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The rapidly improving precision of measurements of gravitational lensing of the cosmic microwave
background (CMB) also requires a corresponding increase in the precision of theoretical modeling. A
commonly made approximation is to model the CMB deflection angle or lensing potential as a Gaussian
random field. In this paper, however, we analytically quantify the influence of the non-Gaussianity of large-
scale structure (LSS) lenses, arising from nonlinear structure formation, on CMB lensing measurements. In
particular, evaluating the impact of the nonzero bispectrum of large-scale structure on the relevant CMB
four-point correlation functions, we find that there is a bias to estimates of the CMB lensing power
spectrum. For temperature-based lensing reconstruction with CMB stage III and stage IV experiments, we
find that this lensing power spectrum bias is negative and is of order 1% of the signal. This corresponds to a
shift of multiple standard deviations for these upcoming experiments. We caution, however, that our
numerical calculation only evaluates two of the largest bias terms and, thus, only provides an approximate
estimate of the full bias. We conclude that further investigation into lensing biases from nonlinear structure
formation is required and that these biases should be accounted for in future lensing analyses.
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I. INTRODUCTION

The photons of the cosmic microwave background
(CMB) are gravitationally deflected by the large-scale
matter distribution through which they pass. This effect,
known as CMB lensing (see [1] for a review), distorts the
temperature and polarization fluctuations in the cosmic
background radiation in a characteristic way which allows
reconstruction of the projected deflecting potentials. CMB
lensing probes the growth of large-scale structure over a
wide range of redshifts (0.1 < z < 5). As free-streaming of
massive neutrinos and the accelerated expansion of the
Universe suppress the formation of structures, the lensing
signal contains valuable information about the sum of
neutrino masses [2–4] and dark energy [5–8].
First evidence of the CMB lensing effect was obtained

using data from WMAP, relying on cross-correlation
with other tracers of large-scale structure [9,10]. The first
measurement from CMB alone (i.e., a measurement of the
lensing power spectrum) was reported by the Atacama
Cosmology Telescope (ACT) collaboration [11], followed
by the South Pole Telescope (SPT) collaboration [12], and
the Planck Collaboration [13].
As a consequence of Thomson scattering the CMB is

polarized. Lensing modifies the polarization pattern and, in
particular, partly changes the parity of the modes. Extending

lensing analyses to polarization data has the potential to
increase the signal-to-noise of the reconstruction since the
small-scale B-mode polarization signal is expected to be
solely sourced by the lensing ofE-modes. Firstmeasurements
of lensing power spectra based on polarization data have just
recently been carried out with POLARBEAR [14], SPTPol
[15], and Planck [16]. The ACTPol, SPT, and POLARBEAR
collaborations have also reported detections from cross-
correlating the reconstructed polarization lensing with a
measurement of the the cosmic infrared background
[17–19]. With decreasing noise levels, smaller beam sizes
and larger areas observed, measurements of the CMB lensing
effect have tremendously increased in precision; this rapid
progress is expected to continue. Increasing precision in the
measurement demands higher accuracy of reconstruction
techniques and theoretical modeling of the measurements.
CMB lensing analyses commonly rely on the assumption

of Gaussianity of both the unlensed CMB temperature field
as well as the lensing potential. The lensing potential is a
projection of the gravitational potential, which is known to
become non-Gaussian at late times due to nonlinear structure
formation. However, the weighted projection, which sums
up the effect of all fluctuations encountered on the photon
geodesic, should suppress this non-Gaussianity by the
central limit theorem (given a distance to the CMB of
14 000 Mpc a CMB photon typically passes through Oð50Þ
structures of size 300 comoving Mpc, the scale at which the
matter power spectrum peaks). The goal of our paper is to
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test this intuitive argument quantitatively by abandoning the
assumption of Gaussianity of the lensing potential and
investigating the consequences of a nonzero bispectrum of
the lensing potential on measurements of the lensing power
spectrum. The main result is a new, typically negative,
reconstruction bias (Nð3=2Þ) that contributes to the measured
lensing power spectrum and must be corrected for.
Following further tests of the importance of some of the
neglected terms with analytics and simulations, this bias
should be subtracted from future lensing 4-point measure-
ments. It adds to known reconstruction power spectrum
biases that arise for a Gaussian lensing potential and have
been worked out in detail in [20–22].
While the effect of large-scale structure non-Gaussianity

on lensing statistics has been computed in the context of
galaxy weak lensing [23–25], it has not been analytically
studied for CMB lensing reconstruction before. A number
of works have tested CMB lensing reconstruction on CMB
maps lensed by non-Gaussian deflection fields computed
from N-body simulations [12,26–28]. Some focused on
estimating the impact of nonlinear structure formation on
the lensing measurement, while many also included other
sources of biases, such as baryonic effects, survey boun-
daries and masking. In addition, the primordial unlensed
CMB may also be intrinsically non-Gaussian. A CMB
bispectrum induced by primordial non-Gaussianities
of the local type has been studied as a signal on its own
(e.g. [29–32]) and as a possible contaminant to CMB
lensing measurements [33]. Higher-order corrections to the
lensed temperature power spectrum have been investigated
analytically [34,35] and in simulations [36,37]. Related but
different 4-point CMB lensing biases were studied in
[38,39], caused by unresolved radio/infrared point sources
and galaxy clusters that add to CMB fluctuations.
Our paper is organized as follows. In Sec. II, we review

the formalism of CMB lensing and lensing measurements,
introduce notation and conventions used in this paper and
provide an analytic expression for the lensing bispectrum.
The rigorous derivation of the new reconstruction power bias
is presented in Sec. III and results of its numerical evaluation
are given in Sec. IV. In Sec. V, we provide an overview of
potential caveats in the numerical evaluation of the bias and
present cross-checks that were carried out to validate the
results. An extension of the bias to CMB lensing cross-
correlation measurements is derived in Sec. VI. We conclude
in Sec. VII. In a series of appendixes we provide details on
the CMB lensing bispectrum and its effect on lensing
reconstruction in Fourier space, large-scale and squeezed
limits, the generalization of one of the contributing bias
terms to polarization and a position space reinterpretation.

A. Notation and conventions

We will mostly work on the flat sky, denoting position
space coordinates with x. We use nonunitary Fourier
conventions

F ½fðxÞ� ¼ ~fðkÞ ¼
Z

dnxfðxÞe−ikx

F−1½ ~fðkÞ� ¼ fðxÞ ¼
Z

dnk
ð2πÞn

~fðkÞeikx ð1Þ

and express correlations in harmonic space in terms of
power spectra, bispectra and trispectra defined in the usual
manner

hAðkÞBðk0Þi ¼ ð2πÞnδnðkþ k0ÞPABðjkjÞ ð2Þ

hAðkÞBðk0ÞCðk00Þi
¼ ð2πÞnδnðkþ k0 þ k00ÞBABCðk;k0;k00Þ ð3Þ

hAðkÞBðk0ÞCðk00ÞDðk000Þic
¼ ð2πÞnδnðkþ k0 þ k00 þ k000ÞT ABCDðk;k0;k00;k000Þ:

ð4Þ

For compactness we also denote

Z
l
≡
Z

d2l
ð2πÞ2 and

Z
k
≡
Z

d3k
ð2πÞ3 : ð5Þ

II. CMB LENSING AND RECONSTRUCTION

This section provides a short review of CMB lensing and
reconstruction to set up the basic formalism needed later.

A. CMB lensing potential and its statistics

Lensing remaps the CMB temperature field T at angular
position x on the sky

~TðxÞ ¼ Tðxþ αðxÞÞ; ð6Þ

where the total deflection angle αðxÞ depends on the large-
scale structures encountered along the line of sight. It can
be expressed in terms of the lensing potential ϕ through

αðxÞ ¼ ∇ϕðxÞ: ð7Þ

The lensed temperature ~T canbeapproximatedbyperturbing
in the lensing potential. We restrict ourselves to this series
expansion here, but note that this approximation is only
accurate to about 5–10% [1] and could be improved by using
the correlation function approach of [40] which is non-
perturbative in the deflection angle. Working under the flat-
sky approximation valid on small scales and truncating at
second order in∇ϕ, the perturbative series can be written as

~TðxÞ ¼ TðxÞ þ∇TðxÞ ·∇ϕðxÞ

þ 1

2
∇i∇jTðxÞ∇iϕðxÞ∇jϕðxÞ þOðϕ3Þ: ð8Þ
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Throughout the paper, we will use the convention that the
differential operator ∇ is only applied to the object directly
following it. Applications on composite objects will be
indicated by brackets. In harmonic space, products turn into
convolutions and gradients correspond to multiplication
with −il, so that

~TðlÞ ¼ TðlÞ þ δTðlÞ þ δ2TðlÞ þOðϕ3Þ ð9Þ

with OðϕÞ correction,

δTðlÞ ¼ −
Z
l0
l0 · ðl − l0ÞTðl0Þϕðl − l0Þ; ð10Þ

and Oðϕ2Þ correction

δ2TðlÞ ¼ 1

2

Z
l0

Z
l00
½l0 · l00�½l0 · ðl − l0 − l00Þ�

× Tðl0Þϕðl00Þϕðl − l0 − l00Þ: ð11Þ

All perturbations are linear in the unlensed temperature T.
The lensing potential is a weighted projection of the

gravitational potential ψ along the line of sight,

ϕðn̂Þ ¼ 2

Z
χ�

0

dχWðχÞψðχn̂; ηðχÞÞ ð12Þ

where χ denotes the comoving angular diameter distance,
W the lensing efficiency and η the conformal time. In a flat
Universe, which is assumed here, the lensing efficiency
simplifies to

WðχÞ ¼ −
χ� − χ

χ�χ
; ð13Þ

where an asterisk is used to mark quantities at decoupling.
This description of CMB lensing relies on the Born
approximation, which assumes that the integration can
be carried out along the unperturbed photon geodesic.
Commonly, the lensing potential is modeled as a

homogeneous Gaussian random field, which is solely
characterized by its power spectrum. This power spectrum
is well described by a Limber projection of the power
spectrum of matter fluctuations, Pδðk; ηÞ,

Cϕϕ
L ¼

Z
χ�

0

dχ
4WðχÞ2

χ2
γðχÞ2
ðL=χÞ4 PδðL=χ; χÞ; ð14Þ

where

γðχÞ≡ 3

2

H2
0Ωm0

c2aðχÞ : ð15Þ

In this work, we drop the assumption of Gaussianity and
allow for a nonzero bispectrum of the lensing potential.

Similarly to the lensing power spectrum, the lensing
bispectrum is a projection of the bispectrum of density
perturbations Bδðk1;k2;−k1 − k2; χÞ:

Bϕðl1; l2; l3Þ ¼ −
Z

χ�

0

dχχ28WðχÞ3 γðχÞ3
ðl1l2l3Þ2

× Bδðl1=χ; l2=χ; l3=χ; χÞ: ð16Þ

As summarized in Appendix A, this follows by applying
the Fourier space analogue of Limber’s equation for
bispectra (see e.g., [41,42]). On very large scales, we
expect the flat-sky and the Limber approximations that
we assume to break down. The lensing power spectrum is
overestimated on large scales in the Limber approximation
and the bispectrum could be affected similarly. We will
therefore only consider multipoles L > 100.
The bispectrum of matter perturbations can be modeled

by standard Eulerian perturbation theory, which gives at
leading order in the linear matter overdensity (see [43] for a
review),

Bδðk1;k2;k3; ηÞ ¼ 2F2ðk1;k2ÞPδðk1; ηÞPδðk2; ηÞ
þ ð1 ↔ 3Þ þ ð2 ↔ 3Þ: ð17Þ

This is quadratic in the linear matter power spectrumPδ and
involves the symmetrized kernel,

F2ðki;kjÞ ¼
5

7
þ 1

2

�
ki
kj

þ kj
ki

�
k̂i · k̂j þ

2

7
ðk̂i · k̂jÞ2; ð18Þ

where k̂i ¼ ki=jkij. The simple bispectrum model (17) is
only accurate on relatively large scales that are under
perturbative control (roughly k≲ 0.07h=Mpc at z ¼ 0, see
e.g., [44] for a recent study). It can be extended to smaller,
nonlinear scales by including higher-order (loop) correc-
tions. A simpler phenomenological modification that
extends the range of validity to slightly smaller scales
can be obtained by replacing PδðkÞ with a matter power
spectrum with nonlinear corrections, Pnl

δ ðkÞ, in Eq. (17)
[45]. On smaller scales, that cannot be modeled analyti-
cally, one needs to resort to fitting formulae calibrated
against simulations.

B. Lensing reconstruction

For a fixed lensing potential, the effect of lensing is to
introduce a correlation between different modes of the
temperature field, which in the unlensed case are indepen-
dent. The resulting nondiagonal terms in the 2-point
correlator of the CMB in harmonic space can be used to
construct a quadratic lensing reconstruction estimator
[46,47], which can be written on the flat sky as

ϕ̂ðLÞ ¼ AL

Z
l
gðl;LÞ ~TexptðlÞ ~TexptðL − lÞ; ð19Þ
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where ~Texpt are beam-deconvolved noisy temperature
fluctuations. The observed temperature fluctuations are
assumed to contain white noise and a Gaussian beam, so
that the final power spectrum is

C ~T ~T
l;expt ¼ C ~T ~T

l þ σ2N exp ½lðlþ 1Þθ2FWHM=ð8 ln 2Þ�; ð20Þ

where the instrumental noise level is specified by σ2N and
the beam size is given in terms of the full width at half-
maximum (FWHM) θFWHM. The weight g in Eq. (19) is
chosen such that the variance of the estimator is minimized
[21,48,49],

gðl;LÞ ¼
ðL − lÞ ·LC ~T ~T

jL−lj þ l ·LC ~T ~T
l

2C ~T ~T
l;exptC

~T ~T
jL−lj;expt

: ð21Þ

Note that gðL − l;LÞ ¼ gðl;LÞ ¼ gð−l;−LÞ. The nor-
malization is given by

A−1
L ¼ 2

Z
l
gðl;LÞl ·LC ~T ~T

l : ð22Þ

The power spectrum of the lensing reconstruction (19)
involves the lensed temperature 4-point function,

hϕ̂ðLÞϕ̂ð−LÞi ¼ A2
L

Z
l1

Z
l2

gðl1;LÞgðl2;LÞh ~Texptðl1Þ

× ~TexptðL − l1Þ ~Texptð−l2Þ ~Texptðl2 −LÞi:
ð23Þ

This 4-point function can be split into a disconnected part,
obtained by contracting two pairs of lensed temperature
fields with each other, and a connected part, given by the
full 4-point function minus the disconnected part. The
disconnected part leads to the Nð0Þ power spectrum bias,
which would be present even for Gaussian temperature
fluctuations in absence of lensing. It is called Nð0Þ because
it is of zeroth order in Cϕϕ.1 Note Nð0Þ

L ¼ AL (a conse-
quence of optimal weighting). The connected part of the
4-point function in Eq. (23) leads to the desired signal
contribution Cϕϕ

L . Additionally, it gives rise to the Nð1Þ bias
which is also of order Cϕϕ [21,22,50]. The expectation
value of the measured lensing power spectrum is, therefore,

hCϕ̂ ϕ̂
L i ¼ Nð0Þ

L þ Cϕϕ
L þ Nð1Þ

L þO½ðCϕϕÞ3� ðGaussianϕÞ
ð24Þ

if the lensing potential ϕ is assumed to be Gaussian. To
obtain an unbiased estimator for the signal Cϕϕ, the Nð0Þ

and Nð1Þ biases are calculated (typically using simulations
or simulation-data combinations) and subtracted from the
measured lensing power.

III. EFFECT OF LENSING BISPECTRUM ON
MEASURED LENSING POWER SPECTRUM

A. Overview

We now drop the assumption that the lensing potential
ϕ is Gaussian. In this case, n-point functions with an odd
number of lensing potentials no longer need to vanish,
and n-point functions no longer need be determined by
the Gaussian 2-point power spectrum Cϕϕ alone. We
consider only a nonzero 3-point function or bispectrum,
and ignore corrections from all higher-order n-point
functions. This approximation is motivated by the spe-
cific non-Gaussianity generated by large-scale structure
modes in the mildly nonlinear regime relevant for CMB
lensing. For simplicity we ignore the ISW effect and its
induced correlations like hTϕi and hTTϕi, but note that
accounting for it may lead to additional biases that should
be investigated in the future. We also assume that the
unlensed CMB is a Gaussian field.
Allowing a nonzero lensing potential bispectrum Bϕ,

the lensed temperature 4-point function entering the
expectation value for the measured lensing power spec-
trum (23) picks up additional contractions that would
vanish for a Gaussian lensing potential. For example,
using the Taylor expansion (8), one new allowed con-
traction is of the form

ð25Þ

where subscripts denote gradients T;i ¼ ∇iT and
ϕ;i ¼ ∇iϕ. Since the lensing change δnT is of order
ϕn and linear in the unlensed temperature T, there are
four qualitatively different contraction types that arise for
the measured lensing power spectrum (23) at order ϕ3:

typeA∶ hδTδTδT 0T 0i typeB∶ hδ2TδTT 0T 0i
typeC∶ hδ2TTδT 0T 0i typeD∶ hδ3TTT 0T 0i: ð26Þ

The last two temperature fields are labeled with primes to
indicate that they correspond to the second reconstruction
field ϕ̂ð−LÞ in Eq. (23); quantities without primes
correspond to the first reconstruction field ϕ̂ðLÞ.2
Each type of terms allows several Wick’s theorem

contractions. For example, for type A there are three
contractions that we label A1, A2, and A3:

1We follow the common power-counting practice where only
explicit appearances of Cϕϕ are counted that are not contained in
lensing contributions to C ~T ~T .

2In position space, this corresponds to reconstructed lenses at
two different positions x and x0 on the sky; also see Appendix E.
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ð27Þ

Similarly, the type-B term has three contractions B1, B2, and B3,

ð28Þ

and the type C term has contributions C1, C2, and C3:

ð29Þ

We omit the type-D terms here as these can be shown to be
zero.
In our paper, we evaluate the A1 and C1 terms numeri-

cally and focus on them in the main text. We focus on these
terms both because they are expected to be among the
largest and because they allow for numerical evaluation
on reasonable timescales. In contrast, as discussed in
Appendix C, the B1 term is zero, and the A2 and A3
terms are tightly coupled, which makes numerical evalu-
ation difficult and time-consuming (the integrals are six-
dimensional), but also suggests that these terms are small.
Furthermore, the C2 term should be naturally accounted for
in the (realization-dependent) calculations of the Nð0Þ bias,
which is included in modern lensing pipelines. We defer a
full evaluation of the remaining B2, B3, and C3 terms to
future work; we note that if they have a similar order of
magnitude to A1þ C1, our approximate calculation might
underestimate the true bias.
The new contractions allowed by a nonzero lensing

bispectrum lead to a new bias Nð3=2Þ
L;tot of the measured

4-point lensing power spectrum,

hCϕ̂ ϕ̂
L i ¼ Nð0Þ

L þ Cϕϕ
L þ Nð1Þ

L þ Nð3=2Þ
L;tot þO½ðCϕϕÞ5=2�

ðnon-GaussianϕÞ: ð30Þ

We call the new non-Gaussian reconstruction bias Nð3=2Þ

because it scales like ϕ3 ∝ ðCϕϕÞ3=2, and previously con-
sidered biases like Nð0Þ and Nð1Þ were labeled by the power
of Cϕϕ they involve. The total Nð3=2Þ bias is a sum over all
possible 4-point contractions listed above,

Nð3=2Þ
tot ¼ ðNð3=2Þ

A1 þ Nð3=2Þ
C1 Þ þ Nð3=2Þ

A2 þ Nð3=2Þ
A3 þ Nð3=2Þ

B2

þ Nð3=2Þ
B3 þ Nð3=2Þ

C2 þ Nð3=2Þ
C3 : ð31Þ

where as explained previously we focus here on the A1 and
C1 terms in parentheses.

The A1 and C1 bias terms in Eqs. (27) and (29) have a
simple intuitive interpretation: They arise because the
quadratic response of the lensing reconstruction ϕ̂ðLÞ to
the true lensing potential ϕ is correlated with the linear
response of the lensing reconstruction ϕ̂ð−LÞ to the true
lensing potential ϕ0. This correlation involves the 3-point
correlation function hϕϕϕ0i of the true lensing potential,
which is nonzero in presence of nonlinear gravitational
clustering.
We proceed by discussing these A1 and C1 terms, which

contribute substantially to the total bias (31), in detail.
Analytical expressions for the remaining bias contributions
are given in Appendix C.

B. A1 contribution to the Nð3=2Þ bias

We begin by computing the lensing bias from the
contraction A1 in Eq. (27). This contraction is given by

hδTl1δTl2δTl3Tl4iA1
¼ −ð2πÞ2δDðl1 þ l2 þ l3 þ l4ÞCTT

l4
½ðl3 þ l4Þ · l4�

×
Z
l
½l · ðl1 − lÞ�½l · ðl2 þ lÞ�

× CTT
l Bϕðl1 − l; l2 þ l;−l1 − l2Þ; ð32Þ

where we used the Fourier space expression (10) for the
first-order temperature change δT due to lensing, and
contracted temperature and lensing fields as indicated for
the A1 term in Eq. (27).3 Inserting this into Eq. (23) yields
the following A1 bias of the measured lensing power
spectrum:

3For Gaussian instrument noise that is uncorrelated
with the signal, all contributions to the four point correlator
h ~Texpt

l1
~Texpt
l2

~Texpt
l3

~Texpt
l4

i that involve instrument noise either vanish
or contribute to the Gaussian noise bias. This justifies ignoring
instrument noise in the calculation of the connected four point
contributions to Nð3=2Þ.
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Nð3=2Þ
A1 ðLÞ ¼ −4A2

LSL

Z
l1;l

gðl1;LÞ½l · ðl1 − lÞ�½l · ðL − ðl1 − lÞÞ�CTT
l Bϕðl1 − l;L − ðl1 − lÞ;−LÞ ð33Þ

¼ −4A2
LSL

Z
l1;l

gðl1;LÞ½ðl1 − lÞ · l�½ðl1 − lÞ · ðL − lÞ�CTT
jl1−ljBϕðl;L − l;−LÞ: ð34Þ

The prefactor SL is an integral over the filtered unlensed
CMB power spectrum,

SL ¼
Z
l2

gðl2;LÞðl2 ·LÞCTT
l2
; ð35Þ

satisfying SL ≈ 1=ð2ALÞ at leading order in Cϕϕ. The
prefactor of 4 in Eq. (34) stems from the four possibilities
to arrange three temperatures perturbed to first order
and one unperturbed temperature in a 4-point correlator.
Equation (34) follows by changing integration variables
l → l1 − l.

C. C1 contribution to the Nð3=2Þ bias

The C1 contraction defined in Eq. (29) is

hδ2Tl1Tl2δTl3Tl4iC1
¼ ð2πÞ2

2
δDðl1 þ l2 þ l3 þ l4ÞCTT

l2
CTT
l4
½ðl3 þ l4Þ · l4�

×
Z
l
ðl2 · lÞ½l2 · ðl1 þ l2 − lÞ�Bϕðl; l1 þ l2 − l;−l1 − l2Þ:

ð36Þ

Inserting this in Eq. (23) gives the following C1 bias of the
measured lensing power spectrum:

Nð3=2Þ
C1 ðLÞ ¼ 4A2

LSL

Z
l1;l

gðl1;LÞðl1 · lÞ½l1 · ðL − lÞ�

× CTT
l1
Bϕðl;L − l;−LÞ; ð37Þ

We changed integration variables l1 → L − l1, and we
accounted for a symmetry factor 8 that arises because
the resulting lensing bias does not change if we exchange
l1 ↔ l2, or l3 ↔ l4, or both in Eq. (36).

D. Integral expressions for fast numerical evaluation

The A1 and C1 biases in Eqs. (34) and (37) involve four-
dimensional integrals for every multipole L, which are
computationally expensive to evaluate. Fortunately, how-
ever, the integrands of these four-dimensional integrals can
be rewritten in a product-separable form, which allows
much faster numerical evaluation by multiplying two-
dimensional integrals. In Appendix B we demonstrate this
and derive the following simply evaluated expression for
the C1 bias,

Nð3=2Þ
C1 ðLÞ ¼ −4A2

LSL½R∥ðLÞβ∥ðLÞ þ R⊥ðLÞβ⊥ðLÞ�; ð38Þ

where we defined the temperature integral R∥ and inte-
grated lensing bispectrum β∥ as

R∥ðLÞ ¼
Z
l1

gðl1;LÞl21cos2ðμl1ÞCTT
l1
; ð39Þ

β∥ðLÞ ¼
Z
l
l cos μl½l cos μl − L�Bϕðl;L − l;−LÞ; ð40Þ

and similarly for the perpendicular component,

R⊥ðLÞ ¼
Z
l1

gðl1;LÞl21sin2ðμl1ÞCTT
l1
; ð41Þ

β⊥ðLÞ ¼
Z
l
l2sin2ðμlÞBϕðl;L − l;−LÞ; ð42Þ

where cos μl1 ¼ l1 ·L=ðl1LÞ and cos μl ¼ l ·L=ðlLÞ. In
Appendix B, we also derive a similar fast integral expres-
sion for the A1 bias.

E. Comparison of A1 and C1 contributions
to the Nð3=2Þ bias

The A1 bias of Eq. (34) and the C1 bias of Eq. (37) have
a very similar structure. This makes sense because these
biases arise from similar contractions in Eqs. (27) and (29).
In the limit of Eq. (34) where the lensing multipole l is
much lower than the temperature multipole l1 (i.e., l ≪ l1
and l1 − l ≈ l1), the A1 and C1 biases cancel each other.
The potential cancellation in this limit demands careful
numerical evaluation of the A1 and C1 contributions to the
Nð3=2Þ bias. Numerically, we will find later that the range of
reconstruction multipoles L where this cancellation is
actually relevant depends strongly on experimental spec-
ifications. At very low reconstruction multipoles L, the
cancellation helps to regularize the Nð3=2Þ bias by canceling
individually large A1 and C1 contributions with oppo-
site sign.

IV. NUMERICAL EVALUATION

A. Implementation

We continue by evaluating the expressions in (34) and
(38) that follow from the type-A1 and type-C1 contrac-
tions. The integrals over the lensing bispectrum can be
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evaluated for any model of the lensing bispectrum. We
evaluate them using the leading-order standard perturbation
theory expression (16) with Plin

δ ðkÞ replaced by the non-
linear matter power spectrum Pnl

δ ðkÞ, which fits simulations
slightly better than the leading-order bispectrum involving
Plin
δ ðkÞ (also see Sec. V C for a discussion of the validity of

this bispectrum model).
Small-scale temperature contributions to the integrals are

suppressed by setting the experimental noise to an unphysi-
cally high value (irrespective of the experiment) for
temperature multipoles l ≥ 3000. This small-scale cutoff
is often applied to real data to ensure the results are
insensitive to astrophysical emission from dusty galaxies
and the Sunyaev-Zeldovich effect which become relevant at
these scales.
To evaluate the contributions to the Nð3=2Þ bias we

consider different experimental setups roughly correspond-
ing to CMB stage III, stage IV, and Planck experiments.
Beam width, noise levels and sky coverage for these
representative classes of experiments are summarized in
Table I.
For the calculation of the fiducial power spectra of

matter, CMB and lensing potential we use the publicly
available CLASS code4 [51]. The computation of nonlinear
corrections to the power spectrum of density fluctuations is
based on the HALOFIT method [52,53]. The underlying
cosmology is a standard ΛCDM cosmology with Planck
2013 best fit parameters: ωm ¼ 0.311, Ωb ¼ 0.049,
h ¼ 0.671, As ¼ 2.215 × 10−9, ns ¼ 0.968, and TCMB ¼
2.7255 K [54].
We next discuss results for lensing measurements from

the CMB temperature fluctuations and include the con-
tribution to Nð3=2Þ from the sum of the two couplings A1
and C1. We then proceed with polarization measurements
for which we only evaluate the C1 coupling because it is
simpler to evaluate.

B. Results for A1 and C1 contributions to the Nð3=2Þ bias
for ðTT; TTÞ reconstruction

Fig. 1 shows the A1 and C1 contributions to the non-
Gaussian reconstruction bias Nð3=2Þ for the different classes
of experiments summarized in Table I. To assess the
importance of the non-Gaussian biases, the left panel of

Fig. 2 shows the ratio of their sum to the lensing power
spectrum signal.
For the high resolution stage III and stage IVexperiments

the bias is of order 0.5%–2.5% of the signal, slowly
decreasing towards smaller scales. The sign of the bias is
negative over all relevant scales; i.e., it reduces the measured
lensing power. For Planck, the bias appears nearly an order
of magnitude smaller than in the high resolution case,
typically entering at negligible levels well below one percent
of the signal. This is the case because for Planck the A1 and
C1 contributions to the bias partially cancel each other (see
also the discussion at the end of Sec. III). For Planck, the
sign of the effect varies with angular scale.
The significance of the bias in each experiment depends

on the statistical uncertainty of the measured lensing power
spectrum. The Gaussian variance is given by

σ2ðLÞ ¼ 1

fsky

2

ð2Lþ 1Þ ðN
ð0Þ
L þ Cϕϕ

L þ Nð1Þ
L Þ2: ð43Þ

The right panel of Fig. 2 shows the bias-to-noise ratio

Nð3=2Þ
A1þC1ðLÞ=σðLÞ if the measured lensing power spectrum

is binned with bin width ΔL ¼ 100. The bias is significant
in low-noise, high-resolution experiments such as CMB
stage III or stage IV: If the bias is ignored, the measured
lensing power spectrum will be biased low by ∼0.5σ–1.5σ
per bin for L ∼ 200–800, for each bin of width ΔL ¼ 100.
The total significance of this bias is ∼2.5σ for stage III and
∼3σ for stage IV.
The total bias is, thus, significant and should therefore be

accounted for when performing ðTT; TTÞ lensing
reconstruction with CMB stage III or stage IV experiments.
While stage IV will likely get most lensing information from
polarization-based measurements so that the bias of temper-
ature-based lensing measurements is less worrisome, a large
fraction of the lensing information from stage III experi-
ments will come from ðTT; TTÞ lensing measurements, so
that accounting for the Nð3=2Þ bias will be particularly
important in this case. For Planck, however, the bias appears
negligible (the significance of the total bias is only 0.06σ).
We emphasize that the above numbers just provide a

rough estimate of the actual size of the Nð3=2Þ bias because
of the simplifying assumptions we made for the numerical
evaluation. In particular, additional bias contributions from
other contractions than A1 and C1 may be important for all

TABLE I. Typical beam and noise specifications of current and future experiments. All resolution and noise
dependent results shown are based on one of these configurations. The noise level stated in this table is for
temperature measurements. For polarization we use σBBN ¼ σEEN ¼ ffiffiffi

2
p

σTTN .

Representative experiment Stage IV(CMB-S4) Stage III(AdvancedACT-like) Planck

θFWHM [arcmin] 1.0 1.4 7.0
σTTN ½μKarcmin� 1.0 6.0 30.0
fsky 0.5 0.4 0.63

4http://www.class‑code.net/.
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FIG. 1. Nð3=2Þ CMB lensing bias that arises as a consequence of a nonvanishing bispectrum of large-scale structure. In this plot we
show the bias on a measurement of the CMB lensing power spectrum from temperature data. The signal lensing power spectrum Cϕϕ is
shown for comparison (black). Different panels show different experiment specifications summarized in Table I. When negative, the
functions are reported with minus sign as dashed lines. The bias appears significant for stage III and stage IVexperiments. It should be
noted that the bias plotted here is the sum of two out of many contributing terms to the total bias (see Sec. III A). These two terms,
denoted type A1 [Eq. (34)] and type C1 [Eq. (37)], are likely two of the largest terms. We provide analytic expressions for the remaining
terms but defer their evaluation to future work.
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experiments, and a more accurate model of the lensing
bispectrum on small scales could change results for stage
III and stage IV by an order of 1 factor. We will discuss
these caveats in more detail in Secs. V and VII below.

C. Results for C1 contribution to the Nð3=2Þ bias
for polarization

We can generalize the Nð3=2Þ bias to polarization-based
measurements of the lensing power spectrum. In this paper

we derive and evaluate the corresponding expressions for
contributions from the coupling type C1 only (see
Appendix F). The contribution from the coupling type
A1 is numerically more expensive to evaluate and we defer
its generalization to polarization to future work.
The left panel of Fig. 3 shows the C1 contribution

to the bias from ðEB;EBÞ, ðEE;EEÞ, and ðTT; TTÞ
reconstruction for a stage IV experiment. On most relevant
scales, the ðTT; TTÞ and ðEE;EEÞ biases are similar to
each other, but the ðEB;EBÞ bias is much smaller.

FIG. 2. Left panel: Ratio of non-Gaussian Nð3=2Þ bias over the signal lensing power spectrum Cϕϕ, for ðTT; TTÞ reconstruction. Right
panel: Ratio ofNð3=2Þ bias over lensing power spectrum error σðLÞ on bandpowers of widthΔL ¼ 100. It can be seen that, while the bias
appears negligible for Planck, it is a significant percent-level effect for stage III and stage IV experiments.

FIG. 3. Generalization of one of the bias contributions, from coupling type C1, to polarization-based measurements of the CMB
lensing power spectrum (see Appendix F for details). All curves ignore the similar type-A1 bias contribution. This provides some
qualitative idea of how the bias changes for polarization, but should not be confused with the full expected lensing bias. A thorough
quantification, which involves the evaluation of the remaining non-negligible term(s), is deferred to future work. In the left panel, we
show the C1 bias contribution for a stage IVexperiment divided by the signal power spectrum for different estimators. In the right panel,
we divide the C1 bias contribution by the error on the lensing power spectrum measurement. In both panels, the type-C1 bias
contribution for a temperature-based measurement is plotted for comparison. It can be seen that the C1 bias is less important for
polarization lensing measurements using the EB estimator than it is for lensing measurements from temperature. Note that the use of an
iterative EB estimator for polarization could enhance the relative importance of the bias with respect to the error by roughly a factor of 3
for CMB stage IV at high L.
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However, ðEB;EBÞ reconstruction is also the combination
which is expected to achieve the lowest error on the lensing
measurement for future polarization-sensitive experiments
like CMB stage IV. To assess the significance of the C1 bias
contribution in this case, the right panel of Fig. 3 shows the
bias divided by the reconstruction uncertainty for CMB
stage IV and Planck (assuming Eq. (43) for the noise and
bin width ΔL ¼ 100). Despite the higher precision of (EB,
EB) reconstruction, the bias still appears rather small,
0.1–0.3σ per L-bin of width ΔL ¼ 100.
We emphasize again that the bias is expected to change if

contributions from the A1 and other contractions for
polarization are included (like in the temperature-only case
where the A1 contribution is rather important), and addi-
tional changes may arise from more accurate models for the
matter bispectrum on small scales. Note also that the use of
an iterative EB estimator could enhance the relative
importance of the bias with respect to the lensing meas-
urement error by roughly a factor of 3 for CMB stage IV,
although the form of the bias may also be different for such
a lensing estimator.

V. DISCUSSION AND VALIDATION
OF THE CALCULATIONS

In the following sections, we discuss potential caveats in
the evaluation of Nð3=2Þ like its strong dependence on σ8,
cross-checks of our numerical implementation and assump-
tions made in the derivation and evaluation of Nð3=2Þ.
Further, we explain how we have tested the influence of
nonlinear modes on the results and we comment on the
sensitivity of the bias on the large-scale structure bispec-
trum model that is used. Some of our results have been
derived for the C1 term only, but we expect them to apply
similarly to the other relevant terms. We begin by discus-
sing the scaling with σ8.

A. Dependence of Nð3=2Þ bias on σ8
Since the bispectrum of the lensing potential Bϕ is

quadratic in the power spectrum of the matter density,
we expect the Nð3=2Þ bias to scale with the fourth power of
the normalization of matter fluctuations, σ8. Thus, rela-
tively small changes of σ8 lead to large changes of the
Nð3=2Þ bias. Computing the Nð3=2Þ bias for a fiducial
cosmology with slightly wrong σ8 may therefore leave a
significant residual bias. This may raise concerns because
σ8 is not very well known in practice. However, we found

that the effect of σ8 on the Nð3=2Þ
C1 bias is relatively well

approximated by rescaling Nð3=2Þ
C1 with a scale-independent

factor ðσ8=σfiducial8 Þ4. Therefore, the σ8 dependence of the
bias could easily be included when fitting cosmological
parameters to data. This can in principle increase the
precision of σ8, because it includes information from the
non-Gaussianity of the lensing potential ϕ (though more

optimal methods for extracting this non-Gaussian informa-
tion could be used instead).

B. Cross-check with large-lens and squeezed
bispectrum limits

The numerical evaluation of the contributions to the
Nð3=2Þ bias involves several steps and relies on numerical
approximations such as discretization schemes. Therefore,
any of the computed results should be validated. Apart from
code internal tests we have derived analytic large-lens and
squeezed bispectrum limits for the various numerical
integrals involved in evaluating Nð3=2Þ, evaluated them
independently and compared them to full code results.
These limits do not only provide a cross-check of the
implementation, but are also useful to qualitatively under-
stand the behavior and dependencies of the contributing
terms. We have found excellent agreement between the
analytic limits and our numerical calculations of the C1
contribution to the bias; for a detailed description of these
tests we refer the reader to Appendix D.

C. Higher-order corrections to the matter bispectrum

As discussed in Sec. II, the simple model of Eq. (17) for
the dark matter bispectrum from Eulerian standard pertur-
bation theory at leading order is only valid for large-scale
modes. It breaks down for small-scale modes that can have
large overdensities δ ≫ 1 due to gravitational collapse. We
use the simple leading-order model of Eq. (17) to get an
approximate, conservative estimate of the expected size of
the Nð3=2Þ bias. In reality, higher-order (and ultimately
nonperturbative) gravitational collapse on small scales
generates a larger bispectrum that may lead to a larger
Nð3=2Þ lensing bias, especially for small-scale lenses (high
L). For actual data analyses of experiments where the
Nð3=2Þ bias is relevant, fitting formulae for the matter
bispectrum calibrated against N-body simulations should
be used for more accurate predictions of the Nð3=2Þ bias
from small-scale modes. Our expressions for the lensing
bias take an arbitrary matter bispectrum model as input so
that it is straightforward to include more realistic bispec-
trum models. To get a rough estimate for the importance of
small-scale modes on the Nð3=2Þ bias, we compute the bias
with the bispectrum set to zero if any of the contributing
LSS modes is larger than a nonlinear cutoff scale kNLðzÞ
defined by

k3NLðzÞPðkNL; zÞ
2π2

¼ 1; ð44Þ

and compare it to the full result. This test reveals that the
contribution from these scales to the type-C1 bias makes up
∼30% of the signal at L ¼ 3000 for CMB-S4 (and less for
stage III and Planck experiments). Up to L ∼ 1000 it lies
below 10% for all experiments. At least up to this multipole
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range, the leading-order bispectrum (17) seems an accept-
able approximation for the coupling of type C1. For the
second coupling that we consider, type A1, we find
somewhat different results. For a Planck-like experiment
the contribution of small-scale modes at L ∼ 1000 is of
Oð10%Þ and, thus, similar to the type-C1 term. For a stage
IV experiment, however, these small modes contribute
significantly even at lower multipoles. In particular, we
find that the type-A1 bias at L ¼ 1000 has a different sign if
modes smaller than the cutoff scale are excluded.
Another simple test of the impact of small-scale modes is

obtained by comparing the Nð3=2Þ bias evaluated with the
standard perturbative bispectrum formula (17) and the bias
computed from a modified bispectrum model where the
linear matter power spectrum is replaced by the nonlinear
one, Plin → Pnl. This comparison is shown in Fig. 4. Lines
indicate results for the type-C1 contribution to the bias,
symbols indicate the A1 contribution. The C1 bias con-
tribution changes byOð10%Þ or less for lensing multipoles
L < 2000 if the nonlinear instead of linear matter power
spectrum is used. At higher multipoles L > 2000 the
change can be larger.
For the similar A1 contribution to the bias we restrict this

test to a few points (indicated by markers), because
evaluation is much more computationally expensive. In
this case, we find that the importance of nonlinear correc-
tions strongly depends on the experimental specifications.
For a Planck-like experiment, the corrections seem sim-
ilarly small as for the type-C1 term. For a CMB stage IV
experiment, however, the modification of the matter power
spectrum leads to a significant change of the bias even at
intermediate L.

We conclude that for high resolution experiments the
leading-order perturbation theory bispectrum model may
not be sufficient for obtaining an exact estimate of the size
of the Nð3=2Þ bias, but instead can only provide an
approximate estimate. For Planck, however, the leading-
order model appears to be accurate. A thorough quantifi-
cation of the bias for stage III and stage IV experiments
requires a more accurate modeling of the LSS bispectrum
for small LSS modes. This could be achieved by using
fitting formulae for the matter bispectrum calibrated by
numerical N-body simulations (e.g., [44,45,55,56]).

D. Prospects for comparison with results
from numerical simulations

The derived form of the nonlinear bias relies on the
validity of certain assumptions, including e.g., the validity
of the bispectrum approximation, the domination of the two
contributions of type A1 and C1 to the bias over all other
contributions, and the negligibility of nonlinear corrections
that are higher than third order in the lensing potential. An
independent test of their correctness could be obtained by a
comparison with N-body simulations that provide a full
nonlinear lensing potential and do not rely on a perturbative
approach. We defer an analysis of the nonlinear bias in
CMB lensing simulations based on N-body simulations to
future work.

VI. CROSS-CORRELATION OF CMB LENSING
WITH AN EXTERNAL LSS TRACER

While our paper focuses on the autopower spectrum of
the quadratic lensing reconstruction, hϕ̂ ϕ̂i, it is also

FIG. 4. The fractional contribution of the nonlinear bias from coupling type C1 (lines) and type A1 (symbols) (similar to the left panel
in Fig. 2) computed from the standard Eulerian perturbation theory bispectrum at leading order and from a modified form where the
linear matter power spectrum was replaced by a nonlinear one (dashed lines). For the C1 contribution to the Nð3=2Þ bias the standard
leading-order bispectrum and the modified bispectrum (with enhanced nonlinearity) give similar results at multipoles L < 2000. For the
A1 contribution, which is computationally much more expensive to evaluate, the results are similar for Planck-like experiments, but for
CMB stage IV higher-order corrections to the bispectrum seem to be important even at intermediate L.
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worthwhile to cross-correlate the lensing reconstruction ϕ̂
with other external LSS tracers ϕext like the cosmic
infrared background, galaxy weak lensing, galaxy or
quasar catalogs, or Lyman-alpha observations; see e.g.,
[9,10,17–19,57–59]. The cross-correlation hϕ̂ϕexti between
the quadratic CMB lensing reconstruction ϕ̂ and the
external LSS tracer ϕext then picks up a similar bias arising
from the large-scale structure bispectrum generated by
nonlinear structure formation. In this section, we compute
this cross-spectrum bias similarly to the calculations above,
under the assumption that the observed external LSS tracer
is uncorrelated with the unlensed CMB.
The bias of the cross-spectrum induced by a nonzero

LSS bispectrum is caused by the correlation of the external
LSS tracer with the second-order response of the recon-
structed lensing potential to the true lensing potential.
Similarly to the A1 and C1 contributions to the autospec-
trum bias in Eqs. (27) and (29), this bias to the cross-
spectrum follows schematically from the two contractions
A1cross and C1cross:

h ~T ~T ϕextiO½ðCϕϕÞ3=2� ¼ hδTδTϕexti þ 2hδ2TTϕexti ð45Þ

ð46Þ

These are all contractions allowed for the cross-spectrum,
so that the full expectation value of the cross-spectrum up to
fifth order in LSS perturbations is5

hCϕ̂ϕext
L i ¼ Cϕϕext

L þ Nð3=2Þ
A1crossðLÞ þ Nð3=2Þ

C1crossðLÞ þOðϕ5Þ;
ð47Þ

where the new bispectrum-induced biases are

Nð3=2Þ
A1crossðLÞ ¼ −AL

Z
l;l1

gðl1;LÞ½ðl1 − lÞ · l�

× ½ðl1 − lÞ · ðL − lÞ�CTT
jl1−lj

× Bϕϕϕext
ðl;L − l;−LÞ ð48Þ

and

Nð3=2Þ
C1crossðLÞ ¼ AL

Z
l;l1

gðl1;LÞðl1 · lÞ½l1 · ðL − lÞ�CTT
l1

× Bϕϕϕext
ðl;L − l;−LÞ: ð49Þ

Here, Bϕϕϕext
is the mixed bispectrum between two CMB

lensing modes and one external LSS tracer.
The cross-spectrum biases (48) and (49) are similar to the

A1 and C1 autospectrum biases in Eqs. (34) and (37).
Indeed, if the external tracer were equal to the true lensing
potential modulo uncorrelated noise, ϕext ¼ ϕþ n, the
cross biases would be half the autospectrum biases at
leading order in the lensing potential power:

Nð3=2Þ
A1crossðLÞ ≈

1

2
Nð3=2Þ

A1
ðLÞ and Nð3=2Þ

C1crossðLÞ ≈
1

2
Nð3=2Þ

C1
ðLÞ:
ð50Þ

In practice, the external LSS tracer is typically different
from the lensing potential, e.g., because of different
redshift kernels, so that the cross-bias should be evalu-
ated with the full Eqs. (48) and (49). Fast-to-evaluate
expressions for these biases take the same form as those
for the A1 and C1 autospectrum biases if the lensing
bispectrum is replaced by the mixed lensing-lensing-
tracer bispectrum Bϕϕϕext

. We note that for lower-redshift
tracers, the nonlinearity is enhanced, so that cross-
correlation biases may be larger than the biases for
CMB lensing alone.

VII. CONCLUSIONS

This paper investigates the effect of large-scale structure
non-Gaussianity on CMB lensing reconstruction. The
bispectrum of the CMB lensing potential generated by
nonlinear structure formation leads to a bias of the
measured CMB lensing power spectrum that has been
neglected so far. We call the bias Nð3=2Þ because it involves
ϕ3 ∼ ðCϕϕÞ3=2. For an unbiased measurement, this bias
must be calculated and subtracted from measured lensing
power spectra. We derive an analytical expression for this
lensing bias, which splits into several contributions that
involve the CMB power spectrum and the dark matter
bispectrum.
The magnitude of the Nð3=2Þ bias depends on experiment

specifications and field combinations used for the lensing
reconstruction. For CMB stage III and stage IV experi-
ments, we find that the lensing power spectrum measure-
ments are biased low by 0.5%–2.5% (for Planck, the bias is
at a negligible subpercent level) if temperature data is used.
For future experiments, this negative bias will shift mea-
surements of the lensing power spectrum by multiple
standard deviations and must, thus, be accounted for.
For stage III, a large fraction of the lensing signal-to-noise
is expected from the temperature-based reconstruction, so
accounting for the bias is particularly important in this case.
We focus on temperature-only lensing reconstructions, but
we demonstrate for one of the bias contributions how it can
be straightforwardly generalized to polarization-based
reconstructions.

5An additional Nð2Þ bias of order ðCϕϕÞ2 also arises, but we
avoid it by using lensed CMB power spectra in the normalization
AL [Eq. (22)] and in the numerator of the weight g in Eq. (21)
[21,49].
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Our first results on this non-Gaussian bias, including the
expected size of the bias, rely on a number of simplifying
assumptions that should be tested in future work:
(1) Some contributions to the non-Gaussian lensing bias

involve high-dimensional integrals that are computa-
tionally challenging to evaluate. Therefore, for
numerical evaluations, we consider only two bias
contributions that can be evaluated in reasonable
timescales. They arise from particular contractions
denoted type A1 [Eq. (34)] which contributes to
hδTδTδTTi, and type C1 [Eq. (37)] which contrib-
utes to hδ2TTδTTi. Intuitively, we suspect that these
two contributions to Nð3=2Þ are among the largest
contributions, because they have relatively simple,
separable forms in Fourier space. For all other bias
contributions we present analytical expressions but
do not evaluate them numerically in the present
work. Future work should check if these additional
bias contributions are relevant, e.g., by performing
the required numerical integrations or by comparing
against estimates of the same non-Gaussian lensing
bias from ray-traced N-body simulations.

(2) While our analytical expressions can take arbitrary
matter bispectrum models as their input, our numeri-
cal evaluations assume a simple matter bispectrum
model that follows from leading-order Eulerian
standard perturbation theory. While this is valid in
the regime where only large-scale lensing modes
contribute, more accurate results for the non-
Gaussian lensing bias can be obtained by using
more accurate matter bispectrum models on small
scales. Our tests indicate that such corrections are
likely small for Planck but significant for future
CMB stage III or stage IV experiments.

(3) Our analytical expressions follow by perturbing
lensed CMB fluctuations in the lensing deflection
angle. This perturbative expansion does not con-
verge well on all scales, although corrections from
nonperturbative approaches are typically less than
10%. Again, the accuracy of this approximation
should be checked in the future.

(4) Our calculation for the lensing potential bispectrum
Bϕ induced by nonlinear structure formation as-
sumes the flat sky approximation and Limber’s
projection. This is valid on intermediate and small
scales, but breaks down on very large scales. We
therefore restrict the discussion of the bias to multi-
poles L ≥ 100. Although it would be interesting to
extend our result to the full sky, we note that CMB
experiments have most lensing information at multi-
poles L ≥ 100.

Apart from testing each of the above assumptions in
more detail, there are various other directions to extend and
generalize our work in the future. For example, while we
regard the non-Gaussianity of the lensing potential and the

induced lensing power bias as a nuisance, it could equally
well be regarded as a new signal. Pushing this further, one
could envision other estimators to extract information from
the non-Gaussianity of the lensing potential, e.g., by
measuring the skewness or bispectrum of the reconstructed
lensing potential, as investigated very recently by
Namikawa [60]. We leave such exciting extensions to
future studies. We also note that we have assumed the
standard quadratic lensing estimator when deriving the
Nð3=2Þ bias. However, future polarization-sensitive experi-
ments like CMB stage IV will benefit significantly from
likelihood-based lensing estimators [61]; the impact of
large-scale structure non-Gaussianity on these estimators
should be considered.
More generally, accounting for the bispectrum and

nonlinearity of large-scale structure is just one of many
possible extensions to refine theoretical modeling of CMB
lensing. While leading-order modeling of CMB lensing is
often rather accurate, the highly increased sensitivity of
upcoming CMB stage III and stage IV experiments may
require additional modeling corrections that should be
investigated in the future.
While finalizing our draft, Namikawa [60] pointed out

that the CMB lensing bispectrum can also be regarded as a
potential future signal from the CMB 6-point function
rather than a bias of lensing 4-point measurements, which is
the focus of our paper. While our papers are complementary
in most parts, they both demonstrate the future importance
of the non-Gaussianity of the CMB lensing potential. We
checked that our theoretical CMB lensing bispectrum
from leading-order standard perturbation theory agrees
with [60].
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APPENDIX A: CMB LENSING BISPECTRUM

The nonlinear bias is the consequence of a nonvanishing
bispectrum of the lensing potential. In this appendix, we
provide the full-sky expression for the Limber-projected
CMB lensing bispectrum (see e.g., [41,42]). In the flat-sky
limit, this reduces to the expression in Eq. (16). We evaluate
this expression with a matter bispectrum at leading order in
standard Eulerian perturbation theory and show the cumu-
lative contributions from different redshifts and wave
numbers for equilateral configurations.
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We start out with the three-point correlation function of the lensing potential in angular coordinates

hϕðn̂Þϕðn̂0Þϕðn̂00Þi ¼ 8

Z
χ�

0

dχ
Z

χ�

0

dχ0
Z

χ�

0

dχ00WðχÞWðχ0ÞWðχ00Þhψðχn̂; η0 − χÞψðχ0n̂0; η0 − χ0Þψðχ00n̂00; η0 − χ00Þi

¼ 8

Z
χ�

0

dχ
Z

χ�

0

dχ0
Z

χ�

0

dχ00WðχÞWðχ0ÞWðχ00Þ
Z
k;k0;k00

ð2πÞ3δDðkþ k0 þ k00Þ

× Bψðk; k0; k00; η; η0; η00Þeik·χn̂eik0·χ0n̂0
eik

00·χ00n̂00
; ðA1Þ

where we introduced the bispectrum of the Newtonian
potential,

hψðk; ηÞψðk0; η0Þψðk00; η00Þi ¼ ð2πÞ3δDðkþ k0 þ k00Þ
× Bψðk;k0;k00; η; η0; η00Þ:

ðA2Þ

Here, η, η0, and η00 denote the conformal times at which the
photon encounters the potentials of wave vectors k, k0, and
k00, respectively.
Expanding the lensing potential ϕ in spherical harmonics

yields

hϕlmϕl0m0ϕl00m00 i ¼ Gmm0m00
ll0l00

Z
χ�

0

dχ
χ4

8WðχÞ3

× Bψ

�
l
χ
;
l0

χ
;
l00

χ
; η

�
: ðA3Þ

This is obtained by expanding plane waves and Dirac
delta’s in spherical harmonics Ylm and spherical Bessel
functions jl, performing all angular integrals, using the
closure relation for spherical Bessel functions (which
enforces η ¼ η0 ¼ η00), and applying Limber’s approxima-
tion by replacing k by l=χ (see e.g., [62] for similar
calculations). We also used the Gaunt integral

Gmm0m00
ll0l00 ¼

Z
dΩYlmðn̂ÞYl0m0 ðn̂ÞYl00m00 ðn̂Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l0 þ 1Þð2l00 þ 1Þ

4π

r

×

�
l l0 l00

0 0 0

��
l l0 l00

m m0 m00

�
;

imposing lþ l0 þ l00 ¼ even. The flat-sky expression
corresponding to Eq. (A3) is

hϕðlÞϕðl0Þϕðl00Þi ¼ ð2πÞ2δDðlþ l0 þ l00Þ
Z

χ�

0

dχ
χ4

8WðχÞ3

× Bψ

�
l
χ
;
l0

χ
;
l00

χ
; η

�
: ðA4Þ

The bispectrum of the potential ψðk; χÞ due to nonlinear
gravitational clustering is obtained by noting that the

potential is sourced by the fractional overdensity δðk; χÞ
through the Poisson equation,

ψðk; χÞ ¼ −
3

2

H2
0Ωm0

c2k2
δðk; χÞ
aðχÞ ≡ −

γðχÞ
k2

δðk; χÞ; ðA5Þ

so that

Bψ ðk1;k2;k3; χÞ ¼ −
γðχÞ3
k21k

2
2k

2
3

Bδðk1;k2;k3; χÞ: ðA6Þ

The lensing potential bispectrum Bϕ is then given by the
following line-of-sight integral over the matter bispectrum:

Bϕðl1; l2; l3Þ ¼ −
Z

χ�

0

dχχ28WðχÞ3 γðχÞ3
ðl1l2l3Þ2

× Bδðl1=χ; l2=χ; l3=χ; χÞ: ðA7Þ

In this paper we evaluate this formula by inserting a
slightly modified version of the standard perturbation
theory result for the LSS bispectrum at leading order
Eq. (17), where the linear matter power spectrum Plin is
replaced by a power spectrum with nonlinear corrections
Pnl. This modification extends the validity of the model to
slightly smaller scales of the large-scale structure.
We plot Bϕ for equilateral triangle configurations and its

cumulative contribution from different redshifts in Fig. 5.
The individual contributions can best be analyzed in the
right panel of Fig. 5, where we plot the lensing bispectrum
integrated to different redshifts divided by the full lensing
bispectrum. On large lensing scales (low L) we find that the
bispectrum is mainly sourced by nearby structures at low
redshifts (z≲ 1). Going to smaller lensing scales (higher
L), it gets more and more contributions from structures at
higher redshifts. This trend continues until nonlinear
corrections from the nonlinear matter power spectrum used
in the numerical evaluation of Bϕ become relevant. They
enhance contributions from lower redshifts to smaller
lensing scales. This enhancement leads to the turn-around
at a scale of L ∼ 500, which would be absent if Plin was
used in the LSS bispectrum model.
Contributions to the lensing potential bispectrum from

different wave numbers of LSS modes are shown in Fig. 6.
Up to intermediate lensing multipoles (L ∼ 500) the lensing
potential bispectrum is sourced by LSS modes with
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k < 0.1 Mpc−1. The LSS bispectrum on these scales is
sufficiently described by the standard perturbation theory
bispectrum model at leading order. Using this model in the
evaluation of Bϕ should therefore provide accurate results
up to at least intermediate L. On smaller lensing scales
(higher L), we find significant contributions from LSS
modes with k > 0.1 Mpc−1. The leading-order perturbation
theory model for the LSS bispectrum fails to accurately

describe the LSS bispectrum in N-body simulations at low
redshifts on these scales. An improved estimate of the
lensing potential bispectrum on small scales would there-
fore require a more accurate model for the matter bispec-
trum for small LSS modes.

APPENDIX B: BIAS INTEGRAL EXPRESSIONS
FOR FASTER NUMERICAL EVALUATION

The A1 and C1 biases in Eqs. (34) and (37) involve four-
dimensional integrals for every multipole L, which are
computationally expensive to evaluate. Fortunately, how-
ever, the integrands of these four-dimensional integrals can
be rewritten in a product-separable form, which allows
much faster numerical evaluation by multiplying two-
dimensional integrals. The next two subsections will show
this explicitly for the C1 and A1 contributions to the bias,
with the final results given by Eqs. (38) and (B10), which
have a simple form.

1. Fast expression for C1 bias by separation of integrals

We start with the C1 contribution to the Nð3=2Þ bias
because it is somewhat simpler to speed up than the A1
contribution. The C1 contribution given by Eq. (37) involves
a four-dimensional integral over l1 and l for every value of L,
which is computationally expensive. To separate the inte-
grand, we rewrite scalar products between wave vectors
using the angle addition theorem for the cosine: If we define
cos μl1 ¼ l1 ·L=ðl1LÞ and cos μl ¼ l ·L=ðlLÞ, then the
angle between l1 and l is μl1 − μl, so that

l1 · l ¼ l1l cosðμl1 − μlÞ
¼ l1l½cosðμl1Þ cosðμlÞ þ sinðμl1Þ sinðμlÞ�: ðB1Þ

FIG. 6. Contribution to the equilateral lensing bispectrum
BϕðL; L; LÞ from different wave numbers of LSS modes (in
Mpc−1). At multipoles of L ≳ 500 the lensing bispectrum starts to
become dominated by contributions from LSS modes with wave
numbers k > 0.1 Mpc−1. On these scales and at low redshifts the
perturbation theory bispectrum model at leading order under-
estimates the matter bispectrum in N-body simulations. A lensing
potential bispectrum based on this model is likely similarly
underestimated at higher multipoles.

FIG. 5. Cumulative contribution to the equilateral lensing bispectrum BϕðL; L; LÞ from different redshifts. In the left panel we plot
lensing bispectra obtained by integrating to different redshifts. In the right panel we show their relative contribution to the full lensing
bispectrum. On large lensing scales, L ∼ 100, the bispectrum gets considerable contributions from structures at low redshifts, z≲ 1.
Their importance decreases with increasing L. On smaller lensing scales, L≳ few hundred, this trend is reversed and their contributions
regain relevance. The resulting dip in the right plot is a consequence of replacing Plin by Pnl in the LSS bispectrum model.
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Then, using basic trigonometric identities we obtain for the
expression in the integrand of Eq. (37)

½l1 · ðl −LÞ�½l1 · l� ¼ l21lfcos2ðμl1Þ cos μl½l cos μl − L�
þ cos μl1 sin μl1 sin μl½2l cos μl − L�
þ sin2ðμl1Þlsin2ðμlÞg; ðB2Þ

which is a sum of terms that are separable in μl1 and μl as
desired. The first term on the right-hand side of Eq. (B2)
involves l21;∥ ¼ ðl1 · L̂Þ2 ¼ l21 cos

2ðμl1Þ which measures the
component of the temperature multipole l1 along the
reconstruction multipole L. The third term involves l21;⊥ ¼
l21 sin

2ðμl1Þ which measures the component of the temper-
ature multipole l1 perpendicular to the reconstruction
multipole L. The second term in Eq. (B2) is a cross
term involving a product of these two components,
l21;þ ¼ l1;∥l1;⊥. Using Eq. (B2), the C1 contribution (37)
to the Nð3=2Þ bias therefore turns into the following simple
form of Eq. (38):

Nð3=2Þ
C1 ðLÞ ¼ −4A2

LSL½R∥ðLÞβ∥ðLÞ þ R⊥ðLÞβ⊥ðLÞ�; ðB3Þ

where we defined the temperature integral R∥ and integrated
lensing bispectrum β∥ as

R∥ðLÞ ¼
Z
l1

gðl1;LÞl21cos2ðμl1ÞCTT
l1
; ðB4Þ

β∥ðLÞ ¼
Z
l
l cos μl½l cos μl − L�Bϕðl;L − l;−LÞ; ðB5Þ

and similarly for the perpendicular component,

R⊥ðLÞ ¼
Z
l1

gðl1;LÞl21sin2ðμl1ÞCTT
l1
; ðB6Þ

β⊥ðLÞ ¼
Z
l
l2sin2ðμlÞBϕðl;L − l;−LÞ: ðB7Þ

The cross term from the second line of Eq. (B2) yields
Rþβþ ¼ 0; see Appendix C 5. We will use Eq. (38) for
numerically evaluating the C1 contribution to theNð3=2Þ bias,
because it only involves two-dimensional integrals that are
much faster to evaluate than the four-dimensional integral
in Eq. (37).
A slightly simpler approximate expression follows by

noting that SL ≈ 1=ð2ALÞ at leading order in Cϕϕ:

Nð3=2Þ
C1 ðLÞ ≈ −2AL½R∥ðLÞβ∥ðLÞ þ R⊥ðLÞβ⊥ðLÞ�: ðB8Þ

The separation into parallel and perpendicular components
with respect to the reconstruction multipole L also follows
by working in position space (see Appendix E, which also

interprets this result using a scalar-tensor decomposition of
correlation functions between derivatives of temperature or
lensing fields).

2. Fast expression for A1 bias by evaluating
Fourier-space convolution as position-space product

Numerical evaluation of the four-dimensional integral
appearing in the A1 contribution of Eq. (34) to the Nð3=2Þ
bias can also be accelerated by suitably rewriting the
integral. The idea is that, for fixed l, the integral over l1
in Eq. (34) is a convolution in Fourier space, which can
be evaluated efficiently as a product in position space
(similarly to References [63] and [64] which used the same
idea to accelerate large-scale structure perturbation theory
integrals). This gives the following fast expression for the
A1 bias of Eq. (34)6:

Nð3=2Þ
A1 ðLÞ ¼ 4A2

LSL

Z
d2rξgðr;LÞ

× ½β̄∥ðr;LÞξ̄TT∥ ðrÞ þ β̄⊥ðr;LÞξ̄TT⊥ ðrÞ�: ðB10Þ

The structure of this is very similar to the fast expression for
the C1 term given by Eq. (38) but it involves a two-
dimensional r integral over the following two-dimensional
Fourier transforms:

ξgðr;LÞ ¼
Z
l1

eil1·rgðl1;LÞ; ðB11Þ

and

β̄∥ðr;LÞ ¼
Z
l
e−il·rl cos μlðl cos μl − LÞBϕðl;L − l;−LÞ

ðB12Þ

β̄⊥ðr;LÞ ¼
Z
l
e−il·rðlÞ2sin2ðμlÞBϕðl;L − l;−LÞ; ðB13Þ

which satisfies β̄nð0;LÞ ¼ βnðLÞ. We also defined temper-
ature correlation functions

6This follows by introducing l ¼ l1 − l0 in Eq. (34) with a
Dirac delta,

Z
l1;l0

gðl1;LÞCTT
jl1−l0 j½ðl1 − l0Þ · l0�½ðl1 − l0Þ · ðL − l0Þ�

× Bϕðl0;L − l0;−LÞ

¼
Z
l1;l;l0

ð2πÞ2δDðl − l1 þ l0Þgðl1;LÞCTT
l ðl · l0Þ

× ½l · ðL − l0Þ�Bϕðl0;L − l0;−LÞ; ðB9Þ

expanding the Dirac delta in plane waves, and separating the
scalar products using Eq. (B2).
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ξ̄TT∥ ðrÞ ¼
Z
l
e−il·rl2cos2ðμlÞCTT

l

¼ 1

2π

�
1

r

Z
∞

0

dll2J1ðlrÞCTT
l − cos2ðνLÞ

×
Z

∞

0

dll3J2ðlrÞCTT
l

�
; ðB14Þ

ξ̄TT⊥ ðrÞ ¼
Z
l
e−il·rl2sin2ðμlÞCTT

l

¼ 1

2π

Z
∞

0

dll3J0ðlrÞCTT
l − ξ̄TT∥ ðr;LÞ: ðB15Þ

On the right-hand sides, two-dimensional Fourier trans-
forms reduce to one-dimensional Hankel transforms by
using the cosine angle addition theorem to express cos μl ¼
l̂ · L̂ in terms of cos νL ¼ L̂ · r̂ and cos νl ¼ l̂ · r̂ (similarly
to Eq. (B1)). The angular integrals then lead to Bessel
functions of the first kind, Jn. The one-dimensional Hankel
transforms can be evaluated efficiently with one-
dimensional FFTs using e.g., FFTLog [65]. A somewhat
slower but still feasible approach is to evaluate the two-
dimensional Fourier transforms on a grid using two-
dimensional FFTs.

APPENDIX C: EFFECT OF LENSING
BISPECTRUM ON MEASURED LENSING

POWER SPECTRUM: REMAINING
CONTRACTIONS

Having discussed the contractions A1 and C1 contrib-
uting to the Nð3=2Þ lensing bias in detail in the main text and
in the previous section, this section derives analytical
expressions for the non-Gaussian lensing bias from the
remaining contractions A2, A3, B, C2, C3, and D as
outlined in Sec. III A.

For easier reference of the contractions, we categorize
them by their temperature pairings: Intratemperature con-
tractions hTTi and hT 0T 0i, which appear in A1, B1, and C1
terms, involve two temperature fields that belong to the
same lensing reconstruction ϕ̂. Intertemperature contrac-
tions hTT 0i, which appear in A2, A3, B2, B3, C2, and C3
terms, involve one temperature field belonging to ϕ̂ðLÞ and
another temperature field belonging to ϕ̂ð−LÞ.7

1. Type-C biases from intertemperature contractions
C2 and C3 of hδ2TTδT0T0i

We start with the intertemperature C2 and C3 contribu-
tions to the Nð3=2Þ bias following from the contractions of
hδ2TTδT 0T 0i defined in Eq. (29).

a. C2 contraction in Fourier space

The C2 contraction in Eq. (29) is given by

hδ2Tl1Tl2δTl3Tl4iC2 ¼ hδ2Tl1δTl3ihTl2Tl4i: ðC1Þ

This involves the correction hδ2TδTi of the lensed temper-
ature power spectrum generated by a nonzero lensing
bispectrum (another correction would be hδ3TTiÞ. Based
on analytical [34] and numerical investigations [12,36,37]
this correction is expected to be small. Further, it should
be automatically accounted for when using realization-
dependent subtraction of the Gaussian Nð0Þ bias which is
common in modern lensing pipelines. We do not inves-
tigate this term here further.

b. C3 contraction in Fourier space

The C3 contraction is given by

hδ2Tl1Tl2δTl3Tl4iC3
¼ −

ð2πÞ2
2

δDðl1 þ l2 þ l3 þ l4Þ
Z
l0
2

½l4 · ðl1 þ l4 − l02Þ�½l4 · l02�½l2 · ðl1 þ l4Þ�CTT
l2
CTT
l4
Bϕðl02; l1 þ l4 − l02;−ðl1 þ l4ÞÞ ðC2Þ

The induced bias of the measured lensing power spectrum is

Nð3=2Þ
C3 ðLÞ ¼ −

8

2
A2
L

Z
l1;l2

gðl1;LÞgðl2;LÞ½ðl1 −LÞ · ðl1 þ l2 −LÞ�CTT
jL−l1jC

TT
jl2−Lj

×
Z
l
½ðl2 −LÞ · ðl − l1 − l2 þLÞ�½ðl2 −LÞ · l�Bϕðl;−l2 þL − l1; l1 þ l2 −L − lÞ; ðC3Þ

where we have accounted for all possibilities to place the (perturbed) temperatures in the four-point correlator by including a
symmetry factor of 8. Changing integration variables l1 → L − l1 and l2 → L − l2, we obtain

7Roughly speaking, intratemperature correlations are zero-lag terms of filtered temperature fields, and inter-temperature correlations
are correlations of two filtered temperature fields with nonzero separation. However, the filtering of observed temperature maps is non-
local in position space, so that strictly speaking intratemperature correlations are not zero-lag in the observed temperature.
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Nð3=2Þ
C3 ðLÞ ¼ 4A2

L

Z
l1;l2

gðl1;LÞgðl2;LÞ½l1 · ðL − l1 − l2Þ�CTT
l1
CTT
l2

×
Z
l
½l2 · ðl − ðL − l1 − l2ÞÞ�ðl2 · lÞBϕðl; ðL − l1 − l2Þ − l;−ðL − l1 − l2ÞÞ; ðC4Þ

where we used gðl;LÞ ¼ gðL − l;LÞ.

c. Fast expression for C3 contraction

The C3 contribution to the Nð3=2Þ bias given by Eq. (C4) involves a 6D integral over l1, l2 and l for every value of L,
which can be regarded as a 3-loop integral. Evaluating this numerically is prohibitively computationally expensive.
Fortunately, however, the integral can be rearranged to allow much faster evaluation. This follows by noting that the integral
over the lensing bispectrum reduces to βnðjL − l1 − l2jÞ defined in Eqs. (40) and (42). The total integral over l1 and l2 is
then an integral over functions of l1, l2 and L − l1 − l2, which is a double convolution. This can be evaluated efficiently by
rewriting it as a product in position space, similarly to the fast expressions of Eqs. (38) and (B10) for the C1 and A1
contractions discussed in Appendix B (also see [63] and [64]).
To see this explicitly, we introduce a Dirac delta enforcing l3 ¼ L − l1 − l2,

Nð3=2Þ
C3 ðLÞ ¼ 4A2

L

Z
l1;l2;l3

ð2πÞ2δDðl3 −Lþ l1 þ l2Þgðl1;LÞgðl2;LÞðl1 · l3ÞCTT
l1
CTT
l2

ðC5Þ

×
Z
l
½l2 · ðl − l3Þ�ðl2 · lÞBϕðl; l3 − l;−l3Þ: ðC6Þ

Parameterizing orientations of l2 and l in terms of cos ϑl2 ¼ l2 · l3=ðl2l3Þ and cos ϑl ¼ l · l3=ðll3Þ, the last integrand can be
cast separable using Eq. (B2) (replacing l1 by l2 andL by l3 there). The Dirac delta also becomes separable by expressing it
in terms of plane waves,

ð2πÞ2δDðl3 −Lþ l1 þ l2Þ ¼
Z

d2re−iðl3−Lþl1þl2Þ·r: ðC7Þ

We, thus, get

Nð3=2Þ
C3 ðLÞ ¼ 4A2

L

Z
d2reiL·r

Z
l3

e−il3·r
�Z

l1

e−il1·rgðl1;LÞl1 · l3CTT
l1

� X
n¼∥;⊥

βnðl3ÞξTTn ðr;L; l̂3Þ; ðC8Þ

where we used βþ ¼ 0 from Appendix C 5 and defined
weighted temperature correlation functions

ξTT∥ ðr;L; l̂3Þ ¼
Z
l2

e−il2·rgðl2;LÞl22cos2ðϑl2ÞCTT
l2

ðC9Þ

ξTT⊥ ðr;L; l̂3Þ ¼
Z
l2

e−il2·rgðl2;LÞl22sin2ðϑl2ÞCTT
l2
: ðC10Þ

Equation (C8) can be simplified for easier numerical evalu-
ation and interpretation. Similarly to Eq. (B1), angles ϑ
with respect to l3 can be expressed in terms of cosines
cos μl2 ¼ l̂2 · L̂ and cos μl3 ¼ l̂3 · L̂ with respect to L, so
that

cos2ðϑl2Þ ¼ ðl̂2 · l̂3Þ2 ¼ ðcos μl2 cos μl3 þ sin μl2 sin μl3Þ2
ðC11Þ

¼
X2
m¼0

�
2

m

�
cos2−mðμl2Þcos2−mðμl3Þsinmðμl2Þsinmðμl3Þ:

ðC12Þ

A similar expression follows for sin2ðϑl2Þ ¼
1 − cos2ðϑl2Þ. The temperature correlation functions, thus,
become

ξTT∥ ðr;L; l̂3Þ ¼
X2
m¼0

�
2

m

�
cos2−mðμl3Þsinmðμl3Þξ̌TT2;mðr;LÞ;

ðC13Þ

ξTT⊥ ðr;L; l̂3Þ ¼ ξ̌TT00 ðr;LÞ − ξTT∥ ðr;L; l̂3Þ; ðC14Þ

where we defined
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ξ̌TTjmðr;LÞ≡
Z
l
e−il·rgðl;LÞljcosj−mðμlÞsinmðμlÞCTT

l

ðC15Þ

where cos μl ¼ l̂ · L̂. For fixed L, Eq. (C15) can be
computed as a two-dimensional Fourier transform of the
integrand (regarded as a function of l on a two-dimensional
grid). Ignoring the weight g, ξ̌TTjm is the correlation function
of the temperature TðxÞ with a second derivative of the
temperature (i.e., it is related to hTðxÞ∂j−m

0 ∂m
1 Tðx0Þi if L

is aligned with the 0 axis). Note that we recover some
of the zero-lag/intratemperature correlation RL integrals for
r ¼ 0. The square brackets in Eq. (C8) similarly reduce to

Z
l1

e−il1·rgðl1;LÞl1 · l3CTT
l1

¼
X1
m0¼0

l3cos1−m
0 ðμl3Þsinm

0 ðμl3ÞξTT1;m0 ðr;LÞ; ðC16Þ

which is related to the correlation function between the
temperature and a first derivative of the temperature
(hTðxÞ∂m0Tðx0Þi if L is aligned with the 0 axis).
The C3 Nð3=2Þ bias of Eq. (C8) thus, turns into the

following fast-to-evaluate expression:

Nð3=2Þ
C3 ðLÞ

¼ 4A2
L

Z
d2reiL·r

�X1
m0¼0

ξ̌TT00 ðr;LÞξ̌TT1;m0 ðr;LÞβ̌m0 ðr; L̂Þ

þ
X2
m¼0

X1
m0¼0

�
2

m

�
ξ̌TT2;mðr;LÞξ̌TT1;m0 ðr;LÞβ̌mm0 ðr; L̂Þ

�
ðC17Þ

where we defined

β̌m0 ðr;L̂Þ≡
Z
l3

e−il3·rl3β⊥ðl3Þcos1−m0 ðμl3Þsinm
0 ðμl3Þ ðC18Þ

β̌mm0 ðr; L̂Þ≡
Z
l3

e−il3·rl3½β∥ðl3Þ − β⊥ðl3Þ�

× cos3−m−m0 ðμl3Þsinmþm0 ðμl3Þ: ðC19Þ

These are functions of r that can be computed with a
two-dimensional Fourier transform. Alternatively, the
angular integrals can be done analytically so that the
integrals become one-dimensional integrals involving
Bessel functions.
For fixed L, all factors in the integrand of Eq. (C17)

can be evaluated with two-dimensional Fourier trans-
forms. The final integration over r can be evaluated as a
two-dimensional integral for fixed L. Alternatively, it
can be obtained by fixing L, regarding the curly
brackets as a function of r, computing its two-
dimensional Fourier transform F ðL0Þ, and picking the
entry F ðL0 ¼ LÞ. Without loss of generality we choose
L to be aligned with the 0 axis of the two-dimensional
grid. Once βnðlÞ are computed, the bias at a given L can
be computed with Oð10l2max log lmaxÞ operations because
it involves only two-dimensional FFTs. A very pre-
liminary implementation of the C3 contribution to the
Nð3=2Þ bias gave results that were much smaller than the
A1 and C1 contributions, but future work should
evaluate this term more carefully to check its impor-
tance, also in combination with consistency checks
against simulations.

2. Type-A biases from intertemperature contractions
A2 and A3 of hδTδTδT0T0i

The coupling of type A, hδTl1δTl2δTl3Tl4i, measures
the correlation between three temperatures perturbed to
first order in the lensing potential and one unlensed
temperature. It has three contractions A1, A2, and A3
defined in Eq. (27). Having discussed the A1 term in
detail in the main text, we consider the remaining A2 and
A3 term here.
The A2 contraction in Eq. (27) is given by

hδTl1δTl2δTl3Tl4iA2
¼ −ð2πÞ2δDðl1 þ l2 þ l3 þ l4ÞCTT

l4
½l4 · ðl2 þ l4Þ�

Z
l
CTT
l ½l · ðl1 − lÞ�½l · ðlþ l3Þ�Bϕðl1 − l; lþ l3; l2 þ l4Þ: ðC20Þ

The resulting contribution to the Nð3=2Þ bias is

Nð3=2Þ
A2 ðLÞ ¼ −4A2

L

Z
l1l2

gðl1;LÞgðl2;LÞ½ðl2 − l1Þ · ðl2 −LÞ�CTT
jL−l2j

Z
l
½l · ðl1 − lÞ�½l · ðl − l2Þ�CTT

l Bϕðl1 − l; l2 − l1; l − l2Þ

¼ −4A2
L

Z
l1l2

gðl1;LÞgðl2;LÞ½ðl2 − l1Þ · ðl2 −LÞ�CTT
jL−l2j

×
Z
l
½ðl1 − lÞ · l�½ðl1 − lÞ · ðl1 − l2 − lÞ�CTT

jl1−ljBϕðl; ðl1 − l2Þ − l;−ðl1 − l2ÞÞ ðC21Þ
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where we changed integration variables l → l1 − l to simplify the bispectrum arguments and included a symmetry factor of
4. The integrand involves functions with different arguments in all three integration variables l1, l2, and l, leading to a tightly
coupled 6D integral for every L, which is computationally prohibitively expensive. Since the integral does not seem to have
an obvious convolution-like structure, we do not investigate further if it can be accelerated, and leave numerical evaluation
and discussion of its importance for future work (also noting that it may be more efficient to first check if the other simpler
bias contributions can already explain simulation results). The Nð3=2Þ bias from the A3 contraction equals that of the A2
contraction because the bias is invariant under exchanging l1 ↔ L − l1 in Eq. (23).

3. Type-B biases from hδ2TδTT0T0i
Terms of type B are of the form hδ2TδTT 0T 0i with both perturbed temperatures coupling to the same estimator ϕ̂ (both

perturbed temperatures are on the same side of the correlator). There are 4 possibilities to form such a term, resulting in a
symmetry factor of 4. Three different contractions of CMB fields contribute to type B:

ðC22Þ

The lensing power bias (23) resulting from the B1 contraction vanishes for L > 0,

Nð3=2Þ
B1 ðLÞ ¼ 0: ðC23Þ

The B2 contraction is

hδ2Tl1δTl2Tl3Tl4iB2 ¼ −
ð2πÞ2
2

δDðl1 þ l2 þ l3 þ l4ÞCTT
l3
CTT
l4

×
Z
l
½l3 · ðl − l1 − l3Þ�½l3 · l�½ðl1 þ l2 þ l3Þ · ðl3 þ l1Þ�Bϕðl; l1 þ l3 − l;−l1 − l3Þ: ðC24Þ

The lensing bias resulting from this and the similar B3 contraction is

Nð3=2Þ
B2 ðLÞ þ Nð3=2Þ

B3 ðLÞ ¼ −2A2
L

Z
l1;l2

gðl1;LÞgðl2;LÞ½ðL − l2Þ · ðl1 − l2Þ�CTT
l2
CTT
jL−l2j

×
Z
l
½l2 · ðl − ðl1 − l2ÞÞ�ðl2 · lÞBϕðl; ðl1 − l2Þ − l;−ðl1 − l2ÞÞ þ ðl2 ↔ L − l2Þ: ðC25Þ

The bispectrum integral over l is a convolution similar to the bispectrum integrals arising e.g., for the C1 or C3 contributions
in Eqs. (37) and (C4), so it can likely be rewritten in a fast way similarly to Eqs. (38) or (C17). These biases of type B2 and
B3 should be investigated further in future work.

4. Type-D bias from hδ3TTT0T0i
The last type of coupling, type D, involves the lensed temperature perturbed to third order in ϕ. It picks up the three-point

function of the components of the lensing deflection at the same location hαiðxÞαjðxÞαkðxÞi. This correlation must vanish
by statistical isotropy [34]. This can also be seen analytically. The coupling can be written as

hδ3Tl1Tl2Tl3Tl4i

¼ −
1

6

Z
l0
1

Z
l00
1

Z
l000
1

½l01 · ðl1 − l01 − l001 − l0001 Þ�½l01 · l001�½l01 · l0001 �hϕðl1 − l01 − l001 − l0001 Þϕðl001Þϕðl0001 ÞiðϕÞhTl0
1
Tl2Tl3Tl4iðTÞ

¼ −
1

6
ζðl1ÞhTl1Tl2Tl3Tl4iðTÞ; ðC26Þ

where we defined

ζðl1Þ≡
Z
L
ðl1 ·LÞ

Z
l
ðl1 · lÞ½l1 · ðl −LÞ�Bϕðl;L − l;−LÞ: ðC27Þ
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The integral over l is the same as that already encountered
in Eq. (37). Using the same trick of Eq. (B2) to make the
integral separable leads to

ζðl1Þ ¼ l31

Z
L
½cos3ðμLÞβ∥ðLÞ þ cosμLsin2ðμLÞβ⊥ðLÞ� ¼ 0;

ðC28Þ

where cos μL ¼ cos μl1 ¼ l̂1 · L̂. This vanishes after per-
forming the angular integration over μL.

5. Vanishing cross integrals

The fast expression (38) for the type-C1 bias has an
additional contribution βþRþ, where

RþðLÞ ¼
Z
l1

gðl1;LÞl21 cos μl1 sin μl1CTT
l1

¼ 0 ðC29Þ

βþðLÞ ¼
Z
l
l sin μl½2l cos μl − L�Bϕðl;L − l;−LÞ ¼ 0:

ðC30Þ

Here we show that both integrals Rþ and βþ vanish. We
start by writing out the weight in Eq. (C29),

RþðLÞ ¼
Z
l

l ·LC ~T ~T
l þ ðL − lÞ ·LC ~T ~T

jL−lj
2C ~T ~T

l;exptC
~T ~T
jL−lj;expt

× l2 cos μl sin μlCTT
l : ðC31Þ

Choosing a coordinate system where the x axis is aligned
with L gives l ·L ¼ lxL, l cos μl ¼ lx and l sin μl ¼ ly,
so that

RþðLÞ ¼
1

ð2πÞ2
Z

∞

−∞
dlx

Z
∞

−∞
dly

lxLC
~T ~T
ðl2xþl2yÞ1=2 þ ðL2 − lxLÞC ~T ~T

ðL2þl2xþl2y−2LlxÞ1=2

2C ~T ~T
ðl2xþl2yÞ1=2;exptC

~T ~T
ðL2þl2xþl2y−2LlxÞ1=2;expt

lxlyCTT
ðl2xþl2yÞ1=2 ¼ 0: ðC32Þ

The integrand changes sign under ly → −ly so that the
integral over ly vanishes and, thus, Rþ ¼ 0. Although we
chose a particular coordinate system aligned with L to
show this, the fact that Rþ ¼ 0 is coordinate-independent
(in coordinate-independent terms, the two-dimensional
integral can be split into two 1D integrals parallel and
perpendicular to L; the latter integral vanishes). Note that
R∥ and R⊥ do not vanish because they involve even powers
of lx and ly in the integrand. Following the same line of
argument the very similar integral of type RBEþ can be
shown to be zero.
To show βþ ¼ 0 we proceed similarly. Choosing a

coordinate system with x axis aligned with L and writing
Eq. (C30) in components,

βþðLÞ ¼
1

ð2πÞ2
Z

∞

−∞
dlx

Z
∞

−∞
dlylyð2lx − LÞ

× Bϕððl2x þ l2yÞ1=2; ðL2 þ l2x þ l2y − 2LlxÞ1=2; LÞ
¼ 0: ðC33Þ

The integral over ly vanishes again because the integrand
changes sign under ly → −ly.
We also confirmed numerically that Rþ and βþ vanish by

evaluating the integrals in Eqs. (C29) and (C30) directly.

APPENDIX D: LOW-L, LARGE-SCALE LENS
AND SQUEEZED LIMITS

In this section, we consider certain limits where theNð3=2Þ
bias simplifies, e.g., the limit of reconstructing large-scale
lenses from small-scale temperature fluctuations, or the
squeezed limit of the lensing bispectrum. This is useful to
understand the qualitative behavior of the bias and check the
robustness of numerical evaluations. We first discuss the C1
term in Eq. (29), and then the A1 term in Eq. (27).

1. Limit of C1 contribution to Nð3=2Þ bias

We first consider the limit of reconstructing large-scale
lensing modes ϕðLÞ from temperature fluctuations TðlÞ on
much smaller scales, i.e., L ≪ l. Taylor expanding jl −Lj
around l yields for the lensing reconstruction weight

lim
L≪l

gðl;LÞ ¼ L2

2

C ~T ~T
l

ðC ~T ~T
l;exptÞ2

8>><
>>:
�
1þ d lnC ~T ~T

l

d ln l
cos2μl

�
þ L

l

2
64d lnC

~T ~T
l

d ln l

d lnC ~T ~T
l;expt

d ln l
cos3μl −

d lnð C ~T ~T
l

C ~T ~T
l;expt

Þ
d ln l

cos μl

3
75
9>>=
>>;
; ðD1Þ

where cos μl ¼ l ·L=ðlLÞ. The terms in the first square brackets of Eq. (D1) are of order ðL=lÞ0 and involve only even
powers of cos μl, while the second square bracket is of order ðL=lÞ ≪ 1 and involves only odd powers of cos μl.
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Using this, we can compute the large-lens limit of R∥ defined in Eq. (39). The terms in the second square brackets vanish
upon angular integration so that

lim
L→0

R∥ðLÞ ¼
L2

8π

Z
dl1l31

CTT
l1
C ~T ~T
l1

ðC ~T ~T
l1;expt

Þ2
�
1þ 3

4

d lnC ~T ~T
l1

d ln l1

�
þOððL=l1Þ2Þ ≈

3L2

32π

Z
dl1l31

�
C ~T ~T
l1

C ~T ~T
l1;expt

�2�d ln l4=31 C ~T ~T
l1

d ln l1

�
þOððL=l1Þ2Þ:

ðD2Þ
The power spectrum ratio in the integrand is unity on scales where the temperature power spectrum is signal dominated and
gets exponentially suppressed when it becomes noise dominated. The l31 weight upweights high l1 in the signal-dominated
regime but cannot compete against the exponential falloff in the noise-dominated regime. These two factors are, thus,
maximal at the highest l1 that are still signal dominated. In this regime, typically l1∼ few thousand, the derivative is mostly
negative, so that the overall large-lens limit of R∥ is negative. Its amplitude is determined by the multipole at which the
temperature power becomes noise dominated; i.e., it is very sensitive to the noise and beam specifications of the experiment
under consideration.
The large-lens limit of R⊥ reads

lim
L→0

R⊥ðLÞ ¼
L2

8π

Z
dl1l31

CTT
l1
C ~T ~T
l1

ðC ~T ~T
l1;expt

Þ2
�
1þ 1

4

d lnC ~T ~T
l1

d ln l1

�
þOððL=l1Þ2Þ:

≈
L2

32π

Z
dl1l31

�
C ~T ~T
l1

C ~T ~T
l1;expt

�2 d lnðl41C ~T ~T
l1

Þ
d ln l1

þOððL=l1Þ2Þ: ðD3Þ

which has the same structure as the expression that was derived for R∥, the only difference being a suppression of the
derivative term by a factor of 3. It is, thus, similarly sensitive to beam and noise specifications as R∥, but smaller, since the
dominant contribution stems from the derivative. They are plotted as grey lines in Fig. 9.
Additionally to the Rn integrals the N

ð3=2Þ
C1 bias involves βn integrals over the lensing bispectrum defined in Eqs. (40) and

(42). One limit where these simplify is the squeezed limit of the lensing bispectrum, where the reconstructed lensing mode
is on much larger scales than the other two internal lensing modes, i.e., L ≪ l ≈ jl −Lj and

lim
L≪l

BϕðL; l;− cos μlÞ ¼
Z

χ�

0

dχ
WðχÞ3
χ4

γ3ðχÞ
ðL=χÞ2ðl=χÞ4

�
1þ 2

L
l
cos μl

�
lim
L≪l

BδðL=χ; l=χ;− cos μl; χÞ; ðD4Þ

where we insert the squeezed limit of the matter bispectrum (e.g., [66])

lim
k1≪k2

Bδðk1; k2; cos μlÞ ¼
�
13

7
þ cos2μl

�
8

7
−
∂ lnPk2ðχÞ
∂ ln k2

�

þ k1
k2

�
8

7
−
8

7
cos2μl þ

�
3

7

∂ lnPk2ðχÞ
∂ ln k2 − 1

�
cos μl þ

�
4

7

∂ lnPk2ðχÞ
∂ ln k2 þ 1

�
cos3μl

��

× Pk1ðχÞPk2ðχÞ; ðD5Þ

assuming that limits in l translate to limits in k in the Limber approximation. In this approximation, the angle μl between L
and l is the same as between the three-dimensonal modes k1 and k2.

8

8Note that the integrals over the lensing bispectrum Eqs. (40) and (42) integrate over Bϕðl;L − l;−LÞ. The minus sign in front of the
bispectrum’s third argument, L, induces a minus sign in front of cos μl when inserting the squeezed limit of the matter bispectrum into
these integrals.
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Using Eq. (D4) in the expression for β∥ we find for the contribution from squeezed bispectrum configurations

lim
L≪l

β∥ðLÞ ¼
Z
l
lðlcos2ðμlÞ − L cosðμlÞÞlim

L≪l
BϕðL; l;− cos μlÞ

¼
Z
l
l2
�
cos2ðμlÞ −

L
l
cosðμlÞ

�Z
χ�

0

dχWðχÞ3χ2 γ
3ðχÞ
L2l4

�
1þ 2

L
l
cos μl

�
lim
L≪l

BδðL=χ; l=χ;− cos μl; χÞ; ðD6Þ

Upon angular integration the squared cosine picks up all terms that are even in the cosine. This includes all contributions of
order OððLlÞ0Þ,

lim
L≪l

β∥ðLÞ ¼
1

L2

Z
χ�

0

dχWðχÞ3χ2γ3ðχÞ
Z

d ln l
4π

�
13

7
þ 3

4

�
8

7
− nðl; χÞ

�
þ 2

7

L
l

�
PL=χðχÞPl=χðχÞ; ðD7Þ

where we defined the spectral index of the matter power
spectrum:

nðl; χÞ ¼ ∂ lnPl=χðχÞ
∂ lnðl=χÞ : ðD8Þ

The squeezed limit of β⊥ is

lim
L≪l

β⊥ðLÞ ¼
Z
l
l2sin2ðμlÞlim

L≪l
BϕðL; l;− cos μlÞ

¼ 1

L2

Z
χ�

0

dχWðχÞ3χ2γ3ðχÞ

×
Z

d ln l
4π

�
13

7
þ 1

4

�
8

7
− nðl; χÞ

�
þ 6

7

L
l

�

× PL=χðχÞPl=χðχÞ; ðD9Þ

which is similar to the limit of β∥ but smaller since the
zeroth order term in round brackets gets suppressed by a
factor of 3 (the first order term is enhanced by the same

factor). The limits of both integrals, β⊥ and β∥, are positive
for any realistic value of the spectral index n. This agrees
with the results obtained by numerical integration over the
full bispectrum.
In the two left panels of Fig. 7 we plot β∥ and β⊥ and

their squeezed limits. Since the squeezed configuration
excludes triangle configurations with small and comparable
side lengths, the squeezed limits do not coincide with the
full integrals at low L. For a valid comparison, the
numerical result has to be restricted to squeezed configu-
rations. After this modification, they agree with the
analytically derived limits.
To obtain the large-lens and squeezed limit of the Nð3=2Þ

bias, we also need the large-scale limit of AL which is [21]

lim
L→0

AL ¼ 8π

L4

�X
l
ð2lþ 1Þ

�
C ~T ~T
l

C ~T ~T
l;expt

�2

Dl

�−1
; ðD10Þ

where

FIG. 7. Left figures: Integrals of type β∥ and β⊥ calculated numerically with a restriction to squeezed triangle configurations
(l=L > 100) and their analytic squeezed limits [Eqs. (D7) and (D9)]. Right figure: The large-lens and squeezed limit of

limL→0 − 2ALβ∥ðLÞR∥ðLÞ [Eq. (D12)], the dominant contribution to Nð3=2Þ
C1 for small L. Since we take the limit where only squeezed

triangle configurations contribute to the lensing or matter bispectrum, we also have to restrict the numerical evaluation to squeezed
triangle configurations to find agreement.
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Dl ¼ 1þ d lnCTT
l

d ln l
þ 3

8

�
d lnCTT

l

d ln l

�
2

: ðD11Þ

Putting all these results together, we obtain for the large-
lens and squeezed limit of Nð3=2Þ (which is dominated by
the β∥R∥ term):

lim
L→0

− 2ALR∥ðLÞ½β∥ðLÞ�squeezed

¼ −2
�X

l
ð2lþ 1Þ

�
C ~T ~T
l

C ~T ~T
l;expt

�2

Dl

�−1

×

�X
l1

ðl1Þ3
ðLþ 1Þ2

�
C ~T ~T
l1

C ~T ~T
l1;expt

�2 d lnðl2C ~T ~T
l1

Þ
d ln l1

�

× lim
L→0

½β∥ðLÞ�squeezed: ðD12Þ

The comparison with the full result is shown in Fig. 7.
For limL→0½β∥ðLÞ�squeezed we use the squeezed limit of β∥

which we obtain in two ways: (1) by evaluating the
analytic limit given in Eq. (D7), and (2) by restricting the
full numerical result to squeezed triangle configurations
of the bispectrum.

2. Limit of A1 contribution to Nð3=2Þ bias

The type-A1 contribution to the Nð3=2Þ bias can be
rearranged as in Eq. (B10). Similarly to the last section, we
consider the squeezed limit for bispectrum integrals and the
low-L limit for other integrals to obtain simplified expressions
that are useful for checking numerical implementations.
For the bispectrum integrals β̄ in Eqs. (B12) and (B13),

we consider the limit where only squeezed bispectrum
configurations contribute, i.e., L ≪ l. Using the squeezed
limit bispectrum (D4), Taylor expanding in L=l ≪ 1, and
using the cosine angle addition theorem to express cos μl ¼
l̂ · L̂ in terms of cos νL ¼ L̂ · r̂ and cos νl ¼ l̂ · r̂ [similarly
to Eq. (B1)], we obtain, for example, the squeezed limit of
the β̄∥ integral defined in Eq. (B12):

lim
L≪l

β̄∥ðr;LÞ ¼ 1

2πL2

Z
χ�

0

dχWðχÞ3χ2γ3ðχÞPL=χðχÞ

×

�
−
13

7
cos2ðνLÞ

Z
∞

0

dlJ2ðlrÞ
Pl=χðχÞ

l
þ 13
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Z
∞

0

dlJ1ðlrÞ
Pl=χðχÞ

l2

þ 3

r2
½cos4ðνLÞ − 6cos2ðνLÞsin2ðνLÞ þ sin4ðνLÞ�

Z
∞

0

dlJ2ðlrÞ
Pl=χðχÞ

l3

�
8

7
− nðl; χÞ

�

− cos4ðνLÞ
Z

∞

0

dlJ2ðlrÞ
Pl=χðχÞ

l

�
8

7
− nðl; χÞ

�

þ 6

r
cos2ðνLÞsin2ðνLÞ

Z
∞

0

dlJ1ðlrÞ
Pl=χðχÞ

l2

�
8

7
− nðl; χÞ

��
: ðD13Þ

Here, Jn are Bessel functions of the first kind that follow from performing the angular integrations over νl, P is the matter
power spectrum, and n is its spectral index defined in Eq. (D8). The integrals over l are 1D Hankel transforms, which can be
evaluated efficiently with 1D FFTs using e.g., FFTLog [65].
Similarly, using Eq. (D1), the low-L limit of the Fourier transform of the lensing weight ξg defined in Eq. (B11) becomes

lim
L→0

ξgðr;LÞ ¼ L2

4π

�Z
∞

0

dllJ0ðlrÞ
C ~T ~T
l

ðC ~T ~T
l;exptÞ2

þ 1

r

Z
∞

0

dlJ1ðlrÞ
C ~T ~T
l

ðC ~T ~T
l;exptÞ2

d lnC ~T ~T
l

d ln l

− cos2ðνLÞ
Z

∞

0

dllJ2ðlrÞ
C ~T ~T
l

ðC ~T ~T
l;exptÞ2

d lnC ~T ~T
l

d ln l

�
: ðD14Þ

The low-L and squeezed limit of the type-A1 contribution to theNð3=2Þ bias of Eq. (B10) follows by combining Eqs. (B14),
(B15), (D10), (D13) and (D14). The angular integration over r̂ in Eq. (B10) can then be performed analytically, leaving one-
dimensional integrals over r over the Hankel transforms appearing in Eqs. (B14), (B15), (D13) and (D14). This provides a
useful consistency check of Eq. (B10) at low L if only squeezed bispectrum configurations are taken into account.

APPENDIX E: POSITION SPACE INTERPRETATION AND SCALAR-TENSOR DECOMPOSITION

It is not immediately straightforward to deduce an intuitive physical interpretation of the bias from the pure Fourier space
calculation provided in the main text. In this appendix, we therefore provide a heuristic position space picture that helps to
interpret the origin of the C1 contribution to the Nð3=2Þ bias.
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1. Position space interpretation of type-C1 Nð3=2Þ coupling

Considering a toy model where normalization AL and weight g are ignored, the bias from the lensing bispectrum
on the lensing reconstruction power spectrum due to the intratemperature correlation type-C1 term in Eq. (29) is
given by

ðE1Þ

where ϕ;i ¼ ∇iϕ ¼ αi is the i-component of the deflection
angle. The bias (E1) involves the average of the product
of temperature and temperature derivatives at the same
location. These intratemperature correlation terms are
given by integrals over the unlensed temperature power
spectrum:

F ½hgTðxÞ∇kTðxÞi� ¼ i
Z
l
gðl;LÞlkCTT

l ≡ iSkðLÞ; ðE2Þ

F ½hgTðxÞ∇i∇jTðxÞi� ¼ −
Z
l
gðl;LÞliljCTT

l ≡ −RijðLÞ;

ðE3Þ

where we schematically included the weight g to
account for the lensing-optimized filtering of the
observed temperature (the first integral would vanish
otherwise). Additionally, the bias (E1) depends on the
correlation between the quadratic deflection tensor
ϕ;iðxÞϕ;jðxÞ at location x and the deflection ϕ;kðx0Þ at
another location x0,

ζijkðx − x0Þ≡ hϕ;iðxÞϕ;jðxÞϕ;kðx0Þi

¼ −i
Z
L0
eiL

0·ðx−x0ÞL0
kβijðL0Þ: ðE4Þ

On the right-hand side, we introduced the tensor βij which
is the Fourier-space cross-spectrum between the quadratic
deflection tensor ϕ;iðxÞϕ;jðxÞ and the lensing potential ϕ:

βijðL0Þ≡ h½ϕ;iðxÞϕ;jðxÞ�ðL0Þϕð−L0Þi

¼ −
Z
l
liðL0 − lÞjBϕðl;L0 − l;−L0Þ: ðE5Þ

This is an integral over the bispectrum of the lensing
potential. The Fourier transform of βijðLÞ is the 2-point

correlation function ~βijðrÞ between deflection tensor
ϕ;iðxÞϕ;jðxÞ and lensing potential ϕðxþ rÞ as a function
of their separation r. With Eqs. (E2), (E3) and (E4), the
simplified reconstruction bias (E1) becomes after integra-
tion over x and x0

Nð3=2Þ
C1;toyðLÞ ¼ −

1

4

Asky

AL
RijðLÞβijðLÞ ðE6Þ

where Asky ¼
R
x is the sky area and we used 2SkðLÞ ∼ A−1

L ,
the inverse lensing normalization. This shows that the
expected Nð3=2Þ bias is given by the mean product Rij of
temperature and temperature Hessian times the integrated
lensing potential bispectrum βij, corresponding to the cross-
spectrum between the deflection tensor ϕ;iðxÞϕ;jðxÞ and the
lensing potential.
Since all indices in Eq. (E6) are contracted, the sum that

gives the total bias is independent of the orientation of the
coordinate system with respect to which the component
indices of βij and Rij are defined. We are therefore free to
choose the orientation of the basis vectors. For example, we
can choose the first axis to be aligned with L, and the
second one orthogonal to that in the flat sky two-
dimensional plane. In this coordinate system, we find
the correspondences

R∥ ¼ R00; Rþ ¼ R01 ¼ R10; and R⊥ ¼ R11 ðE7Þ

by comparing Eqs. (39) and (41) with Eq. (E3). The
reconstruction bias obtained in the position space picture
[Eq. (E6)] is then indeed equivalent to Eq. (38) derived in
the Fourier space picture (up to normalization and sym-
metry prefactors which we ignored in the heuristic position
space calculation).

2. Scalar-tensor decomposition

Instead of choosing a coordinate system as in the last
section, we can derive an equivalent expression for the
type-C1 lensing bias by employing a scalar-tensor decom-
position as follows: The 2-tensor βij in Eq. (E5) can be
decomposed into a scalar trace part βs, which is invariant
under rotations of the coordinate system, and a trace-free
tensor part βt

βijðLÞ ¼ 1

2
βsðLÞδij þ 2βtðLÞ

�
L̂iL̂j −

1

2
δij

�
; ðE8Þ

where i; j ∈ f0; 1g. The trace is given by
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βsðLÞ ¼ δijβijðLÞ ¼ −
Z
l
l · ðL − lÞBϕðl;L − l;−LÞ;

ðE9Þ

which follows from δijδij ¼ 2, L̂iL̂i ¼ 1 and Eq. (E5). The
trace βsðLÞ is, thus, the Fourier transform of the correlation
function

~βsðrÞ ¼ hα2ðxÞϕðxþ rÞi ðE10Þ

between the squared deflection magnitude α2 ¼ ϕ;iϕ;i

and the lensing potential ϕ. The trace-free tensor part
of βij is βtðLÞ ¼ ½L̂iL̂j − 1

2
δij�βijðLÞ, which evaluates

to

βtðLÞ ¼ −
Z
l

�
ðl · L̂Þ½ðL − lÞ · L̂� − 1

2
l · ðL − lÞ

�

× Bϕðl;L − l;−LÞ: ðE11Þ

This is the Fourier transform of the correlation
function

~βtðrÞ ¼
	
αiðxÞαjðxÞ

�∇i∇j

∇2
−
1

2
δij

�
ϕðxþ rÞ



ðE12Þ

between the deflection tensor αiαj and the tidal tensor
constructed from the lensing potential.
Similarly, the 2-tensor Rij can also be decomposed into

scalar part Rs and tensor part Rt:

RijðLÞ ¼ 1

2
RsðLÞδij þ 2RtðLÞ

�
L̂iL̂j −

1

2
δij

�
: ðE13Þ

The scalar part is

RsðLÞ ¼ −hgTðxÞ∇2TðxÞi ¼
Z
l
gðl;LÞl2CTT

l ðE14Þ

and the tensor part is

RtðLÞ ¼
Z
l
gðl;LÞ

�
ðl · L̂Þðl · L̂Þ − l2

2

�
CTT
l : ðE15Þ

Note that the tensor part would be zero in absence of the
reconstruction weight g. With these scalar-tensor decom-
positions the reconstruction bias becomes

Nð3=2Þ
C1 ðLÞ ∼

�
1

2
RsðLÞβsðLÞ þ 2RtðLÞβtðLÞ

�
: ðE16Þ

The first term in the brackets is the trace of the mean
product Rij of (weighted) temperature and temperature
Hessian, coupled to the trace of the lensing 3-point statistic
βij. The second term couples the trace-free tensor parts of
Rij and βij.
The scalar and tensor parts are connected to the tensor

components by

βs ¼ β00 þ β11 and βt ¼
1

2
ðβ00 − β11Þ ðE17Þ

and the same relations hold for Rij. Then we get

1

2
Rsβs þ 2Rtβt ¼ R00β00 þ R11β11 ¼ R∥β∥ þ R⊥β⊥;

ðE18Þ

where we aligned the x axis of the coordinate system with
the lensing wave vector L in the last step.
Integrals of type R and β in their decomposition in scalar

and tensor contributions are shown Fig. 8. Note that the
plotted quantities already include the prefactors with which
the components enter into the bias. Similar plots for the

FIG. 8. Left panel: Scalar- and tensorlike contributions to the weighted mean product of temperature and temperature Hessian Rij.
Noise and beam specifications correspond to a Planck-like experiment. Right panel: The lensing potential-deflection tensor correlation
βij decomposed in the same manner. We have included prefactors such that contributing terms to the type-C1 bias can be constructed by
multiplying lines of the same color (compare Eq. (E16)).
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decomposition into parallel and perpendicular components
are shown in Fig. 9.

Appendix F: Nð3=2Þ TYPE-C1 BIAS FOR
POLARIZATION-BASED LENSING

RECONSTRUCTIONS

The Nð3=2Þ bias also exists for polarization-based lensing
reconstructions. In this paper, we show how to generalize
the non-Gaussian bias from the coupling type C1 [Eq. (29)]
to reconstructions from arbitrary field combinations but
leave a generalization of other contributing terms to future
work. The results for the single coupling do not provide a
proper quantitative estimate of the general bias, but give
some idea of the qualitative changes and other terms can be
derived in a similar fashion.

1. General polarization-based lensing reconstruction

We first consider the most general case where the lensing
potential is reconstructed from two placeholder fields W
and X that can each be T, E or B, and from two potentially
different fields Y and Z that can again each be T, E, or B,
and then the cross-spectrum of these reconstructions is used
to estimate the lensing power; i.e., we consider hϕ̂WXϕ̂YZi
where W;X; Y; Z ∈ fT; E; Bg throughout this section.
Lensing changes the CMB fields according to

~XðlÞ ¼ XðlÞ þ δXðlÞ þ δ2XðlÞ; ðF1Þ

where in absence of primordial gravitational waves [62,67]

δXðlÞ ¼ −
Z
l1

X̄ðl1Þϕðl − l1ÞhXðl1; lÞðl − l1Þ · l1 ðF2Þ

δ2XðlÞ ¼ −
1

2

Z
l1;l2

X̄ðl1Þϕðl2Þϕðl − l1 − l2Þ

× hXðl1; lÞðl1 · l2Þ½ðl1 þ l2 − lÞ · l1�: ðF3Þ

To simplify the notation we also defined

T̄ ≡ T; Ē≡ E; B̄≡ E; ðF4Þ

and

hXðl1; lÞ≡
8<
:

1 if X ¼ T;

cosð2ðφl1 − φlÞÞ if X ¼ E;

sinð2ðφl1 − φlÞÞ if X ¼ B;

ðF5Þ

which satisfies hXðl1; lÞ ¼ hXð−l1;−lÞ and hXðl1; lÞ ¼
hXðl1;−lÞ ¼ hXð−l1; lÞ.
The general lensing reconstruction estimator is [67]

ϕ̂WXðLÞ ¼ AWX
L

Z
l
gWXðl;LÞ ~WexptðlÞ ~X�

exptðl −LÞ; ðF6Þ

with normalization

AWX
L ¼

�Z
l
fWXðl;L − lÞgWXðl;LÞ

�
−1

ðF7Þ

and weight

gWXðl;LÞ ¼
C ~X ~X
l;exptC

~W ~W
jL−lj;exptfWXðl;L − lÞ − C ~W ~X

l;exptC
~W ~X
jL−lj;exptfWXðL − l; lÞ

C ~W ~W
l;exptC

~X ~X
jL−lj;exptC

~X ~X
l;exptC

~W ~W
jL−lj;expt − ðC ~W ~X

l;exptC
~W ~X
jL−lj;exptÞ2

; ðF8Þ

FIG. 9. Left panel: Parallel and perpendicular contributions to Rij. Noise and beam specifications correspond to a Planck-like
experiment. In grey we plot the large-lens limits derived in Appendix D. Right panel: The lensing potential-deflection tensor correlation
βij decomposed in the same manner. The bias contribution from the type-C1 term can be constructed by multiplying lines of the same
color (compare Eq. (E16)).
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where fWX is defined by h ~WðlÞ ~XðL − lÞiCMB ¼ fWXðl;L − lÞϕðLÞ and can be found in [67]. We assume a slightly
modified form where unlensed spectra are replaced by lensed ones [21] to avoid the Nð2Þ bias. Note that fWXðl;L − lÞ ¼
fXWðL − l; lÞ and, thus,

gWXðl;LÞ ¼ gXWðL − l;LÞ: ðF9Þ

2. C1 bias contribution for general polarization-based reconstruction

The type-C contribution to the Nð3=2Þ bias of the general reconstruction power hϕ̂WXϕ̂YZi is

Nð3=2Þ;typeC
WX;YZ ðLÞ ¼ AWX

L AYZ
L

Z
l1;l2

gWXðl1;LÞgYZðl2;LÞT typeC
WX;YZðl1;L − l1;−l2; l2 −LÞ; ðF10Þ

where the trispectrum is given by all contributions to h ~W ~X ~Y ~Zic that are of the type-C form hδ2WXδYZic∼ ‘2010’. There
are eight such terms: 2010, 2001, 0210, 0201, 1020, 0120, 1002 and 0102, where “0” denotes the position of unperturbed
fields and “1” and “2” that of first- and second-order perturbed fields. Let us denote the integral over the 2010 term by

UWX;YZðLÞ≡
Z
l1;l2

gWXðl1;LÞgYZðl2;LÞT typeC1
WX;YZðl1;L − l1;−l2; l2 −LÞ ðF11Þ

¼
Z
l0
1
;l0
2

gWXðL − l01;LÞgYZðL − l02;LÞT typeC1
WX;YZðL − l01; l

0
1; l

0
2 −L;−l02Þ; ðF12Þ

where we changed integration variables in the second line. Using Eq. (F9), T ð−l1;−l2;−l3;−l4Þ ¼ T ðl1; l2; l3; l4Þ and
substitution of integration variables, the eight type-C terms contributing to Eq. (F10) can be written simply by permuting
field labels of U:

Nð3=2Þ;typeC
WX;YZ ðLÞ ¼ AWX

L AYZ
L ½UWX;YZðLÞ þUWX;ZYðLÞ þ UXW;YZðLÞ þ UXW;ZYðLÞ

þUYZ;WXðLÞ þ UYZ;XWðLÞ þUZY;WXðLÞ þ UZY;XWðLÞ�: ðF13Þ

It remains to calculate UWX;YZ. Extending Eq. (36) to the general polarization case, the connected 4-point function of
coupling type C due to the 2010 contraction is

hδ2Wl1Xl2δYl3Zl4ic ¼ −
ð2πÞ2
2

δDðl1 þ l2 þ l3 þ l4ÞCW̄X
l2

CȲZ
l4
hWð−l2; l1ÞhYð−l4; l3Þ½ðl3 þ l4Þ · l4�

×
Z
l0
ðl0 · l2Þ½ðl0 − l1 − l2Þ · l2�Bϕðl0; l1 þ l2 − l0; l3 þ l4Þ

þ ðl2 ↔ l4; X ↔ ZÞ; ðF14Þ

where the permutation in the last line is obtained by simultaneously replacing every l2 by l4, every l4 by l2, every X by Z and
every Z by X in the first two lines (in particular, this permutation involves CW̄Z

l4
CȲX
l2
). We ignore this permutation in the last

line of Eq. (F14) from now on because it is expected to lead to more tightly coupled terms that should be subdominant; we
call the dominant first two lines type C1. For the multipole arguments required for Eq. (F12) we get

hδ2WL−l1Xl1δYl2−LZ−l2itypeC1c ¼ −
ð2πÞ2
2

δDð0ÞCW̄X
l1

CȲZ
l2
hWð−l1;L − l1ÞhYðl2; l2 −LÞðL · l2Þ

×
Z
l0
ðl0 · l1Þ½ðl0 −LÞ · l1�Bϕðl0;L − l0;−LÞ: ðF15Þ

Thus,
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UWX;YZðLÞ ¼ −
1

2

Z
l1;l2

gWXðL − l1;LÞgYZðL − l2;LÞCW̄X
l1

CȲZ
l2
hWð−l1;L − l1ÞhYðl2; l2 −LÞðL · l2Þ

×
Z
l
½l1 · ðl −LÞ�½l1 · l�Bϕðl;L − l;−LÞ: ðF16Þ

The weights in the last integral can be expressed in the separable form of Eq. (38). Then,

UWX;YZðLÞ ¼ −
1

2

�Z
l2

gZYðl2;LÞhYðl2; l2 −LÞðL · l2ÞCȲZ
l2

� X
n∈f∥;þ;⊥g

RWX
n ðLÞβnðLÞ ðF17Þ

where βn integrals are the same as in Eqs. (40), (42), and we defined

RWX
∥ ðLÞ ¼

Z
l1

gXWðl1;LÞl21cos2ðμl1ÞhWð−l1;L − l1ÞCW̄X
l1

ðF18Þ

RWXþ ðLÞ ¼
Z
l1

gXWðl1;LÞl21 sinðμl1Þ cosðμl1ÞhWð−l1;L − l1ÞCW̄X
l1

ðF19Þ

RWX⊥ ðLÞ ¼
Z
l1

gXWðl1;LÞl21 sin2ðμl1ÞhWð−l1;L − l1ÞCW̄X
l1

: ðF20Þ

When evaluating hW numerically, the angle 2ðφl1 − φL−l1Þ can be obtained with brute force from the components of two-
dimensional vectors l1 and L.9 In the special case of a temperature-only-based measurement, we recover the previously

derived results with RTT
n ¼ Rn. The final Nð3=2Þ

C1 bias for polarization is obtained by plugging Eq. (F17) into Eq. (F13)

Nð3=2Þ;typeC1
WX;YZ ðLÞ ¼ −

1

2
AWX
L AYZ

L SYZL
X

n∈f∥;þ;⊥g
RWX
n ðLÞβnðLÞ þ 7 perms inW;X;Y; Z; ðF21Þ

where the permutations denote those written out in Eq. (F13). We also defined

SYZL ≡
�Z

l2

gZYðl2;LÞhYðl2; l2 −LÞðL · l2ÞCȲZ
l2

�
: ðF22Þ

One can show that SYZL þ SZYL ¼ A−1
L to first order in Cϕϕ. This identity also holds for field combinations where one of the

SYZL terms is zero (e.g., SEBL ).
Equation (F21) involves the same integrals βn over the lensing bispectrum Bϕ as the temperature reconstruction bias. The

two-dimensional integrals over CMB power spectra RWX
n have a similar form as for the temperature-only case, with slightly

different weights in the integrands. For ðWX; YZÞ ¼ ðTT; TTÞ the general bias formula Nð3=2Þ;typeC1
WX;YZ ðLÞ simplifies to the

expression derived for the temperature Eq. (38).

3. C1 bias contribution for ðEB;EBÞ reconstruction
The special case of ðEB;EBÞ-reconstruction is expected to have relatively high signal-to-noise in comparison with the

other polarization-based lensing estimators. In this case, we have W ¼ Y ¼ E and X ¼ Z ¼ B so that the Nð3=2Þ bias
becomes

Nð3=2Þ;typeC1
EB;EB ðLÞ ¼ −ðAEB

L Þ2
X

n∈f∥;þ;⊥g
βnðLÞ½SEBL REB

n ðLÞ þ SEBL RBE
n ðLÞ þ SBEL REB

n ðLÞ þ SBEL RBE
n ðLÞ�: ðF23Þ

We can further simplify Eq. (F23) by noting that REB
n ¼ 0 and SEBL ¼ 0 (which follows from CEB

l ¼ 0) and obtain

9Explicitly, defining angles with respect to the x axis, we have φl1 ¼ arccos ½l1;x=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21;x þ l21;y

q
� and φL−l1 ¼ arccos ½ðLx − l1;xÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðLx − l1;xÞ2 þ ðLy − l1;yÞ2
q

�.
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Nð3=2Þ;typeC1
EB;EB ðLÞ ¼ −ðAEB

L Þ2SBEL
X

n∈f∥;þ;⊥g
βnðLÞRBE

n ðLÞ; ðF24Þ

where RBE
n are integrals over the E-mode power spectrum given by Eqs. (F18)–(F20), and βn are integrated lensing bispectra

computed earlier in Eqs. (40), (42).
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