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We discuss the cosmological implications of the R□−2R nonlocal modification to standard gravity. We
relax the assumption of special initial conditions in the local formulation of the theory, perform a full phase-
space analysis of the system, and show that the late-time cosmology of the model exhibits two distinct
evolution paths, on which a large range of values for the present equation of state can be reached. We then
compare the general solutions to supernovae data and place constraints on the parameters of the model. In
particular, we find that the mass parameter of the theory should be smaller than 1.2 in Hubble units.
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I. INTRODUCTION

The current standard model of cosmology, called ΛCDM
(CDM for cold dark matter), cannot be reconciled with
general relativity (GR) and the Standard Model of particle
physics without extreme fine-tuning. In particular, the ratioffiffiffiffi
Λ

p
=M2

Pl derived from observations [with Λ the notorious
cosmological constant (CC) and MPl the reduced Planck
mass] is almost infinitesimal compared to the value obtained
by the most straightforward extrapolations of GR and
quantum field theory, to the infrared scale

ffiffiffiffi
Λ

p
=MPl and

high-energy scales approachingMPl, respectively. This calls
both for the observational pursuit of signatures that could
provide hints on the possible physics beyond the ΛCDM
model, and for theoretical extensions that could explain the
cosmological data in a more natural way [1,2].
Various attempts at such extensions have been undertaken

in the context of nonlocal gravity [3,4]. In a top-bottom
approach, the possibility that gravitational interactions
become nonlocal near the Planck scale is suggested, among
others, by string theory [5,6]. From a bottom-up perspective,
nonlocal theories are appealing because of their potential
to provide an ultraviolet completion of the metric gravity
theory [7–9], but there are also motivations to contemplate
nonlocal terms in the infrared as well. Such infrared
nonlocal terms arise generically in effective field theories
after integrating out light degrees of freedom [4,10,11], but
may also feature in more fundamental actions in Euclidean
quantum gravity [12,13]. Nonlocal effective formulations
have been found for gravity models with a massive graviton
[14,15], multiple metrics [16], and post-Riemannian, affine

geometry [17]. In passing, we note that indeed the recent
development of a conformal affine gauge theory of gravity
[18] introduces a novel holography that, along the lines of
Ref. [19], may naturally provide a nonlocal link between the
value of the cosmological constant and the amount of
information contained in the emergent spacetime.
Nonlocal gravity models are typically written as an

Einstein-Hilbert term supplementedwith integral or infinite-
derivative curvature terms. The first proposal for a nonlocal
dark-energy model was put forward by Deser and Woodard
(DW) and has the form [20]

LDW ¼ M2
Pl

2
R
�
1 − f

�
R
□

��
; ð1Þ

where R is the Ricci curvature scalar and 1=□ is the inverse
d’Alembertian, an integral operator such that□ð1=□Þ ¼ 1,
with□≡ gμν∇μ∇ν and∇μ the Christoffel covariant deriva-
tive.With the dimensionless combinationR=□, one could in
principle construct models without introducing new scales.
The integral dependence of the corrections could generate
the observed acceleration at the present cosmological epoch
dynamically and without special fine-tunings. However,
detailed investigations have shown that, although the func-
tion f can be chosen in such a way that the background
expansion is consistent with the data [21–23] and the model
has a viable Newtonian limit [24,25], the impact of the
nonlocal corrections on the evolution of perturbations is
strong and utterly rules the model out when this is con-
fronted with large-scale structure data [26]. On top of that,
nonlocal modifications of gravity result generically in
instabilities at the level of perturbations, at least if they
involve tensorial terms such as ðWμνρσ=□2ÞWμνρσ [27] with
Wμνρσ the Weyl tensor appearing in models inspired by the
conformal anomaly [28,29].

*h.nersisyan@thphys.uni‑heidelberg.de
†y.akrami@thphys.uni‑heidelberg.de
‡l.amendola@thphys.uni‑heidelberg.de
§tomi.koivisto@nordita.org∥j.rubio@thphys.uni‑heidelberg.de

PHYSICAL REVIEW D 94, 043531 (2016)

2470-0010=2016=94(4)=043531(14) 043531-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.94.043531
http://dx.doi.org/10.1103/PhysRevD.94.043531
http://dx.doi.org/10.1103/PhysRevD.94.043531
http://dx.doi.org/10.1103/PhysRevD.94.043531


One of the remarkable features of the model,
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proposed by Maggiore and Mancarella (MM) [30] is that it
can produce nonlocal dark energy able to fit the background
data while retaining a matter power spectrum compatible
with observations (see Refs. [31–34] and [35–38] for studies
of the background expansion and of structure formation,
respectively). It is also notable that the ðR=□Þ2-correction to
GR has indeed been obtained in an effective field theory
for gravity at the second order curvature expansion1 [10]
and that the MM model appears to have only one new
parameterm at the level of the gravitational Lagrangian, i.e.
none more than ΛCDM.2 It has also been argued that ghost
fields do not destabilize the model [30] (see also Ref. [40]).
Spherically symmetric solutions have also been consid-
ered [25,41].
In this paper, we study the cosmological dynamics of the

MM model, with special attention to the problem of initial
conditions. Nonlocal theories with infinite order derivative
operators require the specification of an infinite number of
initial conditions for the formulation of the Cauchy
problem. Analogously, nonlocal integral operators, such
as the one featured in the MM model, are strictly defined
only by specifying the boundary conditions for each of the
infinite number of modes in the continuum limit of the
Fourier space. Various techniques have been considered to
deal with such theories, see Refs. [42–49]. The MM model
(2) can be reformulated in terms of two scalar fields [24],
which should not be considered however as local dynami-
cal fields evolving freely in time, but as auxiliary fields
whose configuration at each spatial hypersurface is dictated
by the other fields and the boundary conditions of the
1=□-operator. In the phase space of the homogeneous
cosmological dynamics, the trajectories of the two (fake)
scalar degrees of freedom are uniquely fixed given four
numbers at any given cosmological epoch. The cosmology
of the MM model seems to offer a natural or “minimal”
assumption for the choice of these numbers: at a sufficiently
early epoch in the standard cosmology, the Universe is filled
with radiation only, for which R ≈ 0. It therefore seems an
obvious choice to set R=□ ¼ R=□2 ¼ 0 at such an epoch.3

However, already at the linear order in the inhomogeneous

fluctuations, both the inverse- and the double-inverse-
d’Alembertian operators bring forth scale-dependent func-
tions in the momentum space. Unless finely adjusted and
compensating scale dependence is encoded into the boun-
dary conditions of the 1=□-operators, the initial conditions
for cosmological perturbations would feature additional
scale dependence (compared to ΛCDM). The minimal
boundary conditions, that is δðR=□Þ ¼ 0 when δR ¼ 0
(we denote perturbations with δ), would require scale
dependence in the initial conditions for the auxiliary fields.
An important point is that due to their assumed nonlocal
origin, they impose constraints rather than adding dynamics.
Thus one expects the nonminimal scale dependence of the
initial conditions to be directly projected (or, if set in terms of
the auxiliary fields, to effectively propagate) to the smaller
redshifts of the crucial observables, where especially the
matter power spectrum is very sensitive to the possible scale
dependence in the dark sector, as that is reflected through the
gravitational interaction in the baryon distribution. Since the
confrontation with large-scale structure is crucial for dis-
tinguishing theMM(2) and the earlier proposal (1), the issue
of (scale-dependent) linear boundary conditions calls for
clarification.
In this paper we undertake a comprehensive study of the

expansion dynamics in the MMmodel. In Sec. II we rewrite
the model (2) in terms of two (effective) auxiliary scalar
fields, and set up the phase space spanned by convenient
dimensionless variables whose dynamical system can be
closed into an autonomous form. In Sec. III we perform a full
dynamical system analysis in order to identify the critical
points in the cosmological phase space and determine their
stability. Each set of initial conditions fixes a trajectory in the
phase space, corresponding to a particular family of MM
models with the same mass parameter m and the same four
cosmological background boundary conditions. By explor-
ing the global structure of the phase space we can thus map
the cosmology of different models and investigate the
sensitivity of the predictions to changing the parameters
of the model (i.e. to the initial conditions that have been
previously assumed minimal). In Sec. IV we confront the
model with supernovae data constraining the background
expansion, in such a way that we do not fix all the initial
conditions but marginalize over them. Our findings are then
summarized in Sec. V.

II. THECOSMOLOGYOFR 1
□2 RGRAVITYMODEL

The full action, including both gravity and matter sectors,
for the MM nonlocal theory introduced in Eq. (2) has the
form

SMM ¼ M2
Pl

2

Z
d4x

ffiffiffiffiffiffi
−g
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R

1
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d4x
ffiffiffiffiffiffi
−g

p
Lm; ð3Þ

1As shown in Ref. [39], the coefficient of the R□−2R obtained
by this procedure should satisfyM2=H2 ≪ 1withM4 ∼ ðMPlmÞ2.
Unfortunately, this condition is not compatible with the value of
m required to obtain a realistic cosmology (m ∼H0).

2Expectedly, viable dark energymodels requirem∼Λ=MPl∼H0,
where H0 is the present Hubble rate.

3Note however that the cosmology obviously depends on the
thermal history. In Appendix B, we check the impact of setting
R=□ ¼ R=□2 ¼ 0 either at the matter-radiation equality or at an
earlier period.
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with the mass scale m the only free parameter of the theory,
to be determined observationally, and Lm the matter
Lagrangian minimally coupled to gravity.
In order to derive the modified Einstein equations, we

vary the action (3) with respect to the metric gμν:

δSMM ¼ M2
Pl

2

Z
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p
Lm; ð4Þ

where we have used δð□−2Þ ¼ −2□−1ðδ□Þ□−2. Denoting
the conserved stress-energy tensor of matter by Tμ

ν, the
gravitational field equations turn out to be [30]

Gμ
ν −

1

6
m2Kμ

ν ¼ 8πGTμ
ν ; ð5Þ

where we have defined

Kμ
ν ≡ 2SGμ

ν − 2∇μ∂νSþ 2δμν□Sþ δμν∂ρS∂ρU −
1

2
δμνU2

− ð∂μS∂νU þ ∂νS∂μUÞ; ð6Þ

and introduced the two auxiliary fieldsU and S through the
equations

□U ≡ −R; ð7Þ

□S≡ −U: ð8Þ

Writing the field equations in terms of U and S allows us to
work with a local formulation of the theory [30]. In order to
solve Eq. (5) we need to first solve Eqs. (7) and (8). The
general solutions for U and S are given by

U ≡Uhom −□
−1
retR; ð9Þ

S≡ Shom −□
−1
retU; ð10Þ

with Uhom and Shom the solutions to the homogeneous
equations

□Uhom ¼ 0; □Shom ¼ 0; ð11Þ
and□−1

ret the inverse of the retarded d’Alembertian operator.
The equivalent local form of the theory then depends on the
choice of Uhom and Shom. The ad hoc choice of a retarded
Green function in the definition of inverse d’Alembertian
operator □

−1 will ensure causality (for details see e.g.
Ref. [49]). Note, however, that it has been argued that
causality can emerge automatically if one considers only
in-in (observable) vacuum expectation values [40,50,51].

Let us now turn to our studies of the cosmology of
the model. We will assume a flat Friedmann-Lemaître-
Robertson-Walker (FLRW) metric

ds2 ¼ −dt2 þ a2ðtÞd~x2; ð12Þ
wtih t the cosmic time and a the scale factor.
Solving the field equations for this metric yields

the evolution equations (equivalent to the Friedmann
equation) [30]

h2 ¼ Ω0
Me

−3N þ Ω0
Re

−4N þ ðγ=4ÞU2

1þ γð−3V − 3V 0 þ ð1=2ÞV 0U0Þ ; ð13Þ

U00 ¼ 6ð2þ ξÞ − ð3þ ξÞU0; ð14Þ

V 00 ¼ h−2U − ð3þ ξÞV 0; ð15Þ

in terms of the auxiliary fields U and V ≡H2
0S, and their

derivatives, with H0 the present Hubble rate. Additionally,
we have assumed the Universe to be filled with matter and
radiation, with present density parameters Ω0

M and Ω0
R,

respectively, and have defined the quantities

γ ≡ m2

9H2
0

; h≡ H
H0

; ξ≡ h0

h
; ð16Þ

where a prime denotes a derivative with respect to the
number of e-foldings N ≡ ln a.
The evolution of the total energy density can be para-

metrized in terms of an effective equation of state [1]

weff ¼ −1 −
2

3

h0

h
¼ −1 −

2

3
ξ: ð17Þ

The evolutions of the matter, radiation and dark energy
components contributing to weff follow from the conserva-
tion of the energy-momentum tensor,

Ω0
M þ ð3þ 2ξÞΩM ¼ 0;

Ω0
R þ ð4þ 2ξÞΩR ¼ 0;

Ω0
DE þ ð3þ 3wDE þ 2ξÞΩDE ¼ 0; ð18Þ

with

ξ ¼ −4ΩR − 3ΩM þ 3γðh−2U þU0V 0 − 4V 0Þ
2ð1 − 3γVÞ : ð19Þ

Combining the conservation equations (18) and taking into
account the cosmic sum rule,

ΩDE ¼ 1 − h−2ðΩ0
Me

−3N þΩ0
Re

−4NÞ

¼ γ

�
1

4
h−2U2 þ 3V þ 3V 0 −

1

2
V 0U0

�
; ð20Þ

we obtain the dark energy equation of state,
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wDE ¼ γð4ðU þ 3Þ − ðU þ 2ÞU0ÞV 0 þUðγVðΩR þ 3Þ − ΩDEÞ þ 4ð3γV −ΩDEÞ
Uð1 − 3γVÞΩDE

: ð21Þ

III. PHASE SPACE AND DYNAMICAL
ANALYSIS

In order to perform the dynamical analysis of the
model, it is convenient to rewrite the second order
differential equations (14) and (15) in a first order form.
To do this, we introduce two new fields Y1 and Y2

defined as Y1 ≡U0 and Y2 ≡ V 0. We can now rewrite the

system as a set of six autonomous first order differential
equations,

U0 ¼ Y1; ð22Þ

V 0 ¼ Y2; ð23Þ

Y 0
1 ¼ −

3ððU þ 2ÞY1 − 4ðU þ 3ÞÞð2ð3γV − 1Þ − γðY1 − 6ÞY2Þ þ 3ðU þ 4ÞðY1 − 6ÞΩM þ 4ðU þ 3ÞðY1 − 6ÞΩR

2Uð3γV − 1Þ ; ð24Þ

Y 0
2 ¼ −

Y2ð6ð3γV − 1Þ − 3γðY1 − 4ÞY2 þ 3ΩM þ 4ΩRÞ
2ð3γV − 1Þ ð25Þ

−
ð2ð3γV − 1Þ þ 3γY2Þð2ð3γV − 1Þ − γðY1 − 6ÞY2 þ 2ðΩM þΩRÞÞ

γUð3γV − 1Þ ;

Ω0
M ¼ −

ΩMðUð3ð3γV − 1Þ − 3γðY1 − 4ÞY2 þ 3ΩM þ 4ΩRÞ þ 12ð3γV − 1Þ þ 12ðΩM þ ΩRÞ − 6γðY1 − 6ÞY2Þ
Uð3γV − 1Þ ; ð26Þ

Ω0
R ¼ −

ΩRðUð4ð3γV − 1Þ − 3γðY1 − 4ÞY2 þ 3ΩM þ 4ΩRÞ þ 12ð3γV − 1Þ þ 12ðΩM þ ΩRÞ − 6γðY1 − 6ÞY2Þ
Uð3γV − 1Þ : ð27Þ

A quick look at Eqs. (22)–(27) reveals that they are not
invariant under U → U þ Uhom and ρ → ρþ Λ, where ρ
is the energy density of the system. Contrary to the
nonlocal models considered in Ref. [40], nonzero and
constant values of Uhom are not equivalent to a cosmo-
logical constant. The main purpose of this work is a
complete characterization of the system (22)–(27) for
arbitrary values of Uhom and Vhom. As argued in Ref. [30],
each choice of Uhom and Vhom in Eq. (11) (note that S and
V are the same up to a constant factor) corresponds to the
choice of one and only one boundary condition in the
nonlocal formulation of the theory. Different initial
conditions, and therefore different solutions, should be
associated with different nonlocal models. The qualitative

analysis of Eqs. (13)–(15) will allow us to understand
which of these models are phenomenologically viable.

A. Critical points and evolution paths:
Numerical analysis

The fixed points of the dynamical system (22)–(27) are
those at which all the first derivatives on the left-hand side
of the equations vanish. In some cases though, one can have
fixed surfaces instead of fixed points, that is, only a subset
of variables is constant. In order to go from the fixed
surfaces to fixed points (in a lower dimensional phase
space) one has to perform an appropriate variable trans-
formation (cf. Appendix A for details regarding the

TABLE I. Critical points of the dynamical system (22)–(27). The quantities ~ΩM, ~ΩR, and ~U stand, respectively, for some constant
values of ΩM, ΩR and U.

Point U V U0 V 0 ΩM ΩR weff Type

I ~U ð1 − ~ΩRÞ=ð3γÞ 0 0 0 ~ΩR 1=3 Saddle
II 2N þ ~U ð1 − ~ΩMÞ=ð3γÞ 2 0 ~ΩM 0 0 Saddle
III þ∞ 1=ð3γÞ 4 0 0 0 −1 Attractor
IV 4N þ ~U �∞ 4 �∞ 0 0 −1 Saddle
V −3 �∞ 0 4V ∓ ∞ 0 1=3 Attractor
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treatment of fixed lines). By following this procedure, we
obtain the five nontrivial fixed points/surfaces I–V listed in
Table I. The values of the dynamical variables of the system
(i.e. the quantities U, V, U0, V 0, ΩM, and ΩR) are given for
each point, as well as the value of the effective equation of
state parameter weff. As reflected in the table, we find two
attractors and three saddle points.4

The behavior of the solutions around each of the critical
points can be determined by using the standard phase-space
analysis methods. Although the set of equations (22)–(27)
is nonlinear, the system behaves linearly in the vicinity of
each critical point, provided that the point is isolated and
the Jacobian at the point is invertible.5 The linearization of
Eqs. (22)–(27) in the vicinity of each fixed point gives rise
to a set of linear equations, which can be generically written
in a matrix form X0 ¼ A ·X, with A a 6 × 6 matrix and
X ¼ fU;V;U0; V 0;ΩM;ΩRg. The behavior of the system
around each critical point is determined by the eigenvalues
of the corresponding A matrix. The results are summarized
in the last column of Table I (cf. Appendix A for details).
The precise interpolation of the solutions between the

critical points I–V depends on the initial conditions, and in
particular, on the relation between the initial valueU0 and a
γ-dependent critical value Ū that we obtain numerically for
the case Ω0

M ¼ 0.3,6

ŪðγÞ≃ −14.82þ 0.67 log γ; ð28Þ

and that is valid in the range illustrated in Fig. 1. We can
distinguish two kinds of trajectory. IfU0 (the initial value of
U) is bigger than Ū, the system follows the sequence
I → II → III. In the opposite case, it follows the I → II →
IV → V sequence. We will refer to these two possibilities
as path A and path B, respectively (see Fig. 1). The
previous work on this model, i.e. Ref. [32], has focused
on the particular case of path A, as we discuss in
detail below.

1. Path A

The numerical behavior of the dynamical system along
path A is shown in Figs. 2 and 3. Note that in Fig. 2 we have
fixed V0 ¼ 0. This choice can be made without loss of
generality due to the attractor behavior of point III.
As can be clearly seen in Fig. 2, the saddle points I

and II correspond to intermediate radiation- and matter-
dominated eras. The transition to the attractor point III
proceeds through a transient phantom regime with

weff < −1. This kind of behavior was first recognized in
Ref. [32] where the authors considered the solution of the
dynamical system (13)–(15) for a specific choice of the
initial conditions (U0 ¼ 0, V0 ¼ 0) and derived a lower
bound for the effective equation of state (−1.14≤weff<
−1). As shown in Fig. 2, this bound is not robust under
variations of the initial conditions. General choices of U0

can lead to a stronger phantom regime (or even to its
complete disappearance, cf. Sec. III A 2). Note also that
the particular choice of initial conditions in the MM model
rests on the assumption of a vanishing Ricci scalar prior to
matter-radiation equality, or in others words, on the exist-
ence of a perfect radiation-dominated era. However, the
accuracy and redshifts for which this assumption holds
depend on the thermal history of the Universe. As shown in
Appendix B, if the initial MM conditions were set for
instance at the end of inflation/reheating, one should expect
nonvanishing values of U0 at the number of e-foldings at
which the MM initial conditions are usually implemented
(N ≃ −14) [35].
In spite of the asymptotic approach of the effective

equation of state to weff ¼ −1, the attractor point III should
not be identified, sensu stricto, with a de Sitter point. For a
solution to be de Sitter, the Hubble parameter around this
solution should remain constant (or, more generally, the
Ricci scalar R should be constant). This is certainly not the
case here. Indeed, the Hubble rateHðNÞ becomes infinitely
large when N → ∞. This unusual behavior can be easily
understood by considering the consistency of Eqs. (14),
(15), and (17) at the fixed point III.7

FIG. 1. The two evolution paths A and B for the background
cosmology of R□−2R gravity, in terms of the initial value U0

of the auxiliary fieldU and the value of γ ≡ m2

9H2
0

. The diagonal line

depicts the critical value Ū as a function of γ. The green (red)
region corresponds to the realizations of path A (B).

4One should note that for point III, Eqs. (22)–(27) may seem to
be singular in the limit V → 1=3γ. This is, however, not the case,
as in the limit V 0 ¼ ΩM ¼ ΩR ¼ 0 and U0 ¼ 4, the divergent
factor is canceled out.

5This argumentation holds only if the fixed point of the
linearized system is not a center-type point.

6We will recover analytically the γ-dependent part of this
equation in Sec. III B.

7In order for Eq. (15) to be consistent at III, we must require
H → ∞ faster than U.

DYNAMICAL ANALYSIS OF R 1
□

2 R COSMOLOGY: … PHYSICAL REVIEW D 94, 043531 (2016)

043531-5



2. Path B

The numerical evolution of the dynamical system along
path B is shown in Figs. 4 and 5. Note that in Fig. 4 we have
fixed V0 ¼ 0. This can be done without loss of generality,
provided that V0< 1=ð3γÞ−V0

0 (see the discussion below).
The initial behavior of the system coincides with that in

path A. In particular, the Universe undergoes radiation- and
matter-dominated eras while passing through the saddle
points I and II. The differences appear only when the
system approaches the fixed point IV. As shown on the left-
hand side of Fig. 4, this point gives rise to a true de Sitter
epoch with weff ≃ −1 and HðNÞ≃ constant. Note,

however, that this point is not an attractor but rather a
saddle point. This means that the solution stays close to the
point for some period of time but eventually moves to the
final attractor, the fixed point V. In particular, the late-
time evolution depends on the value of V0 and V0

0. As
discussed in Appendix A, if V0> 1=ð3γÞ−V0

0 then the
system approaches the fixed point V withΩM → −∞. Since
ΩM takes negative values whenV0> 1=ð3γÞ−V0

0, this set of
initial conditions should be discarded on general physical
grounds. On the contrary, if V0 < 1=ð3γÞ − V0

0 we can
obtain a physically viable scenario. As shown on the right-
hand side of Fig. 4, the matter density parameter in this case

FIG. 2. (Left) Evolution of the effective equation of state weff as a function of N ≡ ln a for path A. (Right) Evolution of the density
parameters ΩM;ΩR, and ΩDE for the same path with U0 ¼ 0. In both plots we have fixed V0 ¼ 0.

FIG. 3. Evolution of the auxiliary fieldsU and V, and their derivatives with respect toN ≡ ln a,U0 and V 0, for path A. In the plots ofU
and U0 we have fixed V0 ¼ 0, and in the plots of V and V 0 we have fixed U0 ¼ 0.
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is driven toþ∞while the dark energy one goes to−∞. This
limit is acceptable since ΩDE does not represent a proper
matter content but rather an effective description of the
gravitational degrees of freedom. Note that the effective
equation of state at point V approaches the radiation-
domination value weff ¼ 1=3, even though there is no
radiation left.8

The cosmological evolution along path B requires only
that U0 < Ū. The value of U0 is in principle unbounded
from below. Could it be possible to obtain a phantom
regime similar to that occurring for path A by choosing

U0 ≪ Ū? The answer to this question turns out to be
negative. As shown in Fig. 5, when we increase the
absolute value of U0, the variableU0 approaches a maximal
value U0

max ¼ 4, stays there for some time interval
ΔNU0

maxðU0Þ, and eventually falls into its future attractor
regime U0 ¼ 0. The maximum value of U0 (U0

max ¼ 4)
translates, through Eq. (14), into a value ξmax ¼ 0, and as a
result, weff ¼ −1 − 2

3
ξ cannot be smaller than −1. In other

words, path B is never phantom.

B. Evolution paths: Analytical results

The novel ingredient of the local formulation of the
R□−2R model with respect to general relativity is the

FIG. 4. (Left) Evolution of the effective equation of state weff as a function of N ≡ ln a for path B. (Right) Evolution of the density
parameters ΩM, ΩR, and ΩDE for the same path with U0 ¼ −60. In both plots we have fixed V0 ¼ 0.

FIG. 5. Evolution of the auxiliary fieldsU and V, and their derivatives with respect to N ≡ ln a,U0 and V 0, for path B. In the plots ofU
and U0 we have fixed V0 ¼ 0, and in the plots of V and V 0 we have fixed U0 ¼ −20.

8In fact, for all the points III, IV, and V, ΩR → 0.
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presence of two “integral fields” U and V arising from the
nonlocal structure of the theory, cf. Eqs. (9) and (10). In this
subsection, we take an in-depth look at the evolution of
the 2þ 2 homogeneous and 1þ 1 inhomogeneous modes
and analytically confirm the results obtained in Secs. III A 1
and III A 2.
The basic building blocks of cosmological model con-

struction are solutions with constant effective equation of
state weff . Assuming weff ¼ wc with wc a constant, and
using Eqs. (9) and (10), we obtain the following equations
for the U and V fields:

UðNÞ ¼ u0 þ u1e−
3
2
ð1−wcÞN þ 2ð1 − 3wcÞ

1 − wc
N; ð29Þ

VðNÞ ¼ 2e3ð1þwcÞN

9ð1þ wcÞð3þ wcÞ

×

�
u0 −

2ð1 − 3wcÞð5þ 3wcÞ
3ð1 − w2

cÞð3þ wcÞ
−
2ð1 − 3wcÞ
1 − wc

N

�

þ 2e
3
2
ð1þ3wcÞN

9ð1þ wcÞð1þ 3wcÞ
u1 þ v0 þ v1e−

3
2
ð1−wcÞN;

ð30Þ

with u0, u1, v0, and v1
9 integration constants set at N ¼ 0.

These equations reveal that the inhomogeneous modes
disappear if and only if wc ¼ 1=3. As a default, wc ¼ 1=3
is the only constant equation of state giving rise to an
attractor solution.10 Note also that for −3 < wc < 1 the
fastest-growing exponent in Eq. (30) appears in the first
term, which is controlled by u0 only. Taking this into
account, we will mostly focus on variations of u0 in what
follows.
Let us first consider a solution within radiation domi-

nation, like that taking place around the fixed point I. The
growing modes in this case are given by U → u0 and
V → 1

20
e4Nu0. If we start with an initial condition ΩR ¼ 1,

the numerator of Eq. (13) tells us that the nonlocal
corrections take over at NNL ¼ − 1

4
logðγu0

4
Þ e-foldings.

Thus, the radiation-dominated Universe in the MM model
is stable if and only if we have exactly the minimal
boundary condition prescription.
In a realistic cosmology we should also consider

a matter-dominated epoch following the radiation-
domination era. This matter-dominated era happens around
the critical point II. For wc ¼ 0, the inhomogeneous modes
in Eqs. (29) and (30) survive and the solution is necessarily
unstable. The number of e-foldings NNL at which the

nonlocal corrections take over is again dictated by the
numerator of Eq. (13). At NNL e-foldings, the sign of the
fastest-growing mode is positive if11

u0 > −
�
10

9
þ 4

3
log

9

5

�
þ 2

3
log γ: ð31Þ

As we will confirm below, one should expect this sign
to determine the evolution of the system beyond point II.
Note that Eq. (31) can be translated into a bound on the
value of UðN�Þ at any given number of e-foldings N� by
noticing that

u0 ¼ UðN�Þ − 2
ð1 − 3wcÞN�

1 − wc
−
4ð1 − 3wcÞ
3ð1 − wcÞ2

: ð32Þ

In particular, for matter-radiation equality (N� ¼ −8.1), we
get UðN�Þ > −15.65þ 2

3
log γ. Note that this is close to the

numerical value of Ū found in Eq. (28).
The above two cases constitute the only possibilities for

realizing a constant equation of state weff ¼ wc in a
universe with nonvanishing and minimally coupled radia-
tion and dust components. In what follows, wewill consider
vacuum solutionswithΩR ¼ ΩM ¼ 0. CombiningEqs. (13)
and (15) we get

UV 00−2U0V 0 ¼−
3

2
ðU−wcUþ8ÞV 0−12Vþ4

γ
: ð33Þ

As in the nonvacuum case, the attractor solutions can be
associated only to an effective equation of state wc ¼ 1=3.
The fixed point V falls into this category. Indeed, when we
set u1 ¼ v1 ¼ 0, Eq. (33) reduces to

FIG. 6. Value of U0 needed to reach path A (blue curve) or path
B (red dotted curve) when Ω0

M ¼ 0.3. For largem, the two curves
converge to Ū, represented by the intermediate dashed curve,
which follows Eq. (28).

9The values u0 and v0, that are set at N ¼ 0 according to the
solutions (29) and (30), should not in general be confused with
U0 and V0, the initial values for U and V set at an early radiation-
dominated epoch.

10Equations (29) and (30) are exact and model-independent
solutions as long as we can assume that weff is a constant.

11This formula is approximate because whenΩM¼1=2, wc ¼ 0
is not exact.
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e4Nðu0 þ 3Þ − γ

4u0
ð1 − 3γv0Þ ¼ 0; ð34Þ

which allows for the solutions

UðNÞ ¼ −3; VðNÞ ¼ 1

3γ
−

3

20
e4N: ð35Þ

Equations (35) are exact solutions of the system of
Eqs. (29), (30), and (33). Note, however, that there can still
be approximate solutions. Consider temporary regions with
wc ≈ −1, as those appearing around points III and IV. In
these regions, Eqs. (29) and (33) give U0ðNÞ → 4 and
VðNÞ ¼ 1=ð3γÞ, but one should be aware that Eq. (30) is
only valid for a constant weff . If UðNNLÞ < −3 when this
solution is reached at NNL, the trajectory will hit the
aforementioned attractor with wc ¼ 1=3 and stay there;
this is then part of what we called path B, cf. Sec. III A 2. If
UðNNLÞ > −3, the evolution will continue in the phase
with wc ≈ −1 and U0 ¼ 4; this phase belongs to path A,
cf. Sec. III A 1.
To summarize, the post-matter-dominated Universe

reaches an accelerating stage with wc ≈ −1 which goes
on until UðNÞ ¼ u0 þ 4N ¼ −3. If u0 > −3, this period
extends forever. Otherwise, one can prolong the transient
acceleration for ΔN e-foldings by lowering the initial value
of U0 → U0 − 4ΔN.
The results of this subsection are in agreement with what

we studied in greater detail in the previous subsections,
namely the stability analysis in the phase-space formulation
and the numerical integration of the field equations.

IV. CONSTRAINTS FROM SUPERNOVAE DATA

Since both paths A and B realize cosmologies that are in
principle viable (i.e., they contain a sequence of proper
radiation-, matter-, and dark-energy-dominated eras), we

need to compare both to observations. Here, we assume as
free parameters, m in units of H0 and the present matter
density parameter Ω0

M, and fix Ω0
R ¼ 4.15 × 10−5h−2 and

V0 ¼ 0. The initial condition deep in the radiation era, that
we choose arbitrarily as U0 ≡ UðN ¼ −14Þ, is fixed by the
requirement that we reach Ω0

M today. In practice, for every
point fm;Ω0

Mg in the parameter space, we vary iteratively
U0 until we find Ω0

M at N ¼ 0. Since there are two possible
paths, we find two values of U0 for every choice of
parameters. The particular choice of U0 as a function of
m whenΩ0

M ¼ 0.3 is presented in Fig. 6. For largem, paths
A and B lead to a common behavior, and their initial
condition U0 also converges.
Once the two trajectories are found, we evaluate the

Hubble rate HðzÞ for each path and compare the associated
luminosity distance dLðHðzÞÞ to the Joint Light-curve
Analysis (JLA) supernovae data set [52] in order to obtain
two independent likelihoods over m and Ω0

M, one for each
path. When the pair fm;Ω0

Mg is specified, the effective
equation of state weff is completely determined. The results
are shown in Figs. 7 and 8. Focusing onΩ0

M ≈ 0.3, one sees
that all the values of m up to 0.5 are roughly compatible
with supernovae. Note, however, that the expectation value
Ω0

M ≈ 0.3 comes from standard cosmology and it should
not be directly applied to modified gravity cases. In fact, the
supernovae data set is roughly compatible with all values of
Ω0

M < 0.45, so a more robust upper limit for m is around
1.2. For very small m, the trajectories of both path A and
path B become observationally indistinguishable from
ΛCDM.12 Note, however, that this may change in the

U0=10

U0=0

U0=- 7

U0=- 10

U0=- 12

0.2 0.4 0.6 0.8 1.0
0.20

0.25

0.30

0.35

0.40

0.45

0.50

m H0

m0

U0= -5000

U0 1000

U0= -200

U0= -50

2 1 0
0.10

0.15

0.20

0.25

0.30

0.35

0.40

m H0

m0

3

FIG. 7. Supernovae likelihood contours at 2-σ level for path A (left panel) and path B (right panel). The associated values of U0 are
also displayed.

12Indeed, when m is small, the dynamical part associated with
nonlocal contributions in Eq. (13) is suppressed. The leading
contribution at early times is of order mUhom, which is a constant
in our case. Note that this is in agreement with the curve
corresponding to path B in Fig. 6.
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future when the dynamical part associated with nonlocal
contributions in Eq. (13) becomes dominant again.

V. SUMMARY AND CONCLUSIONS

Nonlocality can emerge from local theories. If one
focuses on classical physics at long wavelengths, there
can appear nonlocal constraints due to the effect of short
wavelengths that have been integrated out. In quantum field
theories, nonlocality is introduced in the computation of the
effective action via the integration of the radiative correc-
tions due to massless or light particles.
It is thus natural to consider that nonlocal, infrared

modifications of gravity at cosmological scales, such as in
the model described by (2), could provide a useful effective
approach to study the problems of cosmological constant
and of dark energy. An important subtlety, not arising in
local modifications of gravity, has to then be taken into
account in such studies: in addition to the mass parameter
in the Lagrangian (2), the nonlocal model is understood to

be specified by the boundary conditions implied by the
presence of the inverse-d’Alembertian.
In this work, we have considered the effect of general

initial conditions on the dynamical system (22)–(27) for the
background evolution of the R□−2R cosmological model,
as well as the constraints from supernovae data on the
parameters m and Ω0

M. The system exhibits two distinct
classes of late-time behavior, which lead to two different
types of cosmological evolution, dubbed path A and
path B.
Path A (path B) is realized above (below) a certain

threshold Ū for the initial condition of the auxiliary fieldU,
U0. The case U0 ¼ 0, belonging to path A, is the one
already discussed in Ref. [32]. Note, however, that the
initial conditions in this theory are sensitive to the thermal
history of the Universe. In particular, the value of U at a
given number of e-foldings cannot be unambiguously set to
zero by setting Uhom ¼ 0. The main result of this work is to
extend the cosmological analysis to the full range of initial
conditions.
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FIG. 8. Supernovae likelihood contours at 2-σ level for path A (upper panels) and path B (lower panels). The associated values of w0

and w1 in the standard parametrization weff ¼ w0 þ ð1 − aÞw1 are also displayed.
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We found that although both paths possess well-behaved
radiation and matter eras, the subsequent evolution is in
general radically different. Along path A, the system goes
through a phantom regime and finally reaches an attractor
on which the effective equation of state weff remains frozen
at the CC value −1. This final state, however, is not a de
Sitter stage since H (and therefore the Ricci scalar R) is not
constant, but rather grows indefinitely. Along path B,
instead, the evolution remains always nonphantom; the
system reaches generically a weff ¼ −1 stage which
approaches a true de Sitter stage. This is however a
temporary stage in cosmic evolution, as the solution is
not an attractor but, rather, a saddle point. After a transient
period the system reaches a final configuration represented
by a decelerated, radiationlike, weff ¼ 1=3 state (and there-
fore with R ¼ 0), in which, however, no radiation is
present. The present value of the nonlocal-term equation
of state, wDE, can take essentially any values around −1.
The impact of initial conditions on the final evolution is
therefore important.
Both paths are in principle cosmologically viable. When

compared to supernovae observations, we find the regions
in the fm;ΩMg parameter space that satisfy observational
constraints. It is interesting to note that small, even
vanishing, values ofm are perfectly acceptable. This means
that cosmologically viable nonlocal terms can be generated
from standard loop corrections, which require m=H0 ≪ 1
(in Planck units). However, in this case the evolution
becomes indistinguishable from ΛCDM.
The methods employed in this paper can be applied to

more general nonlocal models. We saw that the possible
cosmological dynamics of a given model can be conven-
iently derived from the behavior of the additional scalar
modes carried by the nonlocal integral operators. Assuming
a background evolution with a power-law expansion of the
scale factor, we solved for the mode functions in the model
(2), and from the general solutions (29) and (30) deduced
the handful of fixed points and their basic properties. A
similar analysis should be even more transparent for actions
of the type (1), since there the nontrivial modes are given
solely by Eq. (29). In models featuring the conformal Weyl
curvature [18,28,29], a substantial simplification is that
only the homogeneous modes are nonvanishing.
In conclusion, the cosmological background dynamics

of the nonlocal model studied here depend qualitatively
upon the initial conditions. We discussed the initial con-
ditions in terms of U0 set at an early radiation-dominated
epoch and showed that different values for this parameter
can result in the Universe ending up eventually in drasti-
cally different stages: in the two most typical cases studied
here, either a phantomlike approach towards asymptotic
singularity, or an eternal conformal expansion. The initial
value U0 ¼ 0 is a natural choice, but its implementation in
fact depends on the thermal history of the Universe. As
shown in Appendix B, however, the ambiguity is not large

enough to change the evolution from the former track to
the latter.
We can thus regard the interesting dark energy behavior

as a robust background prediction of the model (2). It
remains to be seen whether one can learn further about the
structure formation in nonlocal cosmology by revisiting the
boundary conditions of the integral operators at the level of
the inhomogeneous perturbation modes.
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APPENDIX A: SOME CLARIFICATION ON
FIXED POINTS AND PATHS

1. From fixed surfaces to fixed points

As explained in Sec. III A, when the first derivative of a
variable on the left-hand side of Eqs. (22)–(27) takes a
constant value, the dynamical system contains a fixed
surface rather than a fixed point. To illustrate how to deal
with this situation, we present below the complete phase-
space analysis for the critical point II in Table I. A similar
analysis can be done for points III and IV.
As follows directly from Eq. (22), when Y1 ¼ 2 the

variable U satisfies the equation of a line, U0 ¼ 2. In order
to go from this fixed line to a fixed point we can consider a
field redefinition,

U ¼ ~U þ 2N; ðA1Þ

with N the number of e-foldings. Inserting this relation into
Eqs. (22)–(27), one immediately realizes that Y1 ¼ 2
corresponds to a fixed point ~U0 ¼ 0. Written in the new
variables, the analysis proceeds along the lines discussed in
Sec. III A. The behavior of the system around the fixed
point is determined by the eigenvalues of the characterizing
matrix, which are given by

λi ¼
�
0; 0;−1;−

3

2
;−

3

2
;
3 ~U0 þ 6N þ 4

~U0 þ 2N

�
; ðA2Þ

with ~U0 an arbitrary constant. From the theory of dynami-
cal systems we know that the so-called Lyapunov coef-
ficients si (i ¼ 1; 2;…; 6) are equal to the real part of the
eigenvalues λi, provided that these eigenvalues are con-
stant. Note however that, due to the field redefinition (A1),
the last eigenvalue in Eq. (A2) depends on the number of
e-foldings N. The Lyapunov coefficient in this case is
defined by the upper limit
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s6 ¼ lim
N→∞

1

N − N0

Z
N

N0

Refλ6ðN0ÞgdN0; ðA3Þ

with N0 some initial value for N. Taking into account (A2),
we get

s6 ¼ lim
N→∞

1

N − N0

Z
N

N0

3 ~U0 þ 6N0 þ 4

~U0 þ 2N0 dN0 ¼ 3: ðA4Þ

The resulting spectrum of Lyapunov coefficients

si ¼
�
0; 0;−1;−

3

2
;−

3

2
; 3

�
ðA5Þ

shows that the fixed point under consideration is a
saddle point.

2. On the two realizations of the fixed point V

Note that point V in Table I has two different realizations.
The first one is obtained for V ¼ þ∞ and ΩM ¼ −∞,
while the second case corresponds to V ¼ −∞ and
ΩM ¼ þ∞. In this Appendix, we discuss the set of initial
conditions giving rise to each one of these configurations.
Around the fixed point V, we have U0 ¼ U00 ¼ 0. These

two conditions restrict the ξ parameter in Eq. (14) to a fixed
value ξ ¼ −2. Inserting this constant value into Eq. (15)
and taking into account the largeN limit of Eq. (13), we get

V 00 − 3V 0 − 4V þ 4

3γ
¼ 0: ðA6Þ

For N ≫ 1, the solution of this differential equation reads

V ≈
1

3γ
þ
�
V0 −

1

3γ
þ V0

0
�
e4ðN−N0Þ; ðA7Þ

with V0 and V 0
0 the values of V and V 0 at some initial time

N0. In view of this solution, we can distinguish two
possibilities. If V0 > 1=ð3γÞ − V0

0, the system approaches
the fixed point V with V → þ∞.13 In the opposite case, the
fixed point V is realized with V → −∞.

APPENDIX B: INITIAL CONDITIONS AND
THERMAL HISTORY OF THE UNIVERSE

In this Appendix we estimate the robustness of the MM
initial conditions when the detailed particle content of the
Universe prior to matter-radiation equality is taken into
account.

For some purposes, the transition from radiation to matter
domination can be approximated by an instant transition at
Neq ≃ −8.1 in which the trace of the energy-momentum
tensor changes abruptly from zero to e3Neq times its present
value. This approximation implicitly assumes that all the
particles in the early Universe have roughly the same mass,
and transit simultaneously from a relativistic to a non-
relativistic state. A detailed analysis of the thermal history of
the Universe allows us to go beyond this approximation and
to account for the fact that particles with different masses
become nonrelativistic at different temperatures, or equiv-
alently, at different cosmic times.
The change in the trace of the energy-momentum tensor

can be parametrized as

trðTμνÞ ¼
ρ − 3P
M2

Pl

≡ ρR
M2

Pl

ΣðTÞ; ðB1Þ

with T and ρR the temperature and energy density of the
radiation bath.14 The so-called “kick” function ΣðTÞ is
computed by summing the individual contributions to the
bath of the particles with mass mi, temperature Ti and gi
degrees of freedom [53],15

ΣiðTÞ ¼
ρi − 3pi

ρi

¼ 15

π4
gi

g�ðTÞ
�
mi

T

�
2
Z

∞

mi=T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − ðmi=TÞ2

p
eu � 1

du; ðB2Þ

where g�ðTÞ≡ ρR½ðπ2=30ÞT4�−1 is the total number of
relativistic degrees of freedom in the bath.
Equation (B1) translates, via Einstein equations, into a

change of the Ricci scalar, R ¼ trðTμνÞ. Integrating Eq. (9)
with aðtÞ≃ t1=2 and taking into account the relation
between time and temperature at radiation domination,

t≃
ffiffiffiffiffiffiffi
45

2π2

r
g−1=2�

MPl

T2
; ðB3Þ

we get

ΔU≡U −Uhom

¼ 45

2π2
M2

Pl

Z
Tf

T i

dT 0DðT 0Þg1=4� ðT 0ÞT 0

×
Z

T 0

T i

dT 00DðT 00Þ RðT 00Þ
ðT 00Þ5g5=4� ðT 0Þ

; ðB4Þ

with

13Note that realizations with V0 > 1=ð3γÞ − V0
0 are not

physically acceptable. As can be easily deduced from
Eq. (13), these configurations give rise to negative values of
h2 around the fixed point V.

14Note that if all the particles prior to recombination were
completely massless, ΣðTÞ would be zero.

15Theþ and − signs in the denominator of the integrand apply,
respectively, to fermions and bosons.
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DðTÞ≡
�
−
2

T
−

1

2g�ðTÞ
∂g�ðTÞ
∂T

�
: ðB5Þ

Here, T i and Tf are the higher and lower temperatures for
which radiation domination is a reasonable first order
approximation for the background evolution of the
Universe. Note that, due to the integration between T i
and Tf , even a tiny value of the scalar curvature at early
times (Tf ≪ T i) can give rise to a sizable modification of U
at matter-radiation equality.16

The radiation-domination requirement (R ¼ 0) giving
rise to the MM initial conditions should be understood only
as an approximation of the actual dynamics. The value ofU
at radiation domination cannot be unambiguously set to

zero by simply setting Uhom ¼ 0. Indeed, if the initial
conditions are set at the end of inflation/reheating, one
should expect nonvanishing values of U0 at the number of
e-foldings at which the MM initial conditions are usually
implemented (N ≃ −14). Note also that, even if the MM
initial conditions are taken for granted, the detailed thermal
history of the Universe will inevitably affect the subsequent
evolution of U. The uncertainty associated to this effect
depends on the particle content of the early Universe.
Assuming radiation domination between 1000 GeV and
0.75 eV and considering only the contribution of Standard
Model particles, we can numerically integrate Eq. (B4) to
obtain a correction

ΔU ≈ 1.6; ðB6Þ
to be added on top of the nonvanishingMM value at matter-
radiation equality [35]. The assumptions leading to the
uncertainty (B6) are indeed quite conservative. Larger
values of ΔU should be expected if we accept the existence
of new physics beyond the Standard Model.
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