality does not
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contribute to the modified canonical energy since we
integrate over the closed space at both boundaries. Now,
let us consider the leftover terms in the right-hand side.

Since e corresponds to the asymptotic symmetry gen-
erators at infinity, one can see that V,e* - 0 and £,V — 0
sufficiently fast near infinity compared to the field W itself,
which would come from the definition of the asymptotic
symmetry generators. As can be inferred from the defi-
nition of the charge in Eq. (6), it turns out that 6Q(K) =
f dx,,\/—gQ" (K; ¥, 6W¥) is finite (in fact, taken as zero
for linear perturbations) at the spacelike infinity. Therefore,
the second and third terms in the right-hand side vanish at
the spacelike infinity. Furthermore, £.K = [¢, K] = €’ cor-
responds to another asymptotic Killing vector and
50(e fdx,w\/_Q””(e U, 5¥) = 0 under the chosen
condltlon that the charge is invariant for the linear pertur-
bations. As a result, the last term does not contributes at the
spacelike infinity.

Since we are taking the same gauge conditions in
Ref. [3], our gauge parameter ¢ satisfies the same property
as there. Thus, at the bifurcation surface B, the gauge
transformation  satisfies V,e%|z = u™V,e5)3 =0 (see
Remark below Lemma 1 in Ref. [3]). Therefore, the second
term in the right-hand side in Eq. (B3) does not contribute.
At the bifurcation surface B, therefore, the relevant
expression in Eq. (B3) can be written as

2\/ _QQW(K; \II’ £€5\IJ) |0n—shell
= 2 /=g[Q"™(K; £.¥,5T) + Q(£.K; U, 50)]

on-shell *

(B4)

For simplicity, let us focus on pure Einstein gravity, in
which the potential Q* is given by [11]

Q“(&9.h) = %WW — (Ve 4 ¢ VR (i

1 1
-3 helnv oY+ 3 hevig,. (B5)

By using the metric perturbation near the horizon given in
Eq. (24), one can see that the perturbation metric A,
satisfies ny, 2, )i"* — 0 as r — 0, that is to say, n), 2, )"
vanishes on the future horizon. Therefore, the last two
terms in the above potential Q**({; g, 8g) do not contribute
after the integration over the spatial section B(z). This is the
case even for the second variation in the form
of Q*({;6,9,69).

Let us consider the contribution from the first term
Q" (K;£.9,6¢9) in the right-hand side of Eq. (B4). By
incorporating Ky — O at the bifurcation surface B, this
term reduces to

1 J
Q“ (K9 M)l = =5 €90V K| (BO)

PHYSICAL REVIEW D 94, 044014 (2016)

Note that the gauge parameter ¢/ is tangent to the future
horizon and, in fact, its admissible form is given by [5,6]

€' = fnt + rYt, n*V,fe=0. (B7)
Then, the direct computation in the chosen coordinates in
Eq. (24) shows us that h"”V[ﬂey] — 0 as r — 0. Hence, the
first term gives zero contribution.

In the chosen gauge near the horizon, ¢ = £.K = —[K €]
becomes normal to the future horizon at the surface B, since
the gauge parameter ¢ is tangent to the horizon. By using
the property of &£, one can set [3]

&= fn* 4+ uX* + rY*. (B3)
Noting that n*V h§ — 0 as r — 0, with the expression of &
near the horizon, one can show that the second term
Q" (£.K;¥,5Y) in the right-hand side of Eq. (B4) reduces
at the surface B to

Q" (& 9.09) = —5/4 Vel 4 g, Vipte + gevilp,

(B9)

Since W&, = h*n, = 0 at the surface B, one can see
that n, 7, é‘av["h” % = 0 for the metric perturbation h,,, at B
and that n”V h o p®9,6p,, « 58 = 0. Thus, we obtaln
the following result

2\/ QMD(K gv£ 5g)|on shell — —V 5/4 v[ﬂéy (BIO)
Since the gauge is chosen as u"ﬂéu,l/, =o6u% =0, we
immediately see that

1
E(K:£:9.09) = 6 | dxu/~9 gougVked = 0. (B11)

Now, we would like to give comments on the relation to
the derivation in Ref. [3]. In short, our derivation is
completely parallel and consistent to the one in
Appendix A of Ref. [3]. In fact, one can show that

2\/ —gQ"”(K; \I}v £€5‘11> |0n—shell
—[2/=gQ" (K; £, 5F) — 5K (&) + 2£H@H (50)
-V —gA””(\IJ|£§\II’ 5qj)]on—shell'

In pure Einstein gravity, the first term is already shown to
give no contribution. Note that the A#“-tensor is given by

rlg/’ Py gu(agﬁ)(ﬂgﬂ)ﬂ)
X (‘£§ga/3hpa - ha/)"ffg/m)v

AW (£eg,69) =
(B12)
from which one can see that the above A#Y-tensor term does

not contribute to the canonical energy through Egs. (B3),
(B4), and (21). The absence of the contribution from
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SKH (&) — 2EM@Y(8W) is the main result in Appendix A
in [3].

APPENDIX C: RELATION TO HW
CONSTRUCTION

In the case of the Killing vector K with 6K = 0, one can
show that the current expression J'xpr(K;8,%,8,¥) is
related to the symplectic current as follows. The variation
of the ADT current J%r can also be written under the
condition 6K = 0 as

82 (v/=9T a1 (K3 ¥.6,9)) = /=9 T spr(K: 6, V.6, )
+ /=91 (K3 U, 6,6, 0)
= /=9T\p1(K; 6, 9,6, V)
+9,[V=9Q"(K; ¥, 5,6, 7)),
where we used in the first equality the on-shell vanishing
condition of J%\r({;¥,6¥) and used in the second

equality J4pr(K) =V, Q*(K). Under the condition
|
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0K =0, the generic variation leads to 0£xV = £x0U.
And thus, the variation of the symplectic current becomes
5" (V£ W, 5,0) = o (V|£5,V,5,¥), because of
£x¥ = 0. By taking into account the second variation
of the relation in Eq. (A9) with the above second variation
of the ADT current .,y for the Killing vector K, one can
see that

[a)/‘(\ll|£K§2\Il,5l \Ij) + 2 V _ngZDT(K;52\11751 \I/)]on—shell
=0,[2/=9Q" (K:6,9.5, 1) +2(8,,/=) Q" (K: 1.5, D)
—V _gAMD(\II|‘£K52\II’61\I’)]on—shell’ (Cl)

where we have used A* (£, W, 6¥) = 0. Under the chosen
gauges near the horizon and the asymptotic infinity, it turns
out that 8,/=glp) = 0 at the future horizon and all the
terms vanish at infinity because oW decays sufficiently fast
at infinity. Thus, one concludes that the difference is written
eventually as

/): dx, [ (V|£40, W, 6,F) + 2y _gjl/:DT(K; 5V, 81W) o shen

= - A dx;w vV _g[2QllV(K; 52\115 51\11) - Aﬂy(qj|£K52\I/v 5lqj)]0n—shell’

which holds for any Cauchy surface X(7), not just at
%(t =0). As a result, one obtains the relation given in
Eq. (30). It is interesting to observe that the above relation
reproduces the same expression given by Eq. (B3) and
Eq. (B4) by taking 6, = £,, which might be just a
coincidence not warranted from the construction. In pure
Einstein gravity, one can show, by the explicit computation
as done in Appendix B, that the A#“-tensor term does not
contribute at the surface B(t) in the chosen coordinates near
the horizon as (22) and (24). By using the form of the
perturbed metric in Eq. (24) and the fact that n##*1h,, — 0
at the future horizon, i.e., at r = 0, one can see that the
relevant potential term for the horizon Killing vector K is
given by

|

(C2)

1 v
Q"(Ky:829.619) 1) = 56207190V K
1
- 5519“/}K1[1;V”]529aﬁ

+ KV (820 800) )

where we have used that K is normal to the future horizon
and nbf,,]h”“ — 0 as r — 0. Thus, we obtain

2n,t, Q" (Ky; 69, 69) |B(t)

/a 5 [0 (V£ 0.009) + 20/ (K 527510

= 0,[6,6, K" (K) = 2K15,0(5,¥) — 2,/=gQ"(K; U, 5,5, )]

3
= | kOu P Spy — = SuP £, S (C3)
2 B(1)
The above relation may also be written as
on-shell* (C4)

From the relation in Eq. (A8), one can see that the last term in the right-hand side in the equality cancels the second order
perturbation terms in the proceeding terms. Explicitly, it can be written as
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2/=9Q"(K; ¥, 5,6, V) = 6,8, K" (K)|5,5,w

- 2KIr@¥ (0, 5,6,0),  (C5)
where the subscript §,6; ¥ means that we should keep the
second order variations. Schematically, one can write the
above relation of the current expression as

[a)l‘(\Il|£K52\IJ’ 61\11) + 2 V _gj}/iDT(K; 52\117 61\Il)]on—shell
= 8,[6,5, K" (K) — 2K15,0% (5, 1) 20 =0 (C6)

on-shell °*
where 6,6, ¥ = 0 in the superscript denotes the absence of
second order variations in the expressions.

On the bifurcation surface B, the contribution comes
from the first term 62 K*, only. In fact, the essentially same
relation has already been obtained in Ref. [3] [see Eq. (81)
there], though its derivation and interpretation seem to be
different. In the end, the difference between Exw and & is
given by

PHYSICAL REVIEW D 94, 044014 (2016)

Euw (K; 80, 80) — E(K; 50, 5W)

1 v 2 —
- 16JTGA 6, [ K (K)o et

(€7)

which can also be written, through Eq. (C3), at least in
Einstein gravity as

Eaw(K; 80, 80) — E(K; 6, 5)

1

= - % B dxﬂv V _gQ”D(K; oV, 6\11) |0n—shell‘

(C8)
By noting that the modified canonical energy differs from
the HW canonical energy only on the bifurcation surface B,
whenever 6;¥ or 6,0 are taken in such a way that
8,,0Q(K) =0 at infinity, one can see that our modified
canonical energy satisfies the same properties with the HW
canonical energy for the perturbation foward stationary
black holes.
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