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We continue to study the response of black-hole space-times on the presence of additional strong sources
of gravity. Restricting ourselves to static and axially symmetric (electro)vacuum exact solutions of
Einstein’s equations, we first considered the Majumdar-Papapetrou solution for a binary of extreme black
holes in a previous paper, while here we deal with a Schwarzschild black hole surrounded by a concentric
thin ring described by the Bach-Weyl solution. The geometry is again revealed on the simplest invariants
determined by the metric (lapse function) and its gradient (gravitational acceleration), and by curvature
(Kretschmann scalar). Extending the metric inside the black hole along null geodesics tangent to the
horizon, we mainly focus on the black-hole interior (specifically, on its sections at constant Killing time)
where the quantities behave in a way indicating a surprisingly strong influence of the external source. Being
already distinct on the level of potential and acceleration, this is still more pronounced on the level
of curvature: for a sufficiently massive and/or nearby (small) ring, the Kretschmann scalar even becomes
negative in certain toroidal regions mostly touching the horizon from inside. Such regions have been
interpreted as those where magnetic-type curvature dominates, but here we deal with space-times which do
not involve rotation and the negative value is achieved due to the electric-type components of the Riemann/
Weyl tensor. The Kretschmann scalar also shapes rather nontrivial landscapes outside the horizon.
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I. INTRODUCTION

Interaction of black holes with other gravitating sources
is interesting for purely theoretical reasons (nonlinear
superposition in a strong-field regime) as well as within
models of certain astrophysical sources. A black-hole near
field is hard to modify significantly as regards potential
and intensity, but its higher derivatives (curvature) may be
affected by external sources considerably. Here we try to
learn and visualize this effect on a Schwarzschild black
hole subject to a presence of a concentric static and axially
symmetric thin ring described by the Bach-Weyl solution.
More specifically, we analyze the behavior of the simplest
invariants given by the metric and its first and second
derivatives in dependence on parameters of the system,
namely relative mass and radius of the ring. Special
attention is given to the black-hole interior, including the
vicinity of the central singularity.
In a previous paper [1], we tried to deform the black-hole

field by another black hole, and for that purpose we
considered the Majumdar-Papapetrou binary system, made
of two extremally charged black holes. Though “the other
black hole” is a very strong source, we found that below the
horizon the field is not much deformed within that class of
space-times. This is connected with the extreme character
of their horizons. Indeed, extreme charges are required as

sources of the electrostatic field which just compensates
the gravitational attraction; otherwise the holes would fall
toward each other or would have to be kept static by an
even more unphysical strut(s). Therefore, in the present
paper we try to distort a black hole which is far from the
extreme state. Without the electrostatic repulsion, the
external source has to be supported by pressure (hoop
stresses) or by centrifugal force. The simplest configuration
of this kind involves a thin ring or disks surrounding the
hole in a static and axially symmetric, concentric manner.
Such a setting may capture at least some features of the
accreting black holes studied in astrophysics, while still
allowing for an exact analytical treatment.
In Sec. II, we first compose the total metric and analyze

its behavior at the horizon. Then in Sec. III we extend the
metric to the black-hole interior by solving Einstein’s
equations numerically along null geodesics starting tan-
gentially to the horizon. In Sec. IV, we compute and
visualize on contours the behavior of the basic invariants
in dependence on parameters of the system, namely the
relative mass of the Bach-Weyl ring and its radius. Some
more attention is devoted to the Kretschmann scalar
and to the regions where it turns negative, in particular
to their relation with the Gauss curvature of the horizon
(Sec. IVA). Final Sec. V concludes with a summary, a brief
scan of similar literature, a remark concerning visualiza-
tion, and some further plans. More details on the null
geodesics important for extension of the metric inside the
black hole are shifted to Appendix A, and the question of
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the extension of the Weyl coordinates is treated in
Appendix B. Let us stress that when speaking of “black
hole,” we have in mind everywhere a section of the three-
dimensional (3D) horizon given by constant Killing time (t).
Note on notation: Equations/values valid on the horizon

will be denoted by the index “H,” X¼HY, while expansions
valid there will be denoted by an asterisk, X¼� Y. The black-
hole mass is called M, while the ring mass is M and its
Weyl radius b. The Weyl-radius coordinate will be denoted
by ρ; below the horizon where it is pure imaginary, we will
introduce ϱ by ρ ≕ iϱ. We use geometrized units in which
c ¼ 1, G ¼ 1, the index-posed comma/semicolon indicates
the partial/covariant derivative, and the usual summation
rule is employed. Signature of the space-time metric gμν is
(−þþþ), the Riemann tensor is defined according to
Vν;κλ − Vν;λκ ¼ Rμ

νκλVμ, and the Ricci tensor is defined
by Rνλ ¼ Rκ

νκλ. The cosmological constant is set zero.

II. WEYL METRIC FOR
SCHWARZSCHILD PLUS RING

All vacuum static and axially symmetric space-times can
be described by the Weyl-type metric

ds2 ¼ −e2νdt2 þ ρ2e−2νdϕ2 þ e2λ−2νðdρ2 þ dz2Þ; ð1Þ

where t and ϕ are Killing time and azimuthal coordinates,
and the unknown functions ν and λ depend only on
cylindrical-type radius ρ and the “vertical” linear coordi-
nate z which cover the meridional planes (orthogonal to
both Killing directions) in an isotropic manner. Einstein’s
equations reduce to

ν;ρρ þ
ν;ρ
ρ
þ ν;zz ¼ 0; ð2Þ

λ;ρ ¼ ρðν;ρÞ2 − ρðν;zÞ2; λ;z ¼ 2ρν;ρν;z; ð3Þ

i.e. to the Laplace equation and a simple line integral
(which is, however, only rarely solvable explicitly). Hence,
the potential ν behaves as in Newtonian theory and adds
linearly, whereas the second function λ does not “super-
pose” that simply. For two sources, with ν1 and ν2 denoting
their individual potentials, one can write λ ¼ λ1 þ λ2 þ λint,
where λ1 and λ2 describe the first and the second source
alone (i.e. they satisfy the above equations with just ν1 and
ν2, respectively) and λint is the interaction term which is
given by

λint;ρ ¼ 2ρðν1;ρν2;ρ − ν1;zν2;zÞ; ð4Þ

λint;z ¼ 2ρðν1;ρν2;z þ ν1;zν2;ρÞ: ð5Þ

Typically, the potential ν scales linearly with the source
mass; hence λ scales with the mass square.

We are specifically interested in space-time generated
by a Schwarzschild-type black hole surrounded by a
thin ring described by the Bach-Weyl solution. The
Schwarzschild solution appears, respectively, in the Weyl
and Schwarzschild coordinates, as

νSchw ¼ 1

2
ln
d1 þ d2 − 2M
d1 þ d2 þ 2M

ð6Þ

¼ 1

2
ln

�
1 −

2M
r

�
; ð7Þ

λSchw ¼ 1

2
ln
ðd1 þ d2Þ2 − 4M2

4d1d2
ð8Þ

¼ 1

2
ln

rðr − 2MÞ
ðr −MÞ2 −M2 cos2 θ

; ð9Þ

where

d1;2 ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz ∓ MÞ2

q
¼ r −M ∓ M cos θ:

Transformation between the coordinates reads

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr − 2MÞ

p
sin θ; z ¼ ðr −MÞ cos θ; ð10Þ

r −M ¼ d2 þ d1
2

; M cos θ ¼ d2 − d1
2

: ð11Þ

Let us stress that these relations can only be safely used
above the horizon (see Appendix B).
It is worth noting that in the case of a Schwarzschild-type

center (ν1 ≡ νSchw) the field equations for λ appear quite
simple in Schwarzschild coordinates when expressed in
terms of λint. Actually, after transforming (X is some
quantity)

X;r ¼ X;ρρ;r þ X;zz;r

¼ X;ρ
r −Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr − 2MÞp sin θ þ X;z cos θ;

X;θ ¼ X;ρρ;θ þ X;zz;θ

¼ X;ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr − 2MÞ

p
cos θ − X;zðr −MÞ sin θ;

νSchw;ρ ¼
ðd1 þ d2Þ½4M2 − ðd2 − d1Þ2�

8Mρd1d2
ð12Þ

¼ Mðr −MÞ sin θ
½ðr −MÞ2 −M2 cos2 θ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rðr − 2MÞp ; ð13Þ

νSchw;z ¼
d2 − d1
2d1d2

¼ M cos θ
ðr −MÞ2 −M2 cos2 θ

; ð14Þ

they lead to
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λint;r ¼
2Mν2;ρ

ρ
sin2θ; λint;θ ¼ −2Mν2;z sin θ: ð15Þ

Therefore, if ν2 depends linearly on the “external”-source
mass (we will call it M), then λint is linear in it, too, while
λ2 is quadratic. Hence, in the decomposition of λ the M
parameter appears as

λ ¼ λSchw þ λint þ λ2 ¼ λSchw þM~λint þM2 ~λ2; ð16Þ

where the pure-Schwarzschild term λSchw as well as the
tilded functions ~λ2 and ~λint do not depend on M.
Our “second” source is a thin ring with Weyl radius

ρ ¼ b and mass M, described by the Bach-Weyl (BW)
solution

νBW ¼ −
2MKðkÞ

πl2
; l1;2 ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ ∓ bÞ2 þ z2

q
; ð17Þ

λBW ¼ −
M2

4π2b2ρ

×

�
ðρþ bÞðE − KÞ2 þ ðρ − bÞðE − k02KÞ2

k02

�
; ð18Þ

where

K ≡ KðkÞ ≔
Z

π=2

0

dαffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2α

p ;

E≡ EðkÞ ≔
Z

π=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2α

p
dα

are complete elliptic integrals of the first and the second
kind, with modulus and complementary modulus

k2 ≔ 1 −
ðl1Þ2
ðl2Þ2

¼ 4bρ
ðl2Þ2

; k02 ≔ 1 − k2 ¼ ðl1Þ2
ðl2Þ2

:

Especially on the axis ρ ¼ 0, one has k ¼ 0, K ¼ E ¼ π=2,
so νBW ¼ − Mffiffiffiffiffiffiffiffiffi

z2þb2
p and λBW ¼ 0 (the latter must actually

hold for anyWeyl solution should the axis be regular). The
solution was derived by [2] and more recently studied e.g.
by [3–5].1
Because of the linearity of the Laplace equation, the

partial potentials νSchw and νBW can simply be added, while
the total λ function has to be found from the total ν by
quadrature. In Schwarzschild coordinates, the total metric
reads [4]

ds2 ¼ − e2νdt2 þ rðr − 2MÞe−2νsin2θ dϕ2

þ ½ðr −MÞ2 −M2cos2θ�e2λ−2ν
�

dr2

rðr − 2MÞ þ dθ2
�

¼ −
�
1 −

2M
r

�
e2νextdt2 þ e2λext−2νext

1 − 2M
r

dr2

þ r2e−2νextðe2λextdθ2 þ sin2θ dϕ2Þ; ð19Þ

where in our case νextð≡ν1Þ≡ νBW, while λext ≔
λ − λSchw ¼ λBW þ λint. Regarding that

νBW ¼ −
2M
πM

KðkÞ
l2=M

;
∂νBW
∂ρ ¼ 1

M
∂νBW

∂ðρ=MÞ

(and similarly for derivatives with respect to z and r), we
can now add to the decomposition (16), on the basis of
Eqs. (15), that λint scales with M and M as

λint

�
ρ

M
;
z
M

;
b
M

;M;M
�

¼ M
M

λint

�
ρ

M
;
z
M

;
b
M

;M ¼ 1;M ¼ 1

�
: ð20Þ

Thanks to this property, one can find the λ-field for a given
system (given M, M, b) by simple scaling of its form
obtained for M ¼ 1 and M ¼ 1 (and the given b).

A. Behavior on the horizon

Our main interest is to learn how the external source
affects the geometry inside the black hole, which requires
one to extend the metric below the horizon. It will thus be
useful to know how the metric functions behave on the
horizon. In the Weyl coordinates, the horizon is given by
ρ ¼ 0, jzj ≤ M. The black-hole potential has there a
logarithmic divergence while the exterior potential is
regular,2

νSchw ¼� ln
ρ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − z2

p þOðρ2Þ; νBW¼H −
Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ b2

p ;

so the total potential ν ¼ νSchw þ νBW expands there as

ν¼� ln
ρ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − z2

p −
Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ b2

p þOðρ2Þ; ð21Þ

which implies, for example,

ρ2e−2ν¼H 4ðM2 − z2Þ exp
�

2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ b2

p
�
; ð22Þ

1We thank our colleague Pavel Čížek for pointing out that we
did not give λBW properly in [4] and for suggesting a correct form.

2Asterisk / index “H” denote expansions/values valid at the
horizon.
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λ;ρ − ν;ρ ¼ ρðν;ρÞ2 − ρðν;zÞ2 − ν;ρ ¼� OðρÞ: ð23Þ

On any static (in fact, even stationary) horizon,

λðzÞ¼H 2νðzÞ − 2νðz ¼ MÞ [see e.g. [6], Eq. (24)]; there-
fore, applying this for the total as well as pure-
Schwarzschild metric, one finds

λ − ν¼H λSchw − νSchw þ νBWðzÞ − 2νBWðz ¼ MÞ

¼H ln
2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 − z2
p −

Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ b2

p þ 2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ b2

p : ð24Þ

Using (23) and (24),

λ − νðλ − νÞH þ
Z

ρ

0

ðλ;ρ − ν;ρÞdρ

¼� ln
2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 − z2
p −

Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ b2

p þ 2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ b2

p þOðρ2Þ

ð25Þ

and, by subtraction of (21) from (25),

λ − 2ν¼� ln
2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 − z2
p −

ρ

4M
þOðρ2Þ: ð26Þ

III. EXTENSION OF THE METRIC
BELOW HORIZON

The interior of a black hole deformed by an external
source is known to remain regular, except for the central
singularity which, however, keeps its pointlike character
[7]. In order to extend the metric explicitly, let us first
allow the spheroidal radius r to go below r ¼ 2M. The
Schwarzschild potential νSchw involves imaginary part iπ
there, because the lapse squared e2ν is negative below the
horizon. More seriously, the potential induced by the
external source has to be continued there since it is not
at all defined at that region originally.

A. External potential inside the black hole

For r < 2M, the Weyl radius ρ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr − 2MÞp

sin θ
turns pure imaginary, which makes the l1;2 distances and
the modulus of the KðkÞ integral complex. However, this
need not lead to complex νBW since the latter is even in ρ, as
seen, for example, from the known identity

KðkÞ ¼ 2

1þ k0
K

�
1 − k0

1þ k0

�
;

which in our case (k0 ¼ l1=l2) implies

−
π

2M
νBW ¼ KðkÞ

l2
¼ 2

l2 þ l1
K

�
l2 − l1
l2 þ l1

�
: ð27Þ

This is symmetrical with respect to the exchange l1 ↔ l2.
But such an exchange is equivalent to the change of the sign
of ρ, so νBWðρÞ is even.
Now, if νBW is even in ρ, it should remain real when ρ

becomes pure imaginary. However, the behavior of KðkÞ
for complex k2 involves a feature which leaves this
conclusion only partially valid. Let ρ be pure imaginary,
ρ ≕ iϱ, where ϱ > 0. From the explicit form of the modulus

k2 ¼ 4bρ
ðl2Þ2

¼ 4ibϱ
−ϱ2 þ b2 þ z2 þ 2ibϱ

; ð28Þ

it is seen that inside the black hole there is a surface ϱ2 ¼
b2 þ z2 where k2 is pure real, k2 ¼ 2. But KðkÞ has a
branch cut along the real axis at 1 < k2 < ∞, so it is
discontinuous on the above surface. More specifically,
when crossing the cut from ℑðk2Þ < 0 to ℑðk2Þ > 0 side
(which means from ϱ2 > b2 þ z2 to ϱ2 < b2 þ z2 side
of the surface), the integral jumps from KðkÞ to
KðkÞ þ 2iKðk0Þ; hence in our case it jumps from
Kð ffiffiffi

2
p Þ≐ 1.311ð1 − iÞ to the complex conjugate Kð ffiffiffi

2
p Þþ

2iKðiÞ≐ 1.311ð1þ iÞ. In addition, the same surface also
marks the location where ℜðl2Þ ¼ ℑðl2Þ, with ℜðl2Þ <
ℑðl2Þ on its ϱ2 > b2 þ z2 side and ℜðl2Þ > ℑðl2Þ on its
ϱ2 < b2 þ z2 side. Because of these two circumstances, the
expression KðkÞ=l2 changes from pure real to pure imagi-
nary when crossing the surface from ϱ2 < b2 þ z2

to ϱ2 > b2 þ z2.
A possible solution of this issue is offered by the above

formula (27). Actually, when writing the potential as

νBW ¼ −
4M

πðl2 þ l1Þ
K

�
l2 − l1
l2 þ l1

�
ð29Þ

rather than in the usual form νBW ¼ −2MKðkÞ=ðπl2Þ, it is
real for both real and imaginary ρ, and it smoothly crosses
the horizon and coincides with the original form in the
outer region.
The interior solution—in particular in the region ϱ2 >

b2 þ z2 where direct extension of the original exterior
potential to imaginary ρ did not bring a real result—can
also be checked by returning to the field equations and by
solving them once again for ρ ≕ iϱ. The equations then
read

ν;ϱϱ þ
ν;ϱ
ϱ

− ν;zz ¼ 0; ð30Þ

λ;ϱ ¼ ϱðν;ϱÞ2 þ ϱðν;zÞ2; λ;z ¼ 2ϱν;ϱν;z; ð31Þ

so in comparison with (3) there appear sign changes in the
first two equations. In particular, the first equation is the
wave equation in the “interior meridional plane” ðϱ; zÞ. Its
solution, appropriate for our situation, is given by infinite
series involving the Legendre functions Pn−1=2,
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νinBW ¼ −
Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ ϱ2

p
×
X∞
n¼0

ð−1Þnð2nÞ!
22nðn!Þ2 Pn−1

2

�
b2 − ϱ2

b2 þ ϱ2

�
z2n

ðb2 þ ϱ2Þn :

This sum is really an expansion of (29) valid inside the
horizon.3 In particular, on the horizon (more precisely, on
the whole axis ϱ ¼ 0 ⇔ ρ ¼ 0) it yields correctly

νinBWðϱ ¼ 0Þ ¼ −
Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ z2

p ¼ νBWðρ ¼ 0Þ; ð32Þ

∂νinBW
∂ϱ

����
ϱ¼0

¼ 0 ¼ ∂νBW
∂ρ

����
ρ¼0

; ð33Þ

∂2νinBW
∂ϱ2

����
ϱ¼0

¼ M
2

b2 − 2z2

ðb2 þ z2Þ5=2 ¼ −
∂2νBW
∂ρ2

����
ρ¼0

: ð34Þ

An example of the ring-potential behavior inside the black
hole is given in Fig. 2.

B. Function λ on the axis and at the horizon

The last function needed in order to complete the metric
(19) is λext ≡ λ − λSchw. Its extension below the horizon is
given by field equations (31) which can be rewritten
for λext as

λext;ϱ ≡ λ;ϱ − λSchw;ϱ ¼ ϱðν;ϱÞ2 þ ϱðν;zÞ2 − λSchw;ϱ

¼ ϱ½ðνBW;ϱÞ2 þ ðνBW;zÞ2
þ 2νSchw;ϱνBW;ϱ þ 2νSchw;zνBW;z�; ð35Þ

λext;z ≡ λ;z − λSchw;z ¼ 2ϱν;ϱν;z − λSchw;z

¼ 2ϱ ðνSchw;ϱνBW;z þ νSchw;zνBW;ϱ þ νBW;ϱνBW;zÞ:
ð36Þ

Transforming to the Schwarzschild-type coordinates,

ϱ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð2M − rÞ

p
sin θ; z ¼ ðr −MÞ cos θ;

while now using

X;r ¼ X;ϱϱ;r þ X;zz;r

¼ X;ϱ
M − rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð2M − rÞp sin θ þ X;z cos θ;

X;θ ¼ X;ϱϱ;θ þ X;zz;θ

¼ X;ϱ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð2M − rÞ

p
cos θ þ X;zðM − rÞ sin θ;

νSchw;ϱ ¼
ðd1 þ d2Þ½4M2 − ðd2 − d1Þ2�

8Mϱd1d2
ð37Þ

¼ Mðr −MÞ sin θ
½ðr −MÞ2 −M2 cos2 θ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rð2M − rÞp ; ð38Þ

νSchw;z ¼
d2 − d1
2d1d2

¼ M cos θ
ðr −MÞ2 −M2 cos2 θ

ð39Þ

[these formulas are the same as (12)–(14) valid outside,
only ρ is changed for ϱ], the equations assume the form

λext;r ¼
2νBW;ϱ sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð2M − rÞp ½rð2M − rÞνBW;z cos θ −M�

þ ðM − rÞ½ðνBW;ϱÞ2 þ ðνBW;zÞ2� sin2 θ; ð40Þ

λext;θ ¼ 2νBW;z sin θ½ðM − rÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð2M − rÞ

p
νBW;ϱ sin θ −M�

þ rð2M − rÞ½ðνBW;ϱÞ2 þ ðνBW;zÞ2� sin θ cos θ:
ð41Þ

Note that in the Schwarzschild coordinates all the expres-
sions are “ready to use,” whereas if using Weyl coordinates
(below horizon), one has to choose the signs of d1 and d2
properly (“by hand”)—see Appendix B.
The first of these reduces, for sin θ ¼ 0, just to

ðλext;rÞsin θ¼0 ¼ 0; ð42Þ
hence the λext function is constant along the sin θ ¼ 0 axis.
Regarding that on the Weyl axis (ρ ¼ 0, jzj > M) one has
λ ¼ λSchw ¼ λext ¼ 0 (z ¼ const surfaces are required to be
regular there), one thus finds that

ðλextÞsin θ¼0 ¼ ðλSchwÞsin θ¼0 ¼ 0 ð43Þ
holds everywhere on the (Schwarzschild) axis, including
the black-hole interior.
Notice now that the second equation for λext reduces to

the same relation at the singularity r ¼ 0 and on the horizon
r ¼ 2M,

ðλext;θÞr¼0 ¼ −2MðνBW;zÞr¼0 sin θ; ð44Þ
ðλext;θÞr¼2M ¼ −2MðνBW;zÞr¼2M sin θ: ð45Þ

But ϱðr ¼ 2MÞ ¼ 0 ¼ ϱðr ¼ 0Þ, zðr ¼ 2MÞ ¼ M cos θ ¼
−zðr ¼ 0Þ, and νBW is even in z (hence νBW;z is odd in z),
so we have

3However, it only converges uniformly within z2 < b2 þ ϱ2;
elsewhere the convergence is just pointwise and slow.
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ðνBWÞr¼0 ¼ ðνBWÞr¼2M; ðνBW;zÞr¼0 ¼ −ðνBW;zÞr¼2M;

and, therefore,

ðλext;θÞr¼0 ¼ −ðλext;θÞr¼2M; ð46Þ

namely the latitudinal dependence of λext is just opposite at
the singularity and on the horizon. However, on the horizon

we have λðθÞ¼H 2νðθÞ − 2νðθ ¼ 0Þ for the total metric as
well as for pure Schwarzschild, so the same must also hold
for λext ≡ λ − λSchw; hence

ðλextÞr¼0 ¼ −ðλextÞr¼2M

¼ −2νBWðr ¼ 2MÞ þ 2νBWðr ¼ 2M; θ ¼ 0Þ

¼ 2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 cos2 θ þ b2

p −
2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ b2

p : ð47Þ

Note that the “duality” between the horizon and the
singularity was already observed by [8].

C. Function λ inside the black hole

It has thus been possible to find λ along the sin θ ¼ 0 axis
and on the horizon. One would, however, like to know its
behavior everywhere inside the black hole. For such a
purpose, it has proved advantageous to subtract equa-
tions (35), (36) and rewrite the result

λext;ϱ ∓ λext;z ¼ ϱðν;ϱ ∓ ν;zÞ2 − ϱðνSchw;ϱ ∓ νSchw;zÞ2

in terms of the derivatives

∂
∂η∓ ≔

∂
∂ϱ ∓ ∂

∂z ∶
λext;η∓ ¼ ϱ½ðν;η∓Þ2 − ðνSchw;η∓Þ2�

¼ ϱ½ðνSchw;η∓ þ νext;η∓Þ2 − ðνSchw;η∓Þ2�
¼ ϱνext;η∓ð2νSchw;η∓ þ νext;η∓Þ; ð48Þ

where, from (38) and (39),

νSchw;η∓ ¼ 2M
d1½ϱ ∓ ðzþMÞ� þ d2½ϱ ∓ ðz −MÞ�

d1d2½ðd1 þ d2Þ2 − 4M2�

¼ −
M

2rð2M − rÞ
�
ϱ ∓ ðzþMÞ

d2
þ ϱ ∓ ðz −MÞ

d1

�
:

ð49Þ

Regarding that

d1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz ∓ MÞ2 þ ρ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz ∓ MÞ2 − ϱ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz ∓ M þ ϱÞðz ∓ M − ϱÞ

p
;

the above can also be written

νSchw;η∓

¼ � M
2rð2M − rÞ

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zþM ∓ ϱ

zþM � ϱ

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z −M ∓ ϱ

z −M � ϱ

s !
:

Equation (48) has now to be integrated toward the black-
hole interior. This is best performed along the family of
curves given by

d1;2 ¼ 0 ⇔ ϱ ¼ jz ∓ Mj ⇔ r ¼ Mð1� cos θÞ;

namely

r ¼ M½1� cosðθ − θ0Þ�; θ ∈ hθ0; θ0 þ πi;
where θ0 ¼ const ∈ h0; πi: ð50Þ

These curves are null geodesics starting tangentially to the
horizon and descending toward the central singularity (see
Fig. 1 and Appendix A); they represent characteristics of
the Einstein equations. Multiplying Eqs. (48) by the tangent
vector dη∓=dσ of the respective curves, where σ is some
parameter, one obtains an ordinary differential equation
suitable for integration,

FIG. 1. An elegant pattern of null geodesics just tangent to the
horizon (red line) and spanning the black-hole interior, in the
Schwarzschild coordinates given by r ¼ M½1� cosðθ − θ0Þ� and
depicted in r sin θ, r cos θ axes (scaled by M); the geodesics
given by θ0 ¼ 0 and θ0 ¼ π are emphasized (blue line). We
proceed along these characteristics when integrating the Einstein
equations inside the horizon.
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dλext
dσ

¼ ϱνext;η∓
dð2νSchw þ νextÞ

dσ
: ð51Þ

The main benefit of the latter is that it no longer contains
νSchw;η∓ (which does not behave nicely below the horizon).
However, the formulation we have found the most

advantageous still requires one more transformation.

D. Horizon angles fixed by characteristics
and a trapezoid rule

It is seen in Fig. 1 that any two null geodesics which
“counter-inspiral” (with respect to each other) from the
horizon to the singularity intersect at a certain point ðr; θÞ
inside the black hole. Let us denote by θþ and θ− the angles
on the horizon from where these geodesics start, assuming
0 < θ− < θþ < π, and make the transformation

r ¼ M
�
1þ cos

θþ − θ−
2

�
; θ ¼ θþ þ θ−

2
;

ϱ ¼ M
2
ðcos θ− − cos θþÞ; z ¼ M

2
ðcos θ− þ cos θþÞ:

In terms of these angles, the metric reads (notice that it is no
longer diagonal)

ds2 ¼ −
�
1 −

2M
r

�
e2νextdt2

þ r2e−2νextðe2λextdθ−dθþ þ sin2θ dϕ2Þ; ð52Þ
where r ¼ rðθ−; θþÞ, and Einstein equations have the form

2ðcos θ− − cos θþÞ
∂2νext
∂θ−∂θþ ¼ ∂νext

∂θþ sin θ− −
∂νext
∂θ− sin θþ;

ð53Þ
∂λext
∂θ− sin θ− ¼

�
2 sin θ − ðcos θ− − cos θþÞ

∂νext
∂θ−

� ∂νext
∂θ− ;

ð54Þ
∂λext
∂θþ sin θþ ¼

�
2 sin θ þ ðcos θ− − cos θþÞ

∂νext
∂θþ

� ∂νext
∂θþ :

ð55Þ
To solve the first equation, it is sufficient to know the

axis values νextð0; zÞ,

νextðϱ; zÞ ¼
1

π

Z
π

0

νextð0; zþ ϱ cos αÞ dα: ð56Þ

This integral can be calculated using a simple trapezoid
rule. Actually, for a function having the same odd deriv-
atives with respect to the integration variable at the end
points of the integration interval [which is the case of our
νextð0; zþ ϱ cos αÞ], the error of this scheme falls expo-
nentially with the number of discretization points (see e.g.
[9], Chap. 4).

In order to find λext, we have solved, instead of Eqs. (54)
and (55) themselves, their integrability condition

∂2λext
∂θ−∂θþ ¼ Mðνext;θþ − νext;θ−Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð2M − rÞp − νext;θþνext;θ− : ð57Þ

Using a reversible discretization scheme which respects
propagation of the boundary conditions along character-
istics (as in numerical treatment of the wave equation), one
obtains very precise results, mainly thanks to a regular
behavior everywhere inside the black hole (including the
shells where d1;2 ¼ 0).
The language of θ− and θþ angles is also advantageous

for the Kretschmann scalar: in a vacuum, the Riemann
tensor has three independent components which satisfy

Rtθ−
tθ− ¼ Rtθþ

tθþ ¼ Rϕθ−
ϕθ− ¼ Rϕθþ

ϕθþ

¼ −
1

2
Rtϕ

tϕ ¼ −
1

2
Rθ−θþ

θ−θþ ;

Rtθ−
tθþ ¼ −Rϕθ−

ϕθþ ; Rtθþ
tθ− ¼ −Rϕθþ

ϕθ− ; ð58Þ
and in terms of which the Kretschmann invariant reads just

K ¼ 12ðRθ−θþ
θ−θþÞ2 þ 16Rtθ−

tθþR
tθþ

tθ− : ð59Þ

IV. POTENTIAL, FIELD, AND CURVATURE
INSIDE AND OUTSIDE BLACK HOLE

Similarly as in the first paper on Majumdar-Papapetrou
black-hole binary, we reveal the space-time geometry on
the behavior of the simplest invariants given by the metric
and its first and second derivatives. Here, however, we
deal with vacuum solution, so the Ricci tensor is zero and
it makes no sense to study its quadratic scalar. We will
thus consider the lapse function N ¼ eν, the gravita-
tional acceleration κ given by κ2 ¼ gμνN;μN;ν, and the
Kretschmann scalar K ¼ RμνκλRμνκλ.
Since all the configurations are static, axially symmetric,

and reflectionally symmetric with respect to the “equatorial
plane” (the one in which the ring is placed), we show their
properties on meridional plots with Schwarzschild coor-
dinates ðr sin θ; r cos θÞ (in which the horizon is a sphere on
r ¼ 2M). In all the figures, a “geographic” coloring is used,
with brown/green indicating higher/lower positive values
and light/dark blue indicating smaller/greater depths. In
Fig. 2, the sole ring potential νBW inside the black hole is
shown first, for M ¼ M and several different ring radii.
The potential has nothing special at the horizon and is also
regular everywhere below it. However, the figure shows
that inside the black hole it propagates4 in a nontrivial
manner. The lapse-function N ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2M=rÞ − 1

p
eνBW con-

tours inside the horizon are shown, for sequences of

4This verb reminds us that the black-hole interior is a
dynamical domain.
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black-hole–ring space-times, in Figs. 3 (fixed ring radius
b ¼ M, increasing mass) and 4 (fixed ring mass M ¼ M,
decreasing radius). Their shapes clearly follow the behavior
of the external, ring potential. The coloring is not so
“attractive” as in the following figures of acceleration
and curvature, simply because the values of N are not so
extreme; they only fall to zero (dark green) on the horizon
(very suddenly) and, interestingly, also at certain locations
on the axis.
The gravitational-acceleration level contours are shown in

Figs. 5 and 6. The pattern is rather different from that of
potential/lapse, involving quite a complicated arrangement of
regions where κ2 is negative (drawn in blue). This means that
the gradient of lapse, which outside the horizon determines
acceleration of static observers (those at rest with respect to
infinity)5 and is everywhere spacelike there, becomes timelike
in some interior zones if the ring is sufficiently “strong.”
We have not taken much notice of the geometry outside of

the horizon, mainly focusing on deformation of the interior.
At the level of potential (ν, or the lapse function N), it would

be rather superfluous to present figures of the exterior,
because these simply correspond to the Newtonian potential
of a finite rod, surrounded, symmetrically, by a thin ring and
transformed from the Weyl to the Schwarzschild coordi-
nates. The level of field (acceleration) may already be
more interesting, since, admittedly, that is not a common
transformation from cylindrical to spherical coordinates. In
Fig. 7, we thus show how the acceleration (κ2) field changes
with the mass of the ring when the latter is placed on
b ¼ 5M (which corresponds to r≐ 6.1M in terms of the
Schwarzschild radius). No surprise is seen, in particular, no
intriguing structure along the axis; the main feature is the
ring of unstable equilibrium (zero acceleration) between the
ring and the horizon, gradually shifting from the former to
the latter while the ring mass is being increased.

A. The Kretschmann scalar

Finally we turn to the Kretschmann invariant. In the
preceding paper [1] [Eq. (33)], we used the Weyl-
coordinate expression to compute it. This time, specifically
in the dynamical region inside the black hole, the
Schwarzschild-coordinate form is more suitable, for com-
putation as well as for interpretation. It is quite similar,

FIG. 2. Meridional-plane contours of the BW-ring potential νBW inside a black hole, plotted for a ring of massM ¼ M and of different
Weyl radii b (given in the plots). The plots are drawn in Schwarzschild-type coordinates, so they are spherical and symmetric with
respect to the equatorial plane (where the ring is placed) indicated by the green dashed line, as well as with respect to the axis indicated
by the dot-dashed blue line. Higher/lower values correspond to brown/green colors.

5Let us also remember that at the horizon κ is known as surface
gravity and that over stationary horizons it is constant.
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K ¼ 8

�
ðRtr

trÞ2 þ ðRtθ
tθÞ2 þ ðRtϕ

tϕÞ2 −
2ðRtr

tθÞ2
rð2M − rÞ

�

¼ 8e4ν−4λ

r6

×

�
ð ~Rtr

trÞ2 þ ð ~Rtθ
tθÞ2 þ ð ~Rtϕ

tϕÞ2 −
2rð ~Rtr

tθÞ2
2M − r

�
; ð60Þ

where we have denoted (j ¼ r, θ, ϕ, no summation)

~Rtj
tj ≔ r3e2λ−2νRtj

tj; ~Rtr
tθ ≔ r2e2λ−2νRtr

tθ:

Several simple observations:
(i) For pure Schwarzschild, one has e4ν−4λ ¼ 1,

~Rtr
tr ¼ 2M, ~Rtθ

tθ ¼ M, ~Rtϕ
tϕ ¼ M, and ~Rtr

tθ ¼ 0,
which yields K ¼ 48M2=r6 correctly.

(ii) K is fully determined by the “electric-type” tidal
field, as expected in a static space-time. The first

FIG. 3. Meridional-plane contours of lapseN (or of potential ν) inside a black hole surrounded by a BW ring with radius b ¼ M and of
different masses M (given in the plots). The plots are drawn in Schwarzschild-type coordinates, so they are spherical and symmetric
with respect to the equatorial plane (where the ring is placed) indicated by the green dashed line, as well as with respect to the axis
indicated by the dot-dashed blue line. Note that on the horizon N vanishes.
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three components are related by vacuum Einstein
equations, Rtk

tk ¼ Rt
t ¼ 0 (summation over k).

(iii) K > 0 everywhere outside the black hole (r > 2M).
Inside, it can only become negative due to the Rtr

tθ
component, i.e. the off-diagonal component of the
“electric” tidal field (which vanishes in pure
Schwarzschild).

(iv) As the external-source potentials are regular at
r ¼ 0, the strong singularity of this central point
is not altered by them.

As opposed to the lapse and gravitational acceleration, the
Kretschmann scalar requires knowing “the second” metric
function λ which has to be found numerically by integrating
Einstein’s equations. Outside the black hole, one standardly
follows some vacuum line starting from the axis (where
λ ¼ 0). The results are illustrated in Fig. 10 (ring at
b ¼ 5M, or r≐ 6.1M, sequence showing dependence on
the ring mass). Besides the saddle ring, expected between the
Bach-Weyl ring and the horizon (very slowly shifting toward
the horizon with increasing ring mass), quite an interesting

FIG. 4. Meridional-plane contours of lapse N (or of potential ν) inside a black hole surrounded by a BW ring of massM ¼ M and of
different Weyl radii b (given in the plots). The meaning of the plots is the same as in Fig. 3. Inside the black hole (originally spherically
symmetric), local minima (more green) and maxima (more brown) clearly develop due to the surrounding ring. In the axial region they
are of spheroidal shape, while in the equatorial region they are toroidal.
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feature can be seen off the equatorial plane: with the ringmass
increasing from zero, a ring-shaped minimum raises from the
ring and goes “up” (and also down, symmetrically, of course)
while deepening and shrinking in radius; for a certain ring
mass, it shrinks to the very axis, and then splits into two
profoundminima, of which one continues to recede along the
axis,while thesecondapproaches thehorizon“northernpole”.
However, we have mainly focused on the black-hole

interior again. In order to determine λ by integration of the

field equations, we have followed there the characteristics
given by null geodesics starting tangentially to the horizon,
as described at the end of Sec. III. The results are shown in
Figs. 8 (dependence on the ring mass) and 9 (dependence on
the ring’s Weyl radius). Both sequences show that the
curvature inside the horizon is influenced considerably.
Typically, with increasing strength of perturbation due to
the ring, the regions ofnegativeKretschmann scalar occur and
develop in a nontrivial manner; we draw them in blue and

FIG. 5. Meridional-plane contours of gravitational acceleration (squared) κ2 inside a black hole surrounded by a BW ring with radius
b ¼ M and of different massesM (given in the plots). The meaning of the plots is the same as in previous figures showing lapse. Again
brown/green indicates higher/lower values. Drawn in blue with red boundaries are the regions of negative values, where “acceleration of
a static observer” is timelike. On the horizon κ assumes a uniform value.
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indicate their borders by red lines. Let us stress that themasses
and radii chosen are out of any astrophysically realistic range,
in order to mainly see how the interior curvature behaves
under extremely strong perturbations. (The latter may only
apply to a system of a black hole surrounded by a
very compact, neutron torus, which might occur—very
temporarily—during the collapse of a compact binary.)
In order to better understand zeros of the Kretschmann

scalar, we recall the relation [8]

K¼H 3ð2ÞR2 ð61Þ

between the (four-dimensional) Kretschmann invariant and
the Gauss curvature ð2ÞR=2 of the horizon [we mean of the
horizon’s t ¼ const section; ð2ÞR denotes the corresponding
two-dimensional (2D) Ricci scalar]. The Gauss curvature
reads, for a generic static axisymmetric source (“ext”), (see
e.g. Erratum of [4])

FIG. 6. Meridional-plane contours of gravitational acceleration (squared) κ2 inside a black hole surrounded by a BW ring of mass
M ¼ 0.2M and of different Weyl radii b (given in the plots). The meaning of the plots is the same as in previous figures. The blue
regions of timelike “acceleration” again develop into quite a complicated arrangement (the quotation marks just remind the reader that
below the horizon this quantity does not have its usual sense).
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ð2ÞR
2

¼H −
1ffiffiffiffiffiffiffiffiffiffiffiffiffigθθgϕϕ

p
�ð ffiffiffiffiffiffiffigϕϕ
p Þ;θffiffiffiffiffiffi

gθθ
p

�
;θ

¼H −
1

R2
He

λext sin θ

�ðRH sin θÞ;θ
RHeλext

�
;θ

¼H 1þ ðνext;θ þ λext;θÞ cot θ þ νext;θθ − νext;θλext;θ
R2
He

2λext
¼H 1þ 3νext;θ cot θ þ νext;θθ − 2ðνext;θÞ2

4M2 exp ð2νextðθÞ − 4νextð0ÞÞ
; ð62Þ

where r ¼ 2M everywhere and

RH ≔ 2Me−νextðr¼2M;θÞ ð63Þ

FIG. 7. Meridional-plane contours of κ2 outside a black hole surrounded by a BW ring (red dots) with radius b ¼ 5M (Schwarzschild
radius ≐ 6.1M) and of different masses M (given in the plots). The white circular region (of radius r ¼ 2M) is the black hole, which
indicates the scale of the plots. The most distinct feature is the quite sharp zero (unstable-equilibrium ring) between the ring and the hole,
shifting toward the horizon with a gradual increase of the ring mass. On the horizon κ ¼ const.
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is the horizon’s equatorial circumferential radius
(2πRH sin θ is its proper azimuthal circumference at given
θ and 2

R
π
0 RHðθÞeλextðr¼2M;θÞdθ is its proper poloidal cir-

cumference). For the Bach-Weyl ring, the horizon’s Gauss
curvature is always positive in the equatorial plane, namely

ð2ÞRðθ ¼ π=2Þ¼H 1þ MM2

b3

2M2 exp

�
4Mffiffiffiffiffiffiffiffiffiffiffi
b2þM2

p − 2M
b

� ; ð64Þ

whereas on the axis it may assume both signs,

ð2ÞRðθ ¼ 0Þ¼H
1 − 4MM2

ðb2þM2Þ3=2

2M2 exp

�
2Mffiffiffiffiffiffiffiffiffiffiffi
b2þM2

p
� : ð65Þ

Thehorizon is known to getmore andmore oblatewhen the
exterior source lying in the equatorial plane grows in mass.
Intuition and experience would suggest that the horizon’s

FIG. 8. Meridional-plane contours of the Kretschmann scalar inside a black hole surrounded by a BW ring with radius b ¼ M and of
different massesM (given in the plots). The meaning of the plots is the same as in previous figures. The scalar is negative in the regions
drawn in blue with a red boundary; it is seen that these regions need not always touch the horizon.
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Gaussian curvature mainly tends to zero and then to negative
values in the axial region (see e.g. Erratum of [4] for the
Schwarzschild black hole affected by the concentric BW ring
or thin annular disk, and [10] for a stationary generalization),
but Fig. 11 shows that it is so only for b > M. When
increasing the mass of a ring lying at b < M (very close to
the horizon), the region of negative Gauss curvature opens
from some nonaxial location; see the green line in Fig. 11
which indicates the latitude where this happens: it actually
shifts toward the equatorial plane if the ring is placed closer

and closer to the horizon (b → 0). With Fig. 11 in mind, one
understands better the configurationof negative-Kretschmann
regions in Figs. 8 and 9, because they touch the horizon
exactly where the latter’s Gauss curvature vanishes.
Let us also notice “why” (or at least when/where) the

Kretschmann scalar turns negative. Curvature components
are probably most straightforwardly interpreted from the
geodesic-deviation equation (see e.g. [11] for a detailed
interpretation of the geodesic-deviation terms in a proper
reference frame of a physical observer). For those present

FIG. 9. Meridional-plane contours of the Kretschmann scalar inside a black hole surrounded by a BW ring with massM ¼ 0.2M and
of different Weyl radii b (given in the plots). The meaning of the plots is the same as in previous figures. The negative-value regions (blue
with a red border) form a complicated structure, mainly around the central singularity.
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in (60), it is useful to regard the deviation’s Schwarzschild
components

D2δt
dτ2

¼ −½Rt
rtrðurÞ2 þ Rt

θtθðuθÞ2 þ Rt
ϕtϕðuϕÞ2�δt

þ ½Rt
rtrurδrþ Rt

θtθuθδθ þ Rt
ϕtϕuϕδϕ�ut

þ Rt
rtθðurδθ þ uθδrÞut

− 2Rt
rtθuruθδt; ð66Þ

D2δθ

dτ2
¼ −½Rθ

tθtðutÞ2 þ Rθ
rθrðurÞ2 þ Rθ

ϕθϕðuϕÞ2�δθ
þ ½Rθ

tθtutδtþ Rθ
rθrurδrþ Rθ

ϕθϕuϕδϕ�uθ
þ Rθ

trtðurδt − utδrÞut þ Rθ
ϕrϕðurδϕ − uϕδrÞuϕ:

ð67Þ
For easier intuition, consider a couple of particles separated
just in radius t (we are below horizon), so with δxi ¼ 0 at a
given point,

FIG. 10. Meridional-plane contours of the Kretschmann scalar outside a black hole surrounded by a BW ring (red dots at divergent
maximum of the invariant) with radius b ¼ 5M (r≐ 6.1M) and of different massesM (given in the plots). The white circular region (of
radius r ¼ 2M) is the black hole, which indicates the scale of the plots. Notice mainly the ring-shaped minima rising from the BW ring,
approaching the axis and then splitting into one receding and one approaching the horizon.
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D2δt
dτ2

¼ −½Rt
rtrðurÞ2 þ Rt

θtθðuθÞ2 þ Rt
ϕtϕðuϕÞ2� δt

− 2Rt
rtθuruθδt; ð68Þ

D2δθ

dτ2
¼ ðRθ

trtur þ Rθ
tθtuθÞ utδt: ð69Þ

Similarly, for particles separated only by δθ,

D2δt
dτ2

¼ ðRt
rtθur þ Rt

θtθuθÞutδθ; ð70Þ
D2δθ

dτ2
¼ − ½Rθ

tθtðutÞ2 þ Rθ
rθrðurÞ2 þ Rθ

ϕθϕðuϕÞ2� δθ:
ð71Þ

Hence, the diagonal electric-type components (contributing
positively to the Kretschmann scalar) are those which have
the particles accelerate relative to each other in directions
in which these are already separated, thus causing their
longitudinal expansion/contraction (these terms are
always nonzero, because, in the brackets, at least ur must
be so). In contrast, the off-diagonal electric-type components

(specifically Rt
rtθ ∼ Rθ

trt, contributing negatively to the
scalar) are seen to be pulling—for example—in θ the particles
separated in t direction and vice versa, thus causing trans-
versal shear. Well, note the diagonal termsRθ

tθtuθutδt in D2δt
dτ2

and its counterpartRt
θtθuθutδθ in

D2δt
dτ2 , and, on the other hand,

the nondiagonal term 2Rt
rtθuruθδt in

D2δt
dτ2 : these do not seem

to fit in the above division.But these terms require, besides the
separation δt, also some transverse velocity (namely uθ);
without this velocity, they vanish.

V. CONCLUDING REMARKS

Continuing the study of black holes deformed by some
additional source, we have found that the presence of a thin
ring (described by the Bach-Weyl solution) affects the
black-hole field much more than the presence of “the other”
black hole within the Majumdar-Papapetrou binary solu-
tion (considered in paper I). Outside the horizon, the
potential (lapse) and field (acceleration) behave in a rather
Newtonian manner, while curvature (the Kretschmann
scalar) displays a rather rugged landscape with loops or
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FIG. 11. Curves showing zeros of the horizon’s Gauss curvaturewithin the ðb; θÞ plane, in dependence onmass of the Bach-Weyl ringM.
As thismass is increased from zero, the zero curve expands from just a tiny loop at b → 0, θ → π=2 toward the bottomand right. Specifically,
the curves shown correspond toM=M ¼ 0.001, 0.01, 0.04, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.13, 1.30, 1.55, 2.0, 2.9, 5.0, 10, 25,
100, as indicated in the plot. The figure is to be used as follows: choose the ring’sWeyl radius b andmassM; then, theGauss curvature of the
horizon is negative at latitudes θ where the given b ¼ const line lies to the left of the (black) curve corresponding to the chosenM; where it
lies to the right of the latter, the Gauss curvature is positive. It is seen that for any given b, there always exists a certain minimal value ofM
fromwhich there appears a region of negative Gauss curvature on the horizon. If b ≥ M, such a region starts spreading from the axis (θ ¼ 0),
whereas if b < M, it opens out from some nonaxial latitude; this latitude shifts toward the equatorial planewith b decreasing fromM to zero.
The locations where, for a given b, the Gauss curvature vanishes first (in increasing the mass) and then gets negative are marked by a solid
green line. It is also seen—one verifies the exact value from Eq. (65)—that forM belowM=4 (dotted black), the Gauss curvature can never
get negative at the axis (though it does become negative somewhere closer to the equatorial plane if b is sufficiently small, namely less than
0.5377M). Equation (65) also implies that the important point b ¼ M, θ ¼ 0 is reached by the curve obtained for M ¼ M=

ffiffiffi
2

p
.
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points of deep minima developing in the sources’ vicinity
and changing with parameters.
In the black hole interior the situation is yet more complex.

The gravitational acceleration, given by the gradient of lapse/
potential, shows different shapes and in extreme situations
(very strong ring effect) may become timelike (the corre-
sponding scalar κ2 may turn negative). The curvature is
influenced by the ring even more profoundly.6 If the ring is
placed sufficiently close to the horizon (and/or is sufficiently
massive), there even appear two or more toroidal regions of
negative Kretschmann scalar K. Some of them touch the
horizon at circles where the 2D-horizon’s Gauss curvature
changes sign from positive to negative values. If the Riemann
tensor is split into electric and magnetic parts (see e.g. [13]),
the negative values of K are naturally interpreted as regions
where magnetic curvature dominates [14]. However, mag-
netic effects are usually tied to rotation, whereas here no
rotation is present in space-time (thoughwe are dealingwith a
nonextreme black-hole interior now, so not with a static
region, of course). Itwould be interesting to also study the rich
curvature structure inside the ring-perturbed black hole by the
scalar-gradient method pursued in [15] or the vortex-tendex
concepts suggested by [16].
An obvious remark should be added to the visualization.

The Schwarzschild-type coordinates we have been using are
favorable since they represent the horizon spherical irre-
spectively of the external influence. However, before inter-
preting the picture obtained in (any) coordinates, one should
bear in mind that most of the statements made are coordinate
dependent and that the true geometrical relations may be
significantly different. In our case, this does not only apply to
the shapes of those various equisurfaces, but also e.g. to the
“location” (radius) of the ring. Actually, the proper radius

ffiffiffiffiffiffi
grr

p
dr ¼ eλext−νextffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2M
r

q dr

and the circumferential radiusffiffiffiffiffiffiffi
gϕϕ

p ¼ r sin θ e−νext

depend on the external source; specifically, for a given r they
both rapidly growwith the sourcemass. (Consequently, when
“keeping the ring’s radius b while increasing its mass” in the
figures, one effectively makes the ring larger and larger, thus
weakening its effect on the black hole.) This aspect of
curvature could be overcome by representing the surfaces
in terms of isometric embedding to E3, which in our (axially
symmetric) case means by drawing the azimuthal circum-
ferential radius as the “x” axis and proper distance in the
meridional direction, but, unfortunately, the shapes provided

by strong-field geometry are often very weird and not even
reasonably embeddable (have negative curvature). The Bach-
Weyl ring, after all, is at a finite proper distance from outside,
but infinitely far when approached from below, its proper
circumference being infinite from either side.
Let usmention some options for futurework. First, we saw

inpaper I on theMajumdar-Papapetroubinary that an extreme
black hole is not in every respect a strong source, and this
paper II confirmed that a much stronger effect has been
created by a singular ring. An interesting curvature structure
might also be offered, within the same class of static and
axially symmetric space-times, by a black-hole binary sup-
ported by an Appell ring. Namely, this ring generates a field
which is “repulsive” in a certain region, which might be
enough to hold the holes apart (without any struts). Another
possibility is a black-hole binary whose components are held
from infinity by singular struts. Such a system (a zero-
acceleration limit of the C-metric) is, of course, artificial and,
as opposed to the black hole surrounded by a ring, can hardly
approximate any astrophysical setting, but (i) its black holes
are far (actually, as far as possible) from an extreme state, so
they can be expected to exert more strain to each other (than
the extreme ones), and (ii) the region between the central
singularities of the holes may be rather “unspoilt” by the
singularities stretched along the “exterior” parts of the
symmetry axis. One might also consider a similar system
made of a black hole and a massive particle(s). Alternatively,
one might subject a black hole to a strong (electro)magnetic
field, e.g. within the Ernst class of exact solutions, but such a
field is likely to produce much weaker space-time deforma-
tion than the above compact sources.
It would certainly be interesting to extend the analysis to

stationary (nonstatic, rotating) situations. Although practi-
cally tractable and physically sound exact superpositions are
not yet available within this class, one could describe them
by multipole expansions and study the effect of the indi-
vidual terms then. In the static (originally Schwarzschild)
case, the effect of multipoles has recently been considered by
[17] in order to learn how they deform the shadow of the
horizon; the stationary (originally Kerr) case has been treated
by [18–20].7 (See [23] for the astrophysical importance of
such studies, especially connected with the observational
challenge provided by the compact object in our Galactic
center.) The tidal deformation of black holes has also been
treated perturbatively, following many routes; see, for
instance, [24,25] and references therein.
When speaking of static versus stationary settings, we

should recall once more that the interior of the above-
considered black hole is dynamical,8 in order to stress again

6It is worth noting, however, that in spite of the considerable
effect seen on the black hole, it has been shown by [12], on behavior
ofmultiple moments, that at infinity it still looks like Schwarzschild
(it has “no hair” there induced by tidal deformation).

7Even more general is the dynamical situation, recently studied
by [21,22], for example.

8This is in contrast to the Majumdar-Papapetrou–type black
holes studied in the first paper, which are extreme, and so in their
case the Killing vector field ∂xμ=∂t is timelike everywhere except
on the very horizon.
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that all the results obtained “below horizon” factually
describe the t ¼ const sections of the interior. Since the
conformal diagram of the hole and ring space-time is like
that of the Schwarzschild black hole alone, just with the
equatorial version having a singularity along r ¼ rring, it is
clear how these (timelike) sections look in such a diagram,
and that the dynamics “happens” in the direction of
decreasing r (from the horizon toward the singularity)
on them. Because of the time symmetry (which, however, is
spacelike below the horizon), these sections all have the
same geometry. It may also be a future plan to compare
the results with those obtained for a different slicing of the
black-hole interior, in particular for a spacelike one (e.g.
that defined by constant Kruskal-like time coordinate),
which would reveal the dynamics of the interior in a
different manner.
Let us conclude by noting that recently we have been

studying the black-hole–disc/ring system for another but
related reason as well: because of perturbation by the
additional source, even within such highly symmetric
space-times as static and axisymmetric (also reflection
symmetric) ones, the geodesic dynamics in the black-hole
field loses complete integrability and may incline to chaos
(see [26] and preceding papers of this series). The character
of geodesic dynamics is very probably related to the
curvature properties of the host space-time (and its sub-
manifolds to which the motion is restricted), though any
“generic” attempt to ascribe such global features of motion
to the local space-time geometry deserves much standoff
(see e.g. [27]). On the other hand, the complete geodesic
integrability is known to be connected with the existence of
the Killing-Yano tensors which in turn appears to be
restricted to only some space-time curvature types
(Petrov type D) (see e.g. [28] and references therein).
This suggests where a more specific connection between
curvature and chaos could be found.
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APPENDIX A: NULL GEODESICS TANGENT
TO THE HORIZON

Here the claim is proven that the curves r ¼
M½1� cosðθ − θ0Þ� of Eq. (50), along which we extended
the metric inside the black hole, represent null geodesics
starting tangentially from the horizon r ¼ 2M. First,
substituting dr ¼ ∓ M sinðθ − θ0Þdθ into the ðr; θÞ-part
of the metric (19), one can check directly

ds2ðt ¼ const;ϕ ¼ constÞ

¼ e2λext−2νext
�

dr2

1 − 2M
r

þ r2dθ2
�

¼ M2
e2λext

e2νext

�
sin2ðθ − θ0Þ
1 − 2

1�cosðθ−θ0Þ
þ ½1� cosðθ − θ0Þ�2

	
dθ2

¼ 0: ðA1Þ
Even more immediately it is seen from the metric (52),
given that the world lines in question correspond to
constant θ− or θþ.
Second, let us verify whether such curves follow from a

generic formula for photon geodesics. For a Schwarzschild
field, such a formula was found by [29]; considering the
“scattering-type”motion in the ðr; θÞ plane (ϕ ¼ const) and
parametrizing it so that its θ increases from a turning point
at ðr ¼ r0; θ ¼ 0Þ, the formula reads

θðrÞ ¼ 2
ffiffiffiffiffi
r0

p ½KðkÞ − Fðχ; kÞ�
½ðr0 − 2MÞðr0 þ 6MÞ�1=4

¼ 2
ffiffiffiffiffi
r0

p
Fðχ0; kÞ

½ðr0 − 2MÞðr0 þ 6MÞ�1=4 ; ðA2Þ

where Fðχ; kÞ ≔ R χ0 dαffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−k2 sin2 α

p is the elliptic integral of the

first kind, with amplitudes χ, χ0 and modulus k given by

sin2 χ ≔ 1 −
2M
k2

1 − r0
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr0 − 2MÞðr0 þ 6MÞp ;

sin2 χ0 ≔
1 − sin2 χ

1 − k2 sin2 χ

¼ 4M
k2

1 − r0
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr0 − 2MÞðr0 þ 6MÞp þ r0 − 2M − 4M r0

r

;

2k2 ≔ 1 −
r0 − 6Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr0 − 2MÞðr0 þ 6MÞp ;

and KðkÞ ≔ Fðπ=2; kÞ is its complete version. The “scat-
tering” orbits correspond to pericenter at r0 > 3M, but the
formula is also applicable for apocenter at r0 < 3M;
however, since k2 > 1 in that case, one has to first trans-
form to reciprocal modulus for such trajectories,

Fðχ0; kÞ ¼ 1

k
Fðψ ; 1=kÞ; where sin2ψ ¼ k2sin2χ0;

which leads to the form

θðrÞ ¼
2
ffiffiffiffiffiffiffi
2r0

p
F
�
ψ ;

ffiffi
2

p ½ðr0−2MÞðr0þ6MÞ�1=4
½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0−2MÞðr0þ6MÞ

p
þ6M−r0�1=2

�
½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr0 − 2MÞðr0 þ 6MÞp þ 6M − r0�1=2

;

sin2ψ ¼ 4Mð1 − r0
r Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr0 − 2MÞðr0 þ 6MÞp þ r0 − 2M − 4M r0

r

:

In the limit r0 → 2M, this yields
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θðrÞ ¼ 2F

�
arccos

ffiffiffiffiffiffiffi
r
2M

r
;
ffiffiffi
2

p �
r0
2M

− 1

�
1=4

→ 0

�

¼ 2 arccos

ffiffiffiffiffiffiffi
r
2M

r

⇔ cos2
θ

2
¼ r

2M
⇔ r ¼ Mð1þ cos θÞ:

Hence, in the Schwarzschild space-time, a photon starting
tangentially to the horizon from θ ¼ 0 really follows the
curve r ¼ Mð1þ cos θÞ and hits the singularity at θ ¼ π.
Importantly, it is, in fact, superfluous to speak of pro-

jection of the curves onto the ðr; θÞ-plane, because their
other components are zero anyway: (i) the ϕ-motion is
simply zero by assumption (and stays such due to axial
symmetry); and (ii) the t-velocity also vanishes, because
anything with finite locally measured energy Ê at the
horizon has zero energy with respect to infinity,
E ¼ ffiffiffiffiffiffiffiffi−gtt

p
Ê, but for geodesics the latter is conserved in

stationary fields, which implies ut ¼ 0 elsewhere thanks to
the relation E ≔ −ut ¼ −gttut. Hence, the relation r ¼
M½1� cosðθ − θ0Þ� actually provides complete information
about this limit case of orbits having “apocenter” at r ¼ 2M.
We have been having pure Schwarzschild in mind up to

now, but if external sources are present, this clearly remains
true, only−gtt changes from j1 − 2M=rj to j1 − 2M=rje2νext
(with νext finite on the horizon)—see the metric (19). This
metric also implies that if the trajectory has no time and
azimuthal components, the null result (A1) holds regardless
of the external sources, because the meridional interval is
just scaled by e2λext−2νext (which is again finite). Let us stress
that the above does not mean that the external sources have
no effect, it just reflects that the Schwarzschild coordinates
are well adapted to this effect (in particular, they keep the
horizon on r ¼ 2M regardless of the sources).

APPENDIX B: WEYL COORDINATES
INSIDE A BLACK HOLE?

Extension of the Weyl coordinates inside the black
hole is somewhat problematic, because their relation to
Schwarzschild coordinates is not bijective there. According
to Eqs. (10), modified to

ϱ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð2M − rÞ

p
sin θ; z ¼ ðr −MÞ cos θ;

any Schwarzschild-coordinate location ðr < 2M; θÞ is
readily and uniquely translated to Weyl coordinates, but
the inverse transformation (11) has to be treated more
carefully. Namely, the relations

FIG. 12. The four below-horizon regions with different combi-
nations of d1 and d2 signs: I (where d1 > 0, d2 > 0); IIN (where
d1 < 0, d2 > 0); IIS (where d1 > 0, d2 < 0); and III (where
d1 < 0, d2 < 0). At the top plot, they are shown in the Schwarzs-
child plot endowed with null geodesics descending from the
horizon. At the bottom plot, they are shown as four triangles
composed into a square. Domain I is confined by the horizon
(solid line), Domains IIN and IIS contain respective parts of the
symmetry axis (dot-dashed lines), and Domain III has the
singularity (toothed line) at its inner rim. The arrows indicate
directions of η� in each domain. The red solid line is included
in order to show how the Schwarzschild radial direction is
transformed.
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d1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz ∓ MÞ2 − ϱ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz ∓ M þ ϱÞðz ∓ M − ϱÞ

p
¼ r −M ∓ M cos θ

clearly cannot be used everywhere, because the
Schwarzschild-coordinate expressions for d1;2 change sign
on the curves r ¼ Mð1� cos θÞ (these were discussed in
Appendix A—see the blue lines in Fig. 1, in particular).
The inverse transformation

r −M ¼ d2 þ d1
2

; M cos θ ¼ d2 − d1
2

can still be used, but only after supplying correct signs to
d1;2 (whose Weyl forms are represented by square roots,
providing just absolute values). In Fig. 12 a diagram is
shown of four different regions inside the black hole where

the d1;2 “distances” have different combinations of signs;
see a similar diagram in [8] (Fig. 1). Note that in order to
cover the whole black-hole interior, one has to supply
all the four sign combinations by hand; they cannot be
inferred from the Weyl-coordinate expressions of d1;2
themselves.
Let us add that the problem of extension inside the static

axisymmetric black hole has also been tackled, besides [8]
and in a slightly different manner, by [30] when studying
the character of a horizon of Schwarzschild-type space-
times deformed by a set of multipoles. It was found there
that the isolated horizon is always present, but need not
represent a future outer trapping horizon nor a marginally
trapped surface any more. However, as also warned in that
paper, the distortions considered there were rather extreme
(typically not asymptotically flat and often even violating
the strong energy condition).
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