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We consider a model of the classical spinning particle in which the coadjoint orbits of the Poincaré group
are parametrized by two pairs of canonically conjugate four-vectors, one representing the standard position
and momentum variables, and the other encoding the spinning degrees of freedom. This “dual phase space
model” is shown to be a consistent theory of both massive and massless particles and allows for coupling to
background fields such as electromagnetism. The on-shell action is derived and shown to be a sum of two
terms, one associated with motion in spacetime, and the other with motion in “spin space.” Interactions
between spinning particles are studied, and a necessary and sufficient condition for consistency of a three-
point vertex is established.
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I. INTRODUCTION

The notion of “intrinsic angular momentum” was first
discussed in the context of classical general relativity by
Cartan [1] in 1922. Spin, as it relates to the description of
elementary particles, did not make an appearance until
1925 in the work of Goudsmit and Uhlenbeck [2], who
proposed that the splitting of spectral lines in the anoma-
lous Zeeman effect could be explained by attributing an
internal angular momentum to the electron. This idea was
made rigorous a few years later when Dirac [3] published
his famous equation, now universally accepted as the
correct quantum-mechanical description of spin-1

2
particles.

Despite the success Dirac’s theory has enjoyed, it offers
little insight into the physical origin of spin, referred to by
Pauli as a “two-valued quantum degree of freedom.”
Modern treatments hold to this line of thought, either
claiming outright that spin has no classical interpretation
[4] or avoiding the topic altogether [5]. That is not to say
that attempts have not been made to understand spin from a
classical perspective; the literature on the subject is vast,
predating even Dirac.1

Classical models of spin can be roughly divided into
two types: phenomenological and group theoretic.
Phenomenological models were the first to appear and took
as their starting point some intuition regarding the internal
structure of a spinning particle. For example, Frenkel [12],
Thomas [13,14], and Kramer [15,16] proposed that spin was
represented by an antisymmetric tensor Sμν whose inter-
action with the electromagnetic field Fμν was governed by a

covariant generalization of ∂t
~S ∝ ~S × ~B, the equation for

precession of a magnetic moment ~S in a magnetic field ~B. In
contrast, Mathisson [17], Papapetrou [18,19], and Dixion

[20–22] assumed that all information about the spinning
particle is contained in its stress energy tensor Tμν with
equations of motion following from conservation of energy,
∇νTμν ¼ 0. Others characterized a spinning particle by a
point charge and dipole moment [23–25], or as a relativistic
fluid [26,27], while still others proposed semiclassical
models [28,29]. The last of these was quantized and shown
to reproduce the Dirac propagator in the path integral
formalism [30,31]. This Lagrangian perspective continues
to be developed today [32–35].
Group theoreticmodels, on theother hand, connect directly

with the quantum description of a spinning particle as
irreducible representations of the Poincaré group. The first
to attempt such a formulation were Hanson and Regge [36]
and Balachandran [37,38], both of whom assumed that the
configuration space of a spinning particle was coordinatized
by elements of the Poincaré group. This approach was
formalized by Kirillov [39], Kostant [40], and Souriau
[41,42], who showed that the coadjoint orbits of a group form
a symplectic manifold and therefore have a natural interpre-
tation as the phase space of some classical system. Several
authors [43–47] have utilized the coadjoint orbit method to
construct classical descriptions of spin, with quantization
achieved by means of the worldline formalism [48,49].
This approach is dramatically different from the most

common worldline treatment of spinning particles [50–55],
where the spin degrees of freedom are represented by
Grassmann variables. The group theoretical approach has in
our view the merit of conceptual clarity: it allows the
spinning degrees of freedom to be parametrized by vari-
ables which possess a semiclassical interpretation while
also providing a common treatment of all spins at once.
Moreover, Wiegmann [46] has shown the equivalence
between the Grassman variable treatment and the bosonic
group theoretical approach. In this work we focus on the
worldline description of spinning particles in terms of
realistic compact degrees of freedom.

1For readers interested in the subject, see the review articles
[6–9] or the full-length books [10,11].
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While providing some deep insight into the origin of
spin, to the authors’ knowledge, the worldline approach
has been principally concerned with understanding the
propagation and quantization of single particles, possibly
coupled to background fields. The question of inter-
actions between several worldlines has not yet been
developed and will be a focus of the present paper.
One motivation for exploring this topic came from the
recent understanding that there is, for a spinless particle, a
direct connection between the form of the interaction
vertex in momentum space and the locality of the
corresponding interaction. Specifically, following
Ref. [56], we showed in Ref. [57] that a sufficient
condition for local interactions is that the vertex factor
be linear in the constituent momenta. Conversely, theories
such as relative locality [56,58,59], which permit momen-
tum combination rules that are nonlinear, also realize
nonlocal interactions. It is well known that for a scalar
particle, the vertex factor is just conservation of momenta,
and interactions are local as expected. Spinning particles
are a different story, since the presence of internal angular
momentum modifies the vertex factor and the localization
properties [60]. The question we wish to answer is
whether this modification is dramatic enough to allow
for nonlocal behavior.
The first result of this paper is to propose a new para-

metrization for the phase space of a relativistic spinning
particle, called the dual phase space model (DPS). In this
parametrization, the standard phase space of (x, p) is
extended by a second set of canonical variables (χ, π) which
span a “spin” or “dual” phase space.We describe in detail the
set of constraints on this dual space that realizes the
relativistic spinning particle and show that interactions are
local not only in x, but in the dual position space χ as well.
This dual locality property is one of the main results of this
paper. We also provide a precise formulation of the on-shell
action for a spinning particle. From this analysis it becomes
clear that the quantum phase factor is the sum of two terms:
one is the usual proper time τ ¼ m

R j_xjdt, which depends
on the spacetime motion, while the second factor is an angle
θ ¼ s

R j_χjdt that depends on the spin motion.
This paper is organized as follows: In Sec. II we present an

overview of the coadjoint orbit method for a general matrix
Lie group; the procedure is then implemented explicitly in
Sec. III for the Poincaré group. Two possible parameter-
izations of the these orbits are presented in Sec. IV, and the
spin quantization condition is discussed. Section V intro-
duces the dual phase space model, which is shown to be a
consistent description of both massive and massless spinning
particles. Equations of motion are derived, the on-shell
action is calculated, and a consistent coupling to electro-
magnetism is demonstrated. Finally, interactions between
spinning particles are studied in Sec. VII, where we prove
that dual locality is a necessary and sufficient condition for
consistency of the three-point vertex.

II. ELEMENTARY CLASSICAL SYSTEMS
AND THEIR QUANTIZATION

In this section, we discuss the mathematical preliminar-
ies which allow for a classical formulation of the spinning
particle. For some readers this might sound paradoxical,
since spin is often viewed as a purely quantum object.
However, while there are some phenomena, like the
relationship between spin and statistics, which are purely
quantum, it does not follow that the relativistic spinning
particle has no classical description. What it does mean is
that this description will only be accurate in the limit of
large spins.
It is generally true that one can construct a classical

realization of any quantum structure associated with a
group G; for spin, the relevant group is the Poincaré group.
The procedure for doing so is called the coadjoint orbit
method [61] and is outlined below for the case of matrix Lie
groups—a reasonable simplification, as most groups of
interest fall into this category.
Let G ⊂ GLðn;CÞ be a matrix Lie group and g ⊂

Matðn;CÞ its Lie algebra. The adjoint action of g ∈ G
on X ∈ g is then matrix conjugation AdðgÞX ¼ gXg−1, and
the coadjoint action of G on the dual algebra g� is obtained
by taking the dual of Ad. It satisfies

hAd�ðgÞλ; Xi ¼ hλ;Adðg−1ÞXi; ð1Þ
where λ ∈ g�, and h; i denotes the natural pairing between g
and g�. Each coadjoint orbit Oλ ¼ fAd�ðgÞλjg ∈ Gg pos-
sesses a natural symplectic structure σλ, and the pair (Oλ,
σλ) forms the classical phase space associated with the
symmetry groupG. To obtain σλ explicitly, we letHλ be the
isotropy group for some λ ∈ g�, then the bijection
pλ∶G=Hλ → Oλ∶½g� → Ad�ðgÞλ identifies the homo-
geneous space G=Hλ with the coadjoint orbit through λ.
A choice of section g∶G=Hλ → G allows us to pull back the
Maurer-Cartan form on G to give a symplectic potential on
G=Hλ:

θλ ¼ hλ; g−1dgi: ð2Þ
The value of θλ depends explicitly on the choice of section.
In particular, if h∶G=Hλ → Hλ, the change of section g →
gh yields a corresponding variation δθλ ¼ −hλ; h−1dhi.
Since Ad�ðHλÞλ ¼ λ, this sectional dependence disappears
when considering the symplectic form

ωλ ¼ dθλ ¼ −hλ; g−1dg ∧ g−1dgi; ð3Þ
where the Maurer-Cartan equation dðg−1dgÞ ¼ −g−1dg ∧
g−1dg has been used. One can now obtain the symplectic
form on Oλ by taking the pullback of ωλ under
p−1
λ ∶σλ ¼ ðp−1

λ Þ�ωλ.
We can proceed a bit further. Let X̂ denote the extension

of the Lie algebra element X ∈ g to a right invariant vector
field over G; then
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ωλðX̂; ·Þ ¼ hFλðgÞ; ½X; dgg−1�i ¼ dhFλ; Xi; ð4Þ
where FλðgÞ ≔ Ad�ðgÞλ is a generic element of the
coadjoint orbit through λ. It follows that the linear function
HXðgÞ ≔ hFλðgÞ; Xi is a Hamiltonian for the group action
and Fλ∶G=Hλ → g� is its moment map. It follows that the
Poisson bracket between two such functions is the com-
mutator fHX;HYg ¼ H½X;Y�.
A classical description of some system is only useful if

one can pass to the corresponding quantum version. In the
present context, this transition amounts to finding a map
between the coadjoint orbits of a group and its irreducible
representations. The key idea is that a classical phase space
corresponds to a quantum Hilbert space, and a phase space
function corresponds to an operator; the symmetry then
restricts the mapping almost uniquely. A formal correspon-
dence between a classical system and its quantum counter-
part is accomplished via geometric quantization [62],
which also forms the basis of the Feynman path integral
formulation of quantum mechanics. If the quantum system
is finite dimensional, the corresponding phase space has to
be compact, since the Hilbert space dimension is related to
the phase space volume. Heuristically, the construction
proceeds as follows: Let Oλ be a coadjoint orbit of G, and
let X ∈ g be a Lie algebra element; the trace of a group
element in a unitary irreducible representation ρλ∶G → Oλ

of highest weight λ is then given by

TrVðρλðeiXÞÞ ¼
Z

Dge
i
ℏ

R
S1

½hλ;g−1 _gi−hFλðgÞ;Xi�dτ; ð5Þ

where the path integral is taken over all group valued
periodic maps g∶S1 → G. This is just a generalization of
the usual Feynman path integral quantization where
TreiĤðp̂;q̂Þ is written as

TreiĤðp̂;q̂Þ ¼
Z

DpDqe
i
ℏ

R
S1
ðp _q−Hðp;qÞÞdτ; ð6Þ

and the paths are chosen to be periodic. Here the phase
space variables are (p, q), with symplectic potential pdq
and Hamiltonian Hðp; qÞ. In our case, the phase space
variables are group elements g, with symplectic potential
θλ ¼ hλ; g−1dgi and Hamiltonian HXðgÞ ¼ hFλðgÞ; Xi as
discussed above.
This procedure can be reversed, mapping irreducible

representations onto coadjoint orbits. To see this, suppose
that ρ∶G → GLðVÞ is a unitary irreducible representation
of G over the vector space V. To each normalized vector
jΛi ∈ V, we can associate a linear functional λ ∈ g� by
defining

λðXÞ ≔ ℏhΛjdρðXÞjΛi; ð7Þ
where X ∈ g and dρ is the representation of g induced by
ρ. Hλ is by definition the subgroup that acts diagonally on
Λ, and so, if h ¼ eiH=ℏ ∈ Hλ its action is given by

ρðhÞjΛi ¼ ei
λðHÞ
ℏ jΛi: ð8Þ

It follows that the linear functional associated with ρðgÞjΛi
is Ad�ðgÞλ. If ρ is an irreducible representation, every
vector in V can be represented as a linear combination of
elements ρðgÞjΛi with g ∈ G; therefore the map

V → Oλ; ð9Þ

ρðgÞjΛi ↦ FλðgÞ ð10Þ

identifies rays in V with points in the coadjoint orbits.
More explicitly, if we label elements ofOλ by the operators
XρðgÞ ≔ ρðgÞjΛihΛjρ†ðgÞ, then the symplectic form

ωρ ≔ −ℏTrVðXρdXρ ∧ dXρÞ ð11Þ

simplifies to ωρ ¼ ℏhΛjρðg−1ÞdρðgÞ ∧ ρðg−1ÞdρðgÞjΛi,
which is equivalent to the one given in Eq. (3).

III. COADJOINT ORBITS OF THE
POINCARÉ GROUP

Although we have presented the coadjoint orbit method
in general, we are only interested in its application to the
Poincaré group P ¼ SOð3; 1Þ⋊R4, which is well known to
describe the symmetries of a relativistic spinning particle.
In this section, we will review the construction of these
orbits and show that they are characterized by two
quantities which are identified with the particle’s mass
and spin.
Let gðΛ; xÞ be a generic element of the Poincaré

group, where Λ ∈ SOð3; 1Þ is a Lorentz transformation
and x ∈ R4 a translation; the group product is given by
ðΛ1; x1ÞðΛ2; x2Þ ¼ ðΛ1Λ2; x1 þ Λ1x2Þ. The generators of
translations and Lorentz transformations, which form a
basis for the Lie algebra p, are denoted Pμ and
J μν ¼ −J νμ, respectively, and satisfy

½Pμ;J νρ� ¼ ημνPρ − ημρPν;

½J μν;J ρσ� ¼ ημσJ νρ þ ηνρJ μσ − νμρJ νσ − ηνσJ μρ:

It is now a straightforward exercise to compute the adjoint
action of gðΛ; xÞ on p, viz.

AdðgðΛ; xÞÞPμ ¼ Λν
μPν;

AdðgðΛ; xÞÞJ μν ¼ Λρ
μΛσ

νðJ ρσ þ Pρxσ − PσxρÞ: ð12Þ

Introduce dual generators P̂μ and Ĵ μν as a basis for the
dual algebra p�, and let h; i be the natural pairing between p
and p�; then hP̂μ; Pνi ¼ δμν and hĴ μν;J ρσi ¼ 2δμ½ρδ

ν
σ�. The

coadjoint action is obtained from Eq. (12) by recalling its
definition in terms of the adjoint action, see Eq. (1). We find
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Ad�ðgðΛ; xÞÞP̂μ ¼ Λν
μðP̂ν − xρĴ

νρÞ;
Ad�ðgðΛ; xÞÞĴ μν ¼ Λρ

μΛσ
νĴ ρσ; ð13Þ

where Λμ
ν ¼ ðΛ−1Þνμ. Elements of the dual algebra F ∈ p�

are parametrized by a vector mμ and an antisymmetric
tensor Mμν, F ¼ ðmμ;MμνÞ. Under the coadjoint action,
these components transform as

mμ→
Ad�ðgðΛ;xÞÞ

pμ ¼ Λμ
νmν; ð14Þ

Mμν→
Ad�ðgðΛ;xÞÞ

Jμν ¼ ðx ∧ pÞμν þ Λμ
ρΛν

σMρσ; ð15Þ

where ðA ∧ BÞμν ¼ AμBν − AνBμ. The quantities pμ and
Jμν have standard physical interpretations: pμ represents
the total linear momentum of the particle, while Jμν
represents the total angular momentum about the origin.
Notice that we can split the total angular momentum as
J ¼ Lþ S, where L ¼ x ∧ p is the orbital part and S ¼
ðΛMΛTÞ is the spin angular momenta.
These orbits are characterized by the value of two

invariants,2 one of which is p2 ¼ −m2, withm representing
the mass of the particle. If m > 0, the other invariant is
w2 ¼ m2s2, where wμ ¼ 1

2ℏ ϵμνρσp
νJρσ is the Pauli-

Lubanski vector and s is identified with the particle’s spin.
The phase space for a relativistic spinning particle of mass
m and spin s is then

Om;s ¼ fðpμ; JμνÞjp2 ¼ −m2 and w2 ¼ m2s2g: ð16Þ

An arbitrary element Fm;s ∈ Om;s defines the symplectic
form σFm;s

, and the symplectic manifold (Om;s, σFm;s
)

constitutes a complete description of the relativistic spin-
ning particle.
If, on the other hand, m ¼ 0, then w2 ¼ 0, and since

w · p ¼ 0, the Pauli-Lubanski vector must be proportional
to the momentum wμ ¼ spμ; the constant of proportionality
will be the second orbit invariant. Physically, this represents
a massless spinning particle with helicity given by s; the
corresponding phase space is denoted (O0;s, σF0;s

). There
should be no confusion in denoting the spin and helicity by
the same variable s, as it will be clear from context what is
being referred to.

IV. MODELS OF THE CLASSICAL
SPINNING PARTICLE

Given a coadjoint orbit of the Poincaré group, Eq. (16), a
model of the relativistic spinning particle is obtained by
making a choice of coordinates on Om;s. There are many
viable options, and the resulting theories can seem

disparate, but this is only superficial, as one can always
find a coordinate transformation between competing mod-
els. We demonstrate this explicitly for two popular coor-
dinatizations, those of Balachandran [37] and Wiegmann
[46], and in the process examine how the quantization
condition 2s ∈ Z arises.

A. Homogeneous space

With m > 0, we can choose Fm;s to have components
mμ ≔ mδ0μ andMμν ≔ 2ℏsδ1½μδ

2
ν� which transform under the

coadjoint action of gðΛ; xÞ as

mδ0μ → pμ ¼ mΛμ
0; ð17Þ

2sδ1½μδ
2
ν� → Jμν ¼ 2mx½μΛν�0 þ 2ℏsΛ½μ1Λν�2: ð18Þ

The phase space Om;s is then regarded as a subset of P
coordinatized by fxμ;Λμ

0;Λμ
1;Λμ

2g. In this parametriza-
tion the splitting J ¼ Lþ S is realized explicitly as

Lμν ¼ mðxμΛν
0 − xνΛμ

0Þ and

Sμν ¼ ℏsðΛμ
1Λν

2 − Λν
1Λμ

2Þ: ð19Þ

Comparison with Eqs. (1) and (2) of Ref. [37] shows that
this parametrization is identical to that of Balachandran.
To obtain the symplectic potential θm;s, we first expand

the Lie algebra valued one-form g−1dg in the basis
fPμ;J μνg

g−1ðΛ; xÞdgðΛ; xÞ ¼ −Λν
μdxνPμ þ

1

2
ηρσΛρμdΛσνJ μν:

Then, with Fm;s as described above, Eq. (2) gives

θm;s ¼ −mΛμ
0dxμ þ ℏs

2
ημνðΛμ

1dΛν
2 − Λν

2dΛμ
1Þ: ð20Þ

We can now identify pμ ¼ mΛμ
0 with the momentum

conjugate to xμ and write the symplectic form ωm;s ¼ dθm;s

as

ωm;s ¼ dxμ ∧ dpμ þ ℏsημνdΛμ
1 ∧ dΛν

2: ð21Þ

Finally, we obtain an action by regarding all coordinates as
a function of an auxiliary parameter τ and integrate the
symplectic potential, viz.

S ¼
Z

dτ

�
pμ _xμ −

ℏs
2
ημνðΛμ

1 _Λν
2 − Λν

2 _Λμ
1Þ
�
; ð22Þ

where we have dropped an overall minus sign in the action.
Note that we still regard pμ as being derived from the
Lorentz transformation Λμ

0, which implies that this para-
metrization is explicitly on shell.

2Quantities which remain unchanged by the coadjoint action
of P.
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B. Vector on a sphere

In Ref. [46], Wiegmann parametrizes, in a natural way,
the spinning degrees of freedom by a unit vector nμ
orthogonal to the linear momentum pμ. We now explicitly
show that the Wiegmann parametrization is equivalent to
Balachandran. To see how this correspondence comes
about, we set Aμ ¼ Λμ

1 and Bμ ¼ Λμ
2; then

ωS
m;s ¼ ℏsημνdAμ ∧ dBν and Sμν ¼ ℏsðA ∧ BÞμν;

ð23Þ

where ωS
m;s ¼ ωm;s − dx ∧ dp is the spin component of the

symplectic potential. We introduce the unit momenta uμ ¼
pμ=m and define nμ ¼ ϵμνρσuνAρBσ; note that nμ is propor-
tional to the Pauli-Lubanski vector wμ ¼ msnμ. The set
fuμ; nμ; Aμ; Bμg forms an orthonormal basis forR4 adapted
to the particle’s motion. We can then expand the
Minkowski metric as

ημν ¼ −uμuν þ nμnν þ AμAν þ BμBν:

If we replace the ημν appearing in ωS
m;s with the expanded

version above, we obtain

ωS
m;s ¼

ℏs
2
ðA ∧ BÞμνðduμ ∧ duν − dnμ ∧ dnνÞ:

We can now make use of the relation ðA ∧ BÞμν ¼
−ϵμνρσuρnσ to eliminate A and B from the expressions
for ωS

m;s and Sμν and obtain a parametrization given entirely
in terms of uμ and nμ:

ωS
m;s ¼

ℏs
2
ϵμνρσuμnνðdnρ ∧ dnσ − duρ ∧ duσÞ;

SSμν ¼ −ℏsϵμνρσuρnσ; ð24Þ

which corresponds to the Wiegmann expressions [46]. The
phase space of this model is coordinatized by fxμ; pμ; nμg
subject to the constraints

p2 ¼ −m2; n2 ¼ 1; p · n ¼ 0; ð25Þ

which define the on-shell hypersurface. In the rest frame,
uμ ¼ δ0μ, and the symplectic form ωS

m;s reduces to

σS ¼ −
ℏs
2
ϵijknidnj ∧ dnk; ð26Þ

which is just the area form on a sphere of radius ℏs. It
follows that we can regard the two-form Eq. (24) as a
“relativistic generalization” of the symplectic structure on a
sphere and nμ as an S2 vector boosted in the direction of pμ.

C. Quantization condition

As presented above, the quantity s, which represents the
particle’s spin, is permitted to assume any real value.
Recovering the usual restriction—2s ∈ N—demands that
the symplectic form ω=ℏ be integral; i.e., the integral of
ω=ℏ over a nontrivial two-cycle is an integer multiple of 2π.
Consider what this means for the model of Sec. IV B, where
there is a single nontrivial two-cycle, namely the sphere S2.
In the rest frame, the quantization condition says

1

ℏ

Z
S2
ω ¼ s

Z
S2

1

2
ϵijknidnj ∧ dnk ∈ 2πN:

The quantity under the integral sign is the area form on the
two-sphere and evaluates to 4π, which immediately gives
the expected result 2s ∈ N.
A more intuitive approach is as follows: Let C denote the

worldline of a spinning particle. Then one can attempt to
define an action as the integral over the symplectic
potential, i.e. S ¼ R

C θm;s. Unfortunately, this is not well
defined, since the symplectic form is not exact, and so θm;s

does not exist globally. Instead, we need to define S as the
integral ofωm;s over some surface of which C is a boundary:

S ¼
Z
C
θm;s ¼

Z
S
ωm;s;

where ∂S ¼ C. The choice of S is ambiguous, but if we
demand that different surfaces change S by a multiple of
2πℏ, then the path integral will be well defined, since it is
e

i
ℏS, which is the relevant quantity. For the vector on a
sphere, C ¼ S1, and so S can be either the upper or lower
half sphere. In the rest frame we have

Z
S2upper

ωS
m;s ¼

Z
S2
ωS
m;s þ

Z
S2lower

ωS
m;s;

and so we demand that
R
S2 ω

S
m;s ¼ 2πℏ, which is the same

condition arrived at in the more formal approach.

V. DUAL PHASE SPACE MODEL

The previous section presented a sampling of possible
parameterizations for the coadjoint orbits of the Poincaré
group. There are many other options, all of which are
equivalent and can be used interchangeably depending on
what aspect of the theory is to be emphasized. Presently,
our interest is in analyzing the interaction vertex, and so we
introduce a parametrization that is particularly well suited
to this task.

A. Choosing the coordinates

To define this parametrization, we introduce a length
scale λ and an energy scale ϵ such that λϵ ¼ ℏ; otherwise
these scales are arbitrary constants. We recall the
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parametrization presented in Sec. IVA and define variables
χμ ¼ λΛμ

1 and πμ ¼ ϵsΛμ
2 so that the symplectic form

[Eq. (21)] is written as3

ω ¼ dxμ ∧ dpμ þ dχμ ∧ dπμ: ð27Þ

We now forget that pμ, χμ, and πμ are components of a
Lorentz transformation and instead regard them as variables
on a classical phase space coordinatized by fxμ; pμ; χμ; πμg.
It follows from Eq. (27) that (xμ, pμ) and (χμ, πμ) form pairs
of canonically conjugate variables with Poisson brackets:

fxμ; pνg ¼ δμν ; fχμ; πνg ¼ δμν ; ð28Þ

with all others vanishing. From this perspective χμ and πμ
span a “dual” phase space, separate from the standard phase
space of xμ and pμ, which encodes information about the
particle’s spin. The internal angular momentum, Sμν,
further bears out this duality, since in these variables it
assumes the form [see Eq. (19)]

Sμν ¼ ðχ ∧ πÞμν; ð29Þ

in direct analogy to orbital angular momentum Lμν ¼
ðx ∧ pÞμν. It is for this reason that we have called this
formulation the dual phase space model or DPS and view
χμ and πμ as a dual “coordinate” and “momenta,”
respectively.
It remains to explicitly impose relations among the phase

space variables that were implicit in their origin as Lorentz
transformations. These constraints will define the dynamics
of our theory and are given by

ðp2 ¼ −m2; π2 ¼ ϵ2s2Þ;
ðp · π ¼ 0; p · χ ¼ 0Þ;
ðχ2 ¼ λ2; χ · π ¼ 0Þ: ð30Þ

Wehave grouped the constraints in this manner to emphasize
the duality mentioned above. The first pair are mass shell
conditions, one in standard phase space p2 ¼ −m2 and one
in dual phase space π2 ¼ ϵ2s2. In this description, the spin is
proportional to the length of the dualmomenta. In the second
set, we see that the two phase spaces are not independent;
rather, dual phase space is orthogonal to the canonical
momenta. The final two constraints emphasize the dramatic
difference between standard phase space and dual phase
space, since in the formerx is totally unconstrained,while χ is
constrained to live on a two-sphere.
As presently formulated, DPS assumesm ≠ 0; recall that

we made this assumption at the outset of Sec. IVA. This

restriction can easily be lifted, as all aspects of the current
formulation, both Poisson brackets and constraints, are well
defined in the limit m → 0.
An important point to emphasize is that this paramet-

rization is invariant under an SLð2;RÞ global symmetry,
since any transformation of the form

ðχμ; πμÞ → ðAχμ þ Bπμ; Cχμ þDπμÞ; AD − BC ¼ 1

ð31Þ

does not alter the Poisson brackets [Eq. (28)] or the angular
momenta [Eq. (29)]. Part of this symmetry can be fixed by
imposing the orthogonality condition π · χ ¼ 0; the remain-
ing symmetry consists of a rescaling ðχμ; πμÞ → ðαχ; α−1πÞ
as well as a rotation

ðχμ; πμÞ →
�
cos θχμ þ

λ

ϵs
sin θπμ; cos θπμ −

ϵs
λ
sin θχμ

�
:

ð32Þ

These demonstrate, respectively, that the choice of scales λ
and ϵ as well as the initial direction of the dual momenta are
immaterial; only the product λϵ is physically meaningful.
We now assume that a choice of scale and axis has
been made.
A brief note before we continue: The parametrization

presented in this section is identical to the one used by
Wigner in his description of continuous spin particles [63]
(see also Ref. [64] for a classical realization which
emphasis the similarity). However, to the authors’ knowl-
edge, it has never been used in the context of standard
spinning particles.

B. Action and equations of motion

An action for DPS is obtained by making the appropriate
change of variables to Eq. (22), and explicitly implement-
ing the constraints in Eq. (30) by means of Lagrange
multipliers, viz.

S ¼
Z

dτ

�
pμ _xμ þ πμ _χ

μ −
N
2
ðp2 þm2Þ

−
M
2

�
π2

ϵ2
þ s2χ2

λ2
− 2s2

�

−
N1

2

�
s2χ2

λ2
−
π2

ϵ2

�
− N2ðχ · πÞ − N3ðp · πÞ

− N4ðp · χÞ
�
; ð33Þ

where we have combined some of the constraints in
anticipation of the upcoming constraint analysis.
Computing the constraint algebra we find, for ms ≠ 0,
there are two first-class constraints,

3From now on, we will drop subscripts on the symplectic
form.

TREVOR REMPEL and LAURENT FREIDEL PHYSICAL REVIEW D 94, 044011 (2016)

044011-6



Φm ≔
1

2
ðp2 þm2Þ; Φs ≔

1

2

�
π2

ϵ2
þ s2χ2

λ2

�
− s2; ð34Þ

and four second class constraints,

Φ1 ¼
1

2

�
s2χ2

λ2
−
π2

ϵ2

�
; Φ2 ¼ χ · π; ð35Þ

Φ3 ¼ p · π; Φ4 ¼ p · χ: ð36Þ

The latter satisfy the algebra

fΦ1;Φ2g ≈ 2s2; fΦ3;Φ4g ≈ m2;

where ≈ denotes equality on the constraint surface and all
other commutators vanish.4 This means that (Φ1, Φ2) form
a canonical pair whenever s ≠ 0, as do (Φ3, Φ4) when
m ≠ 0. Furthermore, when m ¼ 0, the constraints Φ3 and
Φ4 become first class, and so a massless spinning particle is
described by four first-class constraints and two second-
class constraints. For completeness, we have included an
explicit expression for the Dirac brackets in Appendix B.
The momentum constraint Φm generates, as usual, the

reparametrization invariance of the worldline δxμ ¼ −Npμ.
On the other hand, the spin constraint Φs generates a Uð1Þ
gauge transformation of the χ and π variables. This trans-
formation rotates the dual variables while preserving their
normalization constraints Φi:

δπμ ¼ þ
�
s2M
λ2

�
χμ; δχμ ¼ −

�
M
ϵ2

�
πμ: ð41Þ

C. Massive spinning particle

Let us now assume that m ≠ 0; then the constraints Φi,
i ¼ 1;…; 4 are second class, and so the associated
Lagrange multipliers N1, N2, N3, N4 must vanish. The
resulting Hamiltonian is given by

H ¼ NΦm þMΦs ¼
N
2
ðp2 þm2Þ þM

2

�
π2

ϵ2
þ s2χ2

λ2
− 2s2

�

ð42Þ

and defines time evolution in the standard fashion:
_A ¼ fH;Ag. The equations of motion are easily integrated;
we find

xμðτÞ ¼ Xμ − NPμτ;

χμðτÞ ¼ λ

�
Aμ cos

�
Ms
ℏ

τ

�
þ Bμ sin

�
Ms
ℏ

τ

��
; ð43Þ

where Xμ, Pμ, Aμ, and Bμ are constant vector solutions
of P2 ¼ −m2, A2 ¼ B2 ¼ 1, and A · P ¼ B · P ¼ 0.
The momenta are simply given by

pμ ¼ −
_xμ
N

¼ Pμ; πμ ¼ −
ϵ2 _χμ
M

: ð44Þ

This motion is expected—the coordinate xμ evolves like a
free particle while the dual coordinate χμ undergoes
oscillatory motion of frequencyMs=ℏ in the plane orthogo-
nal to Pμ. Furthermore, the motion is such that both orbital
and spin angular momentum are constants of motion,
specifically Lμν ¼ ðX ∧ PÞμν and Sμν ¼ ℏsðA ∧ BÞμν.

D. Massive second-order formalism

Further insights into the nature of DPS become apparent
when we consider the second-order formalism which is
obtained from Eq. (33) by integrating out the momenta and
Lagrange multipliers. Only the main results will be
presented here; for a more detailed analysis see
Appendix A. We begin by computing the equations of
motion for the momenta and dual momenta which can be
solved for pμ and πμ and then substituted back into the
action. We find

S ¼
Z

dτ

�
ρ

ðN ~N − N2
3Þ

−
~M
2
ðχ2 − λ2Þ − N

2
m2 þ

~N
2
ϵ2s2

�
;

ð45Þ

where ρ is given by

ρ ≔
1

2
½ ~Nð_x − N4χÞ2 þ Nð_χ − N2χÞ2

− 2N3ð_χ − N2χÞ · ð_x − N4χÞ�; ð46Þ

4The off-shell algebra is a semidirect product of SLð2;RÞ with
the two-dimensional Heisenberg algebra H2. The SLð2;RÞ
algebra consists of ℏðΦs þ s2Þ, ℏΦ1, and Φ2:

fΦ1;Φ2g ¼ 2ðΦs þ s2Þ;
fΦs;Φ1g ¼ −2Φ2=ℏ2;

fΦs;Φ2g ¼ 2Φ1: ð37Þ

These in turn act naturally on Φ3 and Φ4:

fΦs;Φ3g ¼ Φ4

ϵ2
; fΦ1;Φ3g ¼ Φ4

ϵ2
; fΦ2;Φ3g ¼ Φ3;

ð38Þ

fΦs;Φ4g ¼ −
s2

λ2
Φ3; fΦ1;Φ4g ¼ Φ3

λ2
; fΦ2;Φ4g ¼ −Φ4;

ð39Þ

while together Φ3 and Φ4 satisfy

fΦ3;Φ4g ¼ ðm2 − 2ΦmÞ: ð40Þ
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and we have introduced

~N ¼ ðM − N1Þ
ϵ2

; ~M ¼ s2ðM þ N1Þ
λ2

: ð47Þ

We can now solve forN2 andN4, which amounts to making
the replacements

_xμ − N4χμ → Dtxμ ≔ _xμ −
ð_x · χÞ
χ2

χμ; ð48Þ

_χμ − N2χμ → Dtχμ ≔ _χμ −
ð_χ · χÞ
χ2

χμ; ð49Þ

where Dt is the time derivative projected orthogonal to χ. It
remains to integrate out the Lagrange multipliers N, ~N, and
N3; after some algebra we obtain the following form for the
action:

S ¼
Z

dτ

�
α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2s2ðDtχÞ2 −m2ðDtxÞ2 − 2sϵmβjðDtxÞ ∧ ðDtχÞj

q
−

~M
2
ðχ2 − λ2Þ

�
; ð50Þ

where jðDtxÞ ∧ ðDtχÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDtx ·DtχÞ2 − ðDtxÞ2ðDtχÞ2

p
is a coupling between the particle motion and the spin
motion, and α; β ¼ �1 are signs used to define the square
roots.Observe thatwe cannot integrate out the final Lagrange
multiplier, since thevariation ofSwith respect to ~M is just the
constraint χ2 ¼ λ2. It can be checked that the momenta px ¼∂S=∂ _x and πχ ¼ ∂S=∂ _χ satisfy the constraints

p2
x ¼ −m2; π2χ ¼ ϵ2s2; πχ · χ ¼ 0;

px · πχ ¼ 0; px · χ ¼ 0: ð51Þ

Moreover, when evaluated on shell, the action simplifies
drastically and becomes

S ¼ α

Z
dτjmj_xj − βϵsj_χjj; ð52Þ

where we have defined j_xj ¼
ffiffiffiffiffiffiffiffi
−_x2

p
and j_χj ¼

ffiffiffiffiffi
_χ2

p
. As

expected, if s ¼ 0, Eq. (52) reduces to the action of a
relativistic scalar particle. On the other hand, when s ≠ 0,
we can view the quantity appearing under the integral as the
effective velocity of the particle. The effect of the spin
velocity _χ is seen to either decrease (for β ¼ þ) or increase
(for β ¼ −) this effective velocity relative to the scalar case.
Furthermore, given a trajectory [xðtÞ, χðtÞ], we define the
proper time τ and the proper angle θ as

τðtÞ ≔
Z

t

0

j_xjdt0; θðtÞ ≔ 1

λ

Z
t

0

j_χjdt0; ð53Þ

which can then be used to parametrize the motion

xμðtÞ ¼ xμ −
pμ

m
τðtÞ;

χμðtÞ ¼ χμ cos θðtÞ þ
λπμ
ϵs

sin θðtÞ: ð54Þ

E. Massless spinning particle

As mentioned earlier, a massless particle has four first-
class constraints, with Φ3 and Φ4 appearing in addition

to Φs and Φm, and so the relevant Hamiltonian is
given by

H ¼ N
2
p2 þM

2

�
π2

ϵ2
þ s2χ2

λ2
− 2s

�
þ N3

ϵ
ðp · πÞ

þ sN4

λ
ðp · χÞ: ð55Þ

Again, the equations of motion are easily integrated; we
find

χμðτÞ ¼ λ

�
Aμ cos

�
Ms
ℏ

τ

�
þ Bμ sin

�
Ms
ℏ

τ

�
−
N4

Ms
Pμ

�
;

ð56Þ

xμðτÞ ¼ Xμ þ τ

�
N2

3 þ N2
4

M
− N

�
Pμ

þ ϵ

M

�
N3χ

μðtÞ þ N4ℏ
Ms

_χμðtÞ
�����

t¼τ

t¼0

; ð57Þ

where Xμ, Pμ, Aμ, and Bμ are constant vector solutions of
P2 ¼ 0, A2 ¼ B2 ¼ 1 and A · P ¼ B · P ¼ 0. The
momenta are given by

pμ ¼ Pμ; πμðτÞ ¼ −
ϵ

M
ðϵ_χμðτÞ þ N4PμÞ: ð58Þ

Apart from a constant offset proportional to Pμ, the
evolution of πμ and χμ is identical to the massive particle.
This is not the case for xμ, where, in addition to the
expected linear evolution along Pμ, there is oscillatory
motion in the hyperplane orthogonal to Pμ of frequency

Ms=ℏ and amplitude ℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

3 þ N2
4

p
=M. This latter quantity,

we note, is pure gauge, being a function of only the
Lagrange multipliers N3, N4, and M.
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VI. COUPLING TO ELECTROMAGNETISM

At this point DPS describes the free propagation of a
relativistic spinning particle. Although our goal is to
consider interactions between such particles, it is important
to show that DPS can be consistently coupled to electro-
magnetism. A coupling prescription is said to be consistent
if it leaves the constraint structure invariant, lest the
introduction of a background field fundamentally alter
the system dynamics.
At leading order we, have the minimal coupling pre-

scription [28,30,50,65,66]

pμ → Pμ ¼ pμ þ eAμðxÞ; ð59Þ

which modifies the Poisson bracket of Pμ with itself
fPμ; Pνg ¼ −eFμν. Note that the pure spin constraints
Φs, Φ1, and Φ2 are unaffected by this adjustment. We
can also include a higher-order term via the spin-orbit
coupling FμνSμν by making the replacement

Φm ¼ 1

2
ðP2 þm2Þ → Φm;g ¼ Φm þ eg

4
FμνSμν;

where g is the gyromagnetic ratio and Sμν ¼ ðχ ∧ πÞμν the
spin bivector. These modifications alter the algebra of
constraints, which now reads

fΦ3;Φ4g ¼ −
�
P2 −

e
2
FμνSμν

�
¼ ~m2 − 2Φm;g; ð60Þ

fΦm;g;Φ3g ¼ eðπμKμÞ; fΦm;g;Φ4g ¼ eðχμKμÞ; ð61Þ

where we have introduced an “electromagnetic mass” ~m
and an “acceleration” vector Kμ:

~m2 ≔ m2 þ eðgþ 1Þ
2

FμνSμν;

Kμ ≔ FμνPν −
g
2

�
FμνPν −

1

2
∂μFνρSνρ

�
: ð62Þ

This vector enters the commutator

fΦm;g; Pμg ¼ e

�
Kμ þ

g
2
FμνPν

�
: ð63Þ

One can now check that, for a massive particle, this
prescription does not change the number of degrees of
freedom. The theory still possesses two first-class and four
second-class constraints. In particular, Φs remains first
class, since the spin sector is unmodified, while the other
first-class constraint is given by

ΦEM ≔ ~m2Φm;g − eðχμKμÞΦ3 þ eðπμKμÞΦ4: ð64Þ

The remaining four constraints will be second class, and so
the total Hamiltonian is given by

H ≔ NΦEM þMΦs; ð65Þ

and it is straightforward to show that H preserves all
constraints. In standard phase space, the resulting equations
of motion are given by

_xμ ¼ −N½ ~m2Pμ þ eðSKÞμ�; ð66Þ

_Pμ ¼ Ne

�
~m2

�
Kμ þ

g
2
ðFPÞμ

�
þ eðFSKÞμ

�
; ð67Þ

where we have denoted ðSKÞν ¼ SνρKρ, ðFSKÞμ ¼
FμνSνρKρ, etc. The equations of motion in dual phase
space lead to5

_Sμν ¼ Ne

�
PμðSKÞν þ

g ~m2

2
ðFSÞμν − ða↔bÞ

�
: ð69Þ

In the limit of weak ( ~m2 ≈m2) and constant electromag-
netic field, Eq. (69) reduces to the Frenkel-Nyborg
equation [6,12].
For a massless particle, we can see that it is impossible to

introduce an electromagnetic field while keepingΦ3 andΦ4

first class, since their commutator involves the vector Kμ.
This means that the minimal coupling prescription for a
massless particle is inconsistent—it would change the
number of degrees of freedom. This is hardly a surprise,
since it is well known that one cannot give a photon or a
graviton an electromagnetic charge.

VII. INTERACTION VERTEX FOR CLASSICAL
SPINNING PARTICLE

We now come to the central result of this paper—the
interaction vertex for a relativistic spinning particle. In
general, interactions between classical point particles are
governed by a system of ten equations: conservation of
linear momentum (four), and conservation of total angular
momentum (six). The latter is represented in the DPS
model by J ¼ x ∧ pþ χ ∧ π and is a constant of motion.
For simplicity, we restrict our attention to a trivalent vertex
with one incoming and two outgoing particles, see Fig. 1.
The particles have phase space coordinates (xi, pi), (χi, πi),

5They are explicitly given by

_χμ ¼ −
M
ϵ2

πμ þ eN

�
PμKν þ

g ~m2

2
Fμν

�
χν;

_πμ ¼
s2M
λ2

χμ þ eN

�
PμKν þ

g ~m2

2
Fμν

�
πν: ð68Þ
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i ¼ 1, 2, 3, and so the conservation equations are given
explicitly by

p1 ¼ p2 þ p3; ð70Þ

ðx1 ∧ p1 þ χ1 ∧ π1Þ ¼ ðx2 ∧ p2 þ χ2 ∧ π2Þ
þ ðx3 ∧ p3 þ χ3 ∧ π3Þ: ð71Þ

The coordinate xi denotes the spacetime location assigned
to the interaction by particle i, and since one assumes that
interactions are local in spacetime, we should have that
x1 ¼ x2 ¼ x3 ¼ x. Conservation of orbital angular momen-
tum now follows immediately from locality and Eq. (70); to
be explicit,

x1 ∧ p1 − x2 ∧ p2 − x3 ∧ p3 ¼ x ∧ ðp1 − p2 − p3Þ ¼ 0:

ð72Þ

Thus, the system of equations we need to solve reduces to

x1 ¼ x2 ¼ x3 ¼ x; p1 ¼ p2 þ p3; ð73Þ

χ1 ∧ π1 ¼ χ2 ∧ π2 þ χ3 ∧ π3: ð74Þ

Equation (73) is standard, expressing the locality of
interactions, which as mentioned in the Introduction, goes
hand in hand with the conservation of linear momentum.
The second equation, which expresses the conservation of
spin angular momentum, requires some additional work to
be properly interpreted.

A. Dual locality

We propose that conservation of spin angular momentum
[Eq. (74)] can be understood as an expression of the “dual
locality” of the interaction vertex; i.e., interactions are
“local” in dual phase space. Specifically, we assume that
there exists a four-vector χμ such that χ2 ¼ λ2 and

χ1 ¼ χ2 ¼ χ3 ¼ χ; ð75Þ

see Fig. 1. It follows from Eqs. (74) and (75) that π1 ¼
π2 þ π3 þ αχ for some constant α; contracting both sides
with χ, we get αλ2 ¼ χ · ðπ1 − π2 − π3Þ; the constraints χi ·
πi ¼ χ · πi ¼ 0 then imply χ is orthogonal to πi, and so
α ¼ 0. Thus, dual locality plus conservation of spin
angular momentum intimates the conservation of dual
momentum

π1 ¼ π2 þ π3: ð76Þ
This, we note, is an exact analogue of the results in standard
phase space, further emphasizing the duality of the dual
phase space formulation.
To show that dual locality is a viable ansatz, we must

demonstrate that it is consistent with the constraints in
Eq. (30), which need to be satisfied for each particle and are
enumerated below:

(i) p1 · χ ¼ 0 (iv) p1 · π1 ¼ 0 (vii) χ · π2 ¼ 0 (x) π22 ¼ s22
(ii) p2 · χ ¼ 0 (v) p2 · π2 ¼ 0 (viii) χ · π3 ¼ 0 (xi) π23 ¼ s23
(iii) χ2 ¼ λ2 (vi) p3 · π3 ¼ 0 (ix) π21 ¼ s21 (xii) π1 ¼ π2 þ π3

Notice that we have included the conservation of dual
momentum in this list, in constraint xii, since it will be
convenient to have all restrictions on dual phase space
variables collected in one spot. To proceed, we use the fact
that conservation of momenta [Eq. (73)] implies that
fp1; p2; p3g span a two-plane, denoted p. We introduce
fe0; e1g as an orthonormal basis for p, where it is assumed
that e0 is timelike. We can then extend this to an
orthonormal basis for R4 by including two additional
vectors fe2; e3g. It will also be convenient to define a
Hodge dual in p, denoted

ð ~qÞμ ≔ ϵμνρσeν2e
ρ
3q

σ ð77Þ

for q ∈ p.
We now systematically solve the constraints beginning

with i–iii, which are easily seen to have the solution

χ ¼ λðcosϕe2 þ sinϕe3Þ ð78Þ

FIG. 1. Three-particle interaction in DPS, with and without the assumption of dual locality.
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for some arbitrary angle ϕ. Constraints iv–vi imply that the
dual momenta πi lies in the hyperplane orthogonal to pi,
hence we can expand πi as

πi ¼ αi ~pi þ Aie2 þ Bie3: ð79Þ
The Hodge dual of Eq. (73) implies ~p1 ¼ ~p2 þ ~p3, and so
projecting constraint xii into the plane p and using Eq. (79)
gives

ðα1 − α2Þ ~p2 þ ðα1 − α3Þ ~p3 ¼ 0: ð80Þ
Thus, if p2 and p3 are linearly independent, we get
α1 ¼ α2 ¼ α3 ¼ α. On the other hand, projecting xii
orthogonal to p and using Eq. (79) again requires A1 ¼
A2 þ A3 and B1 ¼ B2 þ B3. Constraints vii and viii are
then easily solved by setting A2 ¼ −β sinϕ, B2 ¼ β cosϕ
and A3 ¼ −γ sinϕ, B3 ¼ γ cosϕ, respectively. In summary,
we have

π1 ¼ α ~p1 þ ðβ þ γÞχ⊥; ð81Þ
π2 ¼ α ~p2 þ βχ⊥; ð82Þ

π3 ¼ α ~p3 þ γχ⊥; ð83Þ

where χ⊥ ¼ − sinϕe2 þ cosϕe3 is orthogonal to χ.
It remains to consider constraints ix–xi, which are seen
to give

m2
1α

2 þ ðβ þ γÞ2 ¼ s21; ð84Þ
m2

2α
2 þ β2 ¼ s22; ð85Þ

m2
3α

2 þ γ2 ¼ s23: ð86Þ
Before showing that the above equations possess a con-
sistent solution, we need to recall some restrictions on the
mass and spin of the constituent particles, namely

m2 þm3 ≤ m1; ð87Þ
js2 − s3j ≤ s1 ≤ s2 þ s3: ð88Þ

The first inequality is well known, and easily derived from
momentum conservation [Eq. (73)]. Equation (88), on the
other hand, is a quantum-mechanical result derived by
considering the eigenvalues of the total angular momentum
operator in a composite system. Here we will show that it
follows from the assumption of dual locality. We begin by
squaring Eq. (76) to obtain

s21 ¼ s22 þ s23 þ 2π2 · π3:

As πi is spacelike, we can apply the Cauchy-Schwartz
inequality with impunity:

2jπ2 · π3j ≤ 2jπ2jjπ3j ¼ 2s2s3:

Substituting this result into the previous equation gives
ðs2 − s3Þ2 ≤ s21 ≤ ðs2 þ s3Þ2, and the desired result follows
after taking square roots.
With this in mind, we return to Eqs. (84)–(86). The latter

two can be used to solve for β and γ in terms of α and the
result substituted into Eq. (84). After rearranging and
taking the square, we get a consistency condition for α:

ðs22 −m2
2α

2Þðs23 −m2
3α

2Þ ¼ ðS2 −M2α2Þ2; ð89Þ

where 2M2 ≔ m2
1 −m2

2 −m2
3 and 2S2 ≔ s21 − s22 − s23. It is

not enough to simply solve this equation for α, since it is
immediately obvious from Eqs. (84)–(86) that α2 ≤ r2i ,
where ri ¼ si=mi for mi ≠ 0. As such, we introduce
variables θ2 and θ3 which satisfy

α ¼ r2 cos θ2 ¼ r3 cos θ3; ð90Þ

and without loss of generality suppose r3 ≤ r2. Note that
we can choose the signs of θ2 and θ3 so that β ¼ s2 sin θ2
and γ ¼ s3 sin θ3. The consistency equation on α now reads
Fðθ3Þ ¼ 0, where

FðθÞ ≔ ðS2 −M2r23cos
2θÞ2

− s22s
2
3sin

2θ

�
1 −

r23
r22

þ
�
r3
r2
sin θ

�
2
�
: ð91Þ

It suffices, therefore, to show that FðθÞ has a zero in the
interval ½−π=2; π=2�, and so we note that

Fð0Þ ¼ ðS2 −M2r23Þ2 ≥ 0;

Fð�π=2Þ ¼ −½ðs2 þ s3Þ2 − s21�½s21 − ðs2 − s3Þ2� ≤ 0;

where the second equality follows from Eq. (88). By the
intermediate value theorem, there exists θ ∈ ½0; π=2�
such that Fð�θÞ ¼ 0, and so α ¼ r3 cos θ satisfies
Eq. (89). It follows for massive particles that there are
two solutions to the dual locality equations for which
α > 0. These two solutions are related by a change of
orientation in the plane orthogonal to p; if ðα; β; γÞ is a
solution, then ðα;−β;−γÞ is also a solution. Note that by
parity invariance, ð−α;−β;−γÞ and ð−α; β; γÞ are also
solutions.
The case where m2 ¼ 0 can be obtained from the above

by allowing r2 → ∞ in Eq. (91), and one can again obtain a
solution for α by using the intermediate value theorem. In
the remaining case6 m2 ¼ m3 ¼ 0, Eqs. (85) and (86) are
solved immediately as β ¼ ϵ2s2 and γ ¼ ϵ3s3 where
ϵi ¼ �1. We then obtain for α

6It is impossible to have three massless interacting particles.
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α2 ¼ 1

m2
1

ðs21 − ðϵ2s2 þ ϵ3s3Þ2Þ;

where Eq. (88) implies that ϵ2ϵ3 ¼ −1 and we again find
four solutions belonging to two sectors related by parity.
This completes our analysis of the three-particle interac-
tion, showing that dual locality ensures a consistent vertex
for any viable combination of spinning particles.

B. Universality of dual locality

The previous section established dual locality as a
sufficient condition to ensure a consistent three-point
vertex; we now establish its necessity. The key point is
that when the spin is nonzero, we have an additional gauge
symmetry in the system which corresponds to a rotation in
the (χ, π) plane; recall Eq. (41):

Rθðχμ; πμÞ ¼
�
cos θχμ þ

λ

ϵs
sin θπμ; cos θπμ −

ϵs
λ
sin θχμ

�
:

ð92Þ
Such a gauge transformation does not change the value
of the spin bivector RθðχÞ ∧ RθðπÞ ¼ χ ∧ π. Therefore,
if ðχi; πiÞi¼1;2;3 is a solution of Eq. (74), then
ðRθiðχiÞ; RθiðπiÞÞi¼1;2;3 is also a solution for arbitrary θi.
This is simply an expression of the gauge symmetry of the
theory. The main claim we now want to prove is that any
solution of the spin conservation equation [Eq. (74)] is gauge
equivalent to a solution satisfying dual locality. In other
words, if ðχi; πiÞi¼1;2;3 is a solution of Eq. (74), then there
exists ðχ0; π0iÞi¼1;2;3 with π01 ¼ π02 þ π03, and θi such that

ðχi; πiÞ ¼ ðRθiðχ0Þ; Rθiðπ0iÞÞ; for i ¼ 1; 2; 3: ð93Þ
Note that in addition to the rotation Eq. (41), DPS is invariant
under the global rescaling λ → αλ and ϵ → α−1λ. Therefore,
we can assume that all λi and ϵi have been rescaled to some
common values λ and ϵ.
Suppose that we have a solution to Eqs. (73) and (74),

including all accompanying constraints. It is always possible
to choose χi orthogonal to the plane p. To see why, consider
χ2: By construction χ2 · p2 ¼ 0, and so we need only ensure
that it is orthogonal to p3, since then conservation of
momentum guarantees that it will be orthogonal to p1 as
well. Hence, if χ2 · p3 ≠ 0, a gauge rotation with
cot θ ¼ λπ2 · p3=ðs2χ2 · p3Þ, will ensure that the new χ2
is orthogonal to p3. A similar argument holds for the other
χi, and the claim is justified, thereby allowing us to write
χi ¼ λðcosϕie2 þ sinϕie3Þ, since χ2i ¼ λ2. Now, we con-
tract Eq. (74) with (p1, p2, p3) to obtain

χ2ðp3 · π2Þ þ χ3ðp2 · π3Þ ¼ 0; ð94Þ

χ1ðp2 · π1Þ − χ3ðp2 · π3Þ ¼ 0; ð95Þ

χ1ðp3 · π1Þ − χ2ðp3 · π2Þ ¼ 0. ð96Þ

There are two cases to consider. Either ðpi · πjÞi≠j are all
vanishing or they are all nonvanishing. Indeed, if
p3 · π2 ¼ 0, the above equations imply that
p2 · π3 ¼ p2 · π1 ¼ p3 · π1 ¼ 0, which in turn, via momen-
tum conservation, yields p1 · π2 ¼ p1 · π3 ¼ 0.
Let us first assume that pi · πj ¼ 0. As argued above, χi

and πi are orthogonal to p and therefore can be expanded as

χi ¼ λðcosϕie2 þ sinϕie3Þ;
πi ¼ siϵð− sinϕie2 þ cosϕie3Þ:

A further gauge transformation with θi ¼ −ϕi can now be
performed to give χi ¼ λe2, πi ¼ siϵe3, which proves the
proposition.
In the generic case we have ðpi · πjÞi≠j ≠ 0. We contract

Eq. (94) with π3 to obtain π3 · χ2 ¼ 0; repeating this for the
other πi, we find that ðχiÞi¼1;2;3 is orthogonal to ðπjÞi¼1;2;3.
With this established, we can return to Eq. (74), contract
with χ1 and then χ2, and combine the results to eliminate
the terms proportional to π1:

0¼ ½ðχ1 ·χ2Þ2−λ4�π2þ½ðχ1 ·χ3Þðχ1 ·χ2Þ−λ2ðχ2 ·χ3Þ�π3:

Note that π2 and π3 cannot be parallel, since then
π2 · p3 ∝ π3 · p3 ¼ 0, which is contrary to the original
assumption π2 · p3 ≠ 0. Hence, the previous equation
implies that

jχ1 · χ2j ¼ λ2:

As χi are spacelike vectors which satisfy χ2i ¼ λ2, the
Cauchy-Schwartz inequality implies that χ1 and χ2 are
parallel, hence χ1 ¼ �χ2. We can repeat the above pro-
cedure, contracting Eq. (74) with χ1 and χ3 to obtain
χ1 ¼ �χ3, and so

ϵ1χ1 ¼ ϵ2χ2 ¼ ϵ3χ3 ¼ χ;

where ϵi ¼ �. This is not exactly what we want. All we
have to do is perform another set of gauge transformations
by the angle ð1 − ϵiÞπ=2 to transform ðχi; πiÞ →
ðϵiχi; ϵiπiÞ. Note that these gauge transformations do not
affect any of the orthogonality properties established
before, and so we obtain the dual locality property

χ1 ¼ χ2 ¼ χ3 ¼ χ; π1 ¼ π2 þ π3: ð97Þ

This completes the proof, showing that a solution to
Eqs. (73) and (74) implies that dual locality holds, up to
a gauge relabeling.

C. An alternative view of dual locality

The universality of dual locality is an important result
further emphasizing the symmetry between standard and
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dual phase space. As such, it will be beneficial to see how
dual locality arises from one of the alternative models
presented earlier in this paper. In particular, we select the
parametrization of Sec. IVB, where spin is represented by a
single vector nμ. Recall that nμ has the interpretation of an S2

vector boosted in the direction of the particles’ momenta,
and the spinning part of angular momentum is given by
Sμν ¼ s � ðn ∧ uÞμν. Consider again a three-particle inter-
action with one particle incoming and the other two out-
going. In what follows, we will assume m ≠ 0.
Interactions, as previously discussed, are governed by

the conservation of linear momentum [Eq. (73)] and the
conservation of spin angular momentum. The latter, after
taking the Hodge dual and making use of Eq. (73), can be
written as

½ðr1n1 − r2n2Þ ∧ p2� þ ½ðr1n1 − r3n2Þ ∧ p3� ¼ 0; ð98Þ
where ri ¼ si=mi. Let A⊥p denote the projection of a vector
A onto the plane orthogonal to p. Applying this projection
to Eq. (98) yields7

r1n
⊥p

1 ¼ r2n
⊥p

2 ¼ r3n
⊥p

3 : ð99Þ
A further condition on the ni is obtained by contracting
Eq. (98) with ~p2 ∧ ~p3, viz.

r1n1 · ~p1 ¼ r2n2 · ~p2 þ r3n3 · ~p3: ð100Þ
The previous two equations provide a natural method for
defining variables χ and πi which satisfy dual locality, in
particular

χ ¼ λ

jn⊥p
i j

� ðe0 ∧ e1 ∧ niÞ and

πi ¼
ϵri
λ

� ðχ ∧ pi ∧ niÞ:

It follows from Eq. (99) that χ is independent of i, while
Eq. (100) can be used to show π1 ¼ π2 þ π3. The necessary
constraints (i–xi) are also satisfied, as one can easily check.
Note that the above definitions are ambiguous up to a sign,
although the same sign must be chosen for all πi, and so we
see again that there are four possible solutions belonging to
two parity-related sectors. In summary, the conservation of
angular momentum requires that the vectors rini be equal
when projected into the plane p⊥. The dual position χ is
then the unique (up to a sign) vector of length λ lying in the

plane p⊥ which is orthogonal to rin
⊥p
i . In turn, the dual

momenta πi is the unique (up to a sign) vector of length ϵsi
orthogonal to pi, ni, and χ.

VIII. CONCLUSION

The dual phase space model presented herein provides a
unique perspective on the relativistic spinning particle. It

imagines the variables which parametrize the spinning
degrees of freedom as living in their own phase space,
independent from the standard phase space of xμ and pμ.
The structure of these spaces and their relationship with one
another are governed by constraints which yield linear
propagation of the coordinate variable as well as oscillatory
motion of the dual variables. Furthermore, the on-shell
action for DPS is seen to be the sum of the usual proper
time which encodes motion in spacetime, and a “proper
angle” determined by the spin motion.
The three-point interaction vertex is further testament to

the utility of DPS. Given that interactions are governed by
conservation of linear and angular momentum, we showed
that consistency is possible if and only if dual locality is
satisfied, in which case conservation of angular momentum
becomes conservation of dual momenta. This further
emphasizes the symmetry between the two phase spaces
and provides a prescription for implementing interactions
in the worldline formalism.
If, for a moment, one ignores the constraints, then DPS

implies that the phase space of a spinning particle is twice as
large as that of a scalar particle. If one takes the duality of
DPS seriously, then this doubling suggests that one might be
able to realize the spinning particle as a composite of two
scalar particles. The behavior of the spinning particle itself
could then be viewed as emerging from interactions between
the constituent particles. This is a radical proposal which we
intend to explore more fully in a subsequent paper.
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APPENDIX A: SECOND-ORDER FORMULATION

In this appendix, we present the second-order formu-
lation of the DPS action which is obtained from Eq. (33) by
integrating out the momenta and all Lagrange multipliers.8

We begin by rewriting the action as

S ¼
Z

dτ

�
pμð_xμ − N4χ

μÞ þ πμð_χμ − N2χ
μÞ

−
N
2
ðp2 þm2Þ −

~N
2
ðπ2 − ϵ2s2Þ − N3ðp · πÞ

−
~M
2
ðχ2 − λ2Þ

�
; ðA1Þ

where we have introduced

7Assuming p2 and p3 are linearly independent.

8It is possible to obtain a second-order formalism directly from
Eq. (22) without the introduction of Lagrange multipliers; see
Sec. VIII.3 of Ref. [66]. However, as the emphasis of this paper is
on the DPS model, we will show how Eq. (50) follows from
Eq. (33) directly.
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~N ¼ ðM − N1Þ
ϵ2

; ~M ¼ s2ðM þ N1Þ
λ2

: ðA2Þ

The equations of motion for the momenta read

Npμ þ N3πμ ¼ ð_xμ − N4χμÞ; ðA3Þ

N3pμ þ ~Nπμ ¼ ð_χμ − N2χμÞ; ðA4Þ

and upon inverting these we obtain

ðN ~N − N2
3Þpμ ¼ ~Nð_xμ − N4χμÞ − N3ð_χμ − N2χμÞ; ðA5Þ

ðN ~N − N2
3Þπμ ¼ −N3ð_xμ − N4χμÞ þ Nð_χμ − N2χμÞ: ðA6Þ

Substituting this result into Eq. (A1), we find

S ¼
Z

dτ

�
ρ

ðN ~N − N2
3Þ

−
~M
2
ðχ2 − λ2Þ − N

2
m2 þ

~N
2
ϵ2s2

�
;

ðA7Þ

where ρ is given by

ρ ≔
1

2
½ ~Nð_x − N4χÞ2 þ Nð_χ − N2χÞ2

− 2N3ð_χ − N2χÞ · ð_x − N4χÞ�: ðA8Þ

We can now start integrating out the constraints, beginning
by varying Eq. (A8) with respect to N2 and N4, then

N2χ
2 ¼ _χ · χ; N4χ

2 ¼ _x · χ: ðA9Þ

This suggests the notation

Dtxμ ≔ _xμ −
ð_x · χÞ
χ2

χμ; Dtχμ ≔ _χμ −
ð_χ · χÞ
χ2

χμ;

ðA10Þ

whereDt is the time derivative projected orthogonal to χ. We
can now compute the variation with respect to the Lagrange
multipliers N, ~N, and N3; after some algebra we find

ðDtχÞ2 ¼ ~N2ϵ2s2 − N2
3m

2; ðA11Þ

ðDtxÞ2 ¼ N2
3ϵ

2s2 − N2m2; ðA12Þ

ðDtχÞ · ðDtxÞ ¼ N3
~Nϵ2s2 − N3Nm2: ðA13Þ

To solve for these equations, it will be convenient to define

D ≔ ðN ~N − N2
3Þsϵm; T ≔ ð ~Nϵ2s2 − Nm2Þ; ðA14Þ

which allow us to rewrite Eqs. (A11)–(A13) as

ðDtχÞ2 ¼ ~NT þmD
sϵ

;

ðDtχÞ · ðDtxÞ ¼ N3T;

ðDtxÞ2 ¼ NT −
sϵD
m

: ðA15Þ

These relations are straightforward to invert, and we find

D ¼ β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðDtχÞ · ðDtxÞ�2 − ðDtxÞ2ðDtχÞ2

q

¼ βjðDtxÞ ∧ ðDtχÞj; ðA16Þ

T ¼ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2s2ðDtχÞ2 −m2ðDtxÞ2 − 2βsϵmjðDtxÞ ∧ ðDtχÞj

q
;

ðA17Þ

where α ¼ �1 and β ¼ �1 are signs needed to define the
square root. For definiteness, we choose both signs to be
positive from now on. Thus, after integration of N2, N4 and
N, ~N and N3, the action becomes

S ¼
Z

dτ

�
α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2s2ðDtχÞ2 −m2ðDtxÞ2 − 2sϵmβjðDtxÞ ∧ ðDtχÞj

q
−

~M
2
ðχ2 − λ2Þ

�
: ðA18Þ

Observe that we cannot integrate out the final Lagrange
multiplier, since the variation of S with respect to ~M is just
the constraint χ2 ¼ λ2. We can, however, obtain expres-
sions for some of the other Lagrange multipliers, viz.

N ¼ mðDtxÞ2 þ sϵβjðDtxÞ ∧ ðDtχÞj
mT

; ðA19Þ

~N ¼ sϵðDtχÞ2 −mβjðDtxÞ ∧ ðDtχÞj
sϵT

; ðA20Þ

N3 ¼
½ðDtxÞ · ðDtχÞ�

T
: ðA21Þ

The conjugate momenta are now obtained via the standard
prescription px ¼ ∂S=∂ _x and πχ ¼ ∂S=∂ _χ. We find

px;μ ¼ −
m
T

�
mDtxμ þ

βsϵ
jDtx ∧ Dtχj

× ½ðDtx ·DtχÞDtχμ − ðDtχÞ2Dtxμ�
�
; ðA22Þ
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πχ;μ ¼
sϵ
T

�
sϵDtχμ −

mβ

jDtx ∧ Dtχj

× ½ðDtx ·DtχÞDtxμ − ðDtxÞ2Dtχμ�
�
: ðA23Þ

It can be checked that these momenta satisfy the
constraints

p2
x ¼ −m2; π2χ ¼ ϵ2s2;

πχ · χ ¼ 0; px · πχ ¼ 0; px · χ ¼ 0: ðA24Þ

The variation of the action with respect to xμ and χμ
determines the Lagrange equations of motion, in particular

_px;μ ¼ 0; _πχ;μ ¼ −ðχ · _xÞpx;μ − ðχ · _χÞπχ;μ − ~Mχμ:

ðA25Þ

Provided we implement χ2 ¼ λ2, these equations preserve
p2
x ¼ −m2 and π2χ ¼ ϵ2s2; demanding that πχ · χ ¼ 0

also be preserved in time determines the Lagrange multi-
plier ~M:

~M ¼ ϵ2s2

λ2
~N: ðA26Þ

On the other hand, for the remaining two constraints we
have

d
dt

ðpx · χÞ ¼ −
m2

T
ðDtxÞ · ðDtχÞ;

d
dt

ðpx · πχÞ ¼ m2ðχ · _xÞ: ðA27Þ

Therefore, ensuring that these quantities are stationary in
time requires that we impose constraints on the initial
conditions, specifically ðDtχÞ · ðDtxÞ ¼ _x · χ ¼ 0. These
are equivalent, when χ2 ¼ λ2, to _x · χ ¼ _x · _χ ¼ 0, which
implies that the dual motion is always orthogonal to the
particle velocity. Once these extra constraints are imposed,

the action simplifies to the one quoted in the main text
[see Eq. (52)],

S ¼ α

Z
dτjmj_xj − βϵsj_χjj; ðA28Þ

where we have defined j_xj ¼
ffiffiffiffiffiffiffiffi
−_x2

p
and j_χj ¼

ffiffiffiffiffi
_χ2

p
.

APPENDIX B: DIRAC BRACKETS

We include here an explicit formulation of the Dirac
brackets for DPS. Assuming m ≠ 0, a direct computation
gives

ff;ggDB ¼ff;ggþ 1

2s2
ðff;Φ1gfΦ2;gg−ff;Φ2gfΦ1;ggÞ

þ 1

m2
ðff;Φ3gfΦ4;gg−ff;Φ4gfΦ3;ggÞ:

ðB1Þ

The commutation relations between the phase space
variables are now given by

fxμ; pνgDB ¼ ημν; fxμ; xνgDB ¼ 1

m2
ðχ ∧ πÞμν; ðB2Þ

fxμ; χνgDB ¼ 1

m2
χμpν; fχμ; χνgDB ¼ −

1

2ϵ2s2
ðχ ∧ πÞμν;

ðB3Þ

fxμ; πνgDB ¼ 1

m2
πμpν; fπμ; πνgDB ¼ −

s2

2λ2
ðχ ∧ πÞμν;

ðB4Þ

fχμ; πνgDB ¼ ημν −
s
2λ2

χμχν −
1

2ϵ2s2
πμπν þ 1

m2
pμpν:

ðB5Þ

To obtain the brackets for a massless particle, letm → ∞ in
the above relations.
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