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One of the striking features of general relativity is that the Einstein equation is implied by the Clausius
relation imposed on a small patch of locally constructed causal horizon. The extension of this
thermodynamic derivation of the field equation to more general theories of gravity has been attempted
many times in the last two decades. In particular, equations of motion for minimally coupled higher-
curvature theories of gravity, but without the derivatives of curvature, have previously been derived using a
thermodynamic reasoning. In that derivation the horizon slices were endowed with an entropy density
whose form resembles that of the Noether charge for diffeomorphisms, and was dubbed the Noetheresque
entropy. In this paper, we propose a new entropy density, closely related to the Noetheresque form, such
that the field equation of any diffeomorphism-invariant metric theory of gravity can be derived by imposing
the Clausius relation on a small patch of local causal horizon.
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I. INTRODUCTION

General relativity, and other diffeomorphism-invariant
theories of gravity, admit special states called black holes
whose mechanics is governed by the laws that are in exact
correspondence to the laws of thermodynamics [1–3]. The
expressions for the energy and entropy of these states
depend upon the theory under consideration and their
temperature is given by a geometric quantity, namely the
surface gravity associated to the black hole horizon. The
latter is identified as the temperature by studying quantum
field theory on the gravitational background of the black
hole [4]. The classical and quantum dynamics of black
holes are widely believed to provide important lessons for
understanding the underlying quantum theory of gravity.
However, the underlying quantum theory should describe
all gravitational macrostates and not merely the black holes.
Thus it seems plausible that if we restrict our attention to a
region of spacetime that is small enough (with respect to the
curvature scale) such that the spacetime is “close to”
Minkowski, and we assume the validity of the Einstein
equivalence principle [5], then locally the state should
look like an equilibrium one and a coarse-grained/
thermodynamic description of the degrees of freedom
contained in that region of spacetime should be possible.
About 20 years ago, this chain of reasoning led Jacobson

to derive the Einstein equation as the equation of state of
these underlying degrees of freedom [6]. Assuming that the
heat flow corresponds to the energy-momentum flux of

matter across the Rindler horizon of a local observer, the
entropy corresponds to the area of the horizon, and the
temperature has the Unruh value (¼ ℏ=2π), Jacobson
showed that the horizon must be dynamical in order for
the Clausius relation dS ¼ δQ=T to hold true, and that its
evolution is governed by the Einstein equation.
Jacobson’s approach of deriving the gravitational field

equation from the Clausius relation has been applied to
other theories of gravity [7–13]. In particular, it was applied
to fðRÞ theory [14,15] after deforming the Clausius relation
to account for the internal entropy production terms,
dS ¼ diSþ δQ=T. All these approaches have been criti-
cally reviewed by Guedens, Jacobson and Sarkar [16]
whose work has inspired our study. The authors of Ref. [16]
used a careful construction of the geometry of the local
causal horizon (LCH) and the approximate Killing vector
field constructed in Ref. [17]. Horizon slices were then
assumed to have an entropy density whose form resembles
the form of Noether charge conjugate to diffeomorphisms.
This was called the Noetheresque entropy. By imposing the
Clausius relation on a small patch of the horizon enclosed
between two slices sharing a common boundary, it was
shown that the field equations for a wide class of higher-
curvature theories of gravity can be derived if a given
consistency condition holds. Unfortunately, this consis-
tency condition is not satisfied for general theories of
gravity containing derivatives of the Riemann tensor.
Therefore the thermodynamic derivation of the field equa-
tion is expected to fail in general higher-derivative theories
of gravity. Can it be salvaged?
One might wonder why the entropy density should be of

the Noetheresque form at all. Could one come up with
another definition of the entropy of the local causal horizon
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such that the field equation can be derived from the
Clausius relation? Or could one use the ambiguities in
the construction of the diffeomorphism Noether charge in
order to get an entropy that does the job? Even in theories
without the derivatives of curvature there is a lingering
question: how does one define the heat flux when the matter
is nonminimally coupled to the metric? For in that case,
there is no canonical splitting of the total Lagrangian
between the gravitational part and the matter part.
Therefore there is no canonically defined stress tensor that
can be used to define the energy flow across the horizon
appearing on the right-hand side of the Clausius relation.
Our goal in this paper is to propose an entropy density

that would lead to the derivation of the field equation as an
equation of state for any diffeomorphism-invariant metric
theory of gravity.1 More precisely, we assume that we have
a Lagrangian description of a diffeomorphism-invariant
theory, and we construct an entropy density associated to
slices of the local causal horizon such that imposing the
Clausius relation yields the equation of motion of the
theory. We will define the heat flux on the right-hand side
of the Clausius relation by using the stress tensor for a
probe field minimally coupled to the metric that we put to
zero at the end. This will allow us to work with the total
Lagrangian of the theory irrespective of the minimal/
nonminimal nature of the matter coupling thus evading
the lingering question mentioned above.
This paper is organized as follows. In Sec. II we review

the geometry of the local causal horizon and the con-
struction of the approximate Killing vector as given in
Ref. [17]. In Sec. III we review the logical steps leading to
the derivation of the equation of motion as the equation of
state via the Clausius relation. In Sec. IV we review the
Wald-Iyer derivation of the equation of motion for the most
general diffeomorphism-invariant theory of gravity. In
Sec. V we review the Noetheresque entropy proposal of
Ref. [16]. In Sec. VI we propose our entropy density and
we show that it leads to the equation of motion, via the
Clausius relation, for any diffeomorphism-invariant metric
theory of gravity. Some examples are discussed in Sec. VII.
We conclude by presenting the summary and outlook in
Sec. VIII.
Our conventions are that of Ref. [18]. In particular, the

metric signature is mostly plus and the Riemann tensor is
defined as 2∇½a∇b�ωc ¼ Rabc

dωd.

II. GEOMETRY OF THE LOCAL
CAUSAL HORIZON

There are three essential ingredients involved in the
construction of local spacetime thermodynamics. The first
ingredient is the definition of the codimension-three sur-
face, called the local causal horizon, which plays the role of

the local Rindler horizon. The second ingredient is the
specification of a special observer that measures the
entropy and the energy flux. Since a general spacetime
has no symmetries there is no Killing vector playing the
role of the Rindler observer. Therefore one needs to
construct a vector field ξ that is “approximately” Killing
and plays the role of local observers in whose frame one
formulates the local thermodynamics. The third and the
final ingredient is the specification of the entropy functional
associated with the slices of the LCH. In this section we
provide a review of the first two ingredients based on
Refs. [16,17]. The third ingredient, which is also the focus
of this paper, will be reviewed in Sec. V.
Let us start with the definition of the LCH. Consider a

spacelike codimension-two surface Σp passing through a
spacetime point p. This surface has four congruences of
null geodesics emanating orthogonally from it: future-
pointing and outgoing, future-pointing and ingoing, past-
pointing and outgoing, and past-pointing and ingoing. The
boundary of the past of Σp has two components generated
by the latter two congruences. Pick one of those past
boundary components, for concreteness, say, the ingoing
one; then our LCH is defined as a small patch of this
ingoing past boundary component centered at the point p.
In order to construct the approximate vector field ξ we

choose a coordinate system adapted to the LCH (see
Fig. 1). On Σp we pick the Riemann normal coordinates
(RNCs) based at p. The tangent space orthogonal to the
tangent plane of Σp is spanned by two future-pointing null
normals, la and ka, with the normalization chosen as
laka ¼ −1. The points off Σp can then be coordinatized in
terms of geodesics orthogonal to Σp and the points on Σp

where the geodesics emanate from. To be more precise: the
point q lying on Σp is assigned the coordinates
ðU ¼ 0; V ¼ 0; ~xqÞ, where ~xq are the RNCs of q. Then,
the point r that lies at a unit distance (measured by the
affine parameter) on the unique geodesic emanating from q
in the direction Vka þ Ula orthogonal to Σp is assigned the
coordinates ðU;V; ~xqÞ. It was shown in Ref. [17] that ka

FIG. 1. The point p lies on a D − 2-dimensional surface Σ
which is coordinatized by Riemann normal coordinates based
upon p. Two null vectors la ¼ ð∂=∂UÞa and ka ¼ ð∂=∂VÞa form
the basis of the plane normal to Σ. A point off the surface Σ, say r,
is coordinatized in terms of the geodesic from r to the surface Σ
that meets Σ orthogonally at the point q. If q has coordinates
f0; 0; ~xqg and the tangent to the geodesic at q is Vka þUla, then
the coordinates of r are fU; V; ~xqg.

1The kind of theories we are interested in are those discussed
by Iyer and Wald in Ref. [3].
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and la can be chosen such that the coordinates as defined
above are inertial at p. The coordinates thus defined are
called null normal coordinates (NNCs). In these coordi-
nates, the LCH is at U ¼ 0, V ≤ 0.
Next, the approximate Killing vector, called the local

Killing vector in Ref. [16], is constructed such that it has a
bifurcation point p0 lying on the bifurcation surface Σ0 to
the past of pwhere it vanishes and where its action is that of
a boost in the plane orthogonal to the bifurcation surface.
The null generator connecting p to p0 will be called the
central generator and will be denoted by Γ. In the NNC
system p0 has coordinates ð0; V0; 0Þ. It was shown in
Ref. [17] that an approximate Killing vector ξ with the
following properties can be constructed:

ξμjΓ ¼ ðV − V0ÞδμV; ð1Þ

∇ðμξνÞ ¼ Oðx2Þ; ð2Þ

∇μ∇νξρjΓ ¼ ðRρνμ
ηξηÞjΓ: ð3Þ

On the central generator Γ the local Killing vector is
proportional to the generator, ξa ¼ ðV − V0Þka. We also
have that on Γ, ξa satisfies the geodesic equation with the
coefficient of nonaffinity given by κ ¼ 1, i.e.,

ξb∇bξ
ajΓ ¼ κξa; ð4Þ

with κ ¼ 1.
Equations (1)–(3) were used in the approach of Ref. [16]

for the derivation of the equation of motion as the equation
of state by associating a Noetheresque entropy to the slices
of the LCH. In our approach, we will add an extra term to
this entropy and Eq. (4) will play a crucial role for the
equation of state derivation for any diffeomorphism-
invariant theory of gravity.
Before moving on to the third and the final ingredient—

the entropy functional—we pause to review the equation of
state derivation of the equation of motion. This derivation is
at the heart of local spacetime thermodynamics and would
also serve to clarify the role of the aforementioned three
ingredients. It also gives us an opportunity to introduce a
conceptual difference from the previous studies: we will
view the stress tensor Tab as that of a probe field minimally
coupled to the metric that we will put to zero at the end.

III. EQUATION OF MOTION AS THE
EQUATION OF STATE

The equation of state derivation of the field equation of a
theory of gravity proceeds by imposing the Clausius
relation,

dS ¼ δQ
T

; ð5Þ

on a thin patch of the LCH, denoted as H, centered on the
central generator Γ (see Fig. 2). The left-hand side of
Eq. (5) is the change in entropy as one evolves the slice of
the LCH from Σ0 to Σ such that they have a common
boundary. The right-hand side of Eq. (5) contains the
temperature, which we choose to have the Unruh value
T ¼ ℏ=2π, and the heat flux across the patch as measured
by the local Killing observer ξa,

δQ ¼
Z
H
ð−Ta

bξaÞkbdVdA; ð6Þ

where Tab is matter energy-momentum tensor, and the
integral is over the thin patch of the LCH (see Fig. 2) with
the integration measure kadVdA, with dA being the volume
element on the cut ofH. The integrand of the heat flux is of
OðxÞ since the approximate Killing vector ξ is of OðxÞ.
In the literature related to the equation of state derivation

of the field equation, the stress tensor above is taken to be
that of the matter fields in the theory. This implicitly
assumes that the matter is minimally coupled to the metric,
for only then can one separate the total Lagrangian into a
gravitational part and the matter part, and use the latter to
define the canonical stress-energy tensor. However, in
general theories of gravity nonminimal couplings are
allowed and there is no natural split between the gravity
and matter Lagrangians, and thus no natural stress tensor
providing the heat flux. We will overcome this problem by
deforming the theory with a probe action. Wewill introduce
a probe field minimally coupled to the metric whose flow
drives the evolution of the LCH. In the end, we will put this
probe field to zero. Therefore, in our derivation of the
equation of state we will take Tab above to be the stress-

energy tensor of this probe field, Tab ¼ −2 1ffiffiffiffi−gp δSprobe
δgab

, where

Sprobe is the action for the probe field minimally coupled to
the metric.
To proceed further one needs to specify the change in

entropy on the right-hand side of Eq. (5). Intuition from the
thermodynamics of black holes suggests that we associate
the entropy to the slices of the LCH. Following Ref. [16],
let sab denote the entropy density (in the dualized form)

FIG. 2. The thin narrow patch of the LCH surrounding the
central generator Γ on which the Clausius relation is imposed.
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associated to an arbitrary slice of the LCH. The total
entropy of a slice Σ is then given by the integral

S ¼
Z
Σ
sabnabdA; ð7Þ

where nab is binormal to the cut Σ. Hence, the change in
entropy between two slices Σ and Σ0 of the LCH is given by

dS ¼
Z
Σ∪Σ0

sabnabdA

¼ −2
Z
H
∇bsabkadVdA; ð8Þ

where Stokes’ theorem was used in the second step. It is at
this step that we used the fact that Σ0 and Σ have the same
boundary. Now imposing the Clausius relation (5) in the
limit p0 → p, we get from Eqs. (6) and (8)

−ðℏ=πÞ∇bsabka ¼ Tabξbka þOðx2Þ: ð9Þ

By equating the OðxÞ terms on both sides of Eq. (9) at all
points p and for all null vectors ka, if we recover the field
equation of the theory of gravity under consideration (after
putting Tab ¼ 0 because our Tab is that of the probe field)
then we deem the program to derive the equation of motion
as the equation of state to be successful. Now it is clear that
the last ingredient in this program is the specification of the
entropy density sab such that Eq. (9) gives the field
equation of the theory.
Before moving on to the entropy density we should

discuss the actual equation of motion for a general diffeo-
morphism-invariant theory of gravity that we intend to
recover from the Clausius relation. In the rest of this paper
we will put ℏ=2π equal to 1, i.e., the Unruh temperature is
scaled to unity, which is equivalent to choosing a conven-
ient unit for the entropy density.

IV. EQUATION OF MOTION FOR A GENERAL
THEORY OF GRAVITY

In this section we review the equation of motion of a
general diffeomorphism-invariant metric theory of gravity
following Ref. [3]. The Lagrangian n-form is denoted
in bold as L ¼ ϵL. The most general diffeomorphism-
invariant Lagrangian is of the form

L ¼ L½gab; Rabcd;∇a1Rabcd;…;∇ða1…∇amÞRabcd;

× ψ ;∇a1ψ ;…;∇ða1…∇alÞψ �; ð10Þ

where ψ denote the matter fields.
The equation of motion for gab following from the above

Lagrangian is given by,

Aab þ EpqraRpqr
b þ 2∇p∇qEpabq ¼ 0; ð11Þ

where Eabcd would be the equation of motion for Rabcd if
we were to treat it as an independent field,

Eabcd ¼ ∂L
∂Rabcd

−∇a1

∂L
∂∇a1Rabcd

þ � � �

þ ð−1Þm∇ða1…∇amÞ
∂L

∂∇ða1…∇amÞRabcd
; ð12Þ

and Aab is

Aab ¼ ∂L
∂gab þ

1

2
gabLþ Bab: ð13Þ

The origin of the last term Bab is as follows: a typical term
in the variation of the Lagrangian due to the derivatives of
Riemann is of the form

ϵ
∂L

∂∇ða1…∇aiÞRabcd
δ∇ða1…∇aiÞRabcd; ð14Þ

and this can be calculated as

¼ ϵ
∂L

∂∇ða1…∇aiÞRabcd
∇a1δ∇ða2…∇aiÞRabcd

þ ϵ · ðterms proportional to∇δgÞ
¼ exact differentialþ terms contributing toEabcd

þ ϵ · ðterms proportional to δgÞ; ð15Þ

where integration by parts was used in both the terms in
going from the first equality to the second equality. It is the
last term of Eq. (15), which is proportional to δgab, that
we denoted as Bab appearing as the last term in Eq. (13).
We direct the reader to Ref. [3] for the details. Let us note
here that the equation of motion (11) cannot in general be
split in the form “geometry ¼ matter” because the total
Lagrangian in general does not allow such a split unam-
biguously. This is the reason why in our equation of state
derivation we have to resort to a probe field stress tensor.
In the next section we will review the Noetheresque

entropy proposal of Ref. [16] for sab. We will see that while
this entropy is able to derive the equation of motion for
theories containing no derivatives of the Riemann tensor, it
does not work for theories containing derivatives of
Riemann tensor. In Sec. VI we propose a new entropy
density that we will use to derive the equation of motion as
the equation of state for any diffeomorphism-invariant
metric theory of gravity.

V. REVIEW OF THE NOETHERESQUE
ENTROPY DENSITY

A specific proposal for the entropy density sab was made
in Ref. [16] (see also, Refs. [9,10]). Taking a clue from the
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Noether charge entropy in black hole thermodynamics
Ref. [16] proposed a Noetheresque form for the entropy
density,

sab ¼ Wabcξc þ Xabcd∇½cξd�; ð16Þ

where the tensorsW and X are theory-dependent quantities
and X is antisymmetric in the last two indices. One could
also add a term proportional to the symmetric derivative of
ξ but it can be shown using the properties (2) and (3) of the
approximate Killing vector that such a term contributes at
OðxAÞ (where xA is the transverse coordinate in the NNC
system) to the divergence of the entropy density and hence
does not contribute to δS when integrated over small and
narrow horizon patches [16].
Calculating the divergence of the entropy density (16)

we get,

∇bsab ¼ ð∇pWaps þ XapqrRrqp
sÞξs

þ Xapqrð∇p∇qξr − Rrqp
sξsÞ

þ ðWapq þ∇rXarpqÞ∇pξq: ð17Þ

In this equation the first term is OðxÞ, the second term is
OðxAÞ due to the Killing identity of Eq. (3), and the third
term has an Oðx2Þ term due to the approximate Killing
equation (2) and anOð1Þ term due to the antisymmetric part
of the derivative of ξ. Since the heat flux in Eq. (6) is of
OðxÞ the latter should vanish. Thus we are forced to impose

Wa½pq� þ∇rXar½pq� ¼ 0: ð18Þ

Since W is antisymmetric in the first two indices, this
equation can be solved for W in terms of X [16] as

Wapq ¼ ∇rðXrapq þ Xrqpa þ XrpqaÞ: ð19Þ

Putting this back in the Eq. (17), then substituting ∇bsab in
Eq. (9), and imposing the Clausius relation for all ka we get,

XpqrðaRpqr
bÞ − 2∇p∇qXpðabÞq þ Φgab ¼ −

1

2
Tab; ð20Þ

where Φ is a scalar that is a function of the metric and
curvature. The origin of the factor 1=2 on the right-hand
side is the convention we adopted at the end of Sec. III that
ℏ=2π ¼ 1. Comparing Eq. (20) with the equation of motion
for a general diffeomorphism-invariant theory (11) we see
that in general there is no choice of X that would make them
identical.
We now recall that in Refs. [9,10,16] matter was

assumed to be minimally coupled, i.e., the total
Lagrangian L was the sum of the gravitational part and
the minimally coupled matter part L ¼ LðgrÞ þ LðmÞ, and
the gravitational part LðgrÞ was assumed to depend only on

the metric and its curvature but not on the derivatives of the
curvature. Furthermore, the heat flux in the Clausius
relation was sourced by the matter stress-energy tensor,

1

2
Tab
ðmÞ ¼

∂LðmÞ
∂gab þ 1

2
LðmÞgab: ð21Þ

Now choosing −Xabcd ¼ ∂LðgrÞ=∂Rabcd ≡ Pabcd, and Φ ¼
1=2LðgrÞ in Eq. (20) we get,

−PpqrðaRpqr
bÞ þ 2∇p∇qPpðabÞq þ 1

2
LðgrÞgab ¼ −

1

2
Tab
ðmÞ:

ð22Þ

If the gravity Lagrangian LðgrÞ does not contain the
derivatives of Riemann then there exists an interesting
identity,

∂LðgrÞ
∂gab ¼ −2PpqrðaRpqr

bÞ: ð23Þ

This identity, first derived in Ref. [12], is reviewed in the
Appendix where we slightly generalize by considering
the gravity Lagrangians containing up to one derivative of
the curvature. Substituting the identity (23) in Eq. (22),
plugging in the expression for Tab

ðmÞ from Eq. (21) and

bringing it to the left-hand side, we get

∂L
∂gab þ PpqrðaRpqr

bÞ þ 2∇p∇qPpðabÞq þ 1

2
Lgab ¼ 0; ð24Þ

where we have combined the contributions of LðmÞ and
LðgrÞ into that of the total Lagrangian L. Now noticing that
∂LðgrÞ=∂Rabcd ≡ Pabcd ¼ ∂L=∂Rabcd since the matter is
minimally coupled, we find that Eq. (24) is identical to
Eq. (11) since for higher-curvature theories without the
derivatives of the curvature we have that Bab ¼ 0, Aab ¼
∂L=∂gab þ 1=2Lgab and Eabcd ¼ Pabcd.
Therefore we see that for higher-curvature gravity the

Noetheresque entropy (16) of Ref. [16] reproduces the
equation of motion via the Clausius relation. However, for
the theories containing derivatives of the curvature the
equation of motion (20) obtained from the Clausius
relation, assuming the Noetheresque entropy as in
Eq. (16), is not the same as the equation of motion of
the theory (11). The difference can be traced back to the
presence of two terms in Aab [Eq. (13)] appearing in the
equation of motion: first is ∂L=∂gab, and the second is that
arising from the variation δ∇…∇ðRiemÞ of derivative(s) of
curvature terms in the Lagrangian that we have collectively
denoted as Bab.
In the next section we propose a new definition of

entropy that takes care of the uncompensated terms and
yields the equation of motion via the Clausius relation. We
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will view the heat flux on the right-hand side of the
Clausius relation as due to the Tab of a probe field that
we will put to zero at the end of the calculation.

VI. NEW PROPOSAL FOR THE ENTROPY
DENSITY

In this section we finally present the key finding of this
paper. We modify the Noetheresque entropy of Eq. (16) by
adding a term quadratic in the approximate Killing vector.
Let us introduce a symmetric tensor Mab, which will be
fixed later depending upon the theory, and consider the
following entropy density:

sab ¼ Wabcξc þ Xabcd∇½cξd� þ 2Mc½aξb�ξc: ð25Þ

TheM term we have added is of Oðx2Þ but it contributes at
OðxÞ to the left-hand side in Eq. (9). Let us calculate the
divergence of the M term,

∇bð2Mc½aξb�ξcÞ ¼ 2ð∇bMc½aÞξb�ξc þ 2Mc½að∇bξ
b�Þξc

þ 2Mc½aξb�∇bξc:

Here, the first term on the right-hand side is of Oðx2Þ. The
second term, upon opening the antisymmetrization, has two
subterms: the first containing ∇bξ

b is of Oðx3Þ, while the
second containing ∇bξ

a will give zero when contracted
with ka. This is so because the approximate Killing vector ξ
is proportional to k on the central generator Γ. The third
term in Eq. (26) again has two subterms: the first one with
the free index a onM givesMcaξc after using Eq. (4), while
the second with free index a on ξ will give zero after
contracting with k. Therefore, the only contribution of the
M term is to add the tensorMab to the first line of Eq. (17).
The relation between X and W as determined in Eq. (19)
remains the same. Thus the equation of motion obtained by
imposing the Clausius relation with the entropy (25) is

XpqrðaRpqr
bÞ − 2∇p∇qXpðabÞq þ Φgab þMab ¼ −

1

2
Tab;

ð26Þ
where Tab is the stress tensor of the probe field. Now, for a
given theory of gravity we can simply chooseMab such that
Eq. (26) is the equation of motion for the theory (after
putting the probe stress tensor on the right-hand side to
zero). Comparing with the equation of motion of a general
theory of gravity Eq. (11) we see that we could choose

Xabcd ¼ −Eabcd; ð27Þ

Mab ¼ ∂L
∂gab þ 2EpqrðaRpqr

bÞ þ Bab; ð28Þ

Φ ¼ 1

2
L: ð29Þ

Actually, the equation of motion only determines the
combination Φgab þMab. Once we have specified Mab

then Φ can be determined by the Bianchi identity. For the
choice ofMab that we have made above, by comparing with
the actual equation of motion we already know that Φ
should be equal to 1=2L up to a constant. SinceMab is what
appears in the expression of the horizon entropy we see that
the entropy is not unique, for the terms proportional to gab

in Mab could equally well be lumped into Φ.

VII. EXAMPLES

Our approach so far has been very general. The use of a
probe field and the addition of a term quadratic in the local
Killing vector to the entropy density allowed us to give a
thermodynamic derivation of the field equation for a
general theory of gravity. In this section we illustrate our
approach in several examples.

A. General relativity

As the simplest illustration of our approach let us
consider the Einstein-Hilbert Lagrangian with the matter
minimally coupled to the metric. The total Lagrangian is
L ¼ LðEHÞ þ LðmÞ, where LðEHÞ ¼ R and LðmÞ is the min-
imally coupled matter Lagrangian. The coefficients appear-
ing in the entropy density (25), as defined in Eqs. (27)–(29),
can be calculated to be,

Xabcd ¼ −
1

2
ðgacgbd − gadgbcÞ;

Mab ¼ ∂L
∂gab þ 2Rab ¼ ∂LðmÞ

∂gab ;

Φ ¼ 1

2
L ¼ 1

2
Rþ 1

2
LðmÞ;

and Wabc ¼ 0, and where in the second equality of the M
term we used that ∂R=∂gab ¼ −2Rab. The equation
implied by the Clausius relation (26) is then

−Rab þ 1

2
ðRþ LðmÞÞgab þ

∂LðmÞ
∂gab ¼ −

1

2
Tab; ð30Þ

where Tab on the right-hand side is the stress tensor of the
probe. For a vanishing probe, recognizing that
∂LðmÞ=∂gab þ 1=2LðmÞgab ¼ 1=2Tab

ðmÞ is the matter stress-

energy tensor, we get the Einstein field equation (in the
units such that 16πG ¼ 1),

Rab −
1

2
Rgab ¼ 1

2
Tab
ðmÞ:

This example illustrates explicitly that the matter
Lagrangian, even if minimally coupled, makes a contribu-
tion to the entropy associated with the slices of the LCH
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because of the M term. Therefore our entropy is different
from that of Ref. [16] even for the simplest possible case of
general relativity.

B. Dilaton gravity

The second example that we consider is a model in two
dimensions: a nonminimally coupled dilaton φ with cou-
pling constant λ and a tachyon T, given by the action,

S¼
Z

d2x
ffiffiffiffiffiffi
−g

p
eφðRþð∇φÞ2− ð∇TÞ2þμ2T2þλÞ: ð31Þ

The black hole solutions in this model were studied in
Ref. [19] and it was shown that black hole physics in
general relativity have counterparts in these two-
dimensional models. In particular, the black hole entropy
of charged black holes in this theory was shown to be
proportional to eφH , where φH is the value of the dilaton on
the horizon. This result can also be obtained from the
Noether charge method (see Ref. [3]). The field equation
obtained from the action (31) is

∇a∇bφþ∇aT∇bT þ gab
�
−
1

2
ð∇φÞ2

−□φ −
1

2
ð∇TÞ2 þ μ2T2

2
þ λ

2

�
¼ 0: ð32Þ

There does not seem to be a natural way to write this
equation in terms of separate contributions from geometry
and matter. That is, it is not clear how to decompose the
action (31) into gravitation and matter pieces. Therefore,
we do not know what stress tensor should be used to
calculate the heat flux. We could use the tachyon stress
tensor for this purpose but there does not seem to be a good
justification for doing that.
According to the idea pursued in this paper, we use the

whole Lagrangian to contribute to the entropy while the
heat flux is to be determined by a probe field that we put to
zero at the end. Then the field equation (32) can be obtained
by assigning the entropy density (25) to LCHs with the
coefficient tensors given by

Xabcd ¼ −
1

2
eφðgacgbd − gadgbcÞ;

Mab ¼ eφð−∇aφ∇bφþ∇aT∇bTÞ;

Φ ¼ 1

2
L;

where L is the total Lagrangian for the dilaton theory (31).
Notice that Xabcd corresponds to the black hole entropy. In
this example we have a nonzero Mab not because of the
higher-derivative terms (there are none) but because of the
nonminimal coupling of the matter. Even if we were to
define the heat flux not by our probe field but by using the

stress tensor of the tachyon T, there would still be nontrivial
contributions toMab and therefore this term is needed in the
entropy density to get the field equation from local
thermodynamics.

C. Higher-curvature gravity

Let us now consider higher-curvature gravity with a
minimally coupled matter field for which the Noetheresque
entropy of Ref. [16] also gives the field equation via the
Clausius relation. For the total Lagrangian given by

L ¼ Lðgab; Rabcd;ψ ;∇aψÞ; ð33Þ

the field equation is

∂L
∂gab þ

1

2
gabLþ PpqraRpqr

b þ 2∇p∇qPpabq ¼ 0; ð34Þ

where Pabcd ¼ ∂L=∂Rabcd. The coefficient tensors in our
entropy density (25) are given by

Xabcd ¼ −Pabcd;

Mab ¼ ∂L
∂gab þ 2PpqrðaRpqr

bÞ;

Φ ¼ 1

2
L;

and Wabc is given by Eq. (19). This should be contrasted
with the entropy density of Ref. [16] that we reviewed in
Sec. V where X and Φ were defined by only the gravita-
tional part of the Lagrangian and there was no M term. If
we allow for the nonminimal coupling in the higher-
derivative gravity then our approach of using the probe
stress tensor to define the heat flux and the new entropy
density will continue to yield the field equation via the
Clausius relation.

D. S=
R ffiffiffiffiffiffi−gp

f ð□RÞ þ Smatter

As a final example we consider a higher-derivative
theory with matter minimally coupled to the metric. The
gravitational part of the Lagrangian is a general function of
□R that we denote by fð□RÞ. Some special cases of these
theories were studied in Ref. [20] to show their equivalence
to general relativity coupled to matter fields with exotic
potentials. The equation of motion of this theory is

∇a∇b
□f0 −□f0Rab þ∇af0∇bR −

1

2
gab∇cf0∇cR

− gab□2f0 þ 1=2fgab ¼ 1

2
Tab
ðmÞ; ð35Þ

where f0 ¼ ∂fð□RÞ=∂□R and Tab
ðmÞ is the canonical stress-

energy tensor determined by the matter action,ffiffiffiffiffiffi−gp
Tab
ðmÞ ¼ 2δSmatter=δgab. Since the matter is minimally
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coupled we could in principle use it to define the heat flux
in the Clausius relation. From the point of view of this
paper though we will treat the whole action to contribute to
the entropy while the heat flux would be given by the stress
tensor of the probe field.
For this theory the coefficients appearing in the entropy

density (25), as defined in Eqs. (27)–(29), can be calculated
to be,

Xabcd ¼ −
1

2
ðgacgbd − gadgbcÞ□f0;

Mab ¼ −
1

2
Tab
ðmÞ þ∇af0∇bR − gab□2f0 −

1

2
gab∇cf0∇cR;

Φ ¼ 1

2
f;

and Wabc is given by Eq. (19). Had we considered the heat
flux to be sourced by the matter instead of the probe field
then Tab

ðmÞ would have appeared on the right-hand side of the
Clausius relation and would not have appeared in Mab. As
we mentioned at the end of Sec. VI the terms proportional
to gab in Mab could be absorbed in Φ. But there would still
be left the second term ∇af0∇bR in Mab. This is precisely
the type of term whose origin lies in the derivatives of the
curvature in the action (as shown in Sec. IV) and could not
be produced by the entropy density of Ref. [16]. Therefore,
even in the minimally coupled case and without the use of
probe fields, the M term would be needed in the entropy
density to yield the correct field equation.

VIII. SUMMARY AND OUTLOOK

In this paper we have proposed a new expression for the
entropy associated to the slices of the local causal horizon,
Eq. (25), such that the Clausius relation imposed on a patch
of the horizon implies the field equation of the theory
under consideration. The theory in question could be any
diffeomorphism-invariant metric theory of gravity. In order
to achieve this result we introduced two new ingredients:
first, the heat flux in the Clausius relation is provided by a
minimally coupled probe field that we put to zero in the
end, and second, the entropy has a new term quadratic in
the approximate Killing vector. Let us discuss these two
inputs one by one.
The reason to introduce the probe matter providing the

heat flux is to be able to work with the most general
diffeomorphism-invariant theory. This was done because a
general diffeomorphism-covariant Lagrangian does not
admit a canonical split between a gravitational part and
a matter part. For example, consider a scalar field ϕ in the
Lagrangian whose coupling to the metric is nonminimal of
the form Rab∇aϕ∇bϕ. If we consider this term as con-
tributing to the matter stress tensor and use it to define the
heat flux, then on the left-hand side of the equation of
motion (11) we will not include its contribution to Eabcd.

The resulting entropy density will however not match with
the black hole entropy in the theory which is determined
by the Eabcd of the total Lagrangian by Wald’s formula.
Alternatively, we could count this term as “gravitational”
and use only the canonical kinetic term of ϕ to define the
heat flux. This would be a viable option, but it does not
appear to be a very natural thing to do. On the other hand,
the approach of characterizing a system completely by
perturbing it with probe fields and observing its response is
ubiquitous in physics. In short, the need to work with
complete generality, and the compatibility with black hole
thermodynamics led us to define the heat flux in the
Clausius relation by a probe, minimally coupled matter
field that we put to zero in the end. If we were not to use the
probe fields to define the heat flux, then we would have to
restrict to only the theories with a minimally coupled matter
field. But even then the new M term in the entropy density
would still be needed to derive the field equation of higher-
derivative gravity.
We explained the need for the extra term(s) in the

entropy explicitly in Sec. V. In Ref. [16] an integrability
condition was derived and it was argued that these extra
terms cannot be Noetheresque in a general theory. Does this
mean that our proposed entropy is non-Noetheresque? To
answer this, we recall that the effect of adding an exact form
dμ to the Lagrangian n-form is to shift the Noether charge
fromQ toQþ ξ · μ (see Ref. [3]). It is easy to check that if
we choose the (n − 1)-form μa1…an−1 ¼ ϵa1…an−1pM

pqξq
then the Noether procedure will reproduce our proposed
additional term in the entropy.2 Therefore, our entropy is
obtained through the Noether procedure. This is consistent
with the result in Ref. [16] because the surface term we
added is not constructed from just the dynamical fields in
the theory; it also contains ξ. If one insists on adding only
covariant boundary terms then indeed one cannot obtain a
term quadratic in ξ in the Noether charge. However, the
argument for deriving the local field equation rests on the
integral Clausius relation to be true for every the local
causal horizon. The addition of a ξ-dependent surface term
to the Lagrangian implies that the algorithm that constructs
the Noether charge entropy has to start from a new
Lagrangian (with the new boundary term corresponding
to the new ξ) for each local causal horizon. Therefore, the
term Noetheresque is perhaps not appropriate for our
proposed entropy.3 Leaving the issue of mere nomenclature
aside, the important point is that, as in Ref. [16], since our
entropy depends on the arbitrary choice of the bifurcation
point its physical significance remains obscure. This
dependence on the approximate Killing vector is also the
reason why we have evaded the physical arguments of

2We thank Ted Jacobson for making this suggestion and the
related discussion.

3We thank Raf Guedens for stressing this point.
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Ref. [21] that concluded that the corrections to Einstein
gravity can not be obtained by a thermodynamic reasoning.
The new term in the entropy that we have proposed does

not alter the black hole entropy because the Killing vector
vanishes on the bifurcation surface. Compatibility with
black hole thermodynamics is a stringent requirement.
Without it, we could have simply taken the whole entropy
as given by the quadratic term and chosen Mab to be the
equation of motion. But then the black hole entropy in the
theory would be zero. The X term in Eq. (25) is thus
dictated by the black hole entropy. TheW term is necessary
for the equation of state argument to go through for the
higher-curvature theories. For higher-derivative theories the
M term in Eq. (25) is needed to get the equation of motion
via the Clausius relation.
The generality of our approach seems to suggest that

there is no obstacle for the equation of state derivation for
any diffeo-invariant metric theory of gravity, irrespective of
whether it is Lorentz invariant or not. In particular, one
could then derive local thermodynamics in Lorentz-
violating theories, e.g., the Einstein-aether theory.
However, this expectation faces two challenges. First of
all, local Lorentz invariance is crucial to associate the
Unruh temperature with the local causal horizon. Second,
the existence of black hole thermodynamics in such
theories is not well settled yet, and is under active
investigation [22–30]. Finding a thermodynamic route to
the equation of motion in such theories thus appears to be a
premature enterprise at the moment.
We would like to mention in passing that some authors

[10,31] have taken the converse route to the one taken in
this paper. That is, their goal is to understand if the field
equation implies the Clausius relation for an appropriately
defined entropy density. It is not too difficult to show that
given our entropy one can follow this program of running
the argument backwards to its completion for any diffeo-
morphism-invariant theory of gravity.
Finally, we should point out that the entropy density is

highly nonunique. This nonuniqueness is beyond the non-
uniqueness pointed out at the end of Sec. VI. It is easy to
write down higher-order terms in ξ and its derivatives such
that their contribution to the change in the entropy of the
patch of the LCH is justMabξb for some effectiveMab. We
think that the underlying problem is our completely classical
treatment of the fields. We believe that the correct notion of
entropy to be used in any thermodynamic derivation of the
field equation has to be a quantum-mechanical one. This is
exemplified by a recent derivation of the semiclassical
Einstein equation by Jacobson that involves an ansatz on
the nature of the entanglement entropy of the vacuum [32]. It
has recently been pointed out in Ref. [33] that relative
entropy is not the right quantity to use on the left-hand side of
the Clausius relation in the geometric framework used here.
It remains to be seen what quantum-mechanical measure of
entropy is rich enough to encode the dynamics of gravity.

Until that is found, our entropy expression (25) seems to
serve as a plausible placeholder.
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APPENDIX: DERIVATION OF THE
IDENTITY IN EQ. (23)

In this appendix we derive the identity in Eq. (23). This
identity was first derived in Ref. [12] whose treatment we
follow here. A slight generalization here is that we consider
the Lagrangians containing up to one derivative of the
curvature, L ¼ Lðgab; Rabcd;∇a1RabcdÞ. In this section L
will stand for the pure gravitational Lagrangian that we
denoted as LðgrÞ in the main text.
Let us consider an infinitesimal diffeomorphism xa →

xa þ ξa generated by a vector field ξ. The infinitesimal
change in L is given by the Lie derivative of L that can be
calculated in two different ways. In the first way, by
considering the dependence of L on xa through gab,
Rabcd and ∇a1Rabcd, we can write

LξL ¼ ξm∇mL ¼ Pabcdξm∇mRabcd

þ Za1abcdξm∇m∇a1Rabcd þ Aabξm∇mgab; ðA1Þ

where Aab ¼ ∂L
∂gab, P

abcd ¼ ∂L
∂Rabcd

, and Za1abcd ¼ ∂L
∂∇a1

Rabcd
.

The abcd indices of P and Z are taken to have the
symmetries of Riemann tensor.
The second way is to consider the infinitesimal variation

δL in L as due to the variation in gab, Rabcd and ∇a1Rabcd

due to the diffeomorphism. The latter are given by the
corresponding Lie derivatives. Thus we have,

LξL ¼ AabLξgab þ PabcdLξRabcd þ Za1abcdLξ∇a1Rabcd:

ðA2Þ

Taking into consideration the symmetries of Rabcd and
Pabcd, the second term can be calculated as

PabcdLξRabcd ¼ Pabcd½ξm∇mRabcd þ 4∇aξ
mRmbcd�: ðA3Þ

Similarly, the third term can be calculated as

Za1abcdLξ∇a1Rabcd

¼ Za1abcd½ξm∇m∇a1Rabcd

þ 4∇a1Rmbcd∇aξ
m þ∇mRabcd∇a1ξ

m�: ðA4Þ
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Plugging these expressions in Eq. (A2), and using
Lξgab ¼ ∇aξb þ∇bξa, we get

LξL ¼ Pabcdξm∇mRabcd þ Za1abcdξm∇m∇a1Rabcd

þ 2∇pξq

� ∂L
∂gpq þ 2PpabcRq

abc

þ 2Za1pabc∇a1R
q
abc þ

1

2
Zpabcd∇qRabcd

�
: ðA5Þ

Now, we see from Eq. (A1) that the first two terms on the
right-hand side are already equal to LξL. This implies,

since ξ is arbitrary, that the expression within the brackets
must vanish. We thus get the identity

∂L
∂gpq ¼ −2PpabcRq

abc − 2Za1pabc∇a1R
q
abc

−
1

2
Zpabcd∇qRabcd: ðA6Þ

For theories containing no derivatives of the curvature,
we have that Zpabcd ¼ 0 and Eq. (A6) reduces to the
identity (23).
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