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We study the generation of a magnetic field in primordial plasma of standard model particles at a
temperature T > 80 TeV—much higher than the electroweak scale. It is assumed that there is an excess
number of right-handed electrons compared to left-handed positrons in the plasma. Using the Berry-
curvature modified kinetic theory to incorporate the effect of the Abelian anomaly, we show that this chiral
imbalance leads to the generation of a hypermagnetic field in the plasma in both the collision dominated
and collisionless regimes. It is shown that, in the collision dominated regime, the chiral-vorticity effect can
generate finite vorticity in the plasma together with the magnetic field. Typical strength of the generated
magnetic field is 1027 G at T ∼ 80 TeV with the length scale 105=T, whereas the Hubble length scale is
1013=T. Furthermore, the instability can also generate a magnetic field of the order 1031 G at a typical
length scale 10=T. But there may not be any vorticity generation in this regime. We show that the estimated
values of the magnetic field are consistent with the bounds obtained from current observations.
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I. INTRODUCTION

There is a strong possibility that the observed magnetic
fields in galaxies and in the intergalactic medium could be
due to a process in the very early Universe. Understanding
the origin and dynamics of the primordial magnetic field is
one of the most intriguing problems of the cosmology (see
the recent reviews [1–3]). It should be noted here that there
still exists a possibility that the fields may not be of
primordial origin but might be created during the gravita-
tional collapse of galaxies [4,5]. In this work we are
interested in the primordial origin of the magnetic fields.
There exist several models describing the generation of
primordial magnetic fields in terms of cosmological defects
[6–8]: phase transitions [9–12], inflation [13,14], the
electroweak Abelian anomaly [15,16], string cosmology
[17,18], temporary electric charge nonconservation [19],
the trace anomaly [20], and breaking gauge invariance [21].
In a recent work [22], it was shown that a process like
Biermann battery can play a role in generating the
primordial magnetic field just after the recombination era.
In recent times there has been considerable interest

in studying the role of the quantum chiral anomaly in
generation of the primordial magnetic field [23–25]. In
Ref. [15] (see also [16]), it was argued that there can be
more right-handed electrons over left-handed positrons due
to a process in the early Universe at temperatures T very
much higher than the electroweak phase transition (EWPT)
scale (∼100 GeV). Their number is effectively conserved at
energy scales significantly above the electroweak phase
transitions and this allows one to introduce the chiral

chemical potentials μRðμLÞ. At temperatures lower than
TR ∼ 80 TeV, processes related to electron chirality flip-
ping may dominate over the Hubble expansion rate and
the chiral chemical potentials are not defined [26–28].
Furthermore, the right-handed current is not conserved due
to the Abelian anomaly in the standard model (SM), and it
satisfies the following equation:

∂μJ
μ
R ¼ −

g02y2R
64π2

Yμν ~Yμν ¼ −
g02

4π2
EY · BY: ð1Þ

Here, Yμν ¼ ∂
μYν − ∂

νYμ is the field tensor associated with
the hypercharge gauge field Yμ, and ~Yμν ¼ 1=2ϵμνρλYρλ. EY

and BY denote hyperelectric and hypermagnetic fields,
respectively. Furthermore, g0 indicates associate gauge
coupling, and yR ¼ −2 represents the hypercharge of the
right electrons. The right-hand sides of the first and
second equality signs are related with the Chern-Simons
number nCS:

nCS ¼ −
g02

32π2

Z
d3xBY · Y: ð2Þ

The anomaly equation (1) relates the change in the
right-handed electron density to the variation of the topo-
logical (Chern-Simons or helicity) charge of the gauge
fields. It was shown in Ref. [29] that the Chern-Simons
term contributes, in the effective standardmodel Lagrangian
of the fieldYμ, by the polarization effect through the nonzero
mean pseudovector current J j5 ¼ g02y2R=2hēRγjγ5eRi ¼
−g02y2RμeRBj=4π2, and the effective Lagrangian for gauge
field Yμ in the SM is [29,30]
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LY ¼ −
1

4
YμνYμν − J μYμ −

g02y2RμeR
4π2

BY · Y: ð3Þ

If these hypermagnetic fields survive at the time of the
EWPT, theywill produce ordinarymagnetic fields due to the
electroweak mixingAμ ¼ cos θwYμ. Where Yμ is the mass-
less Uð1ÞY Abelian gauge hypercharge field. It was shown
that the chiral imbalance in the earlyUniverse could give rise
to a magnetic field B ∼ 1022 G at the temperature T ∼
100 GeV with a typical inhomogeneity scale ∼106=T
[15]. In this work the authors studied theMaxwell equations
with the Chern-Simons term and a kinetic equation con-
sistent with Eq. (1). It was found that the transverse modes
could become unstable and give rise to the hypercharge
magnetic field [31,32]. In Ref. [23] the authors used
magnetohydrodynamics in the presence of chiral asymmetry
to study the evolution of the magnetic field. They showed
that the chiral-magnetic [31,33,34] and chiral-vorticity
effects [35] can play a significant role in the generation
and dynamics of the primordialmagnetic field. Furthermore,
it was demonstrated in Ref. [25] that evolution of the
primordial magnetic field is strongly influenced by the
chiral anomaly, even at a temperature as low as 10 MeV.
It was shown that an isotropic and translationally invariant
initial state of the standard model plasma in thermal
equilibrium can become unstable in the presence of global
charges [24]. The most general form of the polarization
operator Πij can be written

ΠijðkÞ ¼ ðk2δij − kikjÞΠ1ðk2Þ þ iϵijkkkΠ2ðk2Þ; ð4Þ

where k is a wave vector and k2 ¼ jkj2. This equation
satisfies the transversality condition kiΠij ¼ 0. It should be
noted here that the Chern-Simons term is∝ Y · ∂Y, whereas
the kinetic term is∝ ð∂YÞ2, and therefore the Chern-Simons
term can dominate over large length scales. Thus, a nonzero
value of Π2 when k → 0, implying the presence of a Chern-
Simons term in the expression for free energy.Using the field
theoretic framework in [24], it was shown that, for a
sufficiently small k < Π2ðk2Þ=Π1ðk2Þ, the polarization ten-
sor Πij has a negative eigenvalue, and the corresponding
eigenmode provides instability.
Recently, there has been an interesting development in

incorporating the parity-violating effects into a kinetic
theory formalism (see Refs. [31,36–38]). In this approach
the kinetic (Vlasov) equation is modified by including the
Berry-curvature term which takes into account chirality of
the particles. The modified kinetic equation is consistent
with the anomaly equation (1). Incorporation of the parity-
odd physics in kinetic theory leads to a redefinition of the
Poisson brackets which includes a contribution from the
Berry connection. Confidence that the new kinetic equation
captures the proper physics stems from the fact that the
equation is consistent with the anomaly equation (1) and
that it also reproduces some of the known results obtained

using the quantum field theory with the parity-odd inter-
action [39]. In fact, the “classical” kinetic equation can
reproduce—in the leading order in the hard dense loop
approximation—the parity-odd correlation of the under-
lying quantum field theory [30,40]. The modified kinetic
equation can also be derived from the Dirac Hamiltonian by
performing a semiclassical Foldy-Wouthuysen diagonal-
ization [41,42]. The modified kinetic equation can be
applied to both the high density and the high temperature
regime [41]. Furthermore, in Ref. [39] normal modes of
chiral plasma were analyzed using the modified kinetic
theory in the context of heavy-ion collisions. In that work
the authors found that, in the collisionless limit, the
transverse branch of the dispersion relation could become
unstable with a typical wave number k ∼ α0μ=π, where α0 is
the coupling constant and μ refers to the chiral chemical
potential.
Here, we would like to note that the authors in Ref. [15]

have used a heuristically written kinetic equation which is
consistent with Eq. (1) to study generation of the primordial
magnetic field. In addition, authors have used an expression
for the current by incorporating standard electric resistivity
and the chiral-magnetic effect. The chiral-vorticity effect
was not considered. It should be emphasized that the forms
of the kinetic equation used in Ref. [15] and in the Berry-
curvature modified theory [37] are very different. As both
the approaches describe the same physics, it would be
interesting to see under what conditions they give similar
predictions. Keeping the above discussion in mind, we
believe that it would be highly useful to consider the
problem of generating a primordial magnetic field in
the presence of the Abelian anomaly by using the Berry-
curvature modified kinetic theory. In this work we incor-
porate the effect of collisions in the modified kinetic theory
and derive expressions for the electric and magnetic
resistivities. The new kinetic framework also allows us
to calculate the generation of the primordial magnetic field
and the vorticity. Further on in our calculation, we
considered an isotropic and homogeneous initial state of
the particle distribution function. The magnetic field is
generated by the unstable transverse modes in the presence
of chiral charges (Q5). This can be seen by integrating
Eq. (1) over space. One can write ∂0ðQ5 þ α0

π HÞ ¼ 0,
where Q5¼

R
j0d3x and the helicity H¼ 1

V

R
d3xðY ·BYÞ.

The finite helicity state can be created even if the initial
state has H ¼ 0, but Q5 ≠ 0. Thus, the magnetogenesis by
net nonzero chiral charges may not require any preexisting
seed field.
This manuscript is organized into three forthcoming

sections. In Sec. II we briefly state the (3þ 1) formalism of
MacDonald and Thorne [43] and the kinetic theory with the
Berry curvature. In Sec. III we apply this formalism to a
study of the primordial magnetic field generation in the
presence of chiral asymmetry. We also calculate the
vorticity generation in the plasma due to the chiral
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imbalance. Section IV contains our results and a brief
discussion. We show that our estimated value of the peak
magnetic field actually falls within the constraints obtained
from current observations.

II. BASIC FORMALISM

A. Maxwell’s equations in the expanding Universe

In this work we shall study the generation of a primordial
magnetic field at the time when the temperature of the
Universe was much higher than TR ∼ 80 TeV (much higher
than the EWPT temperature). We intend to solve the
coupled system of the modified kinetic and the
Maxwell’s equations in the expanding Universe back-
ground. Here, we note that we ignore the fluctuations in
the metric due to the matter perturbation. For this, one
needs to write the underlying equations in a general
covariant form. Interestingly, the techniques developed in
Refs. [44–47] allow one to write the system of kinetic and
Maxwell’s equations in the expanding background in a
form that looks similar to their flat space-time form. In this
formalism the well developed intuition and techniques of
the flat space-time plasma physics can be exploited to study
the problem at hand. This can be accomplished by choosing
a particular set of fiducial observers [44] at each point of
space-time at which all of the physical quantities, including
hyperelectric and magnetic fields, are measured. A line
element for the expanding background can be written using
the Friedmann-Lemaître-Robertson-Walker metric as

ds2 ¼ −dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ; ð5Þ

where x, y, and z represent comoving coordinates. Here, t is
the proper time seen by observers at a fixed x, y, and z and
aðtÞ is the scale factor. One can introduce the conformal
time η using the definition η ¼ R

dt=a2ðtÞ to write this
metric as

ds2 ¼ a2ðηÞð−dη2 þ dx2 þ dy2 þ dz2ÞÞ: ð6Þ

The (hyper)electric Ephy, the (hyper)magnetic Bphy, and the
current density Jphy are related to the corresponding fiducial
quantities by transformations: E ¼ a2Ephy, B ¼ a2Bphy,
J ¼ a3Jphy. One can now write the Maxwell’s equations
in the fiducial frame as

∂B

∂η
þ ∇ × E ¼ 0; ð7Þ

∇ · E ¼ 4πρe; ð8Þ

∇ ·B ¼ 0; ð9Þ

∇ ×B ¼ 4πJ þ ∂E

∂η
; ð10Þ

where B, E, ρe, andJ are, respectively, the magnetic field,
the electric field, the charge density, and the current density
seen by the fiducial observer.

B. Kinetic theory with Berry curvature

The charge ρe and current J in the Maxwell’s equa-
tions (7)–(10) can be calculated using the Berry-curvature
modified kinetic equation, which is also consistent with the
quantum anomaly equation. The modified kinetic equation
is given by

∂f
∂η

þ 1

1þ eΩp ·B

�
ðe ~E þ e~v ×Bþ e2ð ~E · BÞΩpÞ ·

∂f
∂p

þ ð~vþ e ~E × Ωp þ eð~v · ΩpÞBÞ ·
∂f
∂r

�
¼

�
∂f
∂η

�
coll

;

ð11Þ

where e is the charge of the particles and has relation
with the electroweak (EW) mixing angle θw: e ¼ g0 cos θw.
Also, the g0 is related with the Uð1ÞY gauge coupling
constant α0 as α0 ¼ g02cos2θw=4π. ~v ¼ ∂ϵp=∂p ¼ v, and

e ~E ¼ eE − ∂ϵp=∂r.Ωp ¼ �p=ð2p3Þ is the Berry curvature.
ϵp is defined as ϵp ¼ pð1 − eB · ΩpÞ, with p ¼ jpj. The
positive sign corresponds to right-handed fermions,
whereas the negative sign is for left-handed ones. In the
absence of a Berry correction, i.e., Ωp ¼ 0, the above
equation reduces to the Vlasov equation when the collision
term on the right-hand side of Eq. (11) is absent.
As we have already stated, we are interested in the

temperature regime T > TR ≫ TEW. At these temperatures,
electrons are massless. The only process that can change
electron chirality is its Yukawa interaction with the Higgs
boson. However, at this temperature this interaction is not
strong enough to alter electron chirality. It is important here
to note that, for a temperature smaller thanTR, electronmass
plays a major role in left-right asymmetry. Recently, in
Ref. [48], it was shown that at a temperature of the order of
MeV, the mass of the electron plays an important role in
determining themagnetic properties of the protoneutron star
by suppressing the chiral charge density during the core
collapse of the supernova. However, for the present case we
ignore the electron mass by considering only the T > TR
regime. Thus, wewrite the particle number densitymodified
by the Berry term as

N ¼
Z

d3p
ð2πÞ3 ð1þ eB:ΩpÞf: ð12Þ

The above equation (11) can be converted to the following
form by multiplying it by ð1þ eB ·ΩpÞ and integrating
over p:
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∂N
∂η

þ ∇ ·J ¼ −e2
Z

d3p
ð2πÞ3

�
Ωp ·

∂f
∂p

�
ðE ·BÞ: ð13Þ

In Eq. (13) J is the total current and is defined as
J ¼ ΣaJ a. Here, index a denotes the current contribution
fromdifferent species of the fermion, e.g., right-left particles
and their antiparticles. J a is defined as

J a ¼ −ea
Z

d3p
ð2πÞ3

�
ϵap

∂fa
∂p

þ ea
�
Ωa

p ·
∂fa
∂p

�
ϵapB

þ ϵpΩa
p ×

∂fa
∂r

�
þ eaðE × σaÞ; ð14Þ

where σa ¼ R
d3p=ð2πÞ3Ωa

pfa and ϵap ¼ pð1 − eaB ·Ωa
pÞ,

with p ¼ jpj. Depending on the species, the charge e, the
energy of the particles ϵp, the Berry curvature Ωp, and the
form of the distribution function f changes. For the right-
handed particle, a ¼ R with a hypercharge e, for the right-
handed antiparticle,a ¼ R̄with a charge of−e, etc. It is clear
from Eq. (13) that, in the presence of external electric and
magnetic fields, the chiral current is no longer conserved.
The first term inEq. (14) is the usual current equivalent to the
kinetic theory and the remaining second and third terms are
the current contribution by the Berry correction. The last
term results from the anomalous Hall effect and it vanishes
for a spherically symmetric distribution function. If we
follow the power counting scheme used in [31], i.e.,
Yμ ¼ OðϵÞ, ∂r ¼ OðδÞ [where Yμ represents the Uð1ÞY
gauge field] and considering only those terms of the order
of OðϵδÞ in Eq. (11), we have

�
∂

∂η
þ v ·

∂

∂r

�
fa þ

�
eaE þ eaðv ×BÞ − ∂ϵap

∂r

�
·
∂fa
∂p

¼
�
∂fa
∂η

�
coll

; ð15Þ

wherewe have taken v ¼ p=p. In the subsequent discussion,
we shall apply this equation to a study of the evolution of the
primordial magnetic field.

C. Current and polarization tensor for chiral plasma

Here, we assume that the plasma of the standard particles
is in a state of “thermal equilibrium” at a temperature
T > TR, and at these temperatures the masses of the plasma
particles can be ignored. We also assume that a left-right
asymmetry exists and that there is no large-scale electro-
magnetic field. Thus, the equilibrium plasma is considered
to be in a homogeneous and isotropic state, which is
similar to the assumptions made in Ref. [15,24]. For a
homogeneous and isotropic conducting plasma in thermal
equilibrium, the distribution function for different species is

f0aðpÞ ¼
1

expðϵ0p−μaT Þ þ 1
: ð16Þ

If δfR and δfR̄ are fluctuations in the distribution functions
of the right electron and the right antiparticles around their
equilibrium distribution. Then we can write the perturbed
distribution functions as

fRðr; p; ηÞ ¼ f0RðpÞ þ δfRðr; p; ηÞ; ð17Þ

fR̄ðr; p; ηÞ ¼ f0R̄ðpÞ þ δfR̄ðr; p; ηÞ: ð18Þ

Subtracting the equation for a ¼ R̄ from a ¼ R using
Eq. (15), one can write

�
∂

∂η
þ v ·

∂

∂r

�
fðr; p; ηÞ þ ep

∂ðB · ΩpÞ
∂r

·
∂f0
∂p

þ ðE:vÞ df0
dp

¼
�
∂fðr; p; ηÞ

∂η

�
coll

; ð19Þ

where fðr; p; ηÞ ¼ ðfR − fR̄Þ and f0 ¼ f0R þ f0R̄. Here,

we have used ∂f0

∂p ¼ v df0

dp . This equation relates the fluctua-
tions of the distribution functions of the charged particles to
the induced gauge field fluctuations. The gauge field
fluctuations can be seen from the Maxwell’s electromag-
netic equations (7)–(10). Under the relaxation time
approximation, the collision term can be written as
ð∂fa=∂ηÞcoll ≈ −νcðfa − f0aÞ (one can also look at some
studies of chiral kinetic theory with collisions in
Refs. [49,50]). Next, we take the Fourier transform of
all of the perturbed quantities, namely, E, B, and fðr; p; ηÞ,
by considering the spatiotemporal variation of these
quantities as exp½−iðωη − k · rÞ�. Then, using Eq. (19),
one can get

fk;ω ¼
−e½ðv · EkÞ þ i

2p ðv ·BkÞðk · vÞ� df0dp

iðk · v − ω − iνcÞ
: ð20Þ

Thus, the current contribution for the right-handed particle
and the right-handed antiparticles in terms of a mode
function can be written using Eq. (14) as (ignoring the
anomalous Hall current part)

J kR ¼ e
Z

d3p
ð2πÞ3

��
v −

i
2p

ðv × kÞ
�
fkωR

−
e

2p2
fBk − vðv ·BkÞgf0 þ

e
2p

Bk
df0
dp

�
: ð21Þ

In a similar way, we can get current contributions from
the left-handed particle and the left-handed antiparticle.
Thus, we can obtain the total current by adding the
contributions from both the left- and right-handed particles
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and antiparticles by putting perturbations fkω for all species
into Eq. (21) and adding them:

J k ¼ −m2
D

Z
dΩ
4π

vðv:EkÞ
iðk:v−ω− iνcÞ

−
h2D
2

Z
dΩ
4π

fBk − vðv:BkÞg

−
ig2D
4

Z
dΩ
4π

ðv× kÞðv:BkÞðk:vÞ
ðk:v−ω− iνcÞ

−
c2D
2

Z
dΩ
4π

�
vðv:BkÞðk:vÞ− ðv× kÞðv:EkÞ

ðk:v−ω− iνcÞ
þBk

�
:

ð22Þ

Here, Ω represents the angular integrals. In Eq. (22), we

have defined m2
D ¼ e2

R p2dp
2π2

d
dp ðf0R þ f0R̄ þ f0L þ f0L̄Þ,

c2D ¼ e2
R pdp

2π2
d
dp ðf0R−f0R̄−f0Lþf0L̄Þ, g2D ¼ e2

R dp
2π2

d
dp×

ðf0R þ f0R̄ þ f0L þ f0L̄Þ, and h2D ¼ e2
R dp

2π2
ðf0R − f0R̄−

f0L þ f0L̄Þ.
Expression for the polarization tensor Πij can be

obtained from Eq. (22) by writing the total current in
the following form: J i

k ¼ ΠijðkÞYjðkÞ, using Ek ¼ −iωYk

and Bk ¼ iðk × YkÞ. One can express Πij in terms of the
longitudinal Pij

L ¼ kikj=k2, transverse Pij
T ¼ðδij−kikj=k2Þ,

and axial Pij
A ¼ iϵijkkk projection operators as Πik ¼

ΠLPik
L þ ΠTPik

T þ ΠAPik
A . After performing the angular

integrations in Eq. (22), one obtains ΠL, ΠT , and ΠA as
given below:

ΠL ¼ −m2
D
ωω0

k2
½1 − ω0LðkÞ�; ð23Þ

ΠT ¼ m2
D
ωω0

k2

�
1þ k2 − ω02

ω0 LðkÞ
�
; ð24Þ

ΠA ¼ −
h2D
2

�
1 − ω

�
1 −

ω02

k2

�
LðkÞ − ω0ω

k2

�
; ð25Þ

where LðkÞ ¼ 1
2k lnðω

0þk
ω0−kÞ and ω0 ¼ ωþ iνc. Also, m2

D ¼
4πα0ðT2

3
þ μ2Rþμ2L

2π2
Þ and h2D ¼ 2α0Δμ

π . We have defined
Δμ ¼ ðμR − μLÞ. In the above integrals, we have replaced
e by α0 using the relation e2 ¼ 4πα0. First, consider the
case where νc ¼ 0. In the limit ω → 0, ΠL and ΠT vanish
and the parity-odd part of the polarization tensor
ΠA ¼ h2D=2 ≈ α0Δμ=π. Here, it should be noted that ΠA
does not get thermal correction. This could be due to the
fact that the origin of the ΠA term is related to the axial
anomaly, and it is well known that the anomaly does not
receive any thermal correction [51–53]. This form of ΠA
is similar to the result obtained in [24] using quantum
field theoretic arguments at T ≤ 40 GeV. However, in the

kinetic theory approach presented here, no such assumption
is made. Normal modes for the plasma can be obtained by
using expressions for ΠL, ΠT , and ΠA. Using the equation
∂νFμν ¼ −4πJ μ, we can write the following relation:

½M−1�ijYjðkÞ ¼ −4πJ i
k; ð26Þ

where ½M−1�ik ¼ ½ðk2 − ω2Þδik − kikk þ Πik�. Dispersion
relations can be obtained from the poles of ½M−1�ik, which
are as given below:

ω2 ¼ ΠL;

ω2 ¼ k2 þ ΠTðkÞ � kΠA:

One can study the normal modes of the chiral plasma and
instabilities using these dispersion relations. However, it is
more instructive to study the dynamical evolution of the
magnetic field by explicitly writing time dependent
Maxwell equations.

III. GENERATION OF THE PRIMORDIAL
MAGNETIC FIELD AND VORTICITY

Plasmas with chirality imbalance are known to have
instabilities that can generate magnetic fields in two
different regimes: (i) collision dominated, k, ω ≪ νc
[15], and (ii) the collisionless case, i.e., νc ¼ 0 [39]. In
this section we analyze how the magnetic fields evolve in
the plasma due to these instabilities, within the modified
kinetic theory framework. Expression for the total current
described by Eq. (22) can be written as J i

k ¼ σijEEk
jþ

σijBB
j
k, where σijE and σijB are electrical and magnetic

conductivities. The integrals involved in Eq. (22) are rather
easy to evaluate in the limit k, ω ≪ νc, and one can write
the expression for σijE and σijB as

σijE ≈
�
m2

D

3νc
δij þ i

3νc

α0Δμ
π

ϵijlkl
�
; ð27Þ

σijB ≈ −
4

3

α0Δμ
π

δij; ð28Þ

Here, we would like to note that the Berry-curvature
correction in the kinetic equation gives us an additional
contribution in the expression for σijE which was not
incorporated in Ref. [15]. The first term is the usual
dissipative part of the electric current and it contributes
to the Joules dissipation. The second term results from the
chiral imbalance and it does not give any contribution to the
Joules heating. As we shall demonstrate later, this term is
responsible for the vorticity current [33]. One can write the
total current as J i

k ¼ σijEE
j
k þ σijBB

j
k and the Maxwell’s

equation as iðk ×BkÞi ¼ 4πJ i
k. Here, we have dropped the

displacement current term (this is valid when ω
4πσ ≪ 1).
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Next, by taking a vector product of k with the above
Maxwell equation, one obtains (using Maxwell’s equations
and after some simplification)

∂Bk

∂η
þ
�

3νc
4πm2

d

�
k2Bk −

�
α0Δμ
πm2

D

�
ðk × ðk × EkÞÞ

þ i
4α0νcΔμ
πm2

D
ðk ×BkÞ ¼ 0: ð29Þ

This is the magnetic diffusivity equation for the chiral
plasma. By replacing ðk × EkÞ by − 1

i
∂Bk
∂η in Eq. (29), we

can solve this equation without a loss of generality by
considering the propagation vector k in the z direction and
the magnetic field having components perpendicular to the
z axis. After defining two new variables, ~Bk ¼ ðB1

k þ iB2
kÞ

and ~B0
k ¼ ðB1

k − iB2
kÞ, one can rewrite Eq. (29) as

∂ ~Bk

∂η
þ
"� 3νc

4πm2
d

	
k2 −

�
4α0νcΔμ
πm2

D

	
k�

1þ α0Δμk
πm2

D

	
#
~Bk ¼ 0; ð30Þ

∂ ~B0
k

∂η
þ
"� 3νc

4πm2
d

	
k2 þ

�
4α0νcΔμ
πm2

D

	
k�

1 − α0Δμk
πm2

D

	
#
~B0
k ¼ 0: ð31Þ

Thus, the magnetic field vector B can be decomposed into

these new variables, ~Bk and ~B0
k, having definite helicity (or

circular polarization). The effect of Ohmic decay is already
there in the above equations due to the inclusion of
collision frequency νc. It should be noted here that, if
α0Δμk=πm2

D ≪ 1, Eq. (30) is similar to the magnetic field
evolution equation considered in Ref. [15]. In this limit,
Eq. (31) will give a purely damping mode. In this case, the
dispersion relation will be

iω ¼ 3νc
4πm2

d

k2 −
4α0νcΔμ
πm2

D
k: ð32Þ

In the Appendix we show that the dispersion relation we
have found here using kinetic theory matches the dispersion
relation obtained in [39].
The instability can also occur in the collisionless regime

(νc ¼ 0) [39]. In the quasistatic limit, i.e., ω ≪ k, one can
define the electric conductivity as σijE ≈ πðm2

D=2kÞδij and
the magnetic conductivity as σijB ≈ ðh2D=2Þδij. Here, it
should be noted that the above conductivities do not
depend upon the collision frequency. Similar to the
previous case, one can take the propagation vector in
the z direction and then consider the components of the
magnetic field in the direction perpendicular to the z axis.
One can write a set of decoupled equations describing the
evolution of the magnetic field using the variables ~Bk and
~Bk
0 as

∂ ~Bk

∂η
þ
�
k2 − 4α0Δμk

3

πm2
D

2k

�
~Bk ¼ 0; ð33Þ

∂ ~B0
k

∂η
þ
�
k2 þ 4α0Δμk

3

πm2
D

2k

�
~Bk
0 ¼ 0: ð34Þ

Here, we note that, if one replaces ∂=∂η by −iω, Eqs. (33)
and (34) give the same dispersion relation for the instability
as discussed in Ref. [39].

A. Vorticity generated from chiral imbalance
in the plasma

It would be interesting to see whether the instabilities
arising due to chiral imbalance can lead to vorticity
generation in the plasma. In order to study the vorticity
of the plasma, we define the average velocity as

hvi ¼ 1

n̄

Z
d3p
ð2πÞ3 vðδfR − δfR̄ þ δfL − δfL̄Þ: ð35Þ

Here, we have used the perturbed distribution function in
the numerator of the above equation, which is due to the
fact that the equilibrium distribution function is assumed to
homogeneous and isotropic and therefore will not contrib-
ute to vorticity dynamics. The denominator is the total
number density and is defined as (in Ref. [54], p. 63)

n̄ ¼ nparticle − nantiparticle

¼ df

Z
∞

0

d3p
ð2πÞ3

�
1

1þ expðp−μT Þ −
1

1þ expðpþμ
T Þ

�
; ð36Þ

which, in the case of chiral plasma, gives
n̄ ¼ 2

3
T2ðμR þ μLÞ. We consider the k, ω ≪ νc regime;

in this case, the perturbed distribution function for, say, the
right-handed particles can be written as

δfk;ωR ¼ −
e
νc

�
ðv · EkÞ þ

i
2p

ðv · BkÞðk · vÞ
�
df0R
dp

: ð37Þ

If we add the contribution for all of the particles species
and their antiparticles, one can write the numerator in
Eq. (35) as

ffiffiffiffiffi
α0

π3

r
1

νc

�
T2

3
þ μ2R þ μ2L

2π2

�
Ek ≈

ffiffiffiffiffi
α0

π3

r
T2

3νc
Ek: ð38Þ

Above, we have neglected 3
2π2

μ2Rþμ2L
T2 in comparison to one, as

the values of μR=T and μL=T are very small [Oð10−4Þ]. One
can write the average velocity as follows:
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hvki ¼
ffiffiffiffiffi
α0

π3

r
1

2νc

1

μR þ μL
Ek: ð39Þ

The vorticity can now be obtained by taking the curl of
Eq. (39) and assuming that the chemical potentials and the
temperature are constant in space and time:

hωki ¼ i

ffiffiffiffiffi
α0

π3

r
1

2νc

1

μR þ μL
ðk × EkÞ: ð40Þ

One can find the contribution of the vorticity to the total
current from Eq. (27) and J i

kω ¼ σijEEk
j þ σijBB

j
k. By using

Eq. (40), the vorticity current can be written as

J ω ≈ −
ffiffiffiffiffiffiffiffiffi
4πα0

9

r
ðμ2R − μ2LÞω ¼ ξω: ð41Þ

Thus, in the absence of any chiral imbalance, there is no
vorticity current. Here, we note that our definition agrees
with Ref. [55]. In the Appendix we demonstrate that our
kinetic theory is also consistent with the second law of
thermodynamics. Furthermore, using Eq. (40), one can
eliminate ðk × EkÞ in Eq. (29) and obtain

∂Bk

∂η
þ 3νc
4πm2

d

k2Bk þ i

ffiffiffiffiffiffiffiffiffi
4πα0

p
νc

m2
D

ðμ2R − μ2LÞðk × ωkÞ

þ i

�
4α0νc
πm2

D

�
ðμR − μLÞðk ×BkÞ ¼ 0: ð42Þ

In this equation, the second term is the usual diffusivity
term. However, the third and fourth terms are additional
terms, which, respectively, represent the vorticity and
chiral-magnetic effects on the chiral plasma. Therefore,
Eq. (29) actually contains terms resulting from vorticity and
the magnetic effect. The saturated state of the instability can
be studied by setting ∂ηBk ¼ 0 in Eq. (42). After taking a
dot product of Eq. (42) with fluid velocity vk after setting
∂ηBk ¼ 0, one can obtain�

ωk − i
16Tδ
3

vk

�
·Bk ¼ 0: ð43Þ

Here, we have defined δ ¼ α0ðμR − μLÞ=T. We can write an
expression for the magnetic field which satisfies the above
equation (43) as

Bk ¼ gðkÞk ×
�
ωk − i

16Tδ
3

vk

�
: ð44Þ

Where gðkÞ is any general function, which can be deter-
mined by substituting the above expression for the mag-
netic field into Eq. (42) in a case of steady state. In a very
large length scale, i.e., k → 0,

gðkÞ ¼ −
3

32

ffiffiffiffiffiffi
π3

α03

s
μ2R − μ2L

ðμR − μLÞ2
: ð45Þ

Thus, for a very large length scale k → 0, the magnetic field
in the steady state is

Bk ¼ −i

ffiffiffiffiffiffiffi
π3

4α0

r
μ2R − μ2L
ðμR − μLÞ

ωk: ð46Þ

This equation relates the vorticity generated during the
instability to the magnetic field in the steady state.
However, in the collisionless regime (ω ≪ k and

νc ¼ 0), one can have an instability described by
Eq. (33) with the typical scales k ∼ α0Δμ and jωj ∼
α02Tδ [39]. Using the expression for electric and magnetic
conductivities for modes in this regime, one can write the
magnetic diffusivity equation as

∂Bk

∂η
þ k2

4πσ1
Bk − i

Tδ
πσ1

ðk ×BkÞ ¼ 0; ð47Þ

where σ1 ¼ πm2
D=2k. Here, it should be noted that, unlike

Eq. (42), the above equation does not have a vorticity term.
The last term on the left-hand side arises from the chiral-
magnetic effect. In the steady state (∂ηBk ¼ 0), one can get
∇ ×B ¼ ð4TδÞB. This equation resembles the case of a
magnetic field in a force free configuration of the conven-
tional plasma where the plasma pressure is assumed to be
negligible in comparison to the magnetic pressure [56].
However, for our case no such assumption about the plasma
pressure is required.

IV. RESULTS AND DISCUSSION

In the previous sections, we applied the modified kinetic
theory in the presence of chiral imbalance and obtained
equations for the magnetic field generation for both the
collision dominated and the collisonless regime. The
instability can lead to generation of the magnetic field at
the cost of the chiral imbalance. This can be seen from
the anomaly equation nL − nR þ 2α0H ¼ constant above

T > 80 TeV, where nL;R ¼ μL;RT2

6
and H is the magnetic

helicity, defined as

H ¼ 1

V

Z
d3xðY · BYÞ: ð48Þ

One can estimate the strength of the generated magnetic
field as follows. From Eqs. (1) and (2), one can notice that
the right-handed electron number density nR changes with
the Chern-Simons number ncs of the hypercharge field

configuration, as ΔnR ¼ 1
2
y2Rncs. Here, nCS ≈

g02

16π2
kY2 and

ΔnR ¼ μRT2 ¼ 88
783

δT3 [54]. From this, one can estimate
the magnitude of the generated physical magnetic field as

Bphy
Y ≈

�
π2kδ
g02α0T

�1
2

T2; ð49Þ
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where we have used Bphy
Y ∼ kY and k−1 is the physical

length scale, which is related to the comoving length
by k−1phy ¼ ða=kcÞ−1.
Now consider the regime ω, k ≪ νc, where the dynamics

for the magnetic field is described by Eqs. (30) and (31).
Equation (30) clearly gives unstable modes for which
ð Tδ
πm2

D
Þk < 1 is satisfied. However, Eq. (31) gives a purely

damping mode if the condition ð Tδ
πm2

D
Þk ≪ 1 is satisfied. One

can rewrite this condition as ð Tδ
3πσνc

Þk ∼ ð10−2
3π

δ
νc
Þk ≪ 1. Here,

we have used m2
D ¼ 3νcσ with νc ∼ α02 lnð 1α0ÞT [57] and

σ ¼ 100T. Thus, for k ≪ νc and δ ≪ 1, Eq. (31) can only
give purely damped modes. For these values of k and δ,
Eq. (30) assumes a form similar to the equation for the
magnetic field dynamics considered in Ref. [15]. If one
replaces ∂

∂η by −iω in Eq. (30), the dispersion relation for
the unstable modes can be obtained. The fastest growth of
the perturbation occurs for kmax 1 ∼ 8Tδ

3
, and the maximum

growth rate can be found to be Γ1 ∼ 16
3π

T2δ2

m2
D
νc. Here, we note

that our kmax 1 differs by a numerical factor from the value
of k where the peak in the magnetic energy is calculated
using chiral magnetohydrodynamics [23]. For δ ∼ 10−6 and
α0 ∼ 10−2, one can show that kmax 1

νc
≪ 1 and Γ1

νc
≪ 1 is

satisfied. For these values of kmax 1, α0, and δ, one can
estimate the magnitude of the generated magnetic field
using Eq. (49). We find B ∼ 1026 G for α0 ∼ 10−2 and the
typical length scale λ ∼ 105=T. Here, we would like to note
that the typical Hubble length scale is ∼1013=T, which is
much larger than the typical length scale of instability. Our
estimate of magnetic field strength B in the collision
dominated regime broadly agrees with Ref. [15]. Here,
we note again that Eq. (30) includes the effect of Ohmic
decay due to the presence of the collision term. Our
analysis shows that Ohmic decay is not important for
instability. Furthermore, we have shown that the chiral
instability can also lead to the generation of vorticity in the
collision dominated regime. The typical length scale for
vorticity is similar to that of the magnetic field. From
Eq. (46), we take the magnitude of the vorticity to
be ωv ∼ 10−4B=T.
Next, we analyze the chiral instability in collisionless

regime νc ≪ ω ≪ k, considering Eqs. (33) and (34). Here,
one finds the wave number kmax 2 ¼ 8δT

9
, at which the

maximum growth rate Γ2 ¼ 1
2π

T3δ3

m2
D
can occur. Now, kmax 2

νc
¼

8
9

δ
α02 ≪ 1 and Γ2

νc
∼ 3δ3

8π2α3 lnð1=αÞ ≪ 1, which puts constraints on

the allowed values of δ. For δ ∼ 10−1, α ∼ 10−2, and
T ∼ TR, one can estimate the magnitude of the magnetic
field to be 1031 G. The typical length scale for the magnetic
field is λ2 ∼ 10=T, which is much smaller than the length
scale in the collision dominated case. This is to be expected,
as the typical length scale associated with kinetic theory is

smaller than the hydrodynamical case (related to the

collision dominated regime).
The upper and lower bounds on the present observed

magnetic field strength from the Planck 2015 results [58],
and blazars [59,60] are between 10−17 G and 10−9 G.
However, recently, in Ref. [61], it was shown that, if the
magnetic field is helical and was created before the
electroweak phase transition, then it can produce some
baryon asymmetry. This can put more stringent bounds on
the magnetic field (10−14 G–10−12 G). Since the magnetic
fields and the plasma evolutions are coupled, the produced
magnetic field may not evolve adiabatically—i.e., like
aðηÞ−2—due to plasma processes like turbulence.
Similarly, the magnetic correlation length λB ∝ k−1max may
not be proportional to aðηÞ. Typical values of λB for the
collision dominated and collisionless cases in our case are
105=T and 10=T, respectively. The length scale of turbu-

lence can be written as λT ≈ Bpffiffiffiffiffiffiffiffiffiffiffiffi
εchþpch

p η ∼ Bpffiffiffiffiffiffiffiffiffiffiffiffi
εchþpch

p H−1,

where Bp is the physical value of the magnetic field and
εch and pch are, respectively, the energy and pressure
densities of the charged particles. gch� ðTÞ and gtotal� ðTÞ are
the number of degrees of freedom of the Uð1Þ charged
particles in the thermal bath. For λB ≫ λT, the effect of
turbulence can be negligible. However, the maximum value
of the magnetic field (for νc ¼ 0) is about 1031 G in our
case, and this gives λT ≈ 106=T. Thus, we have λB ≪ λT
and, following Ref. [61], we assume that the generated
magnetic fields will undergo an inverse cascade soon after
their generation. One can relate Bp and λB, which undergo
the process of inverse cascading with the present day values
of magnetic field B0 and the correlation length λ0 using the
following equations [61]:

BIC
P ðTÞ≃ 9.3 × 109 G

�
T

102 GeV

�
7=3

�
B0

10−14 G

�
2=3

×

�
λ0

102 pc

�
1=3

GBðTÞ; ð50Þ

λICB ðTÞ≃ 2.4 × 10−29 Mpc

�
T

102 GeV

�
−5=3

�
B0

10−14 G

�
2=3

×

�
λ0
1 pc

�
GλðTÞ; ð51Þ

where GBðTÞ ¼ ðgtotal� ðTÞ=106.75Þ1=6ðgch� ðTÞ=82.75Þ1=6×
ðg�sðTÞ=106.75Þ1=3 and GλðTÞ ¼ ðgtotal� ðTÞ=106.75Þ−1=3
ðgch� ðTÞ=82.75Þ−1=3ðg�sðTÞ=106.75Þ1=3. From these equa-
tions, one can see that, for the collision dominated case,
Bp ≃ 1026 G can be achieved when B0 ≃ 10−12 G and
λ0 ≃ 100 Kpc. However, in the collisionless regime, a
value of B0 ≃ 10−11 G and λ0 ≃ 1 Mpc at temperature
T ¼ 80 TeV gives the values that we have found in our
estimates for the peak value of the magnetic field. Thus, the
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values of the magnetic field and the correlation length scale
estimated by us can be consistent with the current bounds
obtained from cosmic microwave background (CMB)
observation and necessary for current observed baryon
assymmetry. Since the value of Bp and λB for the collision
dominated case are similar to that given in Ref. [62], we
believe that they are also consistent with big bang nucleo-
synthesis constraints.
In conclusion, we have studied the generation of a

magnetic field due to the anomaly in primordial plasma
consisting of standard model particles. We have applied the
Berry-curvature modified kinetic theory to the study of this
problem. The effect of collision in the kinetic equation had
been incorporated using the relaxation time approximation.
We have found that chiral instability can occur in the
presence of dissipation in both collision dominated and
collisionless regimes. We have found in the collision
dominated case that chiral instability can produce a mag-
netic field of the order of 1027 G, with the typical length
scale being 105=T. These results are in broad agreement
with Ref. [15]. However, in that work the authors used a
heuristic kinetic equation, and the collision term was not
explicitly written in the kinetic equation. However, the
expression for the total current included the Ohm’s law. We
have obtained expressions for electric and magnetic con-
ductivities using the modified kinetic theory.We have found
that the expression for electric conductivity in chiral plasma
has a nondissipative term in addition to the standard Ohmic
term. It has been shown that this new term is related to the
vorticity current term found in chiral magnetohydrodynam-
ics [63]. Furthermore, we have also studied chiral instability
in the collisionless regime. It has been shown that, in this
regime, a magnetic field of strength 1031 G can be gen-
erated at the length scale 10=T. These length scales are
much smaller than the length scale of the magnetic field in
the collision dominated regime. Furthermore, the obtained
values for the magnetic-field strength and the length scale
have been shown to be consistent with the recent constraints
from CMB data. We have also shown that in the collision
dominated regime results of kinetic theory agree with the
hydrodynamic treatment.
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APPENDIX: SECOND LAW OF
THERMODYNAMICS AND DISPERSION
RELATION FROM HYDRODYNAMICS

FOR CHIRAL PLASMA

In Ref. [55] it was shown that parity-violating hydro-
dynamics violate the second law of thermodynamics,

∂αsα ≥ 0, where sα is the entropy current density,
unless certain constraints on the transport coefficients are
imposed. Therefore, our results in the collision dominated
regime should be in agreement with Ref. [55]. The most
general equations for U(1) and entropy currents can be
written as [55]

να ¼ ν0α þ ξðμ; TÞωα þ ξBðμ; TÞBα; ðA1Þ

sα ¼ s0α þDðμ; TÞωα þDBðμ; TÞBα; ðA2Þ

where ν0α ¼ ρUα þ σEα and s0α ¼ sUα − μ
T ν

α, with ρ and
Uα being the charge density and the hydrodynamic four-
velocity, respectively. Entropy density can be found using
the thermodynamic relation sT þ μρ ¼ ðεþ pÞ, where ε
denotes the energy density and p denotes the pressure.
In the collision dominated limit there is no charge sepa-
ration in the plasma, and one can regard the total charge
density as zero. Using the energy-momentum tensor
Tαβ ¼ ðεþ pÞuαuβ þ pgαβ, one can write the equation
of motion as ∂αTαβ ¼ Fβγjγ and the divergence of the
entropy current as

∂αðsα −Dωα −DBBαÞ ¼ −ðνα − ξωα − ξBBαÞ

×

�
∂α

μ

T
−
Eα

T

�
− C

μ

T
EαBα:

ðA3Þ

According to Ref. [55], the second law of thermodynamic
is satisfied if the following four equations are satisfied:

∂αD −
2∂αp
εþ p

D − ξ∂α
μ

T
¼ 0; ðA4Þ

∂αDB −
∂αp
εþ p

DB − ξB∂α
μ

T
¼ 0; ðA5Þ

−2DB þ ξ

T
¼ 0; ðA6Þ

ξB
T

− C
μ

T
¼ 0. ðA7Þ

In Ref. [55] these equations are solved and one can know
the dependence of ξ, ξB, D, and DB on μ and T up to an
arbitrary constant. Next, we assume the perturbation
scheme considered for the kinetic approach. With no
background field tensor, one can write Fαβ ¼ δFαβ.
Also, the energy density ε, the pressure p, and the flow
velocity Uα can be written in this scheme as ε ¼ ε0 þ δε,
p ¼ p0 þ δp, and Uα ¼ Uα

0 þ δuα, respectively, where all
quantities with the subscript 0 are background values. The
background and perturbed velocities are defined as Uα

0 ¼
ð1; 0; 0; 0Þ and δuα ¼ ð0; δuÞ, respectively. Here, u is the
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three flow velocity. We assume that the background is
homogeneous and isotropic. The equation of motion for the
background gives ∂0ε0 ¼ 0 & ∂0p0 ¼ 0. Since the ε0 and
p0 are functions of temperature and chemical potential, we
regard the background temperature as constant. In this
scheme the zeroth and ith components of the equation of
motion can be written as

∂0δεþ ðε0 þ p0Þ∂iδui ¼ 0; ðA8Þ

ðε0 þ p0Þ∂0δui þ gij∂jδp ¼ 0: ðA9Þ

Ignoring the time derivative term in Maxwell’s equation,
one can write ∇ × δB ¼ 4πδj, and by using the expression
for the perturbed current, one can obtain the following
dispersion relation:

iω ¼ k2

4πσ0
� ξ0B

σ0
k; ðA10Þ

where we have used k ¼ kẑ and δBk ¼ δBkxx̂þ δBkyŷ. It
should be noted that Eq. (A10) matches the dispersion
relation obtained by the kinetic theory approach [Eq. (32)].

We first emphasize that there is no current in the
background, and therefore the transport coefficients that
appear in the expression for the perturbed current depend
only on the background temperature and the chemical
potentials. Now consider Eqs. (A4)–(A7), which, for the
background quantities, can be described by the following
two equations:

−2DB0 þ
ξ0
T0

¼ 0; ðA11Þ

ξB0
T0

− C
μ0
T0

¼ 0. ðA12Þ

These equations are satisfied by each species considered.
Thus, one can write ξ0 ¼ ξR0 þ ξL0 and ξB0 ¼ ξBR0 þ ξBL0.
Using the expression for ξ0 from the kinetic equation,
one can calculate DB0 from Eq. (A11). It agrees with the
expression obtained in Ref. [55] and the expression
obtained for ξB using kinetic theory is also in agreement
with it. Thus, we have shown that the modified kinetic
theory respects the constraint implied by the second law of
thermodynamics.
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