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We show that if a spectator linear isocurvature dark matter field degree of freedom has a constant mass
through its entire evolution history, the maximum measurable isocurvature spectral index that is consistent
with the current tensor-to-scalar ratio bound of about r ≲ 0.1 is about nI ≲ 2.4, even if experiments can be
sensitive to a 10−6 contamination of the predominantly adiabatic power spectrum with an isocurvature
power spectrum at the shortest observable length scales. Hence, any foreseeable future measurement of a
blue isocurvature spectral index larger than ∼2.4may provide nontrivial evidence for dynamical degrees of
freedom with time-dependent masses during inflation. The bound is not sensitive to the details of the
reheating scenario and can be made mildly smaller if r is better constrained in the future.

DOI: 10.1103/PhysRevD.94.043524

I. INTRODUCTION

Although minimal single-field slow-roll inflationary
scenarios [1–10] can successfully provide a dynamical
explanation for the currently known features of the initial
conditions in classical cosmological physics [e.g. the
cosmic microwave background (CMB) [11–25] and large
scale structure [26–28]], it is natural to speculate that more
than one single real field is dynamical during inflation. For
such extra dynamical degrees of freedom not to spoil the
flatness of the inflaton potential, it is also natural to assume
that they are very weakly coupled to the inflaton (though
this is obviously not a requirement). With this assumption,
these extra dynamical degrees of freedom behave as
spectators as far as the inflationary dynamics is concerned.
If one of these dynamical degrees of freedom is taken to be
a weakly interacting cold dark matter (CDM) field, then
there exists a well-known observable called the CDM-
photon isocurvature perturbations which becomes observ-
able (e.g. [29–51]) if the CDM field is sufficiently weakly
interacting and does not to thermalize.
There are two broad categories of scalar spectator field

scenarios that can produce observable CDM-photon iso-
curvature perturbations: (i) linear spectators, such as axions
[52–54], and (ii) gravitationally produced superheavy dark
matter scenarios, aka WIMPZILLAs [55–60] (for some
recent developments, see [61–64]). Linear spectator fields
are characterized by having vacuum expectation values
(VEVs) that are much larger than the amplitudes of their
quantum fluctuations. The VEV oscillations generate the
dark matter density in the Universe today while the spatially
inhomogeneous distribution of their energy-momentum
tensors are determined by the quantum fluctuations. Such
isocurvature fluctuations are called linear because the
energy-momentum tensor inhomogeneity is approximately

linear in the fluctuations, in contrast with the case of
gravitationally produced superheavy dark matter scenarios.
In this paper, we will focus on the linear spectator scenarios
and will drop the “linear” adjective.1

Scale-invariant isocurvature perturbations with negli-
gible correlations with curvature perturbations are well
constrained to be less than 3% of the adiabatic power
[12,15,19,65–70]. However, isocurvature spectra with very
blue spectral indices can be unobservably small on long
wavelengths, for which the measurements are strongly
constraining, but have large amplitudes on short wave-
lengths, where the measurements are less constraining
[71–73]. The case of a blue spectrum is qualitatively
different from a “bump” in the spectrum because bumps
usually involve a red part as well as a blue part, and because
the blue spectrum here is envisioned to have a qualitatively
extended k-space range over which an approximately
constant blue spectral index persists.2

One of the most natural models that can produce large
blue CDM-photon isocurvature scenarios was given in
[74]. This class of models is characterized by axions that
have time-dependent masses due to the out-of-equilibrium
nature of the Peccei-Quinn (PQ) symmetry breaking field.
For constant mass linear spectator fields, large blue spectral
indices are difficult to produce in observably large ampli-
tudes because the energy density of the VEV dilutes away.
An intuitive perspective is that the closer the spectral index
is to nI ¼ 1 (scale invariant), the more the field fluctuations
behave like a frozen VEV, while the closer the spectral
index is to nI ¼ 4, the more the field fluctuations behave as
particles which can be diluted away by inflation.

*danielchung@wisc.edu

1We briefly discuss what would happen with a quadratic
isocurvature scenario in the conclusions.

2Of course, from an observational point of view, this may not
be easy to disentangle since observations have a finite k range.
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Hence, a natural question, which is the subject of this
paper, is what is the maximal measurable isocurvature
spectral index that can be produced by a constant mass
spectator field in the context of slow-roll inflationary
scenarios where the adiabatic perturbation spectrum orig-
inates from the inflaton field fluctuations. For a linear
spectator scenario, we find that the maximum measurable
spectral index in the foreseeable future is about nI ¼ 2.4
(where nI ¼ 1 corresponds to scale invariance). Although
measurability depends on the sensitivity of any given
experiment, inflationary physics renders the dependence
of the experimental sensitivity to be logarithmic [to obtain
some intuition, see e.g. Eq. (50)]. The bulk of this number
originates from the ratio of the log of the dark matter
density maximum enhancement due to the dark matter
diluting as a−3 (compared to radiation diluting as a−4) and
the number of e-foldings necessary for the inflationary
scenario to explain the observed homogeneity and isotropy
of the Universe. A better constraint on the inflationary
tensor perturbation amplitude r can decrease this number,
but the sensitivity is only logarithmic. If restrictions are
placed on the maximum reheating temperature, then the
maximum measurable spectral index also decreases. We
will illustrate this by assuming a perturbative reheating
scenario and assuming that the gravitationally suppressed
nonrenormalizable operators of dimension 5 or 6 are
unavoidable.
The number 2.4 is interesting because there are claims in

the literature [72,75–77] that future experiments may be
able to measure spectral indices of nI ≳ 3. The results in
this work demonstrate that if any of these experiments
detect a blue isocurvature spectrum, then they may have
uncovered evidence for a dynamical degree of freedom
with a time-dependent mass.
Before proceeding, we note that the CDM-photon

isocurvature observable that we focus on in this paper is
distinct from the ζ correlator in the context of “heavy”
masses discussed e.g. in [78–80] and the ζ-tensor corre-
lators [81] which in some cases can also receive signatures
from the isocurvature degrees of freedom. On the other
hand, these works all include the common theme of
secondary fields from inflation that can leave a blue
spectral cosmological observable signature.
The order of presentation will be as follows. In Sec. II,

we discuss the constraints considered in the spectral index
maximization problem (there will turn out to be thirteen
constraints). We then estimate the solution to the maximi-
zation problem analytically in Sec. III. Next, we solve the
maximization problem numerically in Sec. IV. We then in
Sec. V give a brief review of why the axionic models that
naturally have time-dependent masses can evade this bound
and explain why this may be the most natural scenario to
turn to if measurements are made of the spectral index that
are larger than ∼2.4. Finally, we summarize and discuss
caveats in the conclusions.

II. MAXIMIZATION PROBLEM

In this section, we define our class of models and the
maximization problem at hand. In particular, we provide a
definition of a measurable blue isocurvature spectral index
for a real scalar field χ of constant mass that makes up a
fraction ωχ of the total cold dark matter content through its
background VEV oscillations, reminiscent of misaligned
axion scenarios. We will state a list of constraints defining
the mathematical problem. The mathematical constraints
will involve a combination of both model limitations and
phenomenological considerations.
We consider effectively single-field slow-roll inflation-

ary scenarios, in which adiabatic cosmological perturba-
tions arise from the inflaton fluctuations. Here we define
effectively single field to mean that a single field direction
is important for the adiabatic inflationary observables. For
example, hybrid inflation involves at least two fields, but
during the slow-roll phase, only one field is dynamical as
far as the adiabatic perturbations are concerned.
In this context, consider a linear spectator isocurvature

field χ (see [73] for a more precise definition) that is
governed by the potential

VðχÞ ¼ m2

2
χ2; ð1Þ

in which m is a constant. Writing χ ¼ χ0ðtÞ þ δχðt; ~xÞ, the
background equation of motion on the metric ds2 ¼ dt2 −
a2ðtÞjd~xj2 is

∂2
t χ0 þ 3H∂tχ0 þm2χ0 ¼ 0; ð2Þ

in which as usual H ≡ _a=a. In accordance with the linear
spectator definition, we assume that for the wave vector k in
the range of isocurvature observable of interest, we have

χ0ðtkÞ ≫
HðtkÞ
2π

; ð3Þ

in which tk is the time when the mode k left the horizon [i.e.
k ¼ aðtkÞHðtkÞ]. The energy density in χ0 oscillations that
remains today is assumed to be part of the total cold dark
matter content. We can then divide the δχ (noninflaton)
perturbation into the adiabatic and nonadiabatic part in the
Newtonian gauge as δχk ¼ δχadk þ δχnadk , in which the
nonadiabatic classical isocurvature field fluctuation mode
δχnadk ¼ hkðtÞ obeys the equation

ḧk þ 3H _hk þ
�
m2 þ k2

a2

�
hk ¼ 0 ð4Þ

at the linearized level during inflation. If the approximate
Bessel function solution index

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9=4 −m2=H2

p
is real

while the modes are subhorizon, then the square root of
the χ-photon total isocurvature amplitude

ffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

sðkÞ
p

is
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ffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

sðkÞ
q

≈ ωχ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3=ð2π2Þ

p
2jhkðtÞj

jχ0ðtÞj
ð5Þ

[we have assumed the usual Bunch-Davies normalization of
hk→exp½−ikR dta−1�=ða ffiffiffiffiffi

2k
p Þ in the limit of k=ðaHÞ→∞],

which remains frozen upon the horizon exit, whereωχ is the
cold dark matter fraction constituted by χ, assuming all of
dark matter is cold. More precisely, the gauge invariant
isocurvature spectrum is (in the notation of [73])

ffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

sðkÞ
q

¼ωχ2

�
2ν−

1
2jΓðνÞjffiffiffi
π

p
��

Hðtk0Þ=ð2πÞ
χ0ðtk0Þ

��
k
k0

�3
2
−νþOðεk0 Þ

;

ð6Þ

in which

ν ¼ 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4

9

m2

H2ðtk0Þ

s
; ð7Þ

in which Hðtk0Þ is the expansion rate when the k0 mode
leaves the horizon. Hence, for the blue spectral indices that
are of interest in this work, we have

nI − 1 ≈ 3–2ν; ð8Þ

in which ν is a function of mass that also controls the time
dependence of the background field χ0. This class of
isocurvature perturbations will be uncorrelated with the
curvature perturbations.
We will call nI − 1 ∼Oð1Þ > 0 a large blue spectral

index, which corresponds to m=Hðtk0Þ ∼Oð1Þ. For the
majority of this paper, we will take k0 ¼ ki, which labels
the longestwavelengthmode relevant forCMBobservations
(around 0.002 Mpc−1), and wewill assume 50εki ≪ 4 − nI .
For brevity, we will also define Hi ≡HðtkiÞ.
As ωχ ∝ χ20ðtÞ in Eq. (6), and χ0ðtÞ decays exponentially

during inflation whenever m=Hi ∼Oð1Þ, Δ2
s can easily

become unmeasurably small for large blue spectral index
scenarios. This suppression can be partially offset by
ðk=k0ÞnI−1 enhancements as long as

constraint 1∶
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

sðkmaxÞ
q

=ωχ < 1 ð9Þ

to maintain perturbativity.3 In addition, Hi cannot in
general be made arbitrarily large to make Δ2

s large due
to model building constraints such as the minimum number
of e-folds, reheating, and tensor perturbation limits.

Given these constraints, a natural question arises:
(i) Given an experimental sensitivity parametrized by

Ekmax
(which will be defined below), what is the

maximum measurable nI that can be attributed to a
constant mass spectator model in the context of
effectively single-field inflation?

This is the main question that will be answered in this
paper, and the rest of the constraints [together with Eq. (9)]
associated with maximizing nI in Eq. (6) will be laid out in
this section.
The main physics computation underlying this question

is the determination of the time evolution of χ0ðtÞ until the
time of reheating. The computation thus depends on the
expansion rate HðtÞ during and after inflation. More
specifically, the χ0ðtÞ time dependence is governed by
the time-coarse-grained amplitude of H because Eq. (2)
does not contain any derivatives of HðtÞ. To cover a large
class of slow-roll models economically (including both
hybrid type and chaotic type), we consider a coarse-grained
model space parametrized by Hi (the expansion rate when
the longest wavelength left the horizon), εki (the potential
slow-roll parameter when the longest mode left the hori-
zon), and te − tki . More precisely, we parametrize the
expansion rate as

H ≈

8<
:

Hið1 − εkiHiðt − tkiÞÞ tki < t < te
Hið1−εkiHiðte−tki ÞÞ

1þ3
2
ðt−teÞHið1−Hiεki ðte−tki ÞÞ

t > te
ð10Þ

which is continuous at te.
4 We will consider εki values that

are consistent with the single-field adiabatic perturbation
amplitude

constraint 2∶ εkiðHiÞ ¼
H2

i

8π2M2
pΔ2

ζðkiÞ
; ð11Þ

in accordance with the spectator isocurvature paradigm
considered in this paper. In the above,Δ2

ζðkiÞ is the adiabatic
spectral amplitude at the longest observable wavelengths,

3Note that this constraint is required by the linearity of the
class of scenarios under consideration. If δχ=χ0 ≪ 1 fails, then
quadratic composite correlators must be accounted for. An
estimate of the nonlinear spectator scenario is given in the
conclusion section.

4Since we will never take the derivative of this function at te in
the computation, the discontinuity of the derivative at t ¼ te does
not pose significant inaccuracies for the spectator field. This
expansion rate fits the quadratic inflationary model to better than
10% during most of the time except at the inflationary exit
transition where the fit degrades to 40% accuracy briefly at the
transition point out of a quasi-dS era. For inflationary models
with smaller εki, the fit is better, since this is a perturbative
solution in εki . An alternative to this approach would be a
numerical H time evolution sampling in the space of single field
slow-roll models [82–87]. We do not invest in the more numeri-
cally intensive approach since even an order 40% uncertainty in
H amounts to an order 1% uncertainty in nI − 1 in most of the
parametric regime of interest. More discussion of this will be
given later.
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which wewill take to beΔ2
ζðkiÞ ≈ 2.4 × 10−9.5 As we seek a

conservative upper bound we will not impose the adiabatic
scalar spectral index constraint.6 The set of models that this
parametrization excludes are those for which the quantities
fεki ; Hi; teg do not controlHðteÞ, the expansion rate at the
end of inflation. Such excluded models are somewhat
atypical among the known set of explicit effectively sin-
gle-field models as they require new length scales (i.e.
beyondHi and te) to enter the potential beyond those that are
typically present in hybrid and chaotic inflationary scenar-
ios. Furthermore, new length scales require yet another
degree of fine-tuning to fit smoothly with the t ∼ tki time
region where Eq. (10) is guaranteed to be valid for
effectively single-field slow-roll models. As wewill discuss
later, the maximum spectral index constraint does not
sensitively depend on εkiHite, which is fortunate since this
parametrization is only 40% accurate for quadratic infla-
tionarymodels near the timeof the endof inflation.Note also
that because we will impose the tensor perturbation phe-
nomenological upper bound on Hi, the εki contribution to
the spectral index will never be too big for phenomenologi-
cal compatibility.
In addition to the adiabatic constraint Eq. (11), we

impose the inflationary condition that the number of
e-folds be larger than the minimum necessary for a
successful cosmology:

constraint 3∶ Ne ≡HiΔte
�
1 −

εki
2
HiΔte

�
> Nmin

≈ 53þ 1

3
ln

TRH

1010 GeV
−
2

3
ln
HeðHi; teÞ
1010 GeV

;

ð12Þ

in which

He ≡Hið1 − εkiHiðΔteÞÞ; Δte ≡ te − tki ; ð13Þ

and we have taken the largest length scale to be
kmin ∼ 2πH0a0. Note that in writing Eq. (12), we are
neglecting contributions of order ln ðchHi=ð2HeÞÞ, in
which ch is an inflationary-model-dependent function
of order unity. This leads to a systematic uncertainty
with approximately a 2% error in the isocurvature spectral

index bound. Note also that Eq. (12) is a nonlinear
constraint on Hi.
We also impose the constraint that arises from assuming

that there is at least one gravitational strength operator that
can reheat the Universe. Such assumptions are well moti-
vated within string-motivated cosmologies (e.g. [88–95])
and the weak gravity conjecture [96] (for some recent
developments, see e.g. [97–99]), as well as generic expect-
ations of interpreting gravity as an effective theory with the
cutoff scale Mp. The minimum reheat temperature for a
given He can be computed assuming a coherent oscillation
perturbative reheating. For the inflaton field degree of
freedom φ at the end of inflation to oscillate, we must have
its mass mφ satisfy the condition mφ ≳He. If the particle
decay is through a dimension nO ≥ 5 operator, then

Γg ∼ S
m2ðnO−4Þþ1

φ

M2ðnO−4Þ
p

ð14Þ

is the gravitational decay rate representing the “weakest”
decay rate where S is a phase space suppression factor. For
2-body decay, we expect S ∼ ð8πÞ−1, and we will take S as
small as ð0.1Þ2=ð8πÞ to get a conservative bound. Since

TRH ¼ 0.2

�
200

g�ðTRHÞ
�

1=4 ffiffiffiffiffiffiffiffiffiffi
ΓMp

p
; ð15Þ

in which Γ is the total decay rate, the bound Γ≳ Γg and
mφ ≳He lead to the following bound:

constraint4∶He≲He rh boundðTRHÞ

≡
��

TRH

0.2ð 200
g�ðTRHÞÞ1=4

�
2M2ðnO−4Þ−1

p

S

� 1
2ðnO−4Þþ1

:

ð16Þ

As we will see, for the maximal spectral index bounds
at the highest reheating temperatures, this constraint is
unimportant. A further constraint from reheating is that
fHi; εki ; teg has to be chosen for a fixed reheating temper-
ature such that the energy at the end of inflation is large
enough to give the total radiation energy:

constraint 5∶ TRH <

�
10

g�

�
1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

π
MPHe

r
: ð17Þ

Here we have implicitly assumed TRH and He are such that
coherent oscillations of χ occur during the oscillation period
of the inflaton. This condition can be written as

3

2
HðtRHÞ < m; ð18Þ

which can be used to put a lower bound on the spectral index
of

5This is consistent with current Planck measurements [11]. A
10% change in this number only leads to less than a 1% change in
our results, while we are aiming for a 10% accuracy in nI − 1.
Hence, the precision of this number is not very important.

6The imposition of the adiabatic spectral index constraint using
a full chain of slow-roll parameter evolution scenarios will not
give a severe constraint on te because of the large functional
degree of freedom that exists in the inflationary slow-roll
potential space, and its inclusion will obscure the presentation
needlessly.
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constraint 6∶ nI − 1 > 3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 −

�
π2

10
g�ðTRHÞ

�
T2
RH

MpHi

�
2
�s
:

ð19Þ

Although imposing constraint 6 seems artificial since it is a
simplification for calculational and presentation purposes,
the parametric region where this bound is relevant is very
similar to the parametric region where constraint 5 is
relevant (i.e., it excludes the similar fHi; teg region).
Hence, there is no qualitative change in computing the
maximum nI − 1. Furthermore, we find in the explicit
numerical work that the nI − 1 bound is lowered through
constraint 6 by less than 1% which is below the systematic
uncertainty in the computation. Hence, constraint 6 is
a posteriori not important as long as constraint 5 is imposed.
The absence of observed tensor perturbations yields the

following phenomenological bound:

constraint 7∶ Hi < Mp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rb
2
Δ2

ζðkiÞ
r

ð20Þ

in which rb is the bound on the tensor-to-scalar ratio (i.e.
the ratio r < rb ≃ 16εki ). For the dark matter fraction to not
exceed unity, we impose another phenomenological bound
of

constraint 8∶ ωχ ≤ 1: ð21Þ

We see that constraints 2–5 and 7 mainly arise from
inflationary-model-building consistency, while constraint
8 deals with dark matter phenomenology.
We now turn to constraints on isocurvature perturbations

in addition to constraints 1 and 6. Let us suppose that
future experiments can detect isocurvature amplitudesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

soðkmaxÞ
p

above Ekmax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

ζðkiÞ
q

, in which Ekmax
para-

metrizes the experimental sensitivity. Equation (6) implies

constraint 9∶ ωχ2

�
2ν−

1
2jΓðνÞjffiffiffi
π

p
��

Hi=ð2πÞ
χ0ðtkiÞ

��
kmax

ki

�3
2
−ν

≥ Ekmax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

ζðkiÞ
q

; ð22Þ

in which we have assumed 3=2 − ν ≫ εki . We note that
neglecting εki in the spectral index is numerically valid to
better than the 2% level for the upper bound of interest.
To see that constraint 9 controls the bound on the

isocurvature nI − 1 that we are seeking, we note that if
χ0 oscillations occur before reheating, we have

ωχ ¼
m2hðχ 0Þ2it¼tRHðaðtRHÞaðteqÞ Þ

3

ρRðTeqÞðΩDM=ðΩb þΩDMÞÞ
; ð23Þ

in which ΩDM is the total dark matter fraction of the critical
density today, Ωb is the total baryonic fraction today, and
teq is the time of matter-radiation equality. The prediction
from the coherent oscillation perturbative reheating sce-
nario takes the form

ωχ ¼ R
2hðχ0Þ2it¼tRH

M2
p

�
m

HðtRHÞ
�
2
�
TRH

Teq

�
; ð24Þ

in which

R≡ Ωb þ ΩDM

ΩDM

1

6

g�ðTRHÞ
g�ðTeqÞ

g�SðTeqÞ
g�SðTRHÞ

≈
Ωb þ ΩDM

ΩDM

3.94
3.38

1

6
≈ 0.23; ð25Þ

where g�ðTÞ counts the degrees of freedom in the radiation
energy density ρR, g�SðTÞ counts the degrees of freedom in
the entropy density, and Teq ≈ 0.8 eV is the matter-radia-
tion equality temperature.7 As the solution to Eq. (2) is
approximately given by

ðχ0ðtÞ=χ0ðtkiÞÞ2 ∼ e−ðnI−1ÞHiðt−tki Þ ð26Þ

during inflation, while the next most important factor is

�
k
ki

�3
2
−ν

¼ e
nI−1
2

lnð kkiÞ ð27Þ

with ln½k=ki� ≪ (number of e-folds of inflation), we see
that the magnitude of the left-hand side of constraint 9 is
controlled by ωχ and will be monotonically decreasing as
ðnI − 1Þ=2 increases in the blue spectral parametric region
of interest.8 Hence, we conclude that the maximum nI − 1
is obtained when we saturate the inequality of constraint 9.
It is also necessary to check the current phenomeno-

logical bound on the isocurvature perturbations:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

sðk1Þ
Δ2

ζðk1Þ

s
< Ek1 ; ð28Þ

in which the current phenomenological bound on Ek1 for
k1 ≈ 0.05 Mpc−1 is ∼0.2 at a 95% confidence level [12].
Since Δ2

sðkÞ ∝ knI−1, when constraint 9 is saturated
Eq. (28) becomes

7Here we used g�SðTeqÞ ¼ 3.94 and g�ðTeqÞ ¼ 3.38.
8We see that intuitively when nI − 1 ¼ 0, the background field

acts like a time-independent constant while when nI − 1 → 3−,
the field behaves as a diluting gas of nonrelativistic particles.

LARGE BLUE ISOCURVATURE SPECTRAL … PHYSICAL REVIEW D 94, 043524 (2016)

043524-5



Ekmax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

ζðkiÞ
q

ð k1
kmax

ÞnI−12ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

ζðk1Þ
q < Ek1 : ð29Þ

To simplify the approximate phenomenological constraint
parametrization, we choose k1 ¼ ki:

constraint 10∶ Ekmax

�
ki
kmax

�nI−1
2

< Eki : ð30Þ

Finally, we must also make sure that we are in the linear
spectator regime with our choice of kmax:

constraint 11∶ χ0ðtkmax
Þ > Hðtkmax

Þ
2π

ð31Þ

and χ0ðtkiÞ is not trans-Planckian:

constraint 12∶ χ0ðtkiÞ ≤ Mp: ð32Þ

This constraint makes the standard assumption that the
effective theory has suppressed nonrenormalizable oper-
ators (generated from integrating out Planck scale degrees
of freedom) whose coefficients are controlled by powers of
χ0=Mp. There is another uncertainty in constraint 9 that is
associated with the fact that the Bessel function mode
functions are not obviously accurate solutions whenever the
slow-roll parameter is not negligible. The limitations due to
this issue were spelled out in [73]. A more accurate power-
law expansion should have a fiducial value of k0 ¼ kmax
instead of ki. [The price that is paid for doing this is a
complicated/numerical expression for χ0ðtkmax

Þ in terms of
χ0ðtkiÞ≤Mp.] Thiswill turn out to be an issue only for values
of Hi that saturate constraint 7 with rb ≫ 10−2 because
m=HðtÞ evolves significantly in that case during inflation.
To address this issue, for such worrisome situations we
therefore check the following constraint numerically:

constraint 90∶ ωχ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3=ð2π2Þ

p
2jhkðtkiÞj

jχ0ðtkiÞj
≥ Ekmax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

ζðkiÞ
q

ð33Þ

involving a more accurate set of numerical solutions only.
Finally, we note that constraint 9 also assumes that

constraint 13∶
m

Hðtkmax
Þ <

3

2
; ð34Þ

since only the nondecayingmode has been kept.Wewill see
that in practice this does not pose a significant constraint.
In summary, the problem of finding the maximally

observable constant mass isocurvature spectral index nI
for a given experimental sensitivity Ek is to find the
maximum nI that satisfies the constraints 1–13 given above.

III. ANALYTIC ESTIMATE

In this section, we provide an analytical estimate of the
solution to the nI − 1 extremization problem presented in
Sec. II. We begin in Sec. III A by giving a crude estimate of
the maximization problem that is obtained by neglecting
the slow-roll parameter εki. In Sec. III B, we then obtain an
analytic perspective of the effect of turning on the slow-roll
evolution of H and the nonlinearities of the problem. For
example, we will see that the Hi may not quite saturate
constraint 7 for the largest spectral index, in contrast with
the estimate given in Sec. III A, and this turns out to be
significant for the accuracy of the approximation of the
spectral index used in constraint 9. Section IV will involve
a numerical solution to the constrained maximization
problem without resorting to the analytic arguments pre-
sented in this section.

A. Without slow-roll evolution

As previously discussed, the maximal spectral index
results when constraint 9 is saturated. To evaluate constraint
9, we need to determine hðχ0Þ2it¼tRH . In this section, wewill
estimate this quantity to obtain a qualitative understanding
of the parameters involved.
Let us neglect the slow-roll evolution of H and assume

that χ0 coherently oscillates just at the end of inflation. We
can then estimate

hðχ0Þ2it¼tRH ∼ C

�
HðtRHÞ
HðteÞ

�
2

ð35Þ

C≡ 1

2
χ20ðtkiÞ exp ½−ðnI − 1ÞNe�; ð36Þ

in which Ne ≈Hiðte − tkiÞ is the number of e-folds of
inflation. Through standard cosmological scaling, this
yields the dark matter fraction to be

ωχ ∼ R
χ20ðtkiÞ exp ½−ðnI − 1ÞNe�½mHi

�2
M2

p

�
TRH

Teq

�
: ð37Þ

Now, noting thatm=Hi ∼Oð1Þ, and that the greatest nI − 1
sensitivity comes from the exponential, we find (assuming
constraint 1 is satisfied)

nI−1≲ 55

Neð1− 1
2Ne

ln½kmax
ki
�Þ

×

0
B@1þ 1

55
ln

2
6410−52ð

2
ν−1

2jΓðνÞjffiffi
π

p ÞðHi=ð2πÞ
χ0ðtki Þ

Þ
Ekmax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

ζðkiÞ
q �

TRH

1010GeV

�375

þ 1

55
ln

�ðχ0Þ2tkmin
R

M2
p

��
; ð38Þ
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in which we note that ν ¼ ð3 − ½nI − 1�Þ=2. Hence, we see
that increasing TRH, kmax=ki, and Hi while decreasing Ne
andEkmax

iswhatwewant tomaximizenI . Clearly,Ne cannot
be decreased beyond the minimal number of e-folds Nmin
that is necessary for a successful inflationary scenario
(constraint 3) for a fixed TRH. This will be one of the
strongest constraints for bounding nI − 1. Increasing Hi
while keeping Ne (and TRH) fixed requires decreasing te,
since Ne ∼Hiðte − tkiÞ. However, because Nmin also
changes if Hi and te changes, it is not possible to keep
Ne fixed right at the constraint boundary. As Hi keeps
increasing, it eventually runs into the tensor perturbation
constraint 7. Also relevant for the case of low reheating
temperatures is the fact that for sufficiently large Hi=TRH,
we run into constraint 4. For each TRH, nI − 1 can be
maximized through the Hi and te variations subject to the
constraints just described.
As TRH is increased towards the highest temperatures

consistent with energy conservation, constraints 5 and 6
become relevant. Even though constraint 6 is a tiny bit
stronger of a constraint, it is very similar in numerical
value to constraint 5. This is fortunate because as
described before, constraint 6 is imposed for computa-
tional convenience and constraint 5 arises from the
fundamental principle of energy conservation. In the
fHi; teg parametric region where constraints 5 and 6
compete, the reheating scenario is somewhat unrealistic
in that the reheating time scale is very fast, taking the
system away from the coherent oscillation perturbative
reheating regime. However, to put a conservative upper
bound, we account for this extreme parametric region as
well. It is in this sense that the bound that we will
obtain for the maximum nI is reheating scenario
independent.
We next note that for lower reheating temperatures

satisfying constraint 7

He rh boundðTRHÞ < Mp

ffiffiffiffiffiffiffiffiffi
r
2
Δ2

ζ

r
ð39Þ

(with Hi maximized to maximize nI − 1), Hi has to be
brought down when TRH is brought down to satisfy
constraint 4:

Hi ∼
��

TRH

0.2ð 200
g�ðTRHÞÞ1=4

�
2M2ðnO−4Þ−1

p

S

� 1
2ðnO−4Þþ1

: ð40Þ

Since we have saturated constraint 9, we see that

ωχ ¼
Ekmax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

ζðkiÞ
q

2ð2ν−
1
2jΓðνÞjffiffi
π

p ÞðHi=ð2πÞ
χ0ðtki Þ

Þðkmax
ki
Þ32−ν

ð41Þ

increases as Hi is lowered. Hence, depending in particular
on the numerical values of Ekmax

and kmax=ki, the required
ωχ can exceed unity, violating constraint 8.
Finally, if we choose ki=kmax ≲ 10−5 and Eki=Ekmax

≳
3 × 10−3, we can always satisfy constraint 10 if nI − 1 ∼ 1.
The current scale invariant isocurvature perturbation bound
is given by

Δ2
sð100kiÞ

Δ2
ζð100kiÞ

≲ 3 × 10−2: ð42Þ

If this scale invariant spectrum bound is assumed to bound
the blue spectrum as well, we have

Eki ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 × 10−2 × 10−2

p
∼ 10−2 ð43Þ

for nI − 1 ∼ 1. Hence, we see that if we choose Ekmax
≲ 1

and ki=kmax≲10−5, we can satisfy constraint 10. Therefore,
we will focus on this parametric regime and ignore
constraint 10.
Let us now find an explicit estimate of the largest value

of nI. First, we consider the case of

TRH > TnO ð44Þ

TnO ≡ 2
5
2
−nO

2 ðΔ2
ζÞ

nO
2
−7
4Mpr−

7
4
þnO

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S

5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�ðTRHÞ

p
s

≈

(
2 × 1010r3=4

ffiffiffiffiffiffiffiffi
S8π

p
GeV nO ¼ 5

6.8 × 105r5=4
ffiffiffiffiffiffiffiffi
S8π

p
GeV nO ¼ 6;

ð45Þ

for which constraint 7 becomes relevant. Saturating con-
straints 3 and 7 in the current approximation scheme, we
find

Ne ∼ 52.8þ 1

3
ln

TRH

1010 GeV
−
2

3
ln
Mp

ffiffiffiffiffiffiffiffi
r
2
Δ2

ζ

q
1010 GeV

: ð46Þ

Although TRH appears here, suggesting TRH should be
minimized to maximize the nI − 1 bound, the TRH depend-
ence shown explicitly in Eq. (38) dominates. As constraints
5 and 6 are similar in magnitude, we use constraint 5 to
maximize TRH for simplicity for this simplified analytic
estimate. In other words, here we estimate

max TRH ≈
�
10

g�

�
1=4

Mp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

π

ffiffiffiffiffiffiffiffiffi
r
2
Δ2

ζ

rs
ð47Þ

∼ 6.5 × 1015r1=4 GeV; ð48Þ

in which we have taken g� ¼ 200 andΔ2
ζðkiÞ ¼ 2.4 × 10−9.

From Eq. (38), we then find that

LARGE BLUE ISOCURVATURE SPECTRAL … PHYSICAL REVIEW D 94, 043524 (2016)

043524-7



nI − 1jTRH¼max TRH
≲ 55

Nest
e ð1 − 1

2Nest
e
ln½kmax

ki
�Þ

 
1þ 1

55
ln

"ðχ0Þ2tkmin
R

M2
p

#
1

55
ln

"
4.2 × 103ð2ν−

5
4jΓðνÞj
π2

Þð Mp

χ0ðtki Þ
Þr3=4

Ekmax

�
10

g�
Δ2

ζðkiÞ
�

1=4
#!

ð49Þ

≈
1.2 × ð1þ 1

54
ln½ r3=4Ekmax

�Þ
1 − 5.5 × 10−3 ln r − 1.1 × 10−2 ln ½kmax

ki
10−5� ; ð50Þ

in which we have taken g� and Δ2
ζðkiÞ to have the same

numerical values as above. We have also taken χ0ðtkiÞ ¼
Mp to satisfy constraint 12, approximated nI − 1 ≈ 1 on the
right-hand side, and we used

Nest
e ¼ 52.8þ 1

3
ln
ð10g�Þ1=4Mp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
2
Δ2

ζðkiÞ
qr

1010 GeV

−
2

3
ln
Mp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
2
Δ2

ζðkiÞ
q

1010 GeV
≈ 51.2

�
1 −

ln r
205

�
ð51Þ

on the phenomenological parametrizations used above.
Hence, if a blue isocurvature spectral index nI ≳ 3 is
measured, this certainly cannot arise from a linear spectator
with a time-independent mass. We will sharpen this
estimate with a numerical analysis in Sec. IV.
We next consider the case of

TnO ≲ TRH ≲
�
10

g�

�
1=4

Mp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
2
Δ2

ζðkiÞ
rs

≈ 6.5 × 1015r1=4 GeV ð52Þ

but still with Hi saturating constraint 7:

nI − 1 ≲ 1.06

1–8 × 10−3 ln rþ 8 × 10−3 ln
TRH

1011 GeV
− 1.2 × 10−2 ln½kmax

ki
10−5�

�
1þ 1

44
ln

� ffiffi
r

p
Ekmax

�
þ 1

44
ln TRH

1011 GeV

�
ð53Þ

where we have used

Nest
e ≈ 47.5 −

1

3
ln rþ 1

3
ln

TRH

1011 GeV
: ð54Þ

We can continue to lower the temperature towards TnO
unless constraint 8 is saturated. Constraint 8 is saturated
before reaching TnO if nI − 1 is smaller than the solution
ncI ðT > TnOÞ − 1 to

2
nc
I
−1
2

−1χ0ðtkiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

ζðkiÞ
q

Ekmax
ðkmax
kmin

Þ−
ðnc
I
−1Þ
2 π3=2

κ
ffiffiffi
r

p
Γð3−ðncI−1Þ

2
Þ

¼ 1; ð55Þ

which for fEkmax
¼ 1; kmax=kmin¼ 105; χ0ðtkiÞ¼Mp; rb ¼

10−3g is approximately 0.7.
Let us now consider the lower reheating temperature

TRH <TnO (and nI−1>ncI−1), which means that we
should set

Hi ≈He rh boundðTRHÞ ð56Þ

in Eq. (38) instead of using constraint 7. We find

nI − 1≲

8>>>>><
>>>>>:

1.06ð1 − 0.023 ln½Ekmax
� þ 0.038 ln TRH

1011 GeV − 7.6 × 10−3 ln ½S8π�Þ
1þ 5.4 × 10−3 ln ½S8π� − 2.7 × 10−3 ln TRH

1011 GeV − 1.2 × 10−2 ln ½kmax
ki

10−5� nO ¼ 5

1.2ð1 − 0.021 ln½Ekmax
� þ 0.030 ln TRH

1011 GeV − 4.2 × 10−3 ln ½S8π�Þ
1þ 3.5 × 10−3 ln ½S8π� þ 1.7 × 10−3 ln TRH

1011 GeV − 1.3 × 10−2 ln ½kmax
ki

10−5� nO ¼ 6

: ð57Þ

At lower TRH, we have ωχ ≳ 1 at
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TDM2 ¼

8>>>>><
>>>>>:

4.6 × 107 GeVE3=2
kmax

ffiffiffiffiffiffiffiffi
8πS

p

ðkmax=kmin

105
Þ3=4

�
1 − ðnI − 2Þ

�
8.5þ 3

4
ln

�
kmax=kmin

105

���
nO ¼ 5

28 GeVE5=2
kmax

ffiffiffiffiffiffiffiffi
8πS

p

ðkmax=kmin

105
Þ5=4

�
1 − ðnI − 2Þ

�
14þ 5

4
ln

�
kmax=kmin

105

���
nO ¼ 6:

ð58Þ

We have taken the minimum TRH in this paper to be at
100 GeV to simplify the presentation. This means that
the ωχ ≲ 1 constraint is more relevant for the nO ¼ 5 case
than the nO ¼ 6 case.
We should also estimate the effect of constraint 11

on kmax:

kmax

ki
≲
�
χ0ðtkiÞ
Hi=2π

� 2
nI−1

; ð59Þ

which becomes

kmax

ki
≲ 108 ð60Þ

with χ0ðtkiÞ ¼ Mp, nI − 1 ¼ 1.3, and Hi set at rb ¼ 0.1.
Finally, constraint 13 can be shown to be generically

satisfied in the nI − 1 and kmax=kmin region of interest. This
will be discussed more in the numerical section below.

B. Perturbative in slow-roll evolution

In this subsection, we examine the effect of turning on
εki . We will see its most important feature is to have nI

maximized for jHi −Hej=He ≪ 1, making the Bessel
spectral formula accurate.
Instead of completely neglecting εki during inflation in

computing hðχ0Þ2it¼tRH , we can use linear perturbation
theory in εki to solve Eq. (2) (for more details, see the
Appendix):

hðχ0Þ2it≥tm;te∼
A
2
χ20ðtkiÞexp½−ð3−2νkiÞHiðte−tkiÞ�

�
HðtÞ
HðteÞ

�
2

ð61Þ

A≡
�
1 −

6ð3 − 2νkiÞF1εkiHiνkiðte − tkiÞ
16ν3ki − 3ð3 − 2νkiÞεki

�
2

ð1þ F2
2Þ

ð62Þ

F1 ≡Hiνkiðte − tkiÞ − 1 ð63Þ

F2 ≡
32ν4ki þ 6εkiνkif3 − 2νki ½1þHiðte − tkiÞð3þ νki ½2þ ð3 − 2νkiÞHiðte − tkiÞ�Þ�g þ F3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9 − 4ν2ki

q
ð16ν3ki − 3εkið3 − 2νkiÞð1þ 2F1Hiνkiðte − tkiÞÞ

ð64Þ

F3 ≡ 9ð3 − 2νkiÞε2kiHiðte − tkiÞ½1þ 2F1Hiνkiðte − tkiÞ�; ð65Þ

in which tm is the time after the χ field starts to oscillate and te is the end of inflation:

m ¼ 3

2
HðtmÞ: ð66Þ

This allows us to rewrite the analog of Eq. (38) as

nI − 1≲ 55

N0
min

�
1þ 1

55
ln
�

10−5

ωχminðnI − 1Þ
�

TRH

1010 GeV

��
þ 1

55
ln
�ðχ0Þ2tkmin

r2mðnI − 1ÞR
M2

p

��
; ð67Þ

in which

N0
min ≈

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2εkiNmin

p
εki

ð68Þ

ωχminðnI − 1Þ≡max

2
64Ekmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

ζðkminÞ
q

;
Ekmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

ζðkminÞ
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

sðkmaxÞ
p

=ωχ

3
75

ð69Þ
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rmðnI − 1Þ≡ m
Hið1 − εkiN

0
minÞ

ffiffiffiffi
A

p
; ð70Þ

Nmin is given by Eq. (12), A is given by Eq. (62),ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

sðkmaxÞ
p

=ωχ is given by Eq. (6), and

m
Hi

≈
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnI − 1Þð6 − ½nI − 1�Þ

p
: ð71Þ

Comparing with Eq. (38), we see a complicated function
rmðnI − 1Þ that depends on nI − 1. Most of this compli-
cated function accounts for the εki dependence of the time
evolution of χ0ðtÞ.
When accounting for εki and constraint 2, we note that a

given pair He and Ne can originate from two different
values of Hi:

Hi ¼

ffiffiffiffiffiffi
Δ2

ζ

q
Mp

ffiffiffiffiffiffi
2π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2 − H2

eNe
M2

pΔ2
ζ

rs
ffiffiffiffiffiffi
Ne

p : ð72Þ

With H2
eNe ≪ π2M2

pΔ2
ζ , the hybrid inflation case corre-

sponds to the minus sign branch while the quadratic
inflation case corresponds to the positive sign branch.
One can also easily show that for the parametric regime
of interest, He never becomes close to zero even though
there may be a worry from the form of Eq. (10) that we may
be unreasonably extrapolating the linear expansion of the
slow roll that is valid near tki. On the other hand, the
parametric regions where the hybrid inflation and quadratic
inflation branches merge are sensitive to the branch point
singularity there.
The most important feature of turning on εki is that since

now (with constraint 2 imposed)

Ne ¼
4π2Δ2

ζM
2
p

H2
i

�
H2

i

H2
e
− 1

�
; ð73Þ

the minimization of Ne that is important for the extremiza-
tion of nI − 1 [e.g. see Eq. (38) which in turn is related to
constraint 9] gives a numerical pressure in the nonlinear
extremization problem to make Hi close to He. This favors
a smaller εki (in turn favoring small Hi) which competes
with the pressure to extremize He (favoring a largeHi) that
arises from constraint 3. Hence, depending on the size of r,
Hi may not quite saturate constraint 7 as was done in the
derivation of Eq. (50). This means that with εki turned on,
the sensitivity to the tensor-to-scalar ratio r entering
constraint 7 is reduced for values of r that are “large.”
As we will see in Sec. IV, this makes the approximate
spectral index Eq. (8) more accurate for rb ¼ 0.1.
A figure of validity for the εki perturbations can be

written as

Cpert ≡ εkiN
2
e; ð74Þ

since the background field evolution equation during
inflation

∂2
t χ0 þ 3Hið1 − εkiHiðt − tkiÞÞ∂tχ0 þm2χ0 ¼ 0 ð75Þ

has a secular term εkHiðt − tkiÞ, and this term is integrated
over a time period of te − tki ∝ Ne. Since Ne ∼ 50, high Hi

models where εi approaches the tensor-to-scalar ratio r
bound have Cpert approaching unity, and hence they cannot
be addressed reliably using this perturbative approach. In
the next section, we will turn to a numerical analysis of this
extremization problem, which will allow us to get a handle
on situations such as these when perturbative methods fail.

IV. NUMERICAL RESULTS

In this section, we perform a numerical analysis to find
the largest nI consistent with constraints 1 through 13. The
results of this analysis will show that even with an
extremely optimistic experimental sensitivity of 10−6Δ2

ζ

on length scales as small as 10 kpc scales, the theoretical
prediction from a constant mass isocurvature field scenario
is that experiments will not measure spectral indices nI
greater than 2.4.9

We begin with Fig. 1, which shows the case in which
fEkmax

¼ 1; kmax=kmin ¼ 105; rb ¼ 10−1; 10−3; nO ¼ 5; 6;
S ¼ ð8πÞ−1; 10−2ð8πÞ−1g. The results show that the maxi-
mum temperature estimated in Eq. (48) agrees with the
right end of each plot to better than 30% and the maximum
nI − 1 agrees with Eq. (50) to better than 5%. For the rb ¼
0.1 plot (the left plot), the reason why there is a drop of
nI − 1 near TRH ∼ 5 × 1015 GeV is due to constraint 5
(reheating energy conservation at time te) pushing upHi as
TRH is raised.10 This upward push of Hi is allowed because
from the discussion around Eq. (73), constraint 7 may not
be saturated depending on the size of r. This nonsaturation
is indeed the case for most of the rb ¼ 0.1 curve (which we
have also checked directly numerically) and makes the
approximate spectral index Eq. (8) more accurate. We see
how the dotted curve matches the solid curve except at the
highest temperature where the dip occurs, as we will
discuss more below.11 For the rb ¼ 10−3 case, constraint
7 does saturate at the highest allowed reheating temper-
ature, which means that no upward push of Hi ever arises

9The current experimental sensitivity is much less than this as
can be seen for example in [72].

10This increases εki , which in turn increases the split between
Hi and He. This then increases Ne, as can be seen in Eq. (73),
under the assumption that the increase in the split is the most
important effect.

11The bottom of the dip is where the mismatch of the accurate
dotted curve and the approximate solid curve is the largest. This
does not affect our main result since it does not correspond to
globally the largest spectral index. Furthermore, this reheating
sliver is where the reheating scenario is least realistic and has
been considered only to give a conservative bound on nI .
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from constraint 5 for these highest temperatures. The
maximum nI − 1 for this fEkmax

¼ 1; kmax=kmin ¼ 105g
experimental scenario is about 1.1. Any measurements
of CDM-photon blue isocurvature with a spectral index
larger than nI ¼ 2.1 with an amplitude larger than or equal
to fEkmax

¼ 1; kmax=kmin ¼ 105g imply that the responsible
dynamical degree of freedom during inflation cannot be a
constant mass linear spectator field.
Let us now consider some of the other features of these

results. For all but one of the curves shown in Fig. 1, when
TRH goes from above to below TnO while nI − 1 > ncI − 1

[see Eq. (55) for the definition], there is a break in the
bound curve as expected from Eq. (56) encoding the
minimal reheating constraint 4. The break in the curve
does not exist for the case of frb ¼ 10−3; nO ¼ 6g because
in that case nI − 1 reaches ncI ðT > TnO¼6Þ − 1, in which

TnO¼6ðrb ¼ 10−3; S ¼ ð8πÞ−1Þ ≈ 120 GeV; ð76Þ

which means that the dark matter constraint 8 is saturated
without saturating the reheating constraint 4. All of the
curves terminate at a certain lower end point of reheating
temperature because of the dark matter constraint 8, which
simply states that the expansion rate in that parameter
regime is too small to produce measurable isocurvature
perturbations. We note that there is no vertical line plotted
for the right-hand side of the curves in Fig. 1 (unlike the left
vertical line) because we did not want to obscure the drop in
nI − 1 for high TRH for rb ¼ 0.1.

Figure 2 shows the case with fEkmax
¼ 10−3; kmax=kmin ¼

105;rb ¼ 10−1; 10−3;nO ¼ 5;; 6;S¼ ð8πÞ−1; 10−2ð8πÞ−1g.
Decreasing Ekmax

to 10−3 means increasing the experimen-
tal sensitivity (i.e., Δ2

s=Δ2
ζ is resolved to 10−6 instead of

order unity—an extremely optimistic view of the foresee-
able future that is chosen to illustrate the insensitivity of
the bound to experimental precision). This changes the
measurable maximal spectral index logarithmically to
about nI ¼ 2.25 (from nI ¼ 2.1 when Ekmax

¼ 1). Hence,
although increasing experimental sensitivity changes the
measurable blue spectral index, the logarithmic nature of
the increase makes these numbers experimentally mean-
ingful for at least a many decades time scale. As before, the
maximum temperature estimated in Eq. (48) agrees with the
right end of the plot to better than 30% and the maximum
nI − 1 agrees with Eq. (50) to better than 10%. For the
rb ¼ 0.1 plot (left plot), the reason why there is a drop of
nI − 1 near TRH ∼ 5 × 1015 GeV is the same reason as in
the explanation for Fig. 1. Note that unlike in Fig. 1, the
bounds for nO ¼ 6 end at TRH ¼ 102 GeV because we
simply truncated the plot there (and not because ωχ >
1 there).
Finally, to be extremely optimistic regarding short

distance scale probes of cosmology, in Fig. 3 we consider
the nI − 1 bound with an experimental probe length scale
of kmax=kmin ¼ 107 (i.e. kmax is at the scale of 10 kpc) with
the other parameters set at {Ekmax

¼ 10−3, rb ¼ 10−1,
10−3; nO ¼ 5, 6; S ¼ ð8πÞ−1, 10−2ð8πÞ−1. The maximum
spectral index increases as expected in a mild manner to
nI ¼ 2.35 (from nI ¼ 2.25 with kmax=kmin ¼ 105). Note

FIG. 1. The maximum measurable spectral index nI − 1 assuming fEkmax
¼ 1; kmax=kmin ¼ 105; rb ¼ 10−1; 10−3;

nO ¼ 5; ; 6; S ¼ ð8πÞ−1; 10−2ð8πÞ−1g is plotted as a function of TRH. Left: The bound on the tensor to scalar ratio rb has been
taken to be 10−1. The maximum spectral index with the amplitude parametrized by fEkmax

¼ 1; kmax=kmin ¼ 105g is around nI ¼ 2.11.
For T ≲ 109 GeV, the lower solid curve corresponds to the reheating nonrenormalizable operator dimension of nO ¼ 5 while the upper
solid curve corresponds to the case of the nonrenormalizable decay operator dimension of nO ¼ 6. For T ≳ 109 GeV, the two curves
merge. The dashed curve corresponds to weakening the coefficient of the nonrenormalizable operator by a factor of 10. The vertical
curve on the left portion of the boundary curves occurs because the expansion rate there is too small in that parametric regime to produce
measurable isocurvature perturbations (i.e. constraint 8). The dotted curve corresponds to the evaluation of the fiducial spectral index at
kmax instead of kmin. The correction is small (except at the highest TRH where the dip occurs) because constraint 7 is not saturated for
rb ¼ 0.1. Right: Similar to the left plot except with a probably possible future bound of rb ¼ 10−3.
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that this kmax=kmin lies near the edge of constraint 11 in
accordance with Eq. (60).
Also, constraint 13 can be shown to be generically

satisfied in the nI − 1 and kmax=kmin region of our interest.
For example, Fig. 4 shows m=Hðtkmax

Þ as a function of
nI − 1 defined according to Eq. (8) for the parametric
choices of rb ¼ 0.1 and kmax=kmin ¼ 107 (which is the
most constrained among the scenarios we are interested in).
We see that since we have considered only nI − 1≲ 1.6,
constraint 13 will be satisfied.

Note that for the numerical computations discussed thus
far, only the background fields are evolved fully numeri-
cally to determineωχ while analytic approximations relying
on HðtÞ being constant have been used to compute Δ2

s=ω2
χ

in accordance with [73]. For r ≪ 0.1 we have εki ≪ 1, and
HðtÞ evolution does not present much of a correction.
However, for rb ¼ 0.1 in the plots above, there may be a
worry that the numerical computation of Δ2

s=ω2
χ would

deviate significantly from the approximations. One symp-
tom of the analytic mode functions destroying the accuracy
of Δ2

s=ω2
χ can be tested by comparing the answers for two

different fiducial values of k0.

FIG. 3. Similar to the left panel in Fig. 2 except with
kmax=kmin ¼ 107 (i.e. kmax is at the scale of 10 kpc). The bound
on the maximum spectral index nI is only logarithmically
sensitive to kmax=kmin as it is now about 2.35 instead of 2.25.
The features of the plots are explained as in previous figures. As
before, the dotted curve corresponds to the evaluation of the
spectral index with the fiducial k value of kmax instead of kmin.

FIG. 2. The maximum measurable spectral index nI − 1 as a function of TRH ∈ ½100; 5 × 1015� GeV assuming an experimental
sensitivity of Ekmax

¼ 10−3 corresponding to resolving Δ2
s=Δ2

ζ to Oð10−4%Þ at about 1 Mpc length scale. The rest of the parameters are
set at fkmax=kmin ¼ 105; rb ¼ 10−1; 10−3; nO ¼ 5; 6; S ¼ ð8πÞ−1; 10−2ð8πÞ−1g. Left: The bound on the tensor-to-scalar ratio r has
been taken to be 10−1. The lower solid curve for TRH ≲ 109 GeV corresponds to the reheating nonrenormalizable operator dimension of
nO ¼ 5 just as in Fig. 1. The dotted curve corresponds to evaluation of the fiducial spectral index at kmax instead of kmin. As in Fig. 1, the
correction is small because constraint 7 is not saturated even for rb ¼ 0.1. As expected from increasing the experimental resolution by
103, the maximum measurable spectral index has only gone up mildly to nI ¼ 2.25 (from nI ¼ 2.12). Note that unlike in Fig. 1, the
bounds for nO ¼ 6 end at TRH ¼ 102 GeV because we simply truncated the plot there (and not because ωχ > 1 there). The dashed curve
corresponds to weakening the coefficient of the nonrenormalizable operator by a factor of 10 just as in Fig. 1. Right: Similar to the left
plot except that rb has been set to 10−3.

FIG. 4. m=Hðtkmax
Þ is plotted as a function of

nI − 1 defined according to Eq. (8) for the severest parametric
choices of rb ¼ 0.1 and kmax=kmin ¼ 107. This shows that
constraint 13 is satisfied for nI − 1≲ 1.6.
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The parametric spectral indices nI − 1 shown in Figs. 1
through 3 (except for the dotted curves) correspond to the
ðk=k0ÞnI−1 approximate parametrization with k0 chosen at
k0 ¼ ki, which is the longest observable wave vector. For
Hi corresponding to saturating constraint 7 with r≲ 10−2,
this is a good parametrization; i.e., in Figs. 1 through 3, plots
with rb ¼ 10−3 can be taken to be accurate to better than 1%.
However, if Hi saturates the limit of constraint 7 with
r ≈ 10−1,HðtÞwould evolve nontrivially during inflation. In
that case, there is a worry as to whether the ðk=kiÞnI−1
parametrization is inaccurate for the rb ¼ 0.1 cases. For
example, if we saturate constraint 7 with rb ¼ 10−1, a more
accurate approximation of the observed spectrum near kmax
should have the fiducial value k0 ¼ kmax [at the expense of
computing χ0ðtk0Þ numerically]. Fortunately, we find
numerically that constraint 7 is never saturated even with
rb ¼ 0.1 because of the effects discussed in Eq. (73). The
accuracy of the analytic spectrum calculation can also be
seen in the dotted curves of Figs. 1 through 3 which were
computed numerically.12 By explicit computation, we have
checked that nI − 1 computedwithmode function evolution
evolved fully numerically matches the nI − 1 computed
through the Bessel function with k0 shifted to kmax [and
χ0ðtkmax

Þ computed numerically] to better than a few percent.
Hence, we conclude from Fig. 4 that any measurement of

nI > 2.4 for CDM-photon isocurvature perturbations in the
foreseeable future indicates that the responsible dynamical
degree of freedom during inflation cannot be a constant
mass linear spectator field.

V. MODELS: WHAT HAPPENS WITH A
DYNAMICAL MASS?

In [73], it was shown that spectral indices as large as
nI ¼ 3.8 (but not nI ¼ 4) can be achieved in the context of
a dynamical VEV breaking the PQ symmetry. This is of
interest because nI ¼ 3 is considered to be observable for
example by the Square Kilometer Array [72]. Here, we
discuss why a time-dependent mass during inflation can
evade the bound discussed around Fig. 3. Suppose the mass
of the field χ responsible for the linear spectator isocurva-
ture makes a transition at time tc from value m to zero.
According to corollary 2 of [73], the modes k < kc that
leave the horizon earlier than the time of the mass transition
still have the form of Eq. (6), where if the slow-roll
evolution is neglected, the critical wave vector is given by

kc ∼ kmin exp½Nc�; ð77Þ

in which

Nc ≡Hiðtc − tkmin
Þ ð78Þ

is the number of e-folds from the beginning of inflation. For
kc ∼ 107kmin, the number of e-folds for which this occurs
must be at least Nc ∼ 16 e-folds. All of these modes are
governed by massive scalar field quantum fluctuations
giving a blue spectrum. In addition, the background field
χ0ðtÞ dilutes as

χ0ðtÞ ∝ exp

�
−
nI − 1

2
Nc

�
; ð79Þ

which dilutes the total isocurvature by an important factor:

Δ2
s ∝ exp½−2ðnI − 1ÞNc�; ð80Þ

which is analogous to Eq. (35). The field theory up to this
point behaves just as in the constant mass scenarios we
have been discussing.
However, after the mass transition to masslessness is

completed, the background field χ0ðtÞ behaves as a con-
stant massless field until the end of inflation. Hence,
compared to the constant mass case, the isocurvature
perturbations receive a boost of

Δ2
sðtime-dependent massÞ
Δ2

sðconstant massÞ ∝ exp½2ðnI − 1ÞðNe − NcÞ�

ð81Þ

in which Ne is the total number of e-folds as usual. Since
Ne ∼ 50, the enhancement for the Nc ∼ 16 scenario is
enormous. This is the intuitive explanation with which
time-dependent mass situations can evade the blue spectral
index bounds for the time-independent mass situation that
has been the main focus of this paper. One observational
signature of the mass transition [74] is the existence of a flat
isocurvature spectrum (for k > kc) in addition to the blue
spectrum (k < kc). On the other hand, if there is a limited
k-range accessible experimentally, it may not be easy to
observe the break in the spectrum.
A natural question is then what class of models naturally

produce these time-dependent masses. Note that the crucial
ingredient in being able to generate the large enhancement
Eq. (81) is the transition from m=Hi ∼Oð1Þ to m=Hi ≪ 1.
IfHi is the natural minimum energy scale for the masses of
the scalar dynamical degrees of freedom (as is the case for
example in supergravity models), then a symmetry needs to
naturally lead to m=Hi ≪ 1. Hence, one crucial ingredient
for natural isocurvature models with nI larger than the
bound presented for the constant mass case is a symmetry X
protecting the χ mass from Hubble scale corrections to its
mass. A second ingredient is a temporary (but lasting many
e-folds) mass generation mechanism. This second ingre-
dient is necessary to generate the blue spectrum.

12The agreement between the dotted curve and the solid curve
exists except at the highest TRH dipping sliver, which does not
correspond to the globally maximum nI , as we discussed in
footnote.
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In the supersymmetric axion scenario of [74], the
symmetry X is the Peccei-Quinn (PQ) symmetry non-
linearly realized as a shift symmetry of the axion field. The
PQ symmetry breaking fields Φ� are displaced from the
minimum of the effective potential during inflation (in a
way in which PQ symmetry is always broken) such that the
coset symmetry X is actually broken by ∂tΦ� through the
kinetic structure of the axion; i.e., the Nambu-Goldstone
theorem does not apply because the system is not in
vacuum. As Φ� fields roll toward the vacuum (where
the PQ breaking persists), the axions behave as a massive
field with mass of the order of Hi due to the supergravity
structure of the Kähler potential. After Φ� reaches the
vacuum and the kinetic energy dilutes to the point of
∂tΦ� ≪ HiΦ�, X is restored and axions become massless,
up to the small explicit PQ breaking contribution.
Although it is possible to tune parameters and initial

conditions to obtain almost flat potentials, the Nambu-
Goldstone models with out-of-equilibrium symmetry-
breaking time-dependent VEVs seem to be the simplest
natural model. From this perspective, any experiment
measuring CDM-photon isocurvature perturbations with
nI ≳ 2.4may be finding evidence for a dynamical degree of
freedom during inflation that has a coset shift symmetry.

VI. CONCLUSIONS

We have considered a constant mass spectator linear
isocurvature degree of freedom during inflation and
answered the question of what is the largest measurable
blue spectral index that can be produced via such a
mechanism. We have shown that the largest measurable
spectral index is less than 2.4 in the foreseeable future with
only logarithmic sensitivity to experimental precision
characterized by fEkmax

; kmax=kming and experimental con-
straints such as the tensor-to-scalar ratio rb. This means that
any future measurements of the isocurvature spectral index
above this bound would give weight to the hypothesis that
there is a spectator field with a time-dependent mass during
inflation.
We have also considered how for reheating temperatures

much smaller than the maximum allowed by the tensor
perturbation bound, the maximum observable spectral
index decreases. This would be relevant if there were
specific inflationary models under consideration with a
fixed reheating scenario or model-dependent phenomeno-
logical bounds on the reheating temperature such as those
that arise from cosmologically dangerous gravitinos. For
part of this smaller reheating-temperature-dependent
bound, we have used the assumption that there is at least
a gravitationally suppressed nonrenormalizable operator of
dimension 5 or 6 that can contribute to reheating. This
assumption sets a bound on the maximum separation
between the reheating temperature and the expansion rate
at the end of inflation in certain cases.

One has to keep in mind that the maximum derived in
this paper has some obvious caveats. First, since we have
only considered linear spectator scenarios, we have not
examined what the maximum blue spectral index would be
if we allowed δχ to be of order χ0. Since we have imposed
χ0 > H=ð2πÞ and δχ is at most of order H=ð2πÞ, one might
think that the current estimate will stand even after
including the δχ ≳ χ0 scenarios. On the other hand, the
nI − 1 of quadratic isocurvature scenarios (i.e. scenarios in
which the isocurvature perturbations are proportional to
Δ2

s ∝ hδχ2δχ2i) is twice that of the linear spectator scenario
[100–102]. However, a preliminary investigation shows
that this factor of 2 in the power only gives an enhancement
of the form

max½nI − 1� ∝
1 − 1

2Ne
ln½kmax=kmin�

1 − 1
Ne
ln½kmax=kmin�

ð82Þ

multiplying a difficult-to-compute suppression (originating
from the quantum nature of the particle production in
contrast with the classical VEV displacements of the linear
spectator scenario), resulting in a similar maximum spectral
bound at best. However, given that the dependence of the
relic density and the spectral amplitude with nI − 1 is
somewhat complicated due to their dependence on the long
time mode evolution [100], it would be worthwhile to
confirm the quadratic isocurvature estimate more carefully.
Another caveat is that we have assumed a “standard”

slow-roll, effectively single-field inflationary scenario with
only one reheating period. Most nonminimal extensions
will dilute the VEV energy density, leading to a smaller
upper bound. In that sense, most of the nonminimal
extensions are not likely to change this general picture.
Even in the situation in which χ0 makes a phase transition
after inflation (e.g. χ0 goes from v1 to v2) such that ωχ (now
proportional to v22) is generated after inflation (thereby
evading the inflationary dilution), since it is really δχ that is
diluting during inflation (even though we have been
rewriting it as ωχδχ=jχ0 − v1j being constant during infla-
tion), this does not help us to evade the bound.
Finally, we have assumed a sampling of inflationary

space characterized by fεi; Hi; teg, while there are infi-
nitely more ways to tune the inflationary models. On the
other hand, even the addition of εi [versus a nonevolving
scenario of HðtÞ during inflation] produced only about a
10% change in nI − 1. Hence, we believe this limitation of
sampling is not severely restrictive.
It is indeed intriguing that future cosmological inhomo-

geneity measurements of nI ≳ 2.4 may uncover the follow-
ing new features of a dark matter component: (i) dark
matter had to have a time dependence in its mass in its
evolution history in the context of an inflationary Universe,
and (ii) dark matter mass was of order of the expansion rate
during inflation. From our current model building toolkit,
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arguably the most appealing picture that would emerge is
that there is a dark matter field possessing a fundamental
shift symmetry just like the axion.
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APPENDIX: BACKGROUND SOLUTION

For this section, we set the time at which the observable
longest wavelength mode leaves the horizon to be time
tki ¼ 0. We can model a very large class of slow-
roll inflationary models with the Hubble expansion rate
function parametrized (with three constants fεki ; Hi; teg,
where te approximately replaces ηV in the usual slow-roll
parametrization scheme) as

H ≈

8<
:

Hið1 − εkiHitÞ 0 < t < te
Hið1−εkiHiteÞ

1þ3
2
ðt−teÞHið1−Hiεki teÞ

te < t < tRH

9=
;; ðA1Þ

in which Δt≡ t − ti and tRH is the time of reheating. This
ansatz accurately models (at the order of 10% level) both
quadratic inflation and hybrid inflation. Note also that as
long as the number of e-folds is fewer than

Nmax ≡ 1

2εki
≈
4π2M2

pΔ2
ζðkiÞ

H2
i

; ðA2Þ

the quantity H will never go negative.
After the end of inflation, the solution of the field

evolution equation

χ̈0ðtÞ þ 3H _χ0ðtÞ þm2
χχ0ðtÞ ¼ 0 ðA3Þ

takes the simple form

χ0ðtÞ ¼
e1 cosðmχΔtÞ þ e2 sinðmΔtÞ
1 − 3

2
HiΔtðεkiHite − 1Þ ðA4Þ

where Δt ¼ t − te.
We could in principle solve the equation of motion

[Eq. (A3)] exactly in this class of models in terms of
hypergeometric functions and Hermite polynomials:

χ0 ¼ C1H m2

3εki
H2
i

 
−

ffiffiffiffiffiffiffiffi
3

2εki

s
þ

ffiffiffiffiffiffiffiffiffi
3

2
εki

r
Hit

!

þ C21F1

 
−m2

6εkiH
2
i
;
1

2
;

 ffiffiffiffiffiffiffiffi
3

2εki

s
−

ffiffiffiffiffiffiffiffiffi
3

2
εki

r
Hit

!
2
!
:

ðA5Þ

However, because εki is small, these special functions must
be evaluated in exponentially large and small numerical
regions and added together. Such a route seems numerically
unstable, in addition to being opaque. In practice, it is easier
to handle numerically the solution to the equation of motion
subject to the boundary condition

_χ0ð0Þ ¼ −
�
3

2
− νi

�
Hiχ0ð0Þ; ðA6Þ

which embodies the assumptions that the spectral index is
of order unity and the field is rolling in a slow-roll fashion,
initially.
We can match the solution before and after the end of

inflation to write the solution after the end of inflation as

χ0ðtÞ ¼ K1

�
HðtÞ
HðteÞ

�
cosðmΔtþ K2Þ ðA7Þ

K1 ≡
ffiffiffiffi
A

p
χ0ð0Þ exp

�
−
1

2
ð3 − 2νkiÞHite

�
; ðA8Þ

in which K2 is a phase. The amplitude is given by

ffiffiffiffi
A

p
¼ χ0ðteÞe1

2
ð3−2νiÞHite

χ0ð0Þ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½1 − εkiHite þ 2

3
_χ0ðteÞ=ðHiχ0ðteÞÞ�2

1 − 4
9
ν2i

s
;

ðA9Þ

inwhichwe note that χ0ðteÞ exp ½12 ð3 − 2νiÞHite� is the initial
value χ0ð0Þ for εki ¼ 0. Hence, it is more convenient numeri-
cally to solve for χ0ðtÞ exp ½12 ð3 − 2νiÞHit� than χ0ðtÞ. The
exponential suppression of χ0ðteÞexp½12ð3−2νiÞHite�=χ0ð0Þ
still occurs when 9 − 4m2=H2

i =ð1 − εkiHiteÞ2 < 0. In this
notation, the dark matter fraction ωχ is

ωχ ¼
K2

1

M2
p

m2

H2ðteÞ
TRH

Teq
R; ðA10Þ

where R is defined in Eq. (25).
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