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A new covariant generalization of Einstein’s general relativity is developed which allows the existence of
a term proportional to TαβTαβ in the action functional of the theory (Tαβ is the energy-momentum tensor).
Consequently, the relevant field equations are different from general relativity only in the presence of
matter sources. In the case of a charged black hole, we find exact solutions for the field equations. Applying
this theory to a homogeneous and isotropic spacetime, we find that there is a maximum energy density ρmax,
and correspondingly a minimum length amin, at the early Universe. This means that there is a bounce at
early times, and this theory avoids the existence of an early-time singularity. Moreover, we show that this
theory possesses a true sequence of cosmological eras. We also argue that, although in the context of the
standard cosmological model the cosmological constant Λ does not play any important role in the early
times and becomes important only after the matter-dominated era, in this theory the “repulsive” nature of
the cosmological constant plays a crucial role at early times in resolving the singularity.
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I. INTRODUCTION

Modifying gravitational theory dates back to the late
1800s, when there were some attempts modeled on
Maxwell’s electrodynamics to modify Newtonian gravity.
Since Einstein developed his general relativity (GR) in
1915, various attempts with different motivations have been
carried out to generalize the theory [1]. Some motivations
have a theoretical character and some, observational.
Einstein himself modified the original field equations by
adding a term including the cosmological constant. He also
proposed the Palatini formulation of GR [2]. Eddington
proposed an interesting alternative to GR in 1924 [3].
Brans-Dicke theory [4] and Einstein-Cartan theory [5] are
two other examples of a very broad variety of alternatives.
Currently, observations of dark matter and dark energy
provide one of the main motivations for extending GR (for
a review on modified gravity theories, see e.g. [6]).
One of the main intriguing enigmas in GR is that it

predicts the existence of spacetime singularity at some
finite time in the past. However, it turns out that GR itself is
no longer valid at the singularity because of the expected
quantum effects. On the other hand, a precise formulation
for quantum gravity is still lacking. Nevertheless, there are
some classical models in which this kind of singularity can
be resolved. For example, Eddington-inspired Born-Infeld
(EiBI) theory is a modified theory of gravity which is
equivalent to GR only in vacuum and can resolve the
singularity [7]. For other examples and also for other

motivations behind this kind of modification, we refer
the reader to the review article [8]. Here we propose a new
model which, despite its simple appearance, possesses
interesting features. Let us start with the following action,

S ¼ 1

2κ

Z ffiffiffiffiffiffi
−g

p ðR − 2Λ − ηT2Þd4xþ SM; ð1Þ

where T2 ¼ TαβTαβ, Tαβ is the energy-momentum tensor,
R is the Ricci scalar, κ ¼ 8πG, Λ is the cosmological
constant, SM is the matter action and η is a coupling
constant whose value can be constrained by observations.
In general, η can be negative or positive. However, as we
will show in this paper, a positive η leads to a bounce at the
early Universe and to a satisfactory cosmological behavior
after the bounce. This bounce avoids the early-time
singularity. On the other hand, as we will see in Sec. III,
a negative η leads to unsatisfactory cosmological behavior.
More specifically there is no stable late-time accelerated
phase in the case of η < 0. Therefore, our main purpose in
this paper is to study the η > 0 case.
The situation here is somehow reminiscent of the

appearance of the cosmological constant in the standard
cosmological model, where Λ is postulated to be positive.
A negative cosmological constant leads to completely
different consequences which are inconsistent with the
cosmological observations. More specifically, a positive Λ
accelerates the Universe while a negative Λ decelerates it.
The standard Einstein-Hilbert action can be recovered by

setting η ¼ 0. Because of the correction term T2, we refer
to this theory as energy-momentum squared gravity
(EMSG). Throughout the paper, we use units with c ¼ 1
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and assume the metric signature ð−;þ;þ;þÞ for the
metric. It is natural to expect that this correction term be
important only in the high-energy regimes such as the early
Universe or within the black holes. Therefore, there are no
departures from GR in the low-curvature regime.
The outline of the paper is as follows. In Sec. II, we

derive the field equations of EMSG by varying the action
(1) with respect to the metric. In Sec. III, we derive the
modified Freidmann equations and show that there is a
maximum energy density and a minimum length at the
early Universe (when η > 0). Also, using the dynamical
system method, we study the cosmological consequences
of EMSG. More specifically, we show that this theory
possesses a true sequence of cosmological epochs. In
Sec. IV, we find an exact charged black hole solution in
EMSG. Finally, conclusions are drawn in Sec. V.

II. FIELD EQUATIONS

Before moving on to derive the field equations it is
important to mention that the correction term ηT2 can be
defined only when the Lagrangian density for the matter
content is specified. Therefore, one may not immediately
obtain the field equations from a first-order variation of the
action. In other words, one must first vary the matter action
with respect to the gravitational degrees of freedom.
Although this feature is not the case in GR, it appears in
theories which introduce correction terms including the
energy-momentum tensor in the generic action; for exam-
ple, see [9].
Comparing the action (1) with the Einstein-Hilbert

action, it is obvious that we need only vary the T2 term
with respect to the metric. In other words, the other terms
lead to the standard terms in the Einstein field equations.
Thus, we have

δð ffiffiffiffiffiffi
−g

p
TαβTαβÞ ¼ ffiffiffiffiffiffi

−g
p

δðTαβTαβÞ þ TαβTαβδ
ffiffiffiffiffiffi
−g

p
; ð2Þ

we know that δ
ffiffiffiffiffiffi−gp ¼ − 1

2
gμν

ffiffiffiffiffiffi−gp
δgμν. Therefore, the last

term in the right-hand side of (2) can be simply written as

−
1

2
gμνT2 ffiffiffiffiffiffi

−g
p

δgμν: ð3Þ

Now let us consider the first term in the right-hand side of
(2). We can write

δT2 ¼ δðgαρgβσTαβTρσÞ
¼ 2δgαρTσ

αTρσ þ 2TαβδTαβ

¼ 2

�
Tσ
μTνσ þ Tαβ

δTαβ

δgμν

�
δgμν: ð4Þ

Consequently, we obtain

δð ffiffiffiffiffiffi
−g

p
TαβTαβÞ ¼ 2

�
Tσ
μTνσ −

1

4
gμνT2 þΨμν

� ffiffiffiffiffiffi
−g

p
δgμν;

ð5Þ

where the new tensor Ψμν is defined as

Ψμν ¼ Tαβ
δTαβ

δgμν
: ð6Þ

Finally, bearing in mind that variation of the other terms
leads to the convenient terms in the Einstein field equations,
the field equations of EMSG can be written as

Gμν þ Λgμν ¼ κTeff
μν ; ð7Þ

where Gμν is the Einstein tensor and the effective energy-
momentum tensor Teff

μν is given by

Teff
μν ¼ Tμν þ 2

η

κ

�
Ψμν þ Tσ

μTνσ −
1

4
gμνT2

�
: ð8Þ

From (7), it is clear that ∇μTeff
μν ¼ 0 and, consequently,

∇μTμν ≠ 0. We also recall that the matter action SM can be
written as follows,

SM ¼
Z

Lm
ffiffiffiffiffiffi
−g

p
d4x; ð9Þ

where Lm is the matter Lagrangian density. The energy-
momentum tensor then is defined as

Tμν ¼ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δgμν

: ð10Þ

Assuming that Lm depends only on the metric itself and not
on its derivatives, we obtain

Tμν ¼ gμνLm − 2
δLm

δgμν
ð11Þ

(see [9] for more details). As is clear from field equa-
tions (7), we need the variation of the energy-momentum
tensor with respect to the metric. Therefore, using Eq. (11),
we can write

δTαβ

δgμν
¼ δgαβ

δgμν
Lm þ gαβ

δLm

δgμν
− 2

∂2Lm

∂gμνgαβ
¼ −gαμgβνLm þ 1

2
gαβgμνLm −

1

2
gαβTμν

− 2
∂2Lm

∂gμνgαβ ; ð12Þ

where we have also used the following expression,
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δgαβ
δgμν

¼ −gαθgβρδ
θρ
μν; ð13Þ

where δθρμν is the generalized Kronecker delta symbol. This
relation can be simply obtained using the condition
gαθgθβ ¼ δβα. Finally, multiplying Eq. (12) through by
Tαβ, we find Ψμν with respect to the matter Lagrangian
density,

Ψμν ¼ −LmSμν −
1

2
TTμν − 2Tαβ ∂2Lm

∂gαβ∂gμν ; ð14Þ

where Sμν ¼ Tμν − Tgμν=2, and T is the trace of the energy-
momentum tensor. Therefore, for a given matter
Lagrangian density, the field equations (7) are completely
known. In the case of a perfect fluid, Lm can be simply
defined as Lm ¼ p [9,10]. It is important to mention that
the nonrelativistic limit of this theory is the same as the
Newtonian limit of GR. Therefore, the Poisson equation
does not change. Albeit, η needs to be small enough to pass
the classical tests of gravity. However, in the presence of
matter sources, the higher post-Newtonian corrections will
be different from that of GR.
Before moving on to discuss the cosmology of EMSG,

let us first discuss some points about the appearance of Λ in
the action of EMSG. As we will see in the next section,
when η > 0 the correction terms in EMSG are important
only in the sufficiently early times, and do not disturb
the late-time cosmology. Therefore, it is evident that
without any contribution from other extra fields, such as
scalar fields which can enter the matter Lagrangian,
EMSG cannot be considered as a dark energy model.
Consequently, one has to retain the cosmological constant
in the theory in order to explain the accelerated expansion
of the Universe. Of course, as in GR, one may remove the
cosmological constant and add new energy contributions to
Tαβ in order to construct a dynamical dark energy model.
We mean that one can, for instance, add a quintessence
scalar field to the theory instead of keeping the cosmo-
logical constant.
However, comparing EMSG with GR, a question nat-

urally raises. We know that in GR, Λ can be a part of the
geometric sector. In this case, Λ is written in the left-hand
side of the Einstein equations. Let us call it the “bare”
cosmological constant as it is called in [11]. On the other
hand, it can be a part of the matter action. In this case, one
may assign an effective perfect fluid energy-momentum
tensor to Λ with energy density ρΛ ¼ Λ=κ and pressure
pΛ ¼ −Λ=κ, i.e. TΛ

μν ¼ pΛgμν. In this case, Λ can be called
the “vacuum energy.” Albeit, the field equations are the
same in both pictures.
So we have the following question: Does EMSG give

rise to different field equations based on whether we put Λ
in the geometric part or in the matter action? Here we show
that EMSG, unlike GR, discriminates between these

approaches. This is also the case in other theories which
include scalars constructed from the energy-momentum
tensor, such as RμνTμν and gμνTμν, in their generic action;
for example, see [9,12].
Now let us put the cosmological constant in the matter

action. Therefore, the total energy-momentum tensor is
given by

T total
μν ¼ Tμν þ TΛ

μν; ð15Þ

and, after some algebra, the field equations can be written
as

Gμν ¼ κTeff
μν − Λgμν þHμν; ð16Þ

where Teff
μν is still given by (8) and depends only on Tμν. All

the contributions from TΛ
μν have been collected in the new

tensor Hμν as

Hμν ¼ 2η

�
ΨΛ

μν þ TΛαβ δTαβ

δgμν
þ Tαβ

δTΛ
αβ

δgμν
þ TΛ

μσTσ
ν þ Tσ

μTΛ
νσ

þ TΛ
μσTΛ

νθg
σθ −

1

4
gμνðTΛ

αβT
Λαβ þ 2TΛ

αβT
αβÞ

�
: ð17Þ

In the following, we show that Hμν ≠ 0. This means that
by putting the cosmological constant in the matter sector,
we get different field equations than (7). Thus, the
cosmological behavior, in principle, would be different.
Using TΛ

μν ¼ pΛgμν and Eqs. (12)–(14), we find

ΨΛ
μν ¼ −p2

Λgμν

TΛαβ δTαβ

δgμν
¼ −2pΛTμν þ pΛLmgμν

Tαβ
δTΛ

αβ

δgμν
¼ −pΛTμν

TΛ
μσTσ

ν þ Tσ
μTΛ

νσ ¼ 2pΛTμν

TΛ
μσTΛ

νθg
σθ ¼ p2

Λgμν
1

4
gμνðTΛ

αβT
Λαβ þ 2TΛ

αβT
αβÞ ¼ p2

Λgμν þ
1

2
TpΛgμν: ð18Þ

Therefore, Hμν takes the following form:

Hμν ¼ 2ηpΛ

��
Lm − pΛ −

1

2
T

�
gμν − Tμν

�
: ð19Þ

It is obvious that, in this case, field equations are more
complicated than the case of a bare cosmological constant.
More specifically, as expected, Λ2 term appears in the field
equations. It is worth mentioning that, in GR, an effective
cosmological constant can be defined as the linear sum of a
bare cosmological constant and the vacuum energy con-
tribution [11]. However, as we showed, it is not that simple
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in EMSG and the gravitational effects of a bare cosmo-
logical constant and the vacuum energy cannot be summed
simply. On the other hand, in GR, interpreting Λ as the
vacuum energy raises the so-called cosmological constant
problem. Consequently, for the sake of simplicity, we adopt
the geometric description, the bare cosmological constant,
in this paper. A more general case including the vacuum
energy can be considered as a matter of study for future
works. Therefore, we work with the field equations (7) in
what follows.

III. COSMOLOGY OF EMSG

Let us start with the consequences of this theory in the
early Universe where we expect significant deviations from
the ΛCDMmodel. We assume a flat Friedmann-Robertson-
Walker (FRW) geometry,

ds2 ¼ −dt2 þ aðtÞ2ðdx2 þ dy2 þ dz2Þ; ð20Þ

where aðtÞ is the cosmic scale factor. Also we assume an
ideal energy-momentum tensor Tμν ¼ ðρþ pÞuμuν þ pgμν
for the cosmic fluid. Using field equation (7), we find the
modified version of the Friedmann equations,

H2 ¼ κ

3
ρþ Λ

3
− η

�
1

2
p2 þ 4

3
ρpþ 1

6
ρ2
�

ð21Þ

ä
a
¼ −

κ

6
ðρþ 3pÞ þ Λ

3
þ η

�
p2 þ 2

3
ρpþ 1

3
ρ2
�
; ð22Þ

where H ¼ _a=a and the dot denotes a derivative with
respect to time. Equations (21) and (22) together with an
equation of state form a complete set to study the dynamics
of the cosmic fluid and the scale factor. It is worth
mentioning that the correction terms in the Eqs. (21) and
(22) are somewhat reminiscent of those from quantum
geometry effects in loop quantum gravity, for example see
[13], or those from the braneworlds [14]. At small energy
densities, we recover the standard Friedmann equations.
However, at high densities, a new effect appears: for η > 0,
there is a critical point H ¼ 0 at

ρmax ¼
κ

γη

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ηΛγ

κ2

r �
: ð23Þ

Where γ ¼ 3w2 þ 8wþ 1 and we have assumed a baro-
tropic equation of state p ¼ wρ (w > 0). In the very early
Universe, ρmax is an explicit cutoff in the energy density. In
fact in this era w ¼ 1=3 and the maximum energy density is
ρmax ¼ ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8Λη=κ2

p
Þκ=4η. In other words, this

means that the early radiation-dominated Universe does
not start from a singularity. More surprisingly, the Universe
passes across a regular bounce at this point. One may easily
verify that at this point ä ¼ 2Λ

3
a > 0. Fortunately, in the

radiation-dominated Universe, the field equations (21) and
(22) can be exactly solved. The result is

aðtÞ ¼ amin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh αt

p

ρrðtÞ ¼
κ

4η

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8ηΛ

κ2
sech2αt

r �
; ð24Þ

where α ¼
ffiffiffiffi
4Λ
3

q
. We recall that the corresponding solution

in ΛCDMmodel is aðtÞ ∼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh αt

p
. The main difference is

that unlike the ΛCDM case, ä is positive in EMSG. This is
reminiscent of an inflationary epoch without any scalar
field. Note that the effective energy density and pressure
remain also finite and all effective energy conditions fail at
the bounce. The effective energy density and pressure, ρeff
and peff , are defined using the effective energy-momentum
tensor Teff

μν . At the bounce we have ρeff ¼ −Λ=κ < 0 and
peff ¼ ρeff=3. It is clear that the null energy condition is
violated. It is well known that in bouncing cosmologies one
or more energy conditions are violated [8]. For generalized
energy conditions in modified theories of gravity we refer
the reader to [15].
It is clear that in this theory, existence of a positive

cosmological constant is necessary for preventing the
singularity. In fact the repulsive nature of the cosmological
constant plays an important role here. On the other hand, in
the ΛCDM model, Λ does not have a significant effect in
the early Universe, and its role is dominant at sufficiently
the late times.
A maximum in energy density naturally implies a

minimum value for the cosmic scale factor. Here we
estimate this minimum length amin. As we mentioned
before, in EMSG the perfect fluid does not satisfy the
standard conservation laws. For a two-component cosmic
fluid, the conservation equation ∇μTeff

μν ¼ 0 includes some
interaction terms proportional to _ρmρr, _ρrρm, and ρmρr,
where ρm is the matter energy density. One may equally
distribute these interaction terms between two energy
components. In this case, the conservation equation can
be split up into two separate equations,

ρ̄0r
ρ̄r

¼ ð9ρ̄2m þ 48ρ̄rρ̄m þ 56ρ̄2r − 66ρ̄m − 152ρ̄r þ 96Þ
26ρ̄m þ 62ρ̄r − 7ρ̄2m − 24ρ̄rρ̄m − 28ρ̄2r − 24

ð25Þ

ρ̄0m
ρ̄m

¼ ð21ρ̄2m þ 72ρ̄rρ̄m þ 64ρ̄2r − 78ρ̄m − 148ρ̄r þ 72Þ
26ρ̄m þ 62ρ̄r − 7ρ̄2m − 24ρ̄rρ̄m − 28ρ̄2r − 24

;

ð26Þ
where ρ̄i ¼ 2ηρi

κ and the prime denotes the derivative with
respect to ln a. For small ρ̄; i we recover the conventional
conservation equations. These conservation equations are
complicated, and so it is not easy to find the exact value of
amin. In order to obtain an estimate for amin, we neglect ρ̄m
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in the conservation equation of the radiation (25). This
assumption makes sense because ρ̄m is much smaller than
ρ̄r in the beginning, and it decreases even more after the
bounce. Therefore, although eventually ρ̄r will fall bellow
ρ̄m, during a long period of time compared to the age of the
Universe, this approximation holds. In this case, Eq. (25)
can be expressed as

ρ̄0r þ 4ρ̄r ≃ −
X∞
n¼2

2nρ̄nr ð27Þ

and by retaining only the dominant term on the right-hand
side, we find

ρ̄r ¼
a4minρmax

ðκ=2ηþ ρmaxÞa4 − a4minρmax
: ð28Þ

Finally, one may simply show that

amin ≃
�
12η

κ2

�
1=4

ðH2
0Ωr0Þ1=4a0; ð29Þ

where Ωr ¼ κρr
3H2 is the radiation density parameter and

subscript 0 denotes the present value of the quantities. This
is the minimum length in the cosmology of EMSG.
Although this theory avoids the singularity, it should

possess a valid expansion history. In other words, it must
start with a radiation era. Also it has to possess a mater-
dominated era followed by an accelerated expansion. In

principle, the correction terms in the new Friedmann
equations can destroy the standard thermal history. In
order to check this important requirement and to deter-
mine whether EMSG provides a viable alternative to the
standard model, we use dynamical system analysis [16].
The advantage of the finite dynamical systems analysis is
to provide a fast and numerically reliable integration of
the modified Friedmann equations. Using this method,
one may link the early and late-time evolution of the
model by analyzing the fixed points in the compact phase
space of the model, for example see [17]. The expansion
history can then be easily compared to the standard
ΛCDM model. This method has been applied to several
alternative theories and cosmological models; for exam-
ple see [18].
We use cosmic density parameters Ωm ¼ κρm

3H2, Ωr and
ΩΛ ¼ Λ

3H2 as phase-space variables. Using modified
Friedmann equations (21) and (22) and also the corre-
sponding conservation equations for matter and radiation
(25) and (26), one can find three autonomous equations.
These equations take the following form,

Ω0
m ¼ f1ðΩm;Ωr;ΩΛÞ
Ω0

r ¼ f2ðΩm;Ωr;ΩΛÞ
Ω0

Λ ¼ f3ðΩm;Ωr;ΩΛÞ; ð30Þ

where functions fi are given by

f1ðΩm;Ωr;ΩΛÞ ¼
−21Ωm

3 þ ð−72Ωr þ 78ΩmaxÞΩm
2 þ ð−64Ωr

2 þ 148ΩrΩmax − 72Ωmax
2ÞΩm

7Ωm
2 þ ð24Ωr − 26ΩmaxÞΩm þ 28Ωr

2 − 62ðΩrÞΩmax þ 24Ωmax
2

−
1

2

ðΩm þ 2Ωr − 2ΩmaxÞΩmð3Ωm þ 4ΩrÞ
Ωmax

f2ðΩm;Ωr;ΩΛÞ ¼ −
Ωrð56Ωr

2 þ 48ΩrΩm − 152ΩrΩmax þ 9Ωm
2 − 66ΩmðΩmaxÞ þ 96Ωmax

2Þ
7Ωm

2 þ ð24Ωr − 26ΩmaxÞðΩmÞ þ 28Ωr
2 − 62ðΩrÞΩmax þ 24Ωmax

2

−
1

2

Ωrð3Ωm þ 4ΩrÞðΩm þ 2Ωr − 2ΩmaxÞ
Ωmax

f3ðΩm;Ωr;ΩΛÞ ¼ −
3

2

ΩΛðΩm þ 2Ωr − 2ΩmaxÞðΩm þ 4=3ΩrÞ
Ωmax

ð31Þ

where

Ωmax ¼
κρmax

3H2
¼ 1

12

3Ωm
2 þ 14ΩrΩm þ 12Ωr

2

−1þ ΩΛðtÞ þΩm þΩr
: ð32Þ

It is interesting that, although the field equations and
conservation equations seem complicated, as we will show,

the cosmological behavior of the model is close to the
ΛCDM model.
In order to find the critical or fixed points of the

dynamical system (30), it is enough just to set to zero
the functions fi and find the relevant roots. Then we can
determine whether or not the system approaches one of the
critical points by analyzing the stability around the critical
points. Let us consider the small perturbations δΩm, δΩr
and δΩΛ around the critical point ðΩc

m;Ωc
r ;Ωc

ΛÞ, namely,
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Ωm ¼ Ωc
m þ δΩm

Ωr ¼ Ωc
r þ δΩr

ΩΛ ¼ Ωc
Λ þ δΩΛ: ð33Þ

Substituting into Eqs. (31) yields the linear differential
equations:

0
B@

δΩ0
m

δΩ0
r

δΩ0
Λ

1
CA ¼ M

0
B@

δΩm

δΩr

δΩΛ

1
CA: ð34Þ

The stability matrix M depends upon Ωc
m, Ωc

r , and Ωc
Λ and

is given by

M ¼

0
BBB@

∂f1∂Ωm

∂f1∂Ωr

∂f1∂ΩΛ

∂f2∂Ωm

∂f2∂Ωr

∂f2∂ΩΛ

∂f3∂Ωm

∂f3∂Ωr

∂f3∂ΩΛ

1
CCCA

ðΩc
m;Ωc

r ;Ωc
ΛÞ

ð35Þ

for each fixed point; this matrix possesses three eigenval-
ues. The fixed point is stable or attractor if all the
eigenvalues are negative and is unstable if there is at least
one positive eigenvalue.
We have found the critical points and developed

the stability matrix. Here are the results: as in the
ΛCDM model there are two repulsive critical points
P2∶ ðΩc

m;Ωc
r ;Ωc

ΛÞ ¼ ð0; 1; 0Þ, P3 ¼ ð1; 0; 0Þ. The eigen-
values for theses points are ð1; 4;−4Þ and ð−3; 3;−1Þ,
respectively. As is clear, P2 corresponds to a standard
unstable radiation-dominated era, and P3 is a true unstable
matter-dominated point. In fact, the effective equation of
state parameter ωeff (see (36) for definition) for P2 is equal
to 1=3 (this is also evident from Fig. 3). Therefore, the
cosmic scale factor grows as aðtÞ ∝ t1=3. On the other hand,
for P3 we have ωeff ¼ 0 and, therefore, aðtÞ ∝ t2=3.
Also, there is a late-time attractor P4 ¼ ð0; 0; 1Þ. In this

case, the eigenvalues are ð0;−6=5;−4Þ. This point corre-
sponds to a late-time de Sitter expansion. Let us recall again
that Λ has a twofold task in this model, providing a regular
bounce and triggering the late-time cosmic speedup.
It is also necessary to check the behavior of this system at

“infinity.” Note that at the bounce the phase variables
become infinite and thus they do not make a compact phase
space. In order to demonstrate the main features of the
system in a compact region (a sphere with radius 1)
including the infinity, we use the Poincaré coordinates,
obtained by the transformation Ωip ¼ Ωi=ð1þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

m þ Ω2
r þΩ2

Λ

q
Þ. Using these new variables it becomes

clear that there is another unstable radiation-dominated
fixed point at infinity, i.e. P1∶ ðΩmp;Ωrp;ΩΛpÞ ¼ ð0; 1; 0Þ.
In Fig. 1, we show a two-dimensional phase-space plot.
The above-mentioned critical points have been shown in

this phase plot. Therefore, we see that the evolution can be
started from P1 and rapidly repels away from it and is
followed by a standard radiation-dominated epoch P2.
Then the models enters the matter era P3 and finally falls
into the late-time de Sitter attractor P4. In fact after the rapid
evolution from P1 to P2, the system follows standard
trajectories similar to ΛCDM model. In Fig. 2 we have
plotted the evolution of the cosmic density parameters for a
specific choice of initial conditions. As it is clear from this
figure, after a rapid decrease in Ωrp system evolves as
standard cosmological model and the current values of the
density parameters can match the observed values.
In order to emphasize that EMSG with a bare cosmo-

logical constant does not disturb the standard cosmic
evolution after the bounce, we have plotted the behavior
of the deceleration parameter q and the effective equation
of state parameterωeff in Fig. 3. These parameters belong to
the numerical solution presented in Fig. 2. We recall that

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

rp

m
p

FIG. 1. Two-dimensional phase-space trajectories in the Poin-
caré projected phase space. The fixed point P1 is an unstable very
early time radiation-dominated fixed point appearing in the
“infinity” of the system. P2 corresponds to a standard radiation
era. The fixed point P3 is a true matter era, and P4 is the final late-
time de Sitter attractor.

rp

mp

p

12 10 8 6 4 2 0
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0.8

1.0

lna

ip

FIG. 2. Behavior of the cosmic density parameters for a specific
choice of initial conditions at ln a ¼ −12.5 asΩm ¼ 0.01,Ωr ¼ 1
and ΩΛ ≃ 0. Thick curves show the projected density parameters
and the dashed curves correspond to the density parameters
themselves.
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q ¼ −
äa
_a2

; ωeff ¼ −1 −
2 _H
3H2

ð36Þ

These parameters can be written with respect to the phase-
space variables. Since the relevant expressions are too long,
we have not written them. In Fig. 3, the solid lines
correspond to EMSG and the dashed curves correspond
to ΛCDM model. The purple regions demonstrate the
approximate time intervals for which the system is close
to its critical points. It is worth mentioning that the
autonomous equations in theΛCDMmodel can be obtained
from (31) by considering the limitΩmax → ∞. In Fig. 3, the
initial conditions in theΛCDMmodel are chosen in away to
lead to the same values as in EMSG for the cosmic density
parameters, i.e.Ωi, at present epoch ln a ¼ 0. As is obvious,
q and ωeff are exactly the same in both theories. This means
that the growth rate of the cosmic scale factor in EMSG
coincides with the standard case. Consequently, after the
bounce, the thermal history of the Universe is the same. It
should be noted that this behavior does not belong only to
the above-mentioned initial condition, and we have checked
it for several initial conditions.
Before closing this section, we remind that for the whole

description presented in this section, we assumed η > 0.
However, as we mentioned before, there is no a priori
reason why this parameter should be positive. However, if
η < 0, then using (21) one can conclude that there will not
be a bounce in this theory. More importantly, using the
dynamical system approach, we found that there is no
stable late-time accelerated expansion in this case. It should
be notes for η < 0 the autonomous differential equations
can be simply obtained from (30) by replacing Ωmax with
Ωη. Where Ωη > 0 is

Ωη ¼ −
κ2

6ηH2
¼ −

1

12

3Ωm
2 þ 14ΩrΩm þ 12Ωr

2

−1þ ΩΛðtÞ þ Ωm þ Ωr
ð37Þ

then finding the fixed points and their stability is com-
pletely similar to the η > 0 case. There are three fixed
points ðΩc

m;Ωc
r ;Ωc

ΛÞ as
P0
1 ¼ ð0; 1; 0Þ

P0
2 ¼ ð1; 0; 0Þ

P0
3 ¼ ð0;Ωr; 1 − 2ΩrÞ: ð38Þ

P0
1 corresponds to an unstable radiation-dominated phase,

and the corresponding eigenvalues are (1,12,4). P0
2 is an

unstable matter-dominated phase with two positive eigen-
values ð3; 9;−1Þ. As expected, these points are unstable.
On the other hand, P0

3 is not a fixed point but a
fixed “line.” This line exists provided that Ωr < 1=2.
The corresponding eigenvalues are ð0; 12;−6=5Þ.
Surprisingly, all the points on this curve are unstable, even
the point (0,0,1). This means that the late-time de Sitter
universe is not stable when η < 0. It is interesting that the
correction terms in EMSG, which are expected to be
important in early times, substantially disturb the standard
paradigm especially in the late times. As a final remark on
the cosmology of EMSG, we should stress that these
conclusions are true only for a bare cosmological constant.
In the presence of the other fields and the vacuum energy
density, in principle, the cosmological consequences would
be different.

IV. CHARGED BLACK HOLES IN EMSG

As we mentioned before, we expect that in high-density
regions, for example within a black hole, EMSG would be
different form GR. On the other hand, it is obvious
that in the vacuum, where the matter energy density is
zero, EMSG is equivalent to GR. Consequently, the
Schwarzschild–de Sitter metric and Kerr metric are also
solutions for EMSG field equations. In order to show some
interesting differences of these two theories, let us examine
a charged black hole. Outside the black hole, there exists
the matter field (Tμν ≠ 0), i.e. the electromagnetic field
with Lagrangian density Lm ¼ − 1

4
FμνFμν ¼ − 1

4
F2, where

Fμν ¼ ∂μAν − ∂νAμ is the electromagnetic field strength
tensor. It is important to mention that EMSG not only
changes the gravitational theory but somehow postulates a
universal modification to all the matter field’s equations of
motion. In the case of the electromagnetic field, EMSG
adds some nonlinear terms to Maxwell equations. In this
sense, EMSG is reminiscent of the Born-Infeld nonlinear
electrodynamics [19]. Albeit, the field equations are
different. More specifically, as we will show, unlike the
Born-Infeld theory, EMSG does not lead to a nonsingular
electric field for a point charge. Using the above-mentioned
Lagrangian for the electrodynamics, we have

Tμν ¼ Fα
μFαν −

1

4
gμνF2; ð39Þ

P4P3P2
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FIG. 3. Behavior of the deceleration parameter q (blue curves)
and the effective equation of state parameter ωeff (red curves) in
ΛCDM model (dashed curves) and EMSG (solid curves). For
EMSG The initial conditions is the same as in Fig. 2. In the case
of ΛCDM, the initial conditions have been set in such a way to
recover the same values for cosmic density parameters as in
EMSG at ln a ¼ 0.
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where one can simply show that T ¼ 0. Therefore,

Ψμν ¼ −LmTμν − 2Tαβ ∂2Lm

∂gαβgμν : ð40Þ

On the other hand,

∂2Lm

∂gαβgμν ¼ −
1

2
FαμFβν: ð41Þ

Consequently, Ψμν takes the following form:

Ψμν ¼
1

4
F2Tμν þ TαβFαμFβν

¼ FγαFγ
βFαμFβν −

1

16
gμνðF2Þ2: ð42Þ

In addition, after some algebra, we find

Tμ
σTνσ ¼ FγαFγ

βFαμFβν þ
1

16
gμνðF2Þ2

−
1

4
gμνT2 ¼ −

1

4
gμνFα

θFαρFγθFγ
ρ þ 1

16
gμνðF2Þ2: ð43Þ

Therefore, the field equations (7) can be rewritten as

Gμν þ Λgμν ¼ κ

�
Fα

μFαν −
1

4
gμνF2

�

þ 2η

�
1

16
gμνðF2Þ2 þ 2FγαFγ

βFαμFβν

−
1

4
gμνFα

θFαρFγθFγ
ρ

�
: ð44Þ

Although these field equations seem very complicated, they
can be solved analytically for a charged black hole.
Now we need the generalized form of the Maxwell

equations. We recall again that EMSG not only changes the
gravitational filed equations but also modifies the matter
field equations in the high-curvature regime. To find the
modified electrodynamic field equations in the vacuum, we
need to vary the following part of the action (1) with respect
to Aμ

Z ffiffiffiffiffiffi
−g

p �
1

4
F2 þ η

2κ
T2

�
d4x ð45Þ

Variation leads to the following Euler-Lagrange equation:

∇μ
∂ðκF2 þ 2ηT2Þ

∂ð∇μAνÞ
¼ 0: ð46Þ

Note that ∂ðκF2þ2ηT2Þ
∂Aν

¼ 0. Also we note that

∂Fαβ

∂ð∇μAνÞ
¼ δμαδνβ − δμβδ

ν
α ð47Þ

Using this equation, it is straightforward to obtain

∂F2

∂ð∇μAνÞ
¼ 4Fμν

∂T2

∂ð∇μAνÞ
¼ 8Fγ

νFμρFγ
ρ − 2FμνF2: ð48Þ

Finally, the modified version of the Maxwell equations in
the vacuum are

∇μFμν ¼ η

κ
∇μ½4Fγ

νFμρFγ
ρ − FμνF2� ð49Þ

∇½μFνλ� ¼ 0: ð50Þ

Equations (50) are geometrical equations valid independ-
ently of the Lagrangian chosen. Equations (49) and (50) are
coupled to Eqs. (44). In fact Fμν enters the gravitational
field equations (44) and the metric gμν enters the electro-
magnetic field equations (49) through the covariant deriva-
tive. These equations, i.e. (44), (49) and (50), form a
complete set of differential equations to obtain the metric
components and the electromagnetic fields. From Eqs. (49),
it is clear that the correction term is proportional to ρ−1max.
Therefore, as expected, in low-energy regimes, there would
be no deviations from standard electrodynamics. Now, let
us start with a spherically symmetric spacetime as

ds2 ¼ −ϕðrÞfðrÞdt2 þ dr2

fðrÞ þ r2dΩ2 ð51Þ

As in GR, regarding the spherical symmetry of the metric,
one may use the following components for Fμν:
Ftr ¼ −Frt ¼ EðrÞ, where EðrÞ is the electric field, and
the other components are all zero. With this choice,
Eqs. (50) are automatically satisfied. Also from the
field equations, it turns out straightforwardly that
ϕðrÞ ¼ 1. On the other hand, Eq. (49) has only one
nonzero component as

�
1þ 6η

κ
EðrÞ2

�
dEðrÞ
dr

þ 2EðrÞ
r

þ 4η

κr
EðrÞ3 ¼ 0 ð52Þ

Fortunately, this equation can be integrated and the
solution is

EðxÞ ¼
ffiffiffiffiffi
κ

6η

r �
x−1=3ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x4

p
Þ2=3 − x

x1=3ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x4

p
Þ1=3

�
; ð53Þ

where the new parameter x is defined as
r ¼ ð27q2η=2κÞ1=4x, and q is the integration constant.
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As we will see q is related to the total electric charge of the
black hole.
On the other hand, the field equations (44) lead to two

independent differential equations. More specifically, tt
and rr components lead to a same equation and θθ and ϕϕ
components lead to another independent equation. tt and
θθ components are, respectively,

r
dfðrÞ
dr

− 1þ fðrÞ þ 1

2
κr2EðrÞ2

�
1þ 3η

κ
EðrÞ2

�
¼ 0

ð54Þ

r
dfðrÞ
dr

þ r2

2

d2fðrÞ
dr2

−
1

2
κr2EðrÞ2

�
1þ η

κ
EðrÞ2

�
¼ 0:

ð55Þ

At first glance, it seems that we have two differential
equations for one unknown function fðrÞ. However, one
may easily show that Eq. (55) is also not an independent
equation. In fact, differentiating (54) with respect to r and
combining with (52), we get Eq. (55). Hence, we need to
solve only Eq. (54). The solution can be expressed as

fðrÞ ¼ 1 −
κM
4πr

−
Λr2

3
−

κ

2r

Z �
E2ðrÞ þ 3η

κ
E4ðrÞ

�
r2dr;

ð56Þ

where M is the “mass.” Note that the electric field is
singular at r ¼ 0. One may easily verify that, for small η=κ,
the Reissner-Nordstrom metric is recovered. In fact, the
expansion of fðrÞ and the electric field EðrÞ to the first
order of η=κ is

fðrÞ≃ 1 −
Λr2

3
− κ

�
M
4πr

−
q2

2r2
þ q4

10r6
η

κ

�

EðrÞ≃ q
r2

−
2q3

r6
η

κ
: ð57Þ

The metric is still singular at r ¼ 0. However, this singu-
larity is inside the horizon. Since this solution is an exterior
solution to a charged black hole, the r ¼ 0 singularity does
not imply a singular solution. One needs to find interior
solutions in the presence of normal matter in order to check
the singularity structure of EMSG. For example, the
singularity-free expanding or collapsing FRW universe
that we have already explored in this paper lies in this
category. Therefore, if a finite maximum density arises in
the interior solutions, more specifically in the gravitational
collapse, then EMSG proposes an entirely singularity-free
universe.

V. CONCLUSION

In this paper, a new covariant generalization of GR is
developed. This theory allows the existence of a term
proportional to TαβTαβ in the action. Therefore, we referred
to this theory as energy-momentum squared gravity
(EMSG). EMSG is different from GR only in the presence
of matter sources. In this theory, the correction term can be
defined only when the Lagrangian density for the matter
content is specified. Therefore, in order to find the field
equations, one must first vary the matter action with
respect to the gravitational degrees of freedom. Although
this feature is not the case in GR, it appears in theories
which introduce correction terms, including the energy-
momentum tensor in the generic action.
Applying this theory to a homogeneous and isotropic

spacetime, we find that there is a maximum energy density
ρmax and, correspondingly, a minimum length scale amin, at
the early Universe. In other words, we showed that there is
a bounce at early times and, consequently, the early-time
singularity is avoided. We found the exact value of ρmax.
Also, we estimated the minimum value of the cosmic scale
factor. Moreover, the dynamical system method has been
used to investigate the cosmological behavior of EMSG. It
turned out that EMSG possesses a true sequence of
cosmological eras (or fixed points). Comparing to the
ΛCDM model, there is an extra duty for the cosmological
constant in this theory. In fact, a positive Λ is necessary for
the existence of a regular bounce at the early Universe.
Also, an exact solution for a charged black hole has been

found. We recall that the Schwarzschild and Kerr metrics
are also solutions for EMSG field equations. However, the
charged black hole solution in EMSG is different from the
standard Reissner-Nordström spacetime.
In a further study, we need to check the existence of

stable compact stars in EMSG; for such a study in the
context of EiBI, see [20]. It is also necessary to investigate
the consequences of the rapid decrease of Ωr and the
accelerated expansion right after the bounce. Finally, one
may expect quantum effects to become important at ultra-
short distances and ultrahigh energy densities. Although, in
order to avoid these effects, one may require ρmax < ρp and
amin > lp, where ρp is the Planck density and lp the Planck
length. Using the current value of the radiation energy
density and scaling a0 ¼ 1, one can easily show that if
η > ℏG3, then both conditions are satisfied. If this con-
straint is consistent with the cosmological observations,
then, in EMSG, the Universe may not enter a quantum era
during its evolution.
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