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We investigate expected constraints on equilateral-type primordial non-Gaussianities from future/
ongoing imaging surveys, making use of the fact that they enhance the halo/galaxy bispectrum on large
scales. As model parameters to be constrained, in addition to fequilNL , which is related to the primordial

bispectrum, we consider gð∂σÞ
4

NL , which is related to the primordial trispectrum that appeared in the effective
field theory of inflation. After calculating the angular bispectra of the halo/galaxy clustering and weak
gravitational lensing based on the integrated perturbation theory, we perform Fisher matrix analysis for
three representative surveys. We find that among the three surveys, the tightest constraints come from Large

Synoptic Survey Telescope; its expected 1σ errors on fequilNL and gð∂σÞ
4

NL are respectively given by 7.0 × 102

and 4.9 × 107. Although this constraint is somewhat looser than the one from the current cosmic
microwave background observation, since we obtain it independently, we can use this constraint as a
cross-check. We also evaluate the uncertainty with our results caused by using several approximations

and discuss the possibility to obtain tighter constraint on fequilNL and gð∂σÞ
4

NL .
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I. INTRODUCTION

It has been widely known that the primordial non-
Gaussianity is a powerful tool to understand the nonlinearity
and the interaction structure of inflationary era (for a review,
see [1]). There are a large number of theoretical and
observational studies for the primordial non-Gaussianity.
Currently, the most stringent observational constraints on
the primordial non-Gaussianity have been obtained from
the analysis of the higher-order spectra of the cosmic
microwave background (CMB) anisotropies performed by
Planck Collaboration [2], and they show no evidence of the
primordial non-Gaussianity, which is consistent with the
standard single slow-roll inflation model. However, from
the theoretical point of view the constraints are still some-
what weak, and it would be interesting and important to
investigate the observational constraint independently from
the CMB observations.
Alternative information which can be expected to probe

the primordial non-Gaussian feature is obtained through
large-scale structure observations. As the effect of the
primordial non-Gaussianity, it has been known that the
power spectrum of the biased tracers, such as haloes/
galaxies, could be enhanced on large scales compared with
the purely Gaussian case, which is called as a “scale-
dependent bias” feature (e.g., [3–5]). However, such an
enhancement could be realized for the so-called “local-type”
primordial non-Gaussianity, which can be produced in some
multifield inflationmodels [6–8]. On the other hand, there is

another interesting class of primordial non-Gaussianity,
the so-called “equilateral-type” one, which would be large
in noncanonical field-driven inflation models [9,10]. It is
shown that this type of primordial non-Gaussianity gives no
distinct scale dependence in the power spectrum, and hence
it had seemed to be difficult to obtain a significant constraint
on the equilateral-type non-Gaussianity from the large-scale
structure observations.
Regardless of this, recently there have been several

works which discuss the possibility of probing the equi-
lateral-type non-Gaussianity from the large-scale structure
observations through the analysis of the higher-order
spectra, e.g., bispectrum of the biased tracers. Actually,
in the presence of the equilateral-type primordial bispec-
trum, it has been shown that the amplitude of the halo/
galaxy bispectrum is enhanced on large scales [11–13];
making use of this fact, the future galaxy surveys could be
expected to give a strong constraint on fequilNL , which is
comparable to ones obtained by CMB observations [11].
In general, the equilateral-type primordial non-

Gaussianity is characterized not only by fequilNL , but also
by gequilNL , which is related to the primordial trispectrum.
Although the shapes of primordial trispectra of this class
are very complicated, since they strongly depend on the
theoretical models [14,15], obtaining the observational
constraint on the primordial trispectrum is still important
to clarify the interaction structure of the inflation model. In
this respect, among the shapes of primordial trispectra, only
three shapes of the primordial trispectra that appeared in the
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effective field theory of inflation [16,17] and whose

amplitudes are characterized by g _σ
4

NL, g
_σ2ð∂σÞ2
NL , and gð∂σÞ

4

NL
have been constrained systematically by the CMB obser-
vations [18] (we will show the detailed forms of these
trispectra later in Sec. II). For these equilateral-type
primordial trispectra, in the previous paper [19], two of
us investigated their impacts on the halo/galaxy bispectrum

and showed that g _σ
2ð∂σÞ2

NL and gð∂σÞ
4

NL could be constrained
from the halo/galaxy bispectrum observations; we can

focus only on gð∂σÞ
4

NL , as these shapes are very close to each
other and only one of the two can be used as the basis of the
optimal analysis.
In this paper, we focus on the future/ongoing imaging

surveys and investigate the expected constraints on the
equilateral-type primordial non-Gaussianity from the analy-
sis of the halo/galaxy bispectrum and estimate 1σ errors on

fequilNL and gð∂σÞ
4

NL . In our analysis, as in the previous work [20]
where two of us were involved, we also include the cross-
correlation between halo/galaxy density field and the
weak gravitational lensing which directly traces the matter
density field.
The paper is organized as follows. In Sec. II, we present

formulas for the three-dimensional auto-/cross-bispectra of
halo/galaxy and matter distribution in the presence of the
equilateral-type primordial non-Gaussianity. We also derive
angular bispectra which are observables of the photometric/
imaging galaxy surveys. In Sec. III, based on the Fisher
matrix formalism, we quantitatively estimate the impact
of the bispectra and weak-gravitational lensing effect on
the detection of the equilateral-type primordial non-
Gaussianity. Finally, Sec. IV is devoted to summary
and discussion. Throughout this paper, unless specifically
mentioned, we adopt the best-fit cosmological parameters
taken from Plank [21].

II. HALO/GALAXY AND WEAK LENSING
BISPECTRA AND WITH EQUILATERAL-TYPE

PRIMORDIAL NON-GAUSSIANITIES

A. Equilateral-type primordial non-Gaussianities

Here, we present the concrete form of the statistical
quantities of primordial curvature perturbations as well
as those for the linear density for the situations we are
interested in.
We begin by defining the power spectrum of the

primordial curvature perturbation, PΦ,

hΦðkÞΦðk0Þi ¼ ð2πÞ3δð3ÞD ðkþ k0ÞPΦðkÞ; ð1Þ

where k and δð3ÞD are the three-dimensional wave vector and
the three-dimensional Dirac’s delta function, respectively.
The bracket himeans the ensemble average. If the curvature
perturbation is generated by a single-field slow-roll infla-
tion, it can be shown that these perturbations almost obey

Gaussian statistics, and thus the statistical properties are
completely characterized by the power spectrum [22].
On the other hand, if we consider inflation models which

are no longer the single-field slow-roll ones, like models
with multiple fields, non-slow-roll background dynamics
and non-canonical kinetic terms, non-Gaussianities of
primordial perturbations are generated. In such cases,
the non-Gaussian nature of the primordial perturbations
is encoded in the higher-order spectra of primordial
curvature perturbations such as the bispectrum, BΦ, and
trispectrum, TΦ,

hΦðk1ÞΦðk2ÞΦðk3Þic
¼ ð2πÞ3δð3ÞD ðk1 þ k2 þ k3ÞBΦðk1;k2;k3Þ; ð2Þ

hΦðk1ÞΦðk2ÞΦðk3ÞΦðk4Þic
¼ ð2πÞ3δð3ÞD ðk1 þ k2 þ k3 þ k4ÞTΦðk1;k2;k3;k4Þ;

ð3Þ

where the subscript, c, means that we consider only the
connected part of the correlation functions.
Among several types of primordial non-Gaussianities

known so far, we concentrate in this paper on the equi-
lateral-type one that could be produced by inflation models
with noncanonical kinetic terms where the nonlinear
interactions become important on subhorizon scales. (For
concrete inflation models which produce equilateral-type
primordial non-Gaussianity, see reviews, e.g., [9,10].)
In this class of inflation models, it was shown that the

bispectrum of the primordial curvature perturbation is well
approximated by the following separable form in most
cases [23]:

Bequil
Φ ðk1;k2;k3Þ ¼ 6fequilNL ½−ðPΦðk1ÞPΦðk2Þ þ 2 permsÞ

− 2PΦðk1Þ2=3PΦðk2Þ2=3PΦðk3Þ2=3
þ ðPΦðk1Þ1=3PΦðk2Þ2=3PΦðk3Þ
þ 5 permsÞ�; ð4Þ

which is called the equilateral-type primordial bispectrum.
Here fequilNL is the nonlinearity parameter which character-
izes the amplitude of the bispectrum.
On the other hand, the form of primordial trispectrum

generated by this class of inflation models strongly depends
on the inflation models and it is very complicated in
general. Recently, however, for relatively simple primordial
trispectra in this class, the constraints on their amplitudes
have been obtained by CMB observations [18]. The
concrete forms of the primordial trispectra investigated
in the work are given by
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T _σ4
Φ ðk1;k2;k3;k4Þ ¼

221184

25
g _σ

4

NLA
3
ΦS

_σ4ðk1;k2;k3;k4Þ;
ð5Þ

T _σ2ð∂σÞ2
Φ ðk1;k2;k3;k4Þ

¼ −
27648

325
g _σ

2ð∂σÞ2
NL A3

ΦS
_σ2ð∂σÞ2ðk1;k2;k3;k4Þ; ð6Þ

Tð∂σÞ4
Φ ðk1;k2;k3;k4Þ

¼ 16588

2575
gð∂σÞ

4

NL A3
ΦS

ð∂σÞ4ðk1;k2;k3;k4Þ; ð7Þ

with

S _σ4ðk1;k2;k3;k4Þ ¼
1

ðP4
i¼1 kiÞ5Π4

i¼1ki
; ð8Þ

S _σ2ð∂σÞ2ðk1;k2;k3;k4Þ

¼ k21k
2
2ðk3 · k4Þ

ðP4
i¼1 kiÞ3Π4

i¼1k
3
i

�
1þ 3

k3 þ k4P
4
i¼1 ki

þ 12
k3k4

ðP4
i¼1 kiÞ2

�

þ 5 perms; ð9Þ

Sð∂σÞ4ðk1;k2;k3;k4Þ ¼
ðk1 · k2Þðk3 · k4Þ þ ðk1 · k3Þðk2 · k4Þ þ ðk1 · k4Þðk2 · k3ÞP

4
i¼1 kiΠ4

i¼1k
3
i

×

 
1þ

P
i<jkikj

ðP4
i¼1 kiÞ2

þ 3
Π4

i¼1ki
ðP4

i¼1 kiÞ3
X4
i¼1

1

ki
þ 12

Π4
i¼1ki

ðP4
i¼1 kiÞ4

!
: ð10Þ

Here, the parameters g _σ
4

NL, g
_σ2ð∂σÞ2
NL , and gð∂σÞ

4

NL describe the
strength of the primordial non-Gaussianity, AΦ is the
amplitude of the primordial power spectrum, defined by
AΦ ¼ k3PΦ, and the normalizations are the ones adopted in
Ref. [18]. It is worth mentioning that these primordial
trispectra are not only relatively simple, but also have
natural theoretical origin in the sense that they are shown
to be generated by the effective field theory of inflation
[16,17] as well as k inflation [24–26].
Although these three primordial trispectra are equally

important in the context of the effective field theory of
inflation, it was shown that because the primordial trispectra

Tð∂σÞ4
Φ and T _σ2ð∂σÞ2

Φ have similar shape dependence, only two
of them can be used as the basis of the optimal analysis of
the CMB trispectrum [18]. Furthermore, in [19], two of us
showed that g _σ

4

NL cannot be constrained from the observations
of halo/galaxy bispectrum as this contribution never domi-
nates the one from the gravitational nonlinearity on large
scales. From these reasons, we concentrate on the primordial

trispectrum Tð∂σÞ4
Φ that is characterized by Eqs. (7) and (10)

and, for brevity, we call this primordial trispectrum the
equilateral-type trispectrum through this paper.
Based on the primordial curvature perturbation satisfy-

ing the statistical properties discussed above, the linear
density field δL is obtained through

δLðk; zÞ ¼ Mðk; zÞΦðk; zÞ; ð11Þ

Mðk; zÞ ¼ 2

3

DðzÞ
Dðz�Þð1þ z�Þ

k2TðkÞ
H2

0Ωm0

; ð12Þ

where we relate the linear density field to the primordial
curvature perturbations by a function Mðk; zÞ, which is

given by the transfer function TðkÞ and the linear growth
factor DðzÞ. The exact formula of linear growth factor is
determined from linear theory, and the transfer function are
computed from CAMB [27]. H0 and Ωm0 are the Hubble
parameter at present epoch and the matter density param-
eter, respectively, and z� denotes an arbitrary redshift at the
matter-dominated era. Then, the power-, bi-, and trispectra
of the linear density field are defined by

hδLðk1ÞδLðk2Þi ¼ ð2πÞ3δð3ÞD ðk1 þ k2ÞPLðkÞ; ð13Þ

hδLðk1ÞδLðk2ÞδLðk3Þi
¼ ð2πÞ3δð3ÞD ðk1 þ k2 þ k3ÞBLðk1;k2;k3Þ ð14Þ

hδLðk1ÞδLðk2ÞδLðk3ÞδLðk4Þi
¼ð2πÞ3δð3ÞD ðk1þk2þk3þk4ÞTLðk1;k2;k3;k4Þ: ð15Þ
From Eqs. (11) and (12), we can relate these spectra to

those of the primordial curvature perturbations as

PLðkÞ ¼ MðkÞ2PΦðkÞ; ð16Þ

BLðk1;k2;k3Þ¼Mðk1ÞMðk2ÞMðk3ÞBΦðk1;k2;k3Þ; ð17Þ

TLðk1;k2;k3;k4Þ
¼ Mðk1ÞMðk2ÞMðk3ÞMðk4ÞTΦðk1;k2;k3;k4Þ: ð18Þ

Equipped with the linear density field presented in this
subsection, we will derive in the next subsection the
observables of large-scale structure which are probed with
future imaging surveys.
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B. Halo/galaxy and weak lensing bispectra based
on the integrated perturbation theory

In addition to the halo/galaxy bispectrum with primor-
dial equilateral-type non-Gaussianities discussed in [19],
here we consider the cross bispectra between the halo/
galaxy density field and the weak gravitational lensing. Let
us first define the three-dimensional bispectra BXYZ of the
observables,

1

3
fhδXðk1ÞδYðk2ÞδZðk3Þi þ 2 permsðk1 ↔ k2 ↔ k3Þg

¼ ð2πÞ3δð3ÞD ðk1 þ k2 þ k3ÞBXYZðk1; k2; k3Þ; ð19Þ

where δX;Y;Z is the three-dimensional density field, and
X; Y; Z ¼ h;m respectively represents the halo/galaxy
density field and the matter fluctuation. Here, we employ
the integrated perturbation theory (IPT) [28,29] to obtain the
analytic expression for the bispectra BXYZ in terms of the
primordial non-Gaussianities. In IPT, the statistical quan-
tities such as the power spectra and bispectra of the halo/
galaxy density field and matter fluctuations are perturba-
tively constructed with the linear polyspectra andmultipoint
propagators which can be defined as [28,29]

�
δnδXðkÞ

δδLðk1ÞδδLðk2Þ…δδLðknÞ
�

¼ ð2πÞ3−3nδð3ÞD ðk − k12;…;nÞΓðnÞ
X ðk1; k2;…; knÞ; ð20Þ

where k12;…;n ¼ k1 þ k2 þ � � � þ kn. With these propaga-
tors, the bispectra with the primordial non-Gaussianities are
expressed as

BXYZðk1; k2; k3Þ ¼ Bgrav
XYZðk1; k2; k3Þ þ Bbis

XYZðk1; k2; k3Þ
þ Btris

XYZðk1; k2; k3Þ: ð21Þ

Here, the quantities Bgrav
XYZ, B

bis
XYZ, and Btris

XYZ are respectively
corresponding to the contributions from the nonlinear
gravitational evolution, the equilateral-type primordial
bispectrum characterized by fequilNL , and the equilateral-type

primordial trispectrum characterized by gð∂σÞ
4

NL , as shown in
the previous subsection.
The explicit expression for each contribution is given by

Bgrav
XYZðk1; k2; k3Þ

¼ 1

3
½fΓð1Þ

X ðk1ÞΓð1Þ
Y ðk2ÞΓð2Þ

Z ð−k1;−k2ÞPLðk1ÞPLðk2Þ
þ 2 permsðX ↔ Y ↔ ZÞg
þ 2 permsðk1 ↔ k2 ↔ k3Þ�; ð22Þ

Bbis
XYZðk1; k2; k3Þ ¼ Γð1Þ

X ðk1ÞΓð1Þ
Y ðk2ÞΓð1Þ

Z ðk3ÞBLðk1; k2; k3Þ;
ð23Þ

Btris
XYZðk1; k2; k3Þ ¼

1

3

��
1

2
Γð1Þ
X ðk1ÞΓð1Þ

Y ðk2Þ
Z

d3p
ð2πÞ3 Γ

ð2Þ
Z ðp; k3 − pÞTLðk1; k2; p; k3 − pÞ þ 2 permsðX ↔ Y ↔ ZÞ

�

þ 2 permsðk1 ↔ k2 ↔ k3Þ
	
: ð24Þ

Here, we have neglected the higher-order contributions, which are expected to be small on large scales for the equilateral-
type primordial non-Gaussianities. Substituting the expressions for BL and TL given by Eqs. (17) and (18) into the above
expressions, in the large-scale limit where the scale of interest∼1=ki is much larger than the typical scale of the formation of
the collapsed object ∼1=p, we have

Bbis
XYZðk1; k2; k3Þ ¼ 6fequilNL Γð1Þ

X ðk1ÞΓð1Þ
Y ðk2ÞΓð1Þ

Z ðk3ÞMðk1ÞMðk2ÞMðk3Þ½−ðPΦðk1ÞPΦðk2Þ þ 2 permsðk1 ↔ k2 ↔ k3ÞÞ
− 2PΦðk1Þ2=3PΦðk2Þ2=3PΦðk3Þ2=3 þ ðPΦðk1Þ1=3PΦðk2Þ2=3PΦðk3Þ þ 5 permsðk1 ↔ k2 ↔ k3ÞÞ�; ð25Þ

Btris
XYZðk1; k2; k3Þ≃ −

4147

6180
gð∂σÞ

4

NL

��
Γð1Þ
X ðk1ÞΓð1Þ

Y ðk2ÞMðk1ÞMðk2ÞPΦðk1ÞPΦðk2Þ
Z

d3p
ð2πÞ3 Γ

ð2Þ
Z ðp;−pÞPLðpÞ

p2

×

�
ðk1 · k2Þ þ 2

�
p
p
· k1

��
p
p
· k2

��
þ 2 permsðX ↔ Y ↔ ZÞ

�
þ 2 permsðk1 ↔ k2 ↔ k3Þ

	

¼ −
4147

3708
gð∂σÞ

4

NL

��
Γð1Þ
X ðk1ÞΓð1Þ

Y ðk2ÞMðk1ÞMðk2ÞPΦðk1ÞPΦðk2Þðk1 · k2Þ
Z

d3p
ð2πÞ3 Γ

ð2Þ
Z ðp;−pÞPLðpÞ

p2

þ 2 permsðX ↔ Y ↔ ZÞ
�
þ 2 permsðk1 ↔ k2 ↔ k3Þ

	
: ð26Þ
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As shown in Ref. [19], the contributions of the equi-
lateral-type primordial non-Gaussianities become larger on
larger scales. Hence, according to Ref. [30], by employing
the large-scale limit ðki → 0Þ, the multipoint propagators
for halo/galaxy, which characterize the nonlinear gravita-
tional evolution and halo/galaxy bias properties, can be
simply given by

Γð1Þ
h ðkÞ≃ 1þ cL1 ðkÞ; ð27Þ

Γð2Þ
h ðk1; k2Þ≃ F2ðk1; k2Þ þ

�
1þ k1 · k2

k22

�
cL1 ðk1Þ

þ
�
1þ k1 · k2

k21

�
cL1 ðk2Þ þ cL2 ðk1; k2Þ: ð28Þ

Here cLn represent the renormalized-bias function defined in
Lagrangian space, which can be defined in terms of the
three-dimensional density field in Lagrangian space δLX as

cLn ðk1; k2;…; knÞ

¼ ð2πÞ3n
Z

d3k0

ð2πÞ3
�

δnδLXðk0Þ
δδLðk1ÞδδLðk2Þ…δδLðknÞ

�
: ð29Þ

F2 is the second-order kernel of standard perturbation
theory, which is given by

F2ðk1;k2Þ¼
10

7
þ
�
k2
k1

þk1
k2

�
k1 ·k2
k1k2

þ4

7

�
k1 ·k2
k1k2

�
2

: ð30Þ

In order to obtain more concrete expressions for the
renormalized bias function, here we adopt the halo-bias
prescription proposed by [28]

cLn ðk1;…; knÞ ¼
AnðMhÞ

δnc
Wðk1;MhÞ…Wðkn;MhÞ

þ An−1ðMhÞσnM
δnc

d
d ln σM

×
�
Wðk1;MhÞ…Wðkn;MhÞ

σnM

	
; ð31Þ

with AnðMhÞ≡
Xn
j¼0

n!
j!
δjcð−σMÞ−jf−1MFðνÞ

djfMFðνÞ
dνj

:

ð32Þ

Here the quantity δc is the so-called critical density of
the spherical collapse model whose numerical value is
δc ≃ 1.68, Wðk;MhÞ is the top-hat window function over
mass scale R ¼ ð3Mh=4πρmÞ1=3, Mh is the halo mass and
ρm is the matter density. The quantity σM is the dispersion
of smoothed matter density field over mass scale R,

σ2M ¼
Z

k2dk
2π2

W2ðk;MhÞPLðkÞ: ð33Þ

For fMF which is a function of ν≡ δc=σM, throughout the
paper, we adopt the Sheth-Tormen fitting formula for the
halo mass function nðMh; zÞ [31], which yields

fMF ¼ fSTðνÞ ¼ AðpÞ
ffiffiffi
2

π

r
½1þ ðqν2Þ−p� ffiffiffiqp

νe−qν
2=2; ð34Þ

where AðpÞ is expressed in terms of the Gamma function,
ΓðxÞ, as AðpÞ¼ ½1þπ−1=22−pΓð1=2−pÞ�−1 with p ¼ 0.3,
q ¼ 0.707.
For the matter fluctuation (i.e., X ¼ m), we have cLn ≃ 0,

which gives

Γð1Þ
m ðkÞ≃ 1; Γð2Þ

m ðk1; k2Þ≃ F2ðk1; k2Þ: ð35Þ

C. Angular bispectra in imaging surveys

Based on the three-dimensional bispectra given in the
above discussion, we derive the formulas for angular bispec-
tra projected on the celestial sphere, which are statistical
quantities observed in imaging surveys. Employing the
flat-sky limit, these statistical quantities are defined as

1

3
½hΔaðl1ÞΔbðl2ÞΔcðl3Þi þ 2 permsðl1 ↔ l2 ↔ l3Þ�

≡ ð2πÞ2δð2ÞD ðl1 þ l2 þ l3ÞBabcðl1;l2;l3Þ; ð36Þ
where δð2ÞD is the two-dimensional Dirac delta function. The
quantityΔa is the two-dimensional density field projected on
the celestial sphere, and the subscripts a, b, c imply either a
halo/galaxy number-density fluctuationΔh or weak-lensing.
These are related to the three-dimensional density field
through

ΔhðθÞ ¼
Z

∞

0

dzWhðzÞδð3Þh ðχðzÞθ; zÞ; ð37Þ

κðθÞ ¼
Z

∞

0

dzWκðzÞδð3Þm ðχðzÞθ; zÞ; ð38Þ

where Wa are the weight functions given by

WhðzÞ ¼
nhðzÞ
n̄h

; ð39Þ

WκðzÞ ¼
4πGρmðzÞ

HðzÞð1þ zÞ2n̄s

Z
∞

z
dz0nsðz0Þ

ðχðz0Þ − χðzÞÞχðzÞ
χðz0Þ :

ð40Þ

Here, we denote the projected number density of halo by n̄h
and its redshift distribution per unit area by nhðzÞ. These
quantities are respectively given by

n̄h ¼
Z

∞

0

dznhðzÞ ¼
Z

∞

0

dz
χ2ðzÞ
HðzÞ

Z
∞

Mmin

dMhnðMh; zÞ;

ð41Þ
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where χ is the comoving radial distance and nðMh; zÞ is the
halo mass function. Mmin is the minimum mass of observed
halos, where we setMmin to 1013h−1M⊙ through this paper.
For the redshift distribution of source galaxies for weak-
gravitational lensing observations, denoted by nsðzÞ, we
adopt the following functional form (e.g., [32]):

nsðzÞdz ¼ n̄s
3z2

2ð0.64zmÞ3
exp

�
−
�

z
0.64zm

�
3=2
	
dz: ð42Þ

Employing the Limber approximation1 [34] which is valid in
the flat-sky limit, we finally obtain

Babcðl1;l2;l3Þ ¼
Z

dz
H2ðzÞ
χ4ðzÞ WaðzÞWbðzÞWcðzÞ

× BXYZ

�
l1

χðzÞ ;
l2

χðzÞ ;
l3

χðzÞ ; z
�
: ð43Þ

III. FORECAST CONSTRAINTS ON
EQUILATERAL-TYPE PRIMORDIAL

NON-GAUSSIANITY

In this section, based on the Fisher matrix formalism, let
us quantitatively estimate the impact of the bispectra and

weak-gravitational lensing effect on the observational con-
straints on the equilateral-type primordial non-Gaussianity.
Here, as representative future/ongoing imaging surveys,
we shall consider three representative surveys: the Subaru
Hyper Suprime-Cam (HSC) [35], the Dark Energy Survey
(DES) [36], and the Large Synoptic Survey Telescope
(LSST) [37]. Imaging surveys are characterized by
the survey area fsky ≡Ωs=4π, the mean source redshift
zm, and the mean number density of source galaxies
per unit area n̄s. We take the values of these parameters
for the representative surveys as ðfsky;zm;n̄s½arcmin−2�Þ¼
ð0.0375ð1500deg2Þ;1.0;35Þ forHSC[35],ð0.125ð5000deg2Þ;
0.5;12Þ for DES [36], and ð0.5ð20000 deg2Þ; 1.5; 100Þ for
LSST [37].

A. Fisher matrix

Following Ref. [20], the Fisher matrix for the parameters
p which characterize the theoretical expression of the
angular bispectra Bi are defined by

Fαβ ¼
Xlmax

li¼lmin

∂BiðpÞ
∂pα

ðCovBÞ−1ij
∂BjðpÞ
∂pβ

����
p¼p0

; ð44Þ

Bi ¼

0
B@

ðBhhhÞi
ðBhhκÞi
ðBhκκÞi

1
CA; CovBij ¼

0
B@

Cov½ðBhhhÞi; ðBhhhÞj� Cov½ðBhhhÞi; ðBhhκÞj� Cov½ðBhhhÞi; ðBhκκÞj�
Cov½ðBhhκÞi; ðBhhhÞj� Cov½ðBhhκÞi; ðBhhκÞj� Cov½ðBhhκÞi; ðBhκκÞj�
Cov½ðBhκκÞi; ðBhhhÞj� Cov½ðBhκκÞi; ðBhhκÞj� Cov½ðBhκκÞi; ðBhκκÞj�

1
CA: ð45Þ

Here, p0 is a set of fiducial cosmological parameters,
subscripts i and j runover all possible triangle configurations
whose side lengths are within the range ½lmin;lmax�. In our
analysis, we set the minimum multipole to lmin ¼ lf ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
π=fsky

p
, and the maximum multipole lmax is set to 150.

Later, we will also discuss the lmax dependence of the 1σ
errors on the nonlinearity parameters. In the above expres-
sion, CovBij is the angular bispectra covariance matrix and
½CovB�−1ij is its inverse. Then, assuming the Gaussian
covariances2, which is based on the fact that large primordial

non-Gaussianity is not allowed by the current observations,
the covariance matrix of the angular bispectra for a given set
of multipole bins ðli;lj;…Þ can be given by [38]

Cov½Babcðli;lj;lkÞ;Ba0b0c0 ðll;lm;lnÞ�

¼ 1

9

Ωs

Ntripðli;lj;lkÞ
½fðCaa0 ðliÞþNaa0 ÞðCbb0 ðljÞþNbb0 Þ

× ðCcc0 ðlkÞþNcc0 ÞðδKliþll
δKljþlm

δKlkþln

þ5permsðll ↔lm ↔lnÞÞ
þ2permsða0↔ b0 ↔ c0Þgþ2permsða↔ b↔ cÞ�;

ð46Þ

with δKliþlj
being the Kronecker delta. Here,Nab is the shot-

noise contribution, given by Nab ¼ 1=n̄h (ab ¼ hh), σγ=n̄s
(ab ¼ κκ), and 0 (otherwise).Cab in the above expression is
the angular power spectra of halo/galaxy clustering and
weak-gravitational lensing. Note that here we calculated the
angular power spectra by using the Limber approximation,
as is the case in Eq. (43). The quantity σγ represents the
dispersion of the intrinsic shape noise andwe adopt σγ ¼ 0.3

1It has been known that the Limber approximation becomes
invalid at the large-angular scales. However, as shown in
Ref. [33], in the case of a wide observed redshift range, the
Limber approximation can be applied even at large-angular
scales. In our analysis, we mainly investigate the cases with
single-redshift bin, and hence our expression based on the Limber
approximation should not be invalid.

2In our analysis, we set the maximum multipole lmax to be
150, and it was shown that for l≲ 200 the assumption of
Gaussian covariance matrices is expected to be valid [38]. For
l≳ 200, the nonlinear evolution of the matter density field does
not become negligible, and we need to take into account the
gravity-induced non-Gaussian contribution.
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[39]. Ntripðli;lj;lkÞ is the number of independent triplets
that form a triangular configuration respectively within the
i-, j-, and kth bins. In the limit li ≫ lf ¼ lmin, we obtain a
simple analytical expressions for Ntrip [38],

Ntripðli;lj;lkÞ≃ 2
ð2πliΔliÞðljΔφ12ΔljÞ

l4
f

ð47Þ

where the angle Δφ12 is given by

Δφ12ðli;lj;lkÞ

≃ ðsinφ12Þ−1
lkΔlk

lilj

¼ 2lkΔlkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l2

i l
2
j þ 2l2

i l
2
k þ 2l2

jl
2
k − l4

i − l4
j − l4

k

q : ð48Þ

Note that the width of the ith multipole bin should be larger
than the minimum multipole, i.e., Δli > lf.

B. 1σ errors on the equilateral-type non-Gaussianities

Here, for free parameters p, we consider the two
equilateral-type non-Gaussian parameters, i.e., p ¼
ðfequilNL ; gð∂σÞ

4

NL Þ, with the fiducial values of p0¼ð0;0Þ.
Note that we do not marginalize the uncertainty in the halo
bias properties, since in IPT we can completely specify the
halo bias by fixing the mass of observed halos.
The results of Fisher matrix analysis are summarized in

Fig. 1 and Table I. The elliptic contours in Fig. 1 show the

marginalized 1σ error constraints on fequilNL and gð∂σÞ
4

NL . Light
blue contours represent the constraints from the autoan-
gular bispectrum of halo/galaxy clustering, while the blue
contours indicate the constraints when we add cross-
angular bispectra between halos and weak lensing. The
degeneracy of these two parameters is not very strong

because the contributions from these parameters have
different shape dependences [19]. Moreover, including
the cross-angular bispectra partly breaks the parameters’
degeneracy, which makes the constraints tighter in each
survey. In particular, the constraints by DES turn out to be
most improved by taking into account the cross-angular
bispectra. As we see in Table I, the tightest constraints in

the three surveys come from LSSTon both fequilNL and gð∂σÞ
4

NL .
Interestingly, the constraint on fequilNL by DES is tighter than

that by HSC; on the other hand, the constraint on gð∂σÞ
4

NL is
opposite. This result implies that deep imaging surveys are
advantageous to give tighter constraints on the equilateral-

type primordial trispectrum, denoted by gð∂σÞ
4

NL , while wide
imaging surveys are advantageous for the equilateral-type
primordial bispectrum, denoted by fequilNL .
Before summarizing, we would like to mention the

dependence of the resultant constraints on the maximum
multipoles, lmax. While in the above result we have fixed
lmax to be 150, in Fig. 2 we plot the constraints on f

equil
NL and

gð∂σÞ
4

NL by HSC, DES, and LSSTas functions of lmax. As can
be seen in this figure, the constraints coming from the
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FIG. 1. Forecast results of equilateral-type primordial non-Gaussian parameters by HSC (left), DES (middle), and LSST (right). In
each panel, marginalized 1σ error contours on gð∂σÞ

4

NL − fequilNL planes are shown. Light blue contours represent the constraints from the
autoangular bispectrum of halo/galaxy clustering, while the blue contours indicate the constraints when we add cross-angular bispectra
between halos and weak lensing. Notice that the plotted range of the error contours is changed in each panel, for clarity.

TABLE I. Forecast results of marginalized (unmarginalized) 1σ
errors on equilateral-type primordial non-Gaussian parameters,

fequilNL and gð∂σÞ
4

NL , for HSC, DES, and LSST.

Survey Bhhh Bhhh þ Bhhκ þ Bhκκ

HSC σðfequilNL Þ 3.2×103ð2.9×103Þ 2.3×103ð2.1×103Þ
σðgð∂σÞ4NL Þ 3.2×108ð2.9×108Þ 2.9×108ð2.7×108Þ

DES σðfequilNL Þ 1.6×103ð1.6×103Þ 1.1×103ð1.1×103Þ
σðgð∂σÞ4NL Þ 1.6×109ð1.7×109Þ 8.2×108ð7.7×108Þ

LSST σðfequilNL Þ 9.2×102ð8.0×102Þ 7.0×102ð6.4×102Þ
σðgð∂σÞ4NL Þ 5.3×107ð4.6×107Þ 4.9×107ð4.4×107Þ
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bispectra continuously become improved as we increase
lmax, because of the increased number of usable triangles.
However, for a larger value of lmax, we need to take into
account the late-time nonlinear evolution more seriously.
We leave more precise forecasts including such a nonlinear
effect to future work.

IV. SUMMARY AND DISCUSSION

In this paper, we have investigated the impact of
angular bispectra from future imaging surveys to obtain
constraints on the equilateral-type primordial non-
Gaussianities. As nonlinearity parameters characterizing
such non-Gaussianities, we focus on fequilNL and gð∂σÞ

4

NL and
obtain simultaneous constraints on these two parameters.

The parameter gð∂σÞ
4

NL is related to one of the three
equilateral-type trispectra, where the constraints were
obtained by the CMB observations [18]. We have neglected
the other two gequilNL parameters because it had been shown
that one of them, g _σ

4

NL, could not be constrained from the

bispectrum and the other, g _σ
2ð∂σÞ2

NL , has a similar shape

dependence for gð∂σÞ
4

NL in [19].
By using the IPT, we can systematically incorporate both

the non-Gaussian mode-coupling from primordial poly-
spectra and nonlinear halo biasing into a theoretical
template of bispectra. Therefore, we have employed this

method to estimate the constraints on fequilNL and gð∂σÞ
4

NL by the
Fisher matrix analysis. As a result, we have shown that

bispectra can give the constraints on fequilNL and gð∂σÞ
4

NL for the
three representative surveys (HSC, DES, and LSST), even
though power spectra cannot give the constraints on the
equilateral-type primordial non-Gaussianity. We have also
shown that by combining weak lensing data, the constraints

on fequilNL and gð∂σÞ
4

NL are improved. In particular, in the case of

DES, the constraint on gð∂σÞ
4

NL becomes almost twice as tight

by combining weak lensing data. The tightest constraints

come from LSST; its expected 1σ errors on fequilNL and gð∂σÞ
4

NL

are respectively given by 7.0 × 102 and 4.9 × 107. The
resultant constraints for all three surveys are somewhat
looser than the ones from the current CMB observations
[2,18]. Regardless of this, they could be used for a
consistency check of CMB observations. In addition, the
results forecast in this paper may be a bit conservative
because we have considered only the large-angular scale of
l ≤ lmax ¼ 150. As we have shown in Fig. 2, increasing
maximum multipoles, lmax, makes the constraints tighter
due to the increased number of triangles which we can use.
To roughly estimate the impact of using higher lmax, we
calculated the constraints by using lmax ¼ 400, and we

obtained σðfequilNL Þ ¼ 4.6 × 102ð3.7 × 102Þ and σðgð∂σÞ4NL Þ ¼
2.9 × 107ð2.3 × 107Þ as the results of 1σ marginalized
(unmarginalized) errors from LSST. The constraints mono-
tonically decrease for larger lmax at least lmax < 400 in our
analysis. However, on small-angular scales, the higher-order
contribution from gravitational evolution and non-Gaussian
feature of error covariance which we have neglected in
this paper become important, and a more careful study is
necessary. Also, tomographic techniques gives us another
chance to improve our constraints on the equilateral-type
primordial non-Gaussianity. In a previous paper [20], two
of us simply estimated the impact of tomographic technic in
the case of local-type primordial non-Gaussianity, and the
constraints were improved by a factor of 1.4 to 3. We expect
a similar amount of improvement in the case of equilateral-
type primordial non-Gaussianity.
Our analysis in this paper has been based on predictions

with IPT assuming a prior knowledge of halo bias proper-
ties. This treatment is consistent with previously known
analytic treatment, and thus our results are qualitatively
correct. However, for a practical application, further quan-
titative study is necessary, because the prediction of
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FIG. 2. Sensitivity of the marginalized 1σ errors on fequilNL (left), gð∂σÞ
4

NL (right) to the parameters lmax. Solid (dashed) lines represent
marginalized (unmarginalized) 1σ errors on equilateral-type primordial non-Gaussian parameters for HSC (blue), DES (red),
and LSST (green).
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bispectrum based on IPT with non-Gaussian initial con-
ditions has not been tested against the halo clustering in
N-body simulations. In addition, for a proper comparison
with observations, we need to incorporate nuisance param-
eters into the characterization of halo bias to reduce the
impact of unknown systematics.
At the level of real observation, several sources of

systematics (i.e., survey geometry and mask) can arise.
It is known that such kind of systematics can mimic
primordial non-Gaussianity in the case of power spectrum
analysis [40]. Therefore, investigating the effect of such
contaminations on bispectra and improving calibration
schemes can be important future work for the application
of bispectrum analysis for photometric surveys.
Finally, we need to comment about the validity of the

large-scale limit approximation used to calculate Eqs. (22),
(25), and (26). Figure 3 shows the relative errors between
the exact and large-scale limit formulas of the autoangular
bispectrum of halo/galaxy clustering. Here, the redshift and
halo mass are fixed at z ¼ 1 andMh ¼ 1013M⊙=h, and the
integration of the redshift and halo mass in Eq. (43) are
removed for simplicity. The relative errors of the contri-
butions from nonlinear gravitational evolution and fequilNL are
smaller than 10% even at l ¼ 150. However, even in low l,

the relative error of the contribution from gð∂σÞ
4

NL becomes
large, and the exact formula is almost twice larger than
the large-scale limit formula. Therefore our resultant

constraints on gð∂σÞ
4

NL could be modified by a factor.
Since our analysis was ultimately not very strict as it
contained many approximations (e.g., the Limber approxi-
mation and Gaussian covariance matrix), we think that the
errors caused by the large-scale limit are comparable with
the ones caused by using other approximations. Once the
importance of tighter constraints on the equilateral-type
primordial trispectrum through the halo/galaxy bispectrum

is recognized in the future, we will come back to this topic
again and explore it without relying the approximations
mentioned above.
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