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We perform a detailed study of the weak interactions of standard model neutrinos with the primordial
plasma and their effect on the resonant production of sterile neutrino dark matter. Motivated by issues in
cosmological structure formation on small scales, and reported x-ray signals that could be due to sterile
neutrino decay, we consider 7 keV-scale sterile neutrinos. Oscillation-driven production of such sterile
neutrinos occurs at temperatures T ≳ 100 MeV, where we study two significant effects of weakly charged
species in the primordial plasma: (1) the redistribution of an input lepton asymmetry; (2) the opacity for
active neutrinos. We calculate the redistribution analytically above and below the quark-hadron transition,
and match with lattice QCD calculations through the transition. We estimate opacities due to tree-level
processes involving leptons and quarks above the quark-hadron transition, and the most important mesons
below the transition. We report final sterile neutrino dark matter phase space densities that are significantly
influenced by these effects, and yet relatively robust to remaining uncertainties in the nature of the quark-
hadron transition. We also provide transfer functions for cosmological density fluctuations with cutoffs at
k≃ 10h Mpc−1, that are relevant to galactic structure formation.
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I. INTRODUCTION

Deep in the radiation dominated epoch of the Universe,
the three neutrinos present in the standard model (SM) of
particle physics [1] make up a significant population of
relativistic species within the primeval cosmic plasma. We
have strong evidence of their existence at these early
epochs from probes of the primordial Universe such as
the cosmic microwave background (CMB) (probing tem-
perature T ∼ 0.25 eV) [2], and the synthesis of light
elements during the epoch of big bang nucleosynthesis
(BBN) which depends on the neutron-to-proton ratio set
at Tdec ∼ 1.5 MeV [3], the temperature of weak neutrino
decoupling. Above this temperature, SM neutrinos interact
with species that carry weak charge, through which they
remain coupled to the primordial plasma [4].
There is a long history of speculation about additional

neutrino species (see Ref. [5] for a recent review). Owing to
the precise measurement of the invisible decay width of the
SMZ boson [1], any extra neutrino species must be “sterile”
(i.e. electroweak singlets) [6]. Furthermore, precise mea-
surements of the CMB [2,7] and of the primeval abundance
of light elements [8,9] strongly constrain the presence of
extra relativistic species in the early Universe. These
constraints indicate that (i) unlike SM neutrinos, light sterile
neutrinos never fully thermalize with the rest of the cosmic

plasma [10–14], or (ii) that sterile neutrinos are massive
enough to form the inferred population of dark matter (DM)
in the Universe (see e.g. Ref. [15]). Sterile neutrinos with
masses in the keV range act as DM in the CMB era, but are
relativistic in the BBN era, when they do not significantly
impact the expansion rate due to their negligible energy
density (compared to the Fermi-Dirac value).
Early works in this direction studied right-handed sterile

neutrinos with masses ms ≈ 0.1 − 100 keV, produced by
the oscillation of left-handed SM neutrinos [16–20]. The
mixing angle between the SM and sterile neutrinos is fixed
by the present day DM abundance. In the original
Dodelson-Widrow scenario [17], sterile neutrinos are
produced with a momentum distribution reflecting that
of the active neutrino species, and thus constitute “warm”
DM [21–24]. However, small-scale structure formation
[25–32] and x-ray observations [33–37] appear to be in
significant conflict with the fiducial Dodelson-Widrow
scenario, hence prompting the search for alternative sterile
neutrino production mechanisms [18,38–55].
In this paper,we examine in detail the resonant production

of sterile neutrinos in the presence of a small primordial
lepton asymmetry. Originally proposed by Shi and Fuller
[38], this productionmechanismmakes use of a small lepton
asymmetry to modify the plasma’s interaction with SM
neutrinos in such a manner as to resonantly produce sterile
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neutrinos at particularmomenta [18,41,56]. This generically
results in a “colder” DM distribution which improves
consistency with models of cosmological structure forma-
tion [57–65], while requiring a modest primordial lepton
asymmetry, which is relatively poorly constrained [66–70].
Sterile and active neutrino mixing, which is needed for

the former’s production, also leads to their decay [71,72].
For typical values of the sterile neutrino mass this predicts
an x-ray flux from the DM distribution in the low redshift
Universe [18,33]. This has been the subject of much recent
interest, due to hints of an excess flux at ∼3.5 keV in
stacked x-ray spectra of several galaxy clusters [73] and in
observations of M31, the Milky Way, and Perseus [74,75].
There is currently an active debate on the existence,
significance and interpretation of this excess [76–83]. In
the present work, we use this tentative signal as a
motivation to study in detail the physics of sterile neutrino
production in the early Universe, but the machinery we
develop is more generally applicable to the broader
parameter space of the Shi-Fuller mechanism.
We present here an updated calculation of resonantly

produced sterile neutrinos and relax several simplifications
that had been adopted previously in the literature.
Furthermore, we leverage recent advances in our under-
standing of the quark-hadron transition in order to include a
more realistic treatment of the strongly interacting sector.
Our motivation is twofold: (a) improve the treatment of
lepton asymmetry, which is a crucial beyond-SM ingredient
in the mechanism, and (b) provide realistic sterile neutrino
phase space densities (PSDs) and transfer functions for
matter fluctuations, which are starting points for studying
cosmological implications on small scales. Our improve-
ments to the sterile neutrino production calculation can
broadly be classified in three categories.
Firstly, we study how the cosmic plasma reprocesses a

primordial lepton asymmetry. For models that can explain
the above x-ray excess, the majority of sterile neutrinos are
produced at temperatures above 100 MeV [56]. At these
temperatures, there is a significant population of either
quarks or mesons, depending on whether the temperature is
above or below the quark-hadron transition. Since these
hadronic species are coupled to neutrinos and charged
leptons through weak processes, the establishment of
chemical equilibrium among the different constituents of
the cosmic plasma will automatically redistribute the
primordial asymmetry within the charged and neutral
leptons, and lead to a charge asymmetry within the
hadronic sector. An illustrative example is the reaction

νμ þ μþ⇌πþ; ð1Þ
which can redistribute an initial neutrino asymmetry into
asymmetries of the charged leptons and hadrons (keeping
the net baryon number constant). At lower temperatures, the
asymmetry is redistributed to a lesser degree between the
leptonic flavors. As we discuss in the body of the paper, this

redistribution modifies the dynamics of the resonant sterile
neutrino production, resulting in a modified final PSD.
Secondly, we incorporate several new elements to the

calculations of the neutrino opacity (i.e. the imaginary part
of the self-energy) at temperatures 10 MeV ≤ T ≤ 10 GeV.
Accurate neutrino opacities are needed since they basically
control the production rate of sterile neutrinos through cosmic
epochs. Early works on neutrino interactions in the early
Universe [4,18,84] assumed that neutrinos largely scatteredoff
relativistic particles and thus scaled their cross sections with
the center-of-mass (CM) energy. In addition, these calcula-
tions also neglected the effects of particle statistics. Under
these two simplifying assumptions, the opacity ΓðEναÞ for an
input neutrino of energy Eνα is of the form

ΓðEναÞ ¼ λðTÞG2
FT

4Eνα ; ð2Þ
where GF is the Fermi coupling constant, and λðTÞ
is a constant that depends on the number and type of available
relativistic species in the cosmic plasma. References [20,85]
subsequently developed a framework to include particle
masses, loop corrections, and particle statistics in the neutrino
opacity calculation. In the present work, we add previously
neglected contributions to the opacity such as two- and three-
body fusion reactions, and also use chiral perturbation theory
to compute the hadronic contribution to the opacity below the
quark-hadron transition. We find both quantitative and quali-
tative modifications to the form of Eq. (2). Wherever we
presentmatrix elements,we use the−þþþmetric signature.
Thirdly, we fold the asymmetry redistribution and

opacity calculations into the sterile neutrino production
computation, and provide updated PSDs for the range of
parameters relevant to the x-ray excess. As part of this
process, we carefully review and correct the numerical
implementation of the sterile neutrino production used in
Ref. [63]. Our sterile neutrino production code is publicly
available at https://github.com/ntveem/sterile‑dm. We
finally use the updated sterile neutrino PSDs in a standard
cosmological Boltzmann code [86] and provide new dark
matter transfer functions.
We organize the paper such that the beginning sections

deal with SM physics, while the later ones apply their
results to sterile neutrino DM. We introduce the production
mechanism in Sec. II. We then study the asymmetry
redistribution in Sec. III and active neutrino opacities in
Sec. IV. Finally, we apply these results to sterile neutrino
production in Sec. V, evaluate transfer functions for matter
fluctuations in Sec. VI, and finish with a discussion of our
assumptions and uncertainties in Sec. VII. We collect
technical details into the appendixes.

II. OVERVIEW OF RESONANT STERILE
NEUTRINO PRODUCTION

In this section, we briefly review the resonant production
of sterile neutrinos in the early Universe. We first present
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the specific scenario that we consider in this work, and then
discuss the Boltzmann formalism used to compute the out-
of-equilibrium production of sterile neutrinos. We finally
discuss how the presence of the thermal bath and lepton
asymmetry change the neutrino self-energy and govern the
sterile neutrino production. We refer the reader to
Refs. [18,38,56] for more details.

A. Assumptions

In our current study, we focus on the following scenario.
(1) We consider an extra sterile neutrino species, νs, that

is massive compared to the SM neutrinos νe=μ=τ,
which we take to be effectively massless. The
propagation (light/heavy) and interaction (active/
sterile) eigenstates are related by a unitary trans-
formation, the most general version of which is a
4 × 4 matrix. We assume that the sterile neutrino
mixes with only one of the SM ones, which we take
to be the muon neutrino, i.e.,

�Ψνμ

Ψνs

�
¼
�

cos θ sin θ

− sin θ cos θ

��
Ψ0

Ψms

�
: ð3Þ

The fields on the left- and right-hand sides are
interaction and mass (ms) eigenstates, respectively,
and θ is the active-sterile mixing angle. The choice
of a muon neutrino is arbitrary, and reflects the
choice of previous work [18,63].

(2) We assign a nonzero lepton asymmetry to the
primordial plasma. In the general case, each SM
flavor has its own asymmetry, but we assume a
nonzero value only for the mu flavor (i.e. the one that
mixes with the sterile neutrino):

Δn̂να þ Δn̂α− ≡ L̂α ¼ δαμL̂μ; ð4Þ

where the dimensionless asymmetry Δn̂A in species
A is the temperature-scaled difference between
the particle and antiparticle densities, Δn̂A≡
ðnA − nAÞ=T3, and δαμ is the Kronecker delta. In
general, entropy-scaled asymmetries are preferable,
since they are conserved through epochs of annihi-
lation. However, the definition used in Eq. (4)
simplifies the process of comparison with lattice
QCD calculations in Sec. III. We fix by hand the mu
lepton asymmetry at high temperatures to produce
the canonical DM density, ΩDMh2 ¼ 0.1188 in the
current epoch [2].

In the rest of the paper, we use a hat to indicate
temperature scaled quantities. We choose to study the
parameter space of interest for resonantly produced sterile
neutrino DM consistent with the recent x-ray signal.
Figure 1 shows a section of the ms and sin2 2θ plane with
contours for the unidentified lines of Refs. [73,74], along

with constraints from Chandra observations of M31 [87],
stacked dwarf galaxies [88], and Suzaku observations of
Perseus [89]. The stars show a range of mixing angles at a
specific value of ms, and mark models that we study in
Secs. V and VI.
For all these models, the bulk of the sterile neutrinos are

produced at temperatures well below the masses of the
weak gauge bosons (∼80 GeV), but above weak decou-
pling at T ∼ 1.5 MeV [56]. Active-active neutrino oscil-
lations in the primordial plasma are suppressed at these
temperatures [90]; hence it is consistent to assign individual
asymmetries in Eq. (4) and neglect electron and tau
neutrino mixing in Eq. (3).

B. Boltzmann formalism

In its full generality, out-of-equilibrium sterile neutrino
production (via oscillations) is best described by the
evolution of the two-state density matrix of the neutrinos
in the active-sterile (interaction) basis [91–94].
For the parameter range in Fig. 1, most sterile neutrinos

are produced above temperatures T ≳ 100 MeV. At these
temperatures, the two-state system is collision dominated;
i.e. the interaction contribution dominates the vacuum
oscillations. In this regime, the evolution of the density
matrix separates out and yields a quasiclassical Boltzmann
transport equation for the diagonal terms, which are the
PSDs of the active and sterile components [95–97]. The
Boltzmann equation for the sterile neutrino PSD is

FIG. 1. Sterile neutrino DMparameter space: shaded regions are
consistent with the x-ray signal at 1,2 and 3σ. The blue contours
show thebest determined parameters from the analysis ofRef. [73],
who use the stacked x-ray spectrum of 73 clusters obtained with
the MOS detectors on XMM Newton. Statistically consistent
signals are found in their core-removed Perseus spectrum, and
M31 [74]. The lines show constraints at the 90% level from
Chandra observations of M31 (H14) [87], stacked dwarf galaxies
(M14) [88], and Suzaku observations of Perseus (T15) [89]. Stars
mark the models that we study in the body of the paper.
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∂
∂t fνsðp; tÞ −Hp

∂
∂pfνsðp; tÞ ¼

X
νxþaþ���→iþ���

Z
d3pa

ð2πÞ32Ea
� � � d3pi

ð2πÞ32Ei
� � � ð2πÞ4δ4ðpþ pa þ � � � − pi − � � �Þ

×
1

2

�
hPmðνμ → νs;p; tÞið1 − fνsÞ

X
jMj2iþ���→aþνμþ���fi � � � ð1 ∓ faÞð1 − fνμÞ � � �

−hPmðνs → νμ;p; tÞifνsð1 − fνμÞ
X

jMj2νμþaþ���→iþ���fa � � � ð1 ∓ fiÞ � � �
�
: ð5Þ

We can write an analogous equation for the antineu-
trinos. Here, the fðpÞ are PSDs for particles with three-
momentum p and energy E, andH is the Hubble expansion
rate. The right-hand side sums over all reactions that
consume or produce a muon neutrino. The symbolP jMj2 denotes the squared and spin-summed matrix
element for the reaction, and the multiplicative factors of
ð1 ∓ fÞ implement Pauli blocking/Bose enhancement
respectively. The factor of 1=2 accounts for the fact that
only one (i.e. the muon neutrino) state in the two-state
system interacts [91–93]. The Pm are active-sterile oscil-
lation probabilities in matter, which depend on the vacuum
mixing angle θ, and are modified by interactions with the
medium. The latter are parametrized by the neutrino self-
energy [84], and the “quantum damping” rate for active
neutrinos. In terms of these quantities, the oscillation
probabilities are [96,97]

hPmðνμ ↔ νs;p; tÞi ¼ ð1=2ÞΔ2ðpÞsin22θ
× fΔ2ðpÞsin22θ þD2ðpÞ
þ ½ΔðpÞ cos 2θ − VL − V thðpÞ�2g−1:

ð6Þ

We have introduced the symbol ΔðpÞ for the vacuum
oscillation rate, ΔðpÞ≡ δm2

νμ;νs=2p, and split the neutrino
self-energy into the lepton asymmetry potential VL, and the
thermal potential V th [the asymmetry contribution enters
with the opposite sign in the version of Eq. (6) for
antineutrinos]. The quantity DðpÞ is the quantum damping
rate, and equals half the net interaction rate of active
neutrinos [the factor of half enters for the same reason as it
does in Eq. (5)]. The net interaction rate for a muon
neutrino is

ΓνμðpÞ ¼
X

νxþaþ���→iþ���

Z
d3pa

ð2πÞ32Ea
� � � d3pi

ð2πÞ32Ei
� � �

× ð2πÞ4δ4ðpþ pa þ � � � − pi − � � �Þ
×
X

jMj2νμþaþ���→iþ���fa � � � ð1 ∓ fiÞ � � � ð7Þ

We simplify the phase space integrals in Eq. (5) by using
detailed balance to equate the forward and backward
reaction rates. The resulting Boltzmann equation for

quantum-damped and collisionally driven sterile neutrino
production is [18]

∂
∂t fνsðp; tÞ −Hp

∂
∂pfνsðp; tÞ

≈
ΓνμðpÞ

2
hPmðνμ ↔ νs;p; tÞi½fνμðp; tÞ − fνsðp; tÞ�;

ð8Þ

with a related equation for antineutrinos. There are subtleties
with the effects of quantum damping in the case of resonance
[98], but tests with the full densitymatrix formalism find that
the quasiclassical treatment is appropriate [56].

C. Asymmetry and thermal potentials

We now expand on the origins of the asymmetry and
thermal potentials appearing in Eq. (6). These potentials
encapsulate the self-energy of propagating active neutrinos
due to interactions with the plasma. Under the conditions
we are interested in, there are three contributions to the
neutrino self energy: (a) an imaginary part proportional to
the net neutrino opacity, (b) a real part due to finite weak
gauge boson masses (V th), and (c) a real part proportional to
asymmetries in weakly interacting particles (VL). We
follow the treatment in Ref. [84], and recast it in terms
of the quantities that we compute later.
Figure 2 shows lowest-order contributions to active

neutrinos’ self-energy. Thick red lines are thermal propa-
gators of weakly charged species in the background
plasma. There are two corrections—bubbles and tadpoles,

FIG. 2. Lowest-order contributions to a propagating active
neutrino’s self-energy. Red lines are thermal propagators. In
(a), f is any species with weak charge. In (b), f ¼ να, α−.
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shown in Figs. 2(a) and 2(b) respectively. The background
fermion is a lepton of the same flavor in the former, and any
weakly charged species in the latter.
A massless active neutrino’s “dressed” propagator is

G−1
να ðpναÞ ¼ pνα − bναðpναÞuð1 − γ5Þ=2; ð9aÞ

bναðpναÞ ¼ bð0Þνα þ bð1Þνα ωνα ; ωνα ¼ −pνα · u: ð9bÞ

Here, pνα and u are the neutrino and plasma’s four-
momenta, v is shorthand for γμvμ, and bνα is the left-
handed neutrino’s self-energy. Equation (9b) divides this
self-energy into two contributions that affect the particle
and antiparticle poles of Eq. (9a) differently. Figure 3
illustrates their association with asymmetry and thermal
potentials:

VL
να ¼ bð0Þνα ; ð10Þ

V th
ναðEναÞ ¼ bð1Þνα Eνα : ð11Þ

The authors of Ref. [84] computed these terms by summing
over all species in Fig. 2. Both kinds of diagrams contribute
to the asymmetry potential, while only bubble diagrams
contribute to the thermal potential. We write the answer in
terms of the leptons’ asymmetries, and the densities of the
strong fluid’s conserved quantities:

VL
να ¼

ffiffiffi
2

p
GF

� X
β∈fe;μ;τg

�
δαβ −

1

2
þ 2sin2θW

�
Δnβ−

þ
X

β∈fe;μ;τg
ð1þ δαβÞΔnνβ −

1

2
ΔnB

þ ð1 − 2sin2θWÞΔnQ
�
; ð12aÞ

V th
ναðEναÞ ¼ −

8
ffiffiffi
2

p
GF

3

�
ρνα
M2

Z
þ ρα
M2

W

�
Eνα : ð12bÞ

In the above equations, θW is the weak mixing angle, and
MZ=W are the masses of the weak gauge bosons. The
symbol δαβ is a Kronecker delta; the quantities ρα and ρνα
are net energy densities of charged and neutral leptons,
respectively; and ΔnB and ΔnQ are densities of the baryon
number B and electric charge Q, respectively. The standard
model baryon number asymmetry is small compared to the
lepton asymmetry of interest [3]; hence it can be set to zero
for the purposes of this calculation.
According to the assumptions in the first part of this

section, the plasma starts out with a net lepton asymmetry
in the mu flavor. As we showed in Sec. I, this asymmetry is
redistributed between muons and muon neutrinos.
Moreover leptons of other flavors acquire asymmetries
that respect Eq. (4), and the strong fluid acquires a net
electric charge density ΔnQ to maintain overall neutrality.
Equation (12a) shows how the asymmetry potential
depends on the redistributed asymmetries, which we study
in the ensuing section.

III. REDISTRIBUTION OF AN INPUT
ASYMMETRY

Weak processes couple leptonic and hadronic degrees of
freedom in the primordial plasma. In this section, we study
this coupling’s effect on lepton asymmetries.1 We define
relevant susceptibilities in Sec. III A, and compute them
over a range of temperatures in Sec. III B.

A. Definitions and parametrization

Let us consider the primordial plasma at temperatures
above the quark-hadron transition temperature, TQCD. The
following reactions couple leptons of different flavors, and
the quark and lepton sectors:

να þ β−⇌νβ þ α−; ð13aÞ

να þ αþ⇌aþ b; ð13bÞ

where a and b are quarks with charges of þ2=3 and −1=3
respectively. Free quarks no longer exist at temperatures
below TQCD, and the reactions in Eq. (13b) transition to
ones involving mesons, like Eq. (1).
In principle, we could study the effect of all these

reactions on input asymmetries, but it is a daunting task,
one that is further complicated by the quark-hadron
transition. The following consideration of the relevant time

FIG. 3. Matter potentials for massless neutrinos in the plasma’s
rest frame: filled and unfilled circles are poles at finite and zero
temperature, respectively. See Sec. IV for the imaginary shift.

1During this preparation of this manuscript, we became aware
of Ref. [99], which points out the relevance of this effect to sterile
neutrino production, and estimates it under the simplifying
Stefan-Boltzmann approximation for free quarks, along with a
modified number of colors as a phenomenological correction for
the effects of confinement. Wherever possible, we will try to
compare our results to those of Ref. [99], which we will refer to as
“GL15” in the rest of the paper.
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scales suggests a solution. In the radiation dominated
era, the Hubble rate is H ≈ 2 × 105 s−1g�1=2ðT=GeVÞ2.
At temperatures above the quark-hadron transition, the
rates of reactions in (13) are ΓðTÞ≃G2

FT
5≈

2 × 1014 s−1ðT=GeVÞ5, while the relevant rates below
the transition are those of pion decays. The most important
channel for the latter is the muonic decay, πþ → μþ þ νμ,
which is faster than the Hubble rate (Γπþ→μþþνμ ¼
3.8 × 107 s−1). Thus, a significant number of the reactions
in Eq. (13) are faster than the Hubble rate.2

This has two primary consequences. Firstly, high reaction
rates enforce kinetic equilibrium; i.e. all active species’ PSDs
approach the Fermi-Dirac or Bose-Einstein forms. Secondly,
forward and backward reactions are in chemical equilibrium,
one effect of which is to equate the chemical potentials for
both sides (the Saha equation). However, it has another
implication—the plasma’s complicated internal dynamics
can be abstracted into a fewparameters or susceptibilities that
completely specify its response to small external “forces,” or
in this case, input asymmetries.All that remains is to compute
the susceptibilities relevant to our problem.
We now define a few useful quantities and notation.

Given any conserved quantity F, the symbol μF denotes its
chemical potential. The asymmetryΔn̂A, in a particle A, is a
function of its chemical potential μ̂A ≡ μA=T. The quan-
tities Δn̂A and μ̂A are small, and in the linearized limit,
related by

Δn̂A ¼ χ̂Aμ̂A; ð14Þ

where χ̂A ≡ χA=T2 is the number-density susceptibility.
The lepton asymmetries in the three flavors are

L̂α ¼ Δn̂α− þ Δn̂να
¼ χ̂α− μ̂α− þ χ̂να μ̂να ;

α ∈ fe; μ; τg: ð15Þ

The strong fluid is described by the densities of its
conserved quantities: the charge and baryon-number den-
sities Δn̂Q and Δn̂B, respectively.

3 The chemical equilib-
rium of the reactions in Eq. (13) implies

μ̂να − μ̂α− − μ̂Q ¼ 0; α ∈ fe; μ; τg: ð16Þ

Here μ̂Q is the chemical potential for adding a unit of
electric charge. The conserved quantities’ densities are
related to their chemical potentials by their susceptibilities:

 
Δn̂Q
Δn̂B

!
¼
 

χ̂Q2 χ̂QB11

χ̂BQ11 χ̂B2

! 
μ̂Q

μ̂B

!
: ð17Þ

Equation (17), along with net charge and baryon number
conservation, yields the constraint equations

Δn̂B ¼ χ̂BQ11 μ̂Q þ χ̂B2 μ̂B ≈ 0; ð18Þ

0 ¼ χ̂Q2 μ̂Q þ χ̂QB11 μ̂B −
X

α∈fe;μ;τg
Δn̂α−

¼ χ̂Q2 μ̂Q þ χ̂QB11 μ̂B −
X

α∈fe;μ;τg
χ̂α− μ̂α− : ð19Þ

Equations (15), (16), (18) and (19) are eight linear
equations for eight unknowns. The resulting asymmetries
(obtained via their chemical potentials) are the “redistrib-
uted” input lepton asymmetries Lα.
We symbolically represent the solutions as

μ̂A ¼
X

α∈fe;μ;τg

∂μ̂A
∂L̂α

L̂α; ð20Þ

where the coefficients ð∂μ̂A=∂L̂αÞ depend on the suscep-
tibilities of both the leptons and the strong fluid. We also
express the redistributed asymmetries as

Δn̂A ¼
X

α∈fe;μ;τg

∂Δn̂A
∂L̂α

L̂α ¼
X

α∈fe;μ;τg
χ̂A

∂μ̂A
∂L̂α

L̂α: ð21Þ

At the temperatures of interest, the lepton susceptibilities
are essentially given by the free particle, or Stefan-
Boltzmann, formula:

χ̂Aðm̂AÞ ¼ −
gA
π2

Z
∞

0

dp̂p̂2n̂0Fð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂2 þ m̂2

A

q
Þ: ð22Þ

In this equation, gA and m̂A ≡mA=T are the spin
degeneracy and mass respectively, and n̂0FðxÞ ¼
ðd=dxÞf1=½expðxÞ þ 1�g is the derivative of the Fermi-
Dirac distribution. The strongly interacting fluid’s suscep-
tibilities are considerably more complicated, especially
near the quark-hadron transition. We evaluate them using
a number of techniques: perturbative quantum chromody-
namics (QCD) at high temperatures, matching to lattice
QCD results near the transition, and a hadron resonance gas
(HRG) approximation at low temperatures.

2The electronic channel for the pion decay, πþ → eþ þ νe is
helicity suppressed (Γπþ→eþþνe ¼ 4.7 × 103 s−1) and of the order
of the Hubble rate at temperatures T ≃ 50 MeV; hence one might
worry that leptons with electronic flavor depart from equilibrium.
This is resolved by the observation that they are coupled to
muonic species by other nonhelicity-suppressed, and conse-
quently faster, reactions such as eþ þ νe ↔ μþ þ νμ and
μþ ↔ eþ þ νe þ ν̄μ.

3We do not follow the strangeness, S, since it is not conserved
in weak reactions. Above the transitions, it disappears at the
Cabbibo-suppressed rate ΓS ≃ jVusj2G2

FT
5 ≈ 1013 s−1ðT=GeVÞ5,

while below the transition the relevant rate is the kaon inverse
lifetime, ΓK� ¼ 8.1 × 107 s−1.
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B. Susceptibilities of the strongly interacting plasma

In this section, we compute the strongly interacting
plasma’s susceptibilities to baryon number and electric
charge fluctuations. The susceptibilities are the following
derivatives of the QCD pressure,

χ̂X2 ¼ ∂2p̂QCD

∂μ̂2X
����
μ̂X¼0

; ð23Þ

χ̂XY11 ¼ ∂2p̂QCD

∂μ̂X∂μ̂Y
����
μ̂X;μ̂Y¼0

; ð24Þ

where X; Y ∈ fB;Qg; μ̂X ≡ μX=T is the chemical potential
of the conserved charge X; and the pressure p̂QCD is given
by the logarithm of the QCD partition function ZQCD,

p̂QCD ≡ pQCD

T4
¼ 1

VT3
lnZQCDðV; T; μQ; μBÞ; ð25Þ

where V is the volume. In Eq. (24), the off-diagonal term
χ̂XY11 encodes the correlation between the fluctuations of
conserved charges X and Y. Note that the susceptibilities in
Eqs. (23) and (24) are dimensionless.
The sterile neutrino production calculation carried in the

present work requires knowledge of these susceptibilities
over a broad range of temperatures, both above and below
the quark-hadron transition. At very high temperatures
T ≫ TQCD, the QCD pressure can be computed using a
standard perturbative approach, while at intermediate tem-
peratures T ≃ TQCD, perturbative techniques become inad-
equate; we must rely on lattice calculations (see e.g.
[100,101]) to compute susceptibilities through the quark-
hadron transition. At low temperatures T < TQCD, we
compute the QCD pressure using the hadron resonance
gas (HRG) model [102,103], which approximates the QCD
partition function as a sum over all known hadronic reso-
nances.Our strategy to compute the susceptibility tensor over
the whole required range of temperatures is as follows: we
first separately calculate it both above and below the quark-
hadron transition using either perturbative or HRG tech-
niques, and then smoothly join the results with those from
lattice QCD computations in the regions of overlap.

1. High-temperature limit: Perturbative approach

We follow the approach of Ref. [104] to perturbatively
compute the QCD pressure and its derivative up to order
Oðg2s Þ, where gs is the standard QCD gauge coupling
constant. The starting point is to write the QCD pressure as

p̂QCD ¼ αMS
E1 þ ~g23α

MS
E2 ; ð26Þ

where ~g3 is the effective gauge coupling

~g23 ¼ g2s þ
g4s

ð4πÞ2 α
MS
E7 ; ð27Þ

and the functions αMS
En are given by

αMS
E1 ¼ dA

π2

45
þ 4CA

XNf

i¼1

F1ðm̂2
i ; μ̂iÞ; ð28Þ

αMS
E2 ¼ −dA

XNf

i¼1

�
1

6
F2ðm̂2

i ; μ̂iÞ½1þ 6F2ðm̂2
i ; μ̂iÞ�

þ m̂2
i

4π2

�
3 ln

μ

mi
þ 2

�
F2ðm̂2

i ; μ̂iÞ

− 2m̂iF4ðm̂2
i ; μ̂iÞ

	
−
dACA

144
; ð29Þ

αMS
E7 ¼ 22CA

3

�
ln

�
μeγE

4πT

�
þ 1

22

�

−
2

3

XNf

i¼1

�
2 ln

μ

mi
þ F3ðm̂2

i ; μ̂iÞ
�
: ð30Þ

Here, dA ≡ N2
c − 1 and CA ≡ Nc stand for the gauge-group

constants for the adjoint and fundamental representation of
SUðNcÞ, respectively. In this work, we adopt the standard
value of Nc ¼ 3. In the above, Nf is the number of quark
flavors, μ is the energy scale at which the masses and the
coupling constant are evaluated (not to be confused with
the chemical potentials), and γE is the Euler-Mascheroni
constant. The functions F1;…; F4 are given in
Appendix A.
We also need a prescription for the running of the

coupling constant gs and of the quark masses with the
energy scale μ. As in Ref. [104], we adopt a simple 1-loop
running which yields

g2s ðμÞ ¼
24π2

ð11CA − 4TFÞ ln ðμ=ΛMSÞ
; ð31Þ

miðμÞ ¼ miðμrefÞ
�
ln ðμref=ΛMSÞ
ln ðμ=ΛMSÞ

� 9CF
11CA−4TF

; ð32Þ

where TF ¼ Nf=2, CF ¼ ðN2
c − 1Þ=ð2NcÞ, and ΛMS is the

MS renormalization scale. Here, we take μref ¼ 2 GeV.
We follow Ref. [105] and use the criterion of minimal
sensitivity to set the scale μ:

μ ¼ 4πTe−γEe
−Ncþ4Nf ln 4
22Nc−4Nf : ð33Þ

To compute the susceptibilities, we substitute Eq. (26) into
Eqs. (23) and (24), remembering that the relation between
the quark chemical potentials and those of the conserved
baryon number and electric charges is
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�
μ̂u

μ̂d

�
¼
� 1

3
2
3

1
3

− 1
3

��
μ̂B

μ̂Q

�
; ð34Þ

where μ̂u and μ̂d are the chemical potentials for up- and
down-type quarks, respectively. We numerically evaluate
the integrals in the functions F1;…; F4. The temperatures
relevant to sterile neutrino production are well below the
top quark mass; we therefore adopt Nf ¼ 5. We use quark
masses evaluated at the reference scale μref from Ref. [1].
The only free parameter in the perturbative calculation is
the MS renormalization scale, which we set so as to
match with the lattice calculation in the regime where
both approaches are valid. This entails us setting ΛMS ¼
105 MeV; the results are only logarithmically dependent
on the particular value we choose.

2. Intermediate temperatures: Lattice
calculations

Susceptibilities at temperatures close to the quark-hadron
transition have been previously studied in the context of
heavy ion collision experiments [106], where the crossover is
signaled by fluctuations in the plasma’s quantum numbers
[107,108]. At zero chemical potential, these are studied in
lattice QCD by mapping to the expectation values of traces.
Their auto- and cross-correlations are directly related to the
diagonal and off-diagonal elements of the susceptibility
matrix of Eq. (17) [109].
We directly use the susceptibilities so computed at

intermediate temperatures. Specifically, we use the results
from the Wuppertal-Budapest (WB) lattice QCD collabo-
ration [100] and the HotQCD Collaboration [101]. Even
though the groups use different staggered fermion actions
on the lattice, their results are broadly consistent with each
other. They report the susceptibilities χ̂Q2 , χ̂

B
2 , and χ̂QB11 ,

together with their estimated errors, in (2þ 1)-flavor QCD
extrapolated to the continuum limit.4 The lattice QCD
results are in good agreement with the perturbative calcu-
lations described above for the temperature range
250 MeV≲ T ≲ 300 MeV, above which they underpredict
the primeval plasma’s susceptibility owing to the charm
quark’s influence [110]. Therefore, we do not consider the
lattice QCD calculations at temperatures above T ≳
300 MeV to avoid biasing our results.

3. Low-temperature limit: Hadron
resonance gas

At temperatures below the quark-hadron transition, we
model the strongly interacting sector as a gas of hadronic
resonances. In this HRG model, the pressure entering
Eq. (25) is given by

p̂HRG ¼ 1

VT3

� X
i∈mesons

lnZM
i ðV; T; μQÞ

þ
X

j∈baryons
lnZB

j ðV; T; μQ; μBÞ
�
; ð35Þ

where

lnZM
i ¼ −

VT3

2π2
di

Z
∞

0

dp̂p̂2 ln ð1 − zie
−
ffiffiffiffiffiffiffiffiffiffiffi
p̂2þm̂2

i

p
Þ; ð36Þ

lnZB
i ¼ VT3

2π2
di

Z
∞

0

dp̂p̂2 ln ð1þ zie
−
ffiffiffiffiffiffiffiffiffiffiffi
p̂2þm̂2

i

p
Þ; ð37Þ

where di denotes the degeneracy factor of species i and zi is
the fugacity:

zi ¼ eBiμ̂BþQiμ̂Q : ð38Þ

Here Bi and Qi are the baryon number and electric charge
of species i, respectively. We construct the partition
function given in Eq. (35) by summing over all hadron
resonances with mass below 2 GeV from the particle data
group [1]. We then compute the susceptibilities using
Eqs. (23) and (24). We numerically perform the integrals
in Eqs. (36) and (37).
We find that the HRG results are in good agreement

with the lattice QCD calculations for temperatures
125 MeV≲ T ≲ 150 MeV, and we smoothly match the
HRG-derived susceptibilities to those from the lattice
technique in this regime.

4. Susceptibilities at all temperatures

We combine results from the three regimes into a single
smooth susceptibility tensor, valid over the range of temper-
atures relevant to the production of sterile neutrinos
with masses of order Oð10 keVÞ. Figures 4(a), 4(b),
and 4(c) display the susceptibilities χ̂Q2 , χ̂

B
2 , and χ̂QB11 for

temperatures satisfying 10 MeV < T < 10 GeV. The thick
solid black lines are our smooth fits to the three regimes,
while the dashed red and cyan dotted lines are the HRG and
perturbative results, respectively. We also show the results
from theWB lattice QCD collaboration in the neighborhood
of thequark-hadron transition. For comparison,we also show
the susceptibilities computed in the Stefan-Boltzmann limit,
i.e., assuming free quarks throughout and using Eq. (22).
We observe that the HRG calculation agrees well with

the lattice QCD result for T ≲ 150 MeV, but systematically
overpredicts the susceptibilities at higher temperatures. The
perturbative approach is consistent with the available lattice
QCD data at T ≳ 225 MeV, but again systematically
overpredicts the susceptibilities at lower temperatures.
Generally, the Stefan-Boltzmann approximation overesti-
mates the susceptibilities by a factor of order unity, except
near the quark-hadron transition. Interestingly, we observe

4The WB Collaboration does not directly report χ̂QB11 , but we
infer it from their results via a change-of-basis operation.

TEJASWI VENUMADHAV et al. PHYSICAL REVIEW D 94, 043515 (2016)

043515-8



an accidental cancellation in the off-diagonal susceptibility,
χ̂QB11 , in the (2þ 1)-flavor model which does not appear in
the Nf ¼ 5 theory. This arises because the sum of the
electric charges of the up, down, and strange quarks exactly
vanishes. Hence, we expect χ̂QB11 → 0 for temperatures
above the strange quark mass in the (2þ 1)-flavor model.
In the Nf ¼ 5 model however, the charm quark becomes
rapidly important at T ≳ 300 MeV, leading to a sharp
turnover in χ̂QB11 near this temperature.
Given a set of infinitesimal lepton asymmetries, we solve

for the chemical potentials using the above susceptibilities
in Eqs. (15), (16), (18) and (19), We obtain the redistributed
asymmetries in all the constituent species by using these
chemical potentials, along with the appropriate susceptibil-
ities in Eq. (21). Figure 4(d) plots the redistributed
asymmetries for an infinitesimal input mu leptonic asym-
metry. We note the following features:

(1) At temperatures T > 2 GeV, the redistribution is
efficient and ≃60% of the mu leptonic asymmetry
ends up in the muons. All the charged leptons are
effectively massless at this epoch; hence the pop-
ulations of the electron and tau flavors are identical.

(2) The rise in the mu and tau lepton populations above
temperatures of≃25 MeV and 300 MeV reflects, in
part, the rise in their particle number susceptibilities
as the temperature becomes comparable to their
masses [see Eq. (22)]. However, the largest contri-
bution to the former is from the disappearance of the
hadronic degrees of freedom below the quark-
hadron transition, and the associated drop in the
strongly interacting fluid’s susceptibilities.

(3) The “kink” in all the redistributed asymmetries
close to temperatures T ≃ 170 MeV is a signature
of the sharp change in the strongly interacting fluid’s

FIG. 4. Panels (a)–(c): Components of the quadratic susceptibility tensor for the primordial plasma’s electric charge and baryon
number. In all panels, the thick solid black line shows our smooth fit used in the computation of sterile neutrino production. At low
temperatures, we illustrate the HRG results with dashed red lines, while the high-temperature perturbative results are shown with dotted
cyan lines. We also show the results from theWB lattice QCD collaboration [100] with green error bars. For comparison, we also display
the Stefan-Boltzmann approximation to the susceptibilities assuming free quarks at all temperatures. Panel (d): Effective populations of
all leptonic degrees of freedom after the redistribution of an infinitesimal mu leptonic asymmetry at all temperatures. Light lines show
the effects of redistribution according to GL15’s prescription.
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susceptibilities at the quark-hadron transition [see
Figs. 4(a), 4(b) and 4(c)].

(4) At lower temperatures, T ≲ 30 MeV, the redistrib-
ution is inefficient and most of the asymmetry ends
up in the muon neutrinos. Moreover, the electron
neutrino and the muon have identical (small) pop-
ulations. This is characteristic of inelastic neutrino
scattering, νμ þ e− → νe þ μ−, which is the most
important channel at these temperatures (the had-
ronic susceptibilities are negligible at this epoch).

These redistributed asymmetries impact sterile neutrino
production via the asymmetry potential, VL

νμ .
Equation (12a) expresses this potential in terms of the
asymmetries in the populations of the individual charged
and neutral leptons, along with those in the charge and
baryon number of the strongly interacting fluid. As earlier,
for an infinitesimal input mu leptonic asymmetry, the
individual asymmetries are formally represented by the
functions in Eq. (21); the solutions for the charged and
neutral leptons are as plotted in Fig. 4(d). The light lines in
this figure show the redistributed asymmetries according to
GL15’s prescription. The latter was obtained by rescaling
the Stefan-Boltzmann result by an “effective” number of
colors in the QCD plasma, as described in Ref. [39].
We obtain the electric charge density of the strongly

interacting fluid,ΔnQ, usingnet electric charge neutrality, i.e.
Eqs. (17) and (19). Tables of susceptibilities, along with the
functions in Eq. (21) at a number of temperatures from
10GeV down to 10MeV can be found at https://github.com/
ntveem/sterile‑dm/tree/master/data/tables. Figure 5 shows

the potential per unit physical μ lepton asymmetry using
these solutions; this quantity is constant and equals 2

ffiffiffi
2

p ¼
2.83 in the absence of redistribution. As shown in the figure,
asymmetry redistribution corrects the potential at the 10%
level above temperatures T ≳ 100 MeV, which is where the
bulk of the sterile neutrinos are produced. This contribution
changes the resonant momenta, and the resultant sterile
neutrino dark matter’s phase space densities; we explore this
further in Sec. V.

IV. NEUTRINO OPACITY

In this section, we outline our calculation of muon
neutrino opacities in the early Universe. Initial work in
this area focused on reactions involving leptons, in the
context of neutrino decoupling, active-active neutrino
oscillations and supernova calculations [4,111,112]. In
particular, Ref. [111] lists a number of relevant matrix
elements. Our calculations apply to earlier epochs, with a
larger number of reactions due to the population of
hadronic species above the quark-hadron transition.
Early work on sterile neutrino production used simple

prescriptions for the resultant increase in reaction rates
[18,56]. Recent work in Refs. [20,85] provides a theoretical
framework to include particle masses and statistics in the
neutrino opacity calculation, and formalism for loop
corrections. We include a number of additional contribu-
tions to the neutrino opacities that are significant at the
temperatures relevant to sterile neutrino production. We
adopt the following simplifying assumptions:
(1) We neglect small asymmetries in the participating

species’ populations (as for the thermal potential).
This is justified since the scattering rates are nonzero
even in a CP symmetric plasma. Moreover, we
assume thermal and kinetic equilibrium, due to
which the populations of all active species are
Fermi-Dirac/Bose-Einstein distributions.

(2) We integrate out the massive gauge bosons, Z and
W�, and approximate the weak interaction by a four-
fermion contact term. Consequently, the reactions
separate into leptonic and hadronic processes, de-
pending on the species involved. Moreover, we
neglect the thermal populations of Z0 and W�.
These steps are valid at low temperatures and
momentum transfers, i.e., T; s=t=u ≪ MW�=Z0≈
80 GeV. We operate in the temperature and energy
ranges

10 MeV < T < 10 GeV; ð39Þ
10−4 < Eνμ=T < 20: ð40Þ

The approximation fails at the higher energies at the
upper end of the temperature range. However, as we
see in Sec. V, the bulk of the sterile neutrinos are
produced at lower temperatures.

FIG. 5. Asymmetry potential VL per unit unscaled mu lepton
asymmetry. The solid line shows the effect of redistribution using
a combination of perturbative QCD, lattice calculations and the
HRG approximation. Dashed and dotted-dashed lines show the
result using the Stefan-Boltzmann approximation for free quarks,
and with a modified number of colors as in GL15, respectively.
The value is constant (¼ 2

ffiffiffi
2

p ¼ 2.83) in the absence of redis-
tribution [see Eq. (12a)]. The redistribution is a≃10% correction
at the most relevant temperatures for sterile neutrino production
(T ≳ 100 MeV).
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(3) We assume incoming and outgoing particles to be
noninteracting within two limits—below and above
the quark-hadron transition (see Sec. III. 3 of
Ref. [113]). Below the transition, we include had-
ronic channels with pseudoscalar and vector mes-
ons5 and neglect the small population of baryons.
Above the transition, we include reactions with free
quarks; i.e. we neglect the strong coupling constant.
This approximation fails at temperatures T ≃

TQCD [104]. We show opacities interpolated through
the transition using a few prescriptions, whose
consequences for sterile neutrino production we
explore in Sec. V.

The collision integral for a massless muon neutrino is

C½fνμðEνμÞ� ¼ −ΓðEνμÞfνμðEνμÞ
þ ΓðEνμÞe−Eνμ=Tð1 − fνμðEνμÞÞ; ð41Þ

where Γ and fνμ are the interaction rate (opacity) and PSD,
respectively (this expression satisfies detailed balance; see
assumption 1). The interaction rate is given by a sum over
all reactions that consume the muon neutrino [see Eq. (7)].
It is useful to define the scaled interaction rate

~ΓðEνμÞ ¼
ΓðEνμÞ
G2

FT
4Eνμ

: ð42Þ

In the limit where all the particles involved are relativistic,
weak cross sections are proportional to the squared energy
in the CM reference frame. If we ignore particle statistics,
reaction rates follow the scaling of Eq. (2); hence the scaled
rate is proportional to the number of relativistic degrees of
freedom involved [84]. We present the scaled rates in the
rest of this section, in order to contrast our results with this
intuition.
In the rest of the section, we enumerate reactions

contributing to the opacity and present final rates under
the above approximations. We elaborate the calculation of
matrix elements in Appendix B.
Table I lists the purely leptonic two-particle to two-particle

reactions contributing to the muon neutrino opacity. It is

similar to the list in Ref. [111], albeit with tau leptons, which
are important at temperatures T ≳ 400 MeV. We also
include “three-body fusions,” since they arise at the same
level of approximation. These are generated by omitting in
turn the products in the reactions of Table I, adding their
charge conjugates to the reactants, subject to the constraint
that the product’s rest mass is strictly greater than the sum of
the reactants’. An example is tau lepton production
via νμ þ μþ þ ντ → τþ.
Figure 6 shows the leptonic contribution to the muon

neutrino opacity at a temperature T ¼ 100 MeV, using the
matrix elements for reactions in Table I, and related three-
body fusions. For convenience, we only show reactions in
the top five at any particular momentum bin. In the
numerical implementation, we evaluate the dimensionless
quantity ΓðEνμÞ=G2

FT
5 (proportional to the unscaled rates)

to an accuracy of 10−6 after simplifying the collision
integrals in Eq. (B7) and (B25).
The quark-hadron transition considerably complicates

the hadronic reactions. We appeal to assumption 3 and
evaluate their rates in two limits: at low and high temper-
atures, i.e. T < TQCD and T > TQCD respectively. Table II
lists the hadronic two-particle to two-particle reactions

FIG. 6. Scaled muon neutrino opacities through leptonic
reactions vs energy at T ¼ 100 MeV. Only reactions in the
top five at any particular momentum bin are shown. The symbol

ν
ð−Þ

stands for ν=ν̄.

TABLE I. Two-particle to two-particle leptonic reactions contributing to the muon neutrino opacity; antineutrinos
are similar. Symbol α runs over the other leptonic flavors, i.e. α ∈ fe; τg, and ν

ð−Þ
stands for ν=ν̄.

s-channel t-channel Mixed

νμ þ μþ → να þ αþ νμ þ α� → νμ þ α�
νμ þ ν

ð−Þ
μ → νμ þ ν

ð−Þ
μ

νμ þ ν̄μ → να þ ν̄α νμ þ ν
ð−Þ

α → νμ þ ν
ð−Þ

α
νμ þ μ� → νμ þ μ�

νμ þ ν̄μ → α− þ αþ νμ þ α− → μ− þ να νμ þ ν̄μ → μ− þ μþ

νμ þ ν̄α → μ− þ αþ

5We also include quark production in s-channel reactions at
high CM energies. See Appendix B 1 a for details.
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contributing to the muon neutrino opacity. At high temper-
atures, we list all reactions involving free quarks, while at
temperatures T ≲ TQCD, we assume that all incoming
hadronic degrees of freedom belong to the pseudoscalar
meson nonet (the heaviest member of which is the eta
meson, with a mass of mη ¼ 547.8 MeV). As in the
leptonic case, we also include three-body fusions involving
pseudoscalar mesons or quarks. Examples are K0 and
charm quark production via νμ þ μþ þ π− → K0 and
νμ þ μþ þ s → c, respectively.
A complication is that at low temperatures, free quark

and parton currents contribute to the initial and final states
for large momentum transfer in the t- and s-channel
respectively (see Appendix B 1 a). For s-channel reactions,
we thus treat individual meson resonances for center of
mass energies < 1 GeV, and use the free quark model for
inclusive cross sections at > 1 GeV. Also important are
“two-body fusions,” i.e. reactions with two particles in the
initial state and one in the final state, with the latter being a
pseudoscalar or vector meson. Table V in Appendix B 2
lists all such reactions included in our opacities.
Figure 7 shows the hadronic contribution to the muon

neutrino opacity at low and high temperatures, using the
matrix elements for two-particle to two-particle reactions in

Table II, the associated three-body fusions, and two-body
fusions in Table V of Appendix B 2. As earlier, we only
show reactions in the top five at any momentum bin; the
numerical implementation of the first two classes is
unchanged.
Figure 8(a) shows the total opacities with muon neutrino

energy at temperatures of 100 MeV and 2 GeV. We note a
few salient features of these rates.
Firstly, we note that the leptonic and hadronic two-

particle to two-particle reaction rates approach the scaling
of Eq. (2) at large energies; the downturn at lower energies
is due to Pauli blocking.
Secondly, both sets of rates exhibit a rise at low energies,

which reflects nonzero limiting values of the unscaled
rates. This is due to the behavior of cross sections for
inelastic collisions involving massive particles, such as the

TABLE II. Two-particle to two-particle hadronic reactions
contributing to the μ neutrino opacity; antineutrinos are similar.
Symbols a and b run over quarks with charge þð2=3Þe and

−ð1=3Þe, respectively, and a
ð−Þ

stands for a=ā.

s-channel t-channel

T > TQCD

νμ þ μþ → aþ b̄ νμ þ a
ð−Þ

→ νμ þ a
ð−Þ

νμ þ ν̄μ → aþ ā
νμ þ b

ð−Þ
→ νμ þ b

ð−Þ

νμ þ ν̄μ → bþ b̄ νμ þ b → μ− þ a

νμ þ ā → μ− þ b̄
T < TQCD

a

νμ þ μþ → πþ þ π0 νμ þ π� → νμ þ π�

νμ þ μþ → Kþ þ K0 νμ þ K� → νμ þ K�

νμ þ μþ → πþ þ K0 νμ þ π− → μ− þ π0

νμ þ μþ → Kþ þ π0 νμ þ K− → μ− þ K0

νμ þ μþ → Kþ þ η νμ þ π− → μ− þ K0

νμ þ ν̄μ → πþ þ π− νμ þ K− → μ− þ π0

νμ þ ν̄μ → Kþ þ K− νμ þ K− → μ− þ η
νμ þ π0 → μ− þ πþ

νμ þ K0 → μ− þ Kþ

νμ þ K0 → μ− þ πþ

νμ þ π0 → μ− þ Kþ

νμ þ η → μ− þ Kþ

aInput neutrinos can produce quarks (s-channel) or probe
mesons’ quark content (t-channel) at T < TQCD for large
momentum transfer in Z0, W�. See Appendix B 1 a for details.

FIG. 7. Scaled muon neutrino opacities through hadronic
reactions vs energy. Panels (a) and (b) show rates at T ¼
100 MeV and 2 GeV, respectively. Only reactions in the top
five at any particular momentum bin are shown.
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three-body collision νμ þ e− þ νe → μ− or the scattering
process νμ þ μþ → νe þ eþ. We illustrate this by calculat-
ing the cross section for the latter, while neglecting the
positron’s rest mass and Pauli blocking for simplicity. The
squared and spin-summed/averaged matrix element for this
process is

hjMj2i ¼ 128G2
Fðpνμ · peþÞðpμþ · pνeÞ: ð43Þ

In the limit of zero neutrino energy

ðpμþ · pνeÞ ¼ −m2
μ=2þOðEνμÞ; ð44Þ

which implies that the modulus squared is

hjMj2i ¼ −64G2
Fm

2
μðpνμ · peþÞ þOðEνμÞ: ð45Þ

Hence the cross section for the μ neutrino, integrated over
outgoing particles’ directions, is

σνμ ¼
G2

Fm
2
μ

π
þOðEνμÞ: ð46Þ

Such nonzero limiting values are responsible for the rise in
the scaled rates for soft neutrinos in Figs. 6 and 7.

FIG. 8. Scaled muon neutrino opacities for a range of energies and temperatures. Panel (a): Total, leptonic, and hadronic opacities vs
energy at T ¼ 100 MeV and 2 GeV. Panel (b): Opacities at high energies (Eνμ ¼ 20T) vs temperature. Black lines are two interpolations
through TQCD. They are cubic splines labeled by their cutoff temperature, Tc, as defined in the text. Colored lines are numbers of
relativistic degrees of freedom: g�;KT under assumption 3, i.e., that of Kolb and Turner [113] with TQCD ¼ 210 MeV, chosen to match
Ref. [104] whose results are g�, LSð2006Þ. Panels (c) and (d): Interpolated opacities vs energy and temperature. Blue dashed lines mark
ranges where the two values of g� differ by more than 10%, and are a rough guide to where these rates can be trusted. Red dotted lines
mark the cutoff temperature.
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Thirdly, the hadronic opacities at low temperatures, i.e.
T < TQCD, exhibit a series of peaks. These are signatures of
two-body fusions, which are broad resonances in the
propagators of the weak gauge bosons. These include the
production of pseudoscalar mesons (e.g. pion production via
νμ þ μþ → πþ) and vector mesons (e.g. ρ0 production via
νμ þ νμ → ρ0). In the total opacities of Fig. 8(a), the former
is visible as a peak at intermediate momenta, while the latter
are smeared out at large momenta.
Finally, we observe from Fig. 8(a) that the total opacities

at high energies exhibit a jump as the temperature passes
through TQCD. This is due to the increase in the number of
hadronic degrees of freedom, as evidenced by the sizes of
the jumps in hadronic and leptonic contributions (the latter
due to the tau lepton turning on).
This is shown clearly in Fig. 8(b), which shows the

scaled muon neutrino opacities at high energies for a range
of temperatures. Note that these rates assume that the
hadronic species above and below the transition are free
quarks and mesons respectively (assumption 3 in our list
above). For comparison, the figure shows the number of
relativistic degrees of freedom, g�, both under this
assumption and from Ref. [104], which implements the
running of the strong coupling constant. We note the
significant deviation close to the quark-hadron transition
(TQCD ¼ 210 MeV in the lattice calculations underlying
Ref. [104]).
Motivated by this, we explore two methods of interpo-

lating opacities through the quark-hadron transition. In
each of them, we choose a cutoff temperature, Tc, above
which we use the free quark results, and use a cubic spline
interpolation in between. We emphasize that this is not
physically motivated; the actual rates, and their matrix
elements, need to incorporate the strong coupling constant
and its running. The figure shows interpolations with

Tc ¼ 250 MeV and 1000 MeV, which we expect to bracket
the range of rates.
With this caveat, Figs. 8(c) and 8(d) show interpolated μ

neutrino opacities for a range of energies and temperatures,
with Tc ¼ 250 MeV and 1000MeV, respectively. In the rest
of the paper, we use these scattering rates and the potentials
defined in Sec. II to study sterile neutrino production via
oscillation in the early Universe. We use both interpolations
through the quark-hadron transition in order to illustrate the
results’ sensitivity to the scattering rates.
Figure 9 compares the scaled opacities with the earlier

computations of Ref. [20], which are used in GL15. For
comparison, we have shown their opacities computed with
negligible sterile neutrino masses, which is an excellent
approximation for all the momenta shown. The most
significant differences are at low temperatures due to
two-body fusions (the resonances), and at low momenta
due to the limiting cross sections for scattering processes
and three-body fusions involving massive particles.

V. STERILE NEUTRINO PRODUCTION

In this section, we incorporate the standard model calcu-
lations of Secs. III and IV into the sterile neutrino production
mechanism, whose broad outline we provided in Sec. II.
We evolve the sterile neutrino and antineutrino PSDs,

fνsðpÞ and fνsðpÞ, using the Boltzmann equation of
Eq. (8). We use the primordial plasma’s temperature T as
a clock, and numerically integrate a thousand logarithmically
spaced Lagrangian momentum bins from a temperature of
10 GeV down to 10MeV. For the models illustrated by stars
inFig. 1, thevastmajority of the production happens between
these temperatures. We use the muon neutrino opacities
derived in Sec. IV and provide results using the two-
interpolation scheme presented in Fig. 8, which bracket
the range of uncertainties due to the quark-hadron transition.
We useEq. (12b) for the thermal potentialV th

νμ , and the results
presented in Fig. 5 for the asymmetry potential VL

νμ , incor-
porating the redistribution of Sec. III. For comparison, we
also present results calculated using the opacities and
redistribution functions of GL15. Since we have access to
their opacities for scaled energies ~Eνμ > 0.25, we use a two-

dimensional spline fit of log ~Γ vs log ~Eνμ and logT to extend
the opacities to lower energies.
In order to close the system of equations, we also need

the evolution of the plasma temperature T and mu leptonic
asymmetry L̂μ with coordinate time t. Before discussing
the details of the sterile neutrino production, we briefly
review these two relations.

A. Time-temperature relation

In this subsection, we derive the time-temperature
relationship prior to the epoch of weak decoupling.
The Hubble rate, H, is

GL15

FIG. 9. Comparison of neutrino opacities with existing calcu-
lations. Lines of different colors show scaled muon neutrino
opacities for different scaled energies, ~Eνμ . Solid and dashed lines
are two interpolations through TQCD. Thin dotted lines indicate
the calculations of Ref. [20], which are used in GL15.
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d
dt

ln a ¼ H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π

3m2
P
ðρSM þ ρνsÞ

s
; ð47Þ

where a is the scale factor, mP ¼ 1.2 × 1019 GeV is the
Planckmass, andρSM andρνs are energydensities in standard
model particles and sterile neutrinos, respectively. The latter
is given by an integral over the PSDs, ρνs ¼ ð1=2π2ÞR
p2dp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

s

p
½fνsðpÞ þ fνsðpÞ�. During Hubble

expansion from a to aþ δa, (a) the sterile neutrino PSDs
evolve to fνs=νsðpÞ þ δfνs=νsðpÞ due to a combination of
mixingwithmuonneutrinosandtheirmomentumredshifting
as pa≡ const.. and (b) due to large neutrino opacities, all
active species maintain equilibrium PSDs with a common
temperature,whoseevolution is affectedby theproductionof
sterile neutrinos.
The continuity equation for the total stress-energy

tensor is

3
d
dT

ln a ¼ −
d
dT

ðρSM þ ρνsÞðρSM þ PSM þ ρνs þ PνsÞ−1;
ð48Þ

where PSM=ν are SM and sterile neutrino pressures,
respectively. The sterile energy density evolves according
to

dρνs
dT

¼ ∂ρνs
∂ ln a

d ln a
dT

þ ∂ρνs
∂t

dt
dT

: ð49Þ

The two terms on the right-hand side are the free-streaming
and oscillation contributions, respectively:

∂ρνs
∂ ln a ¼ −3ðρνs þ PνsÞ; ð50Þ

∂ρνs
∂t ¼

Z
dpp2

2π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

s

q ∂
∂t ½fνsðpÞ þ fνsðpÞ�: ð51Þ

We substitute Eqs. (49) and (50) into Eq. (48) and solve for
the relation between the scale factor and temperature

3
d ln a
dT

¼ −
�
dρSM
dT

þ ∂ρνs
∂t

dt
dT

�
ðρSM þ PSMÞ−1: ð52Þ

Substituting Eq. (47), we obtain the time-temperature
relation6

dT
dt

¼ −
3H½ρSM þ PSM� þ ð∂ρνs=∂tÞ

dρSM=dT
: ð53Þ

Defining the number of SM relativistic degrees of freedom
for the energy and entropy densities via

ρSM ¼ π2

30
g�T4; ð54Þ

sSM ¼ ρSM þ PSM

T
¼ 2π2

45
g�;sT3; ð55Þ

we have the final form of the time-temperature relation

dT
dt

¼ −
4Hg�;sT4 þ ð30=π2Þð∂ρνs=∂tÞ

d½g�T4�=dT : ð56Þ

We use numbers of relativistic degrees of freedom g� and
g�;s from Ref. [104] in our numerical implementation.

B. Time evolution of asymmetry

The temperature-scaled muon asymmetry, L̂μ, evolves
both from the depletion of relativistic degrees of freedom
due to annihilations and from the production of sterile
neutrinos. There are subtleties in dealing with the latter in
the case of resonant production [114], but for the semi-
classical approach outlined in Sec. II B, we can write down
the contribution in terms of the evolution of sterile neutrino
PSD. Keeping in mind the definition of the lepton asym-
metry in Eq. (4), the asymmetry evolution due to both
contributions together is

dL̂μ

dt
¼ d

dt

Z
dp̂p̂2

2π2
½fνμðpÞ − fνμðpÞ þ 2fμ−ðpÞ − 2fμþðpÞ�

¼ −3
�
H þ d lnT

dt

�
L̂μ −

Z
dp̂p̂2

2π2
∂
∂t ½fνsðpÞ − fνsðpÞ�;

ð57Þ
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FIG. 10. We illustrate the temperature evolution of the
sterile neutrino’s PSD for the central model of Fig. 1 with
ðms; sin2 2θÞ ¼ ð7.1 keV; 4 × 10−11Þ. Solid and dashed lines
distinguish results with neutrino opacities from Figs. 8(c)
and 8(d), respectively. Thin dotted lines show results using the
calculations of GL15.6We note that we correct here an error introduced in Ref. [18].
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where the symbol p̂ is the temperature-scaled momentum,
p̂≡ p=T. The first term in the square bracket in the
last line above can be evaluated with the help of Eqs. (47)
and (56), while the second term can be evaluated using
Eq. (8). Our large number of momentum bins (1000)
allows us to use spline integration at every time step in
order to perform the momentum integrals in Eqs. (57)
and (51). We set up our Lagrangian momentum bins such
that 5 × 10−3 ≤ p=T ≤ 20 at temperature T ¼ 10 GeV.
We have checked that this range is more than sufficient to
accurately capture the most relevant range of the sterile
neutrino PSDs.

C. Resonant production

As described in Sec. II, the presence of a lepton
asymmetry leads to a resonant production of sterile

neutrinos with specific momenta. Through Eq. (8), the
resonant momenta at a particular temperature satisfy

ΔðpÞ cos 2θ − VL − V thðpÞ ¼ 0: ð58Þ
Substituting the definition of ΔðpÞ and the potentials from
Eq. (12), we obtain

m2
s

2p
−
dVL

dLμ
Lμ −

dV thðpÞ
dp

p ¼ 0: ð59Þ

There are two roots, i.e. two momenta resonant at any
temperature [18]. Consideration of the terms’ approximate
temperature scaling shows that each scaled root (p̂≡ p=T)
sweeps to larger values at lower temperatures (ignoring
changes in the numbers of relativistic degrees of freedom).
This is reflected in Fig. 10, which shows the sterile neutrino
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FIG. 11. Sterile neutrino production mechanism. Panels (a) and (c): The entropy scaled mu lepton asymmetry and the net sterile
number density with temperature. For each model with a given mass and mixing angle, the mu lepton asymmetry at high temperatures is
tuned by hand to produce the right relic abundance. Panels (b) and (d): Sterile neutrino and antineutrino PSDs, respectively, at
T ¼ 10 MeV. Colors differentiate models in Fig. 1, and solid and dashed lines distinguish results with neutrino opacities from Figs. 8(c)
and 8(d) respectively. Thin dotted lines show results using the calculations of GL15. Note the different numerical factors multiplying the
y-axis of panels (b) and (d). The dotted line in panel (b) is a massless Fermi-Dirac distribution with degeneracy g ¼ 0.003.
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PSD’s evolution with temperature for the central model in
Fig. 1 with ms ¼ 7.1 keV and sin2 2θ ¼ 4 × 10−11. We
observe that most of the neutrinos are produced at the lower
resonance and at temperatures close to TQCD.

7 This is also
illustrated by Figs. 11(a) and 11(c), which show the
evolution of the entropy-scaled8 μ lepton asymmetry and
the net sterile neutrino and antineutrino density for the
range of models marked by stars in Fig. 1. The latter is also
sensitive to thermal (nonresonant) production, which oper-
ates at all temperatures, but is subdominant for the mixing
angles of interest. Note that the production as computed
according to the calculations of GL15 requires very differ-
ent input asymmetries, and produces different output
asymmetries, for lower mixing angles.
Figures 11(b) and 11(d) show the sterile neutrino and

antineutrino PSDs at T ¼ 10 MeV for these models. We
note that the sterile antineutrinos are produced off-
resonance for the positive lepton asymmetries we consider
here, and their abundance is thus significantly suppressed
compared to that of the sterile neutrinos. Solid and dashed
lines in Fig. 11 show results for the two interpolations of the
μ neutrino opacities through TQCD presented in Fig. 8, which
differ in the temperature range 150 MeV < T < 1 GeV. For
small values of the mixing angle, we observe that there is
little difference between the PSDs computed using our two
different interpolation schemes for the neutrino opacity. For
these models, most of the production happens at temper-
atures below the quark-hadron transition where our two
opacity approximation schemes are essentially the same,
hence leading to similar PSDs. As the mixing angle is
increased, the production is pushed toward higher temper-
atures [see Fig. 11(c)] where the difference between our two
interpolation schemes is greater, leading to larger uncertain-
ties in the final PSDs.
Figures 11(b) and 11(d) show that for all the mixing

angles we considered, the opacities and redistribution of
GL15 result in colder distributions of sterile neutrinos. In
general, the position and width of the peak are set by the
interplay between the asymmetry potential and the opac-
ities, as we outlined in Eqs. (58) and (59). We verified that
the largest change is due to the opacities in GL15, which
are systematically larger for active neutrinos of lower
energies (as can be seen in Fig. 9). This impacts the
production at these energies as the resonance sweeps
through in the manner of Fig. 10.
Table III lists parameters describing the production and

final sterile neutrino DM PSDs for the models marked in
Fig. 1. Also provided are the ranges for different

interpolated μ neutrino opacities through the quark-hadron
transition as in Fig. 8. Note that the sterile PSDs in
Figs. 11(b) and 11(d) are nonthermal; we show the mean
momentum hp=Ti relative to the active neutrino temper-
ature scale.
A key element to take away from Table III and Figs. 11(b)

and 11(d) is that the “warmer” models with larger values of
hp=Ti are less sensitive to the uncertainty in the quark-
hadron transition. This is important since these warmer
models can be most easily constrained by small-scale
structure formation. Therefore, uncertainties in the strong
plasma near TQCD are unlikely to affect the robustness of
these constraints.

VI. TRANSFER FUNCTIONS FOR MATTER
FLUCTUATIONS

In this section, we study the effect of sterile neutrinos on
the growth of density fluctuations in the early Universe. We
focus on the lepton asymmetry-driven mechanism outlined
in Sec. II, and on modes of the matter distribution with
comoving wave numbers k ∈ ½1; 100�h Mpc−1. These
scales are probed by the Lyman-α forest in quasar spectra
(see [115] and references therein), and populations of dwarf
galaxies in the local group (see [116,117] and references
therein). All these scales enter the horizon after the redshift
zH ≃ 4 × 107, when the temperature of the photon-baryon
plasma is T ≃ 10 keV. The sterile neutrino models shown
in Fig. 1 cease to be produced below temperatures
T ∼ 100 MeV; hence we can assume they are essentially
collisionless in this section.

TABLE III. Parameters for the models marked in Fig. 1, with
ms ¼ 7.1 keV and ΩDMh2 ¼ 0.119 [2]. The ranges displayed in
the three last columns account for the uncertainties in the neutrino
opacities near the quark-hadron transition.

sin2 2θ
ðLμ=sSMÞi at
T ¼ 10 GeV

ðLμ=sSMÞf at
T ¼ 10 MeV

×10−11 × 10−5 × 10−5 hp=Tia

0.800 13.0–13.1 6.95–7.03 2.60–2.61
1.104 10.80–10.88 4.74–4.81 2.45–2.47
1.523 9.57–9.64 3.51–3.58 2.28–2.32
2.101 8.81–8.88 2.76–2.83 2.12–2.16
2.899 8.32–8.39 2.27–2.34 1.95–2.01
4.000 7.96–8.03 1.93–2.00 1.80–1.87
5.519 7.69–7.76 1.68–1.74 1.66–1.74
7.615 7.45–7.53 1.47–1.54 1.53–1.62
10.506 7.20–7.29 1.28–1.36 1.43–1.52
14.496 6.95–7.05 1.09–1.18 1.35–1.44
20.000 6.7–6.8 0.9–1.0 1.29–1.38

aThe sterile DM distributions are nonthermal; we compute
hp=Ti using the active neutrino temperature. Below the epoch
of e� annihilation, the latter is related to the CMB temperature by
the factor ð4=11Þ1=3 ¼ 0.714. We note that for a Fermi-Dirac
distribution hp=Ti≃ 3.15.

7There is an unphysical kink in the PSDs in Fig. 10 computed
using the rates of GL15, which is an artifact of fitting for the rates
at low energies. The broad distribution shows qualitatively
similar behavior, except for some detailed differences that
we expand upon in the body.

8We show this scaling rather than the one with temperature,
since it is conserved through epochs of annihilation.
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The main effect of such a collisionless component on
matter fluctuations is suppression due to free streaming in
the epochs where it is relativistic [118,119]. Previous works
extensively studied this in the context of warm and/or
neutrino DM models (see Refs. [120,121] and references
therein), and identified the characteristic scales at which the
suppression set in as a function of the neutrinos’ mass and
mean momentum [18].
In order to obtain the suppression’s detailed form,we need

to incorporate the PSDs of the sterile neutrinos and anti-
neutrinos into the Boltzmann equation for the DM compo-
nent. This entails solving a perturbed form of Eq. (8), with
additional terms due to inhomogeneities, but without the
source (production) terms. The scales of interest are non-
linear in the current epoch, but we only provide the linear
transfer functions at z ¼ 0, which can be used as initial
conditions for cosmological N-body simulations.
We use the publicly available CLASS solver [86] to

integrate the perturbed linear Boltzmann equation.9 We
initiate the solver with the Planck background parameters
[3], except with the CDM component replaced by colli-
sionless components with PSDs as shown in Figs. 11(b)
and 11(d). Since we are interested in the detailed shape of
the transfer function, we turn off the default fluid approxi-
mation for noncold relics [123].
Figure 12 shows the resulting suppression as a function

of the comoving wave number. We illustrate the suppres-
sion in the fluctuations’ transfer functions relative to their
values in ΛCDM. Also shown is the commonly used fit to a

thermal warm DM transfer function given in Refs. [23,124]
with an “equivalent thermal mass” of mth ¼ 2.2 keV; fits
for models marked with stars in Fig. 1 have a range of 1.6
to 3.2 keV.
However, the strong difference in shape with the

thermal WDM transfer function warrants use of the exact
sterile neutrino dark matter transfer functions. The thermal
warm DM PSDs relevant to the fit are rescaled versions
of the Fermi-Dirac distribution; as can be seen from
Fig. 11(b), the resonantly produced DM’s PSD has an
excess at low momenta that cannot be reproduced by such
a rescaling. Hence, our DM transfer functions do not
exhibit the fits’ steep ∼k−10 dependence at large wave
numbers and the resultant severe suppression of power on
small scales. This indicates that the models considered in
the present work are more likely to be in agreement with
small-scale structure formation constraints, as recently
pointed out in Refs. [57–62,65].

VII. DISCUSSION AND CONCLUSIONS

Sterile neutrinos are a well-motivated extension of the
standard model of particle physics, and offer a promising
candidate for the inferred DM population of the Universe.
In this paper, we performed a detailed study of the resonant
production of sterile neutrinos with masses and mixing
angles relevant to the recent x-ray excess. In doing so, we
explored the rich phenomenology associated with the active
neutrinos’ weak interaction with the primordial plasma.
These interactions efficiently redistribute primordial lepton
asymmetries among all the available degrees of freedom,
and impact the temperature and momentum dependence of
neutrino opacities. We incorporated these effects into the
sterile production calculation, corrected and extended the
existing numerical implementation, and obtained revised
DM phase space densities. We finally computed transfer
functions for fluctuations in the matter density, which
can be used as starting points for N-body simulations of
cosmological structure formation.
For the parameters relevant to the x-ray excess, resonant

sterile neutrino production coincidentally occurs in the
vicinity of the quark-hadron transition [see Fig. 11(c)].
Strongly interacting degrees of freedom affect the pro-
duction in two ways: (a) they influence both asymmetry
redistribution and neutrino opacities through their
interaction with the weak gauge bosons (Z and W�),
and (b) the transition from free quarks to hadrons at
TQCD influences the time-temperature relation [Eq. (56)].
We now consider the robustness of each of these elements
to the remaining uncertainties in the quark-hadron
transition.
The asymmetry redistribution among the strongly inter-

acting degrees of freedom depends on the susceptibility of
the quark-hadron plasma to baryon number and electric
charge fluctuations. At high temperatures, we used tree-
level perturbative QCD to compute the susceptibilities.
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FIG. 12. Suppression of the transfer functions of overall density
fluctuations relative to the ΛCDM ones for sterile neutrino
models in Fig. 1, as a function of wave number. Dashed and
dotted lines show results for the interpolated μ neutrino scattering
rates of Figs. 8(c) and 8(d), respectively. The solid black line is
the numerical fit for a thermal warm DM transfer function as
given in Ref. [124].

9Our choice was motivated by the availability of well-
documented modules to deal with noncold relics. We have
checked our results against those obtained from a modified
version of the publicly available CAMB solver [122].
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There are uncertainties concerning the exact values of the
quark masses, loop corrections, and the exact implementa-
tion of the MS renormalization scheme. We expect these to
have little effect on the final sterile neutrino PSDs since the
bulk of the production occurs at lower temperatures, where
the lattice QCD- and HRG-derived susceptibilities are most
relevant. Thus, uncertainties in the asymmetry redistrib-
ution are likely dominated by systematic errors in the lattice
calculations [100], measurement errors in the hadronic
resonances’ masses, and inaccuracies inherent in the HRG
approach near the quark-hadron transition. Our confidence
in the fit we used in this work is bolstered by the facts that
(a) an independent lattice QCD calculation [101] found
very similar susceptibilities to those we used, and (b) the
HRG approach—without any free parameter—is in very
good agreement with the lattice calculation for
T ≲ 150 MeV. It is therefore unlikely that uncertainties
in the susceptibilities will lead to dramatic changes in the
sterile neutrino PSDs.
The validity of our neutrino opacities is much less

clear—we have attempted to calculate them in as much
detail as possible, but the hadronic parts still retain
significant uncertainties due to the quark-hadron transition.
We expect that opacities at high and low temperatures are
well described by the rates of reactions involving free
quarks, and the lightest pseudoscalar and vector mesons,
which are shown in Sec. IV. For temperatures near TQCD,
we have considered two interpolation schemes (shown in
Fig. 8) that we expect might bracket the range of possibil-
ities. We have computed the sterile neutrino PSDs for both
cases and have shown that they are fairly robust to the
choice used, especially for models with larger values of the
average momentum hp=Ti. We leave the calculation of
self-consistent opacities through the transition to future
work. Yet another approximation we have made is that of
equilibrium distributions for all active species, which has
been studied in a different context in Ref. [125]. We expect
this to be valid at the temperatures relevant to the models
we study.
To compute the Hubble expansion rate and time-

temperature relation, we have used the plasma’s equations
of state provided in Ref. [104], which are obtained by
matching to the lattice QCD results of [126]. As the
former’s authors point out, this result is still uncertain at
temperatures close to the quark-hadron transition. It
would interesting to update their result with the latest
lattice QCD computations, which suggest a lower tran-
sition temperature [127]. We expect the uncertainties
associated with the plasma’s equation of state to be at
most similar in magnitude to those coming from the
neutrino opacity [20].
Another simplification we adopted is the semiclassical

Boltzmann equation, which greatly facilitates our study of
the oscillation-driven production. As mentioned in Sec. II B,
the most general analysis considers the evolution of a

two-state density matrix, rather than phase space densities.
The validity of the semiclassical approach rests on the
assumption that collisions dominate the off-diagonal element
of theHamiltonian that is responsible for vacuumoscillations
[95–97]. For typical momenta at the temperatures of interest,
the ratio of these terms is ΔðTÞsin22θ=DðTÞ≃ 0.6 × ðT=
100 MeVÞ−6ðms=7 keVÞ2ðsin22θ=10−11Þ1=2. The produc-
tion of sterile neutrinos happens at temperatures above,
but close to where these terms become comparable (note
the ratio’s steep temperature dependence). Thus, we expect
that the results in this paper are relatively unaffected by this
approximation, but further work in this direction can settle
this question.
Finally, we have examined the assumptions underlying

the model itself, which were enumerated in Sec. II A. If
there is indeed an extra neutrino that is an electroweak
singlet, it is not restricted to mix with only one flavor.
However, the general case where the sterile neutrino mixes
with all flavors introduces extra mixing angles, which
cannot be constrained as easily from observations. The
same can be said about the assumption of a lepton
asymmetry in a single flavor. We briefly remark on the
possibility of the sterile neutrinos mixing with electron or
tau flavors instead. The redistribution of Sec. III is almost
identical for the cases with electronic and muonic lepton
asymmetries, but is different in the tauonic case. This is due
to the significantly larger mass of the corresponding
charged lepton (mτ ¼ 1.77 GeV [1]), which annihilates
away at higher temperatures. Thus most of an input tau
asymmetry ends up in the tau neutrino below
T ≲ 400 MeV, and the quark hadron transition does not
impact the redistribution. The electron and tau neutrino
opacities are different from the muonic case, and so is the
balance between the thermal and asymmetry potentials,
which affects the resonant momenta and ultimately the final
dark matter PSDs—we leave for future work the possibility
of sterile neutrinos mixing with those flavors.
Also worth considering is active-active neutrino mixing,

which does not conserve asymmetries in the individual
flavors. This was studied in Ref. [90], which showed that
such asymmetries are frozen in at the temperatures of
interest. An interesting possibility is to revisit this study and
use the redistributed asymmetries of Sec. III to calculate the
active neutrino self-energies at this epoch.
In conclusion, we find it remarkable that sterile neutrino

models that are in agreement with the x-ray excess have
transfer function shapes that can significantly impact struc-
ture formation on subgalactic scales. Fixing the leptonic
asymmetry to produce the right DM relic density, the
resonantly produced sterile neutrino transfer function goes
from warm to cold as the mixing angle is increased from
small to large values. This indicates that upcoming x-ray
observations [128–130] and ongoing efforts to study small-
scale structure can together cover all of the allowed mixing
angle parameter space, and consequently confirm or disfavor
the model.
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APPENDIX A: FUNCTIONS FOR
HIGH-TEMPERATURE QCD

PRESSURE

The functions defined in Sec. III B 1 are [104]

F1ðy; μ̂Þ≡ 1

24π2

Z
∞

0

dxx
�

x
xþ y

�1
2

× ½n̂Fð
ffiffiffiffiffiffiffiffiffiffiffi
xþ y

p
− μ̂Þ þ n̂Fð

ffiffiffiffiffiffiffiffiffiffiffi
xþ y

p þ μ̂Þ�; ðA1Þ

F2ðy; μ̂Þ≡ 1

8π2

Z
∞

0

dx

�
x

xþ y

�1
2

× ½n̂Fð
ffiffiffiffiffiffiffiffiffiffiffi
xþ y

p
− μ̂Þ þ n̂Fð

ffiffiffiffiffiffiffiffiffiffiffi
xþ y

p þ μ̂Þ�; ðA2Þ

F3ðy; μ̂Þ≡ −
Z

∞

0

dx
1

x

�
x

xþ y

�1
2

× ½n̂Fð
ffiffiffiffiffiffiffiffiffiffiffi
xþ y

p
− μ̂Þ þ n̂Fð

ffiffiffiffiffiffiffiffiffiffiffi
xþ y

p þ μ̂Þ�; ðA3Þ

F4ðy; μ̂Þ≡ 1

ð4πÞ4
Z

∞

0

dx1

Z
∞

0

dx2
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

x1 þ y
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y
p

×

�
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
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; ðA4Þ

where n̂FðxÞ ¼ 1=½exp xþ 1� is the Fermi-Dirac distribution.

APPENDIX B: NEUTRINO OPACITIES: MATRIX
ELEMENTS AND COLLISION

INTEGRALS

In this appendix, we expand on the details underlying the
neutrino opacities that were presented in Sec. IV. Under the
set of assumptions presented therein, we add contributions
from a large number of reaction rates, which we present in
an organized manner in the rest of this section.

1. Rates for neutrinos to go to two-particle
final states

We compute reaction rates for momenta and temper-
atures where we can integrate the weak gauge bosons out
and approximate the weak interaction by a four-particle
vertex. For tree-level processes under this approximation, if
one of the ingoing particles is a neutrino, one of the other
particles is either a neutrino or a charged lepton belonging

to the same generation. We classify reactions as leptonic
or hadronic based on the nature of the remaining two
particles.
We now describe our calculation of these reactions’

matrix elements, and the associated contributions to the
neutrino opacity.

a. Matrix elements for two-particle to
two-particle reactions

It is a lengthy, but straightforward, task to enumerate all
leptonic reactions that contribute to the neutrino opacity.
Reference [111] lists a complete set of reactions at temper-
atures of a few MeV. Our calculations extend to higher
temperatures; hence we also include reactions involving tau
leptons. The reactions are enumerated in Table I. It is harder
to study hadronic reactions in a consistent manner through
the quark-hadron transition temperature, TQCD. We adopt
assumption 3 of Sec. IV: we neglect the strong coupling
constant and its running at temperatures T > TQCD, and
hence calculate opacities with free quarks. We enumerate
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all reactions involving quarks in the same manner as the
leptonic ones, but with standard model quark currents that
couple to Z0 andW�. These reactions are listed in the upper
half of Table II. Table IV shows squared and spin-summed
matrix elements for a representative reaction involving only
leptons, and for one involving quarks.
The physical rates for hadronic reactions diverge from our

calculated ones close to the transition, since the strong
coupling constant is nonzero. Treating this self-consistently
is beyond the scope of this paper. In the main body, we
present results for a few unphysical interpolations through
the transition. At even lower temperatures, T < TQCD, we
cannot use the free quark approximation. Themost important
hadronic degrees of freedom are the pseudoscalar meson
octet, which are pseudo-Goldstone bosons associated with
the spontaneous breaking of the axial part of an approximate
SUð3ÞL × SUð3ÞR flavor symmetry [131]. We use three-
quark chiral perturbation theory (3χPT) to write down the
currents that couple toZ0 andW�, and through themevaluate
the mesonic contribution to the neutrino opacity.
Consider a 3 × 3 unitary matrix, UðxÞ, which represents

low-lying hadronic excitations at temperatures T < TQCD.
We express UðxÞ in terms of the pion fields πaðxÞ as
follows:

UðxÞ ¼ exp

�
2i
πaðxÞTa

fπ

�
; a ∈ ½1; 8�; ðB1Þ

2πaðxÞTa

fπ
¼ 1

fπ

0
BBB@

π0 þ 1ffiffi
3

p η
ffiffiffi
2

p
πþ

ffiffiffi
2

p
Kþffiffiffi

2
p

π− −π0 þ 1ffiffi
3

p η
ffiffiffi
2

p
K0

ffiffiffi
2

p
K−

ffiffiffi
2

p
K0 − 2ffiffi

3
p η

1
CCCA;

ðB2Þ

where fπ is an energy scale associated with the breaking
of the SUð3ÞA symmetry, and Ta are generators of SUð3Þ.

The most massive member of this octet, the η meson, has a
mass of mη ¼ 547.8 MeV [1]. We only use this prescrip-
tion at T ≤ 150 MeV, so these low-lying excitations are
sufficient to describe all relevant incoming hadronic
degrees of freedom.
In the framework of 3χPT, the dynamics of the pion

fields are described by an effective Lagrangian for UðxÞ
coupled to matrix valued SUð3ÞL and SUð3ÞR gauge fields
lμ and rμ, respectively. The first approximation to the
Lagrangian is the lowest term in a derivative expansion:

L ¼ −
1

4
f2πTr½DμU†DμU�;

with DμU ¼ ∂μU − ilμU þ iUrμ: ðB3Þ

The gauge fields lμ and rμ are Hermitian matrices, which
we decompose as

ðl=rÞμ ¼ ðl=rÞaμTa þ ðVμ ∓ AμÞI; a ∈ ½1; 8�: ðB4Þ

The fields Vμ and Aμ are vector and axial-vector parts of lμ
and rμ. We identify the electroweak gauge bosons of the
standard model, Z0

μ, W�
μ and Aμ [or equivalently, the

underlying SUð2Þ ×Uð1Þ gauge fields Aa
μ and Bμ], with

elements of ðla=ra=V=AÞμ by equating their action on the
pion fields πaðxÞ or the excitation UðxÞ via the right-hand
side of Eq. (B3). The results of this procedure are

g2A1
μ ¼ l1μ; ðB5aÞ

g2A2
μ ¼ l2μ; ðB5bÞ

g2A3
μ ¼ l3μ þ

1ffiffiffi
3

p l8μ −
1

12
Vμ þ

1

12
Aμ; ðB5cÞ

eAμ ¼ l3μ þ r3μ þ
1ffiffiffi
3

p l8μ þ
1ffiffiffi
3

p r8μ: ðB5dÞ

TABLE IV. Representative examples of two-particle to two-particle reactions that contribute to the neutrino opacity, along with their
matrix elements written using a four-fermion vertex for the weak interaction (for reactions involving leptons and quarks) and three-quark
chiral perturbation theory (for reactions involving the pseudoscalar meson octet). For a reaction νμ þ A → Bþ C, the momenta
pi∶ i ¼ 1, 2, 3, 4 within matrix elements are mapped to νμ, A, B and C respectively.

Reaction S
P jMj2 Remarks

Reactions involving leptons
νμ þ τ− → μ− þ ντ 128G2

Fðp1 · p2Þðp3 · p4Þ
Reactions involving quarks

νμ þ μþ → uþ d̄ 384jVudj2G2
Fðp1 · p4Þðp2 · p3Þ T > TQCD

Reactions involving the pseudoscalar meson octet
νμ þ μþ → πþ þ π0 8jVudj2G2

F½2p2 · ðp4 − p3Þp1 · ðp4 − p3Þ − ðp1 · p2Þðp4 − p3Þ2� T < TQCD, s-channel
a

νμ þ πþ → νμ þ πþ 4ð1 − 2sin2θWÞ2G2
F½2p3 · ðp4 þ p2Þp1 · ðp4 þ p2Þ − ðp1 · p3Þðp4 þ p2Þ2� T < TQCD, t-channel

b

aInput neutrinos can produce quarks at low temperatures, T < TQCD, for large CM energies in the s-channel.
bInput neutrinos can probe the quark content of mesons at low temperatures, T < TQCD, for large momentum transfers in the

t-channel.
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Here g2 is the SUð2Þ coupling constant, and e ¼ g2 sin θW.
The overlap of A3

μ with the anomalous Aμ is an artifact of
the omission of the charm quark from our analysis. If the
charm quark were included (as it has to be to make the SM
nonanomalous) then there is no coupling to an anomalous
current. As long as there are no charm quarks (always true
at the temperatures where 3χPT is applied) this current
looks like that associated with the anomalous Uð1ÞA.
We read off the currents that couple to the gauge fields

using the definition JðaÞμl=r=V=A ¼ ∂L=∂ðla=ra=V=AÞμ, and
the Lagrangian of Eq. (B3). We transform the results to
obtain the currents that couple to the SM electroweak gauge
fields, Z0

μ, W�
μ and Aμ:

Jþμ ¼ 1ffiffiffi
2

p
�
V�
ud

�
fπ∂μπþ þ iπ0∂μ

↔
πþ −

iffiffiffi
2

p K0 ∂μ
↔
Kþ
�

þV�
us

�
−

iffiffiffi
2

p K0∂μ
↔
πþ þ i

2
π0∂μ

↔
Kþ þ

ffiffiffi
3

p
i

2
η∂μ
↔
Kþ
��

;

ðB6aÞ

J−μ ¼ 1ffiffiffi
2

p
�
Vud

�
fπ∂μπ− − iπ0∂μ

↔
π− þ iffiffiffi

2
p K0∂μ

↔
K−
�

þ Vus

�
iffiffiffi
2

p K0 ∂μ
↔

π− −
i
2
π0∂μ

↔
K− −

ffiffiffi
3

p
i

2
η∂μ
↔
K−
��

;

ðB6bÞ

Jμz ¼ Jμ3 − sin2θWJ
μ
EM; ðB6cÞ

Jμ3 ¼
1

2

�
fπ

�
∂μπ0 þ 1ffiffiffi

3
p ∂μη

�
þ iπþ∂μ

↔
π− þ iKþ∂μ

↔
K−
�
;

ðB6dÞ

JμEM ¼ iπþ∂μ
↔
π− þ iKþ∂μ

↔
K−: ðB6eÞ

These currents agree with the leading-order parts of the
functionals computed in Ref. [132]. The lower half of
Table II enumerates the allowed reactions involving pseu-
doscalar mesons. Table IV shows the squared and spin-
summed matrix elements for two such reactions, computed
using the currents listed in Eq. (B6).
A final complication is that 3χPT, and the currents

derived from it, are valid only when the momentum in the
intermediate weak gauge bosons is low compared to the
energy scale 4πfπ ∼ 1 GeV [131]. The physical currents
that couple to the SM electroweak gauge fields are
continuous functions of this momentum; they approach
the SM free quark currents for large momentum values.
This manifests as the production of quarks in the large CM
energy limit in s-channel reactions, and as “deep-inelastic
scattering” off the mesons’ quark content in the large
momentum-transfer limit in t-channel reactions. These
limits are important to consider at the higher energies

for which we calculate neutrino opacities using 3χPT [the
total energy range is shown in Figs. 8(a) and 8(b)].
We do not self-consistently compute these corrections to

the currents, as it is beyond the scope of this paper. Instead,
we modify the s-channel reaction rates in a phenomeno-
logical manner: we apply a cutoff in the CM energy at
1 GeV with a width of 50 MeV, below which we use the
3χPT currents, and above which we use the SM free quark
currents. We do not incorporate any corrections to t-channel
reactions; this would involve some knowledge of the parton
distribution functions for the mesons involved.
We observe that the squared and spin-summed matrix

elements for tree-level processes, be they for processes
involving leptons and free quarks (computed using the SM
currents), or for those involving pseudoscalar mesons
(computed using 3χPT), are at-most quadratic functions
of the Mandelstam variables. This greatly facilitates a
semiautomated computation of the two-particle to two-
particle reactions’ contribution to the neutrino opacity,
which we very briefly describe next.

b. Rates for two-particle to two-particle reactions

Consider a general two-particle to two-particle reaction,
να þ A → Bþ C, that consumes a massless input neutrino,
να. The particles A, B and C can all be fermions (leptons or
quarks), or contain a pair of bosons (pseudoscalar mesons).
We expand Eq. (7) to write down the following expression
for the scattering rate as a collision integral:

ΓðEναÞ ¼
1

2Eνα

Z
d3 ~pAd3 ~pBd3 ~pCð2πÞ4

× δðpνα þ pA − pB − pCÞS
×
X

jMj2fAðEAÞð1 ∓ fBðEBÞÞð1 ∓ fCðECÞÞ;
ðB7Þ

where the symbol d3 ~p is shorthand for the Lorentz invariant
phase space volume element d3p=½ð2πÞ32EðpÞ�; the sym-
bol

P jMj2 is the absolute value of the matrix element
squared and summed over all spin states; S is a symmetry
factor for identical particles in the initial and/or final states;
and the fðEÞ’s are appropriate Bose-Einstein/Fermi-Dirac
phase space distributions depending on the statistics of
the particles, with plus and minus signs for bosons and
fermions respectively.
We follow the treatment in Ref. [111] to reduce the

nine-dimensional phase space integral of Eq. (B7) to a
numerically manageable three-dimensional integral over
the variables jpAj, jpBj and μB ¼ p̂B · p̂να . This procedure
involves using the delta function to perform the integral
over pC, and using the form of the matrix elements for tree-
level processes to analytically perform the integral over
μA ¼ p̂A · p̂να . We refer the reader to Ref. [111] for more
details. The form of the matrix elements also lends itself to
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easy parametrization in terms of a small number of classes;
along with the procedure described above, this enables a
simple numerical implementation of the calculation of
these reactions’ contributions to the neutrino scattering rate.

2. Rates for neutrinos to go to one-particle
final states

We must also consider the contribution to the neutrino
interaction rate, ΓðEναÞ, from interactions with two-particle
final states (“fusion” or inverse decay). A four-fermion
interaction such as the weak interaction (at E ≪ mW;mZ)
can produce such a final state in two ways. One, applicable
at T < TQCD, is two-body fusion to produce a meson, e.g.
νμ þ μþ → πþ. The other is the “three-body fusion,” e.g.
νμ þ νe þ e− → μ−. By construction, these fusion proc-
esses are the inverse of a decay process. We describe our
treatment of these processes in the rest of this section.

a. Kinematics of two-body fusion

A two-body fusion process must involve a meson in
either the initial or the final state, and—if it is to absorb a
neutrino—must then be semileptonic. The neutral current
processes of this form (e.g. a neutral meson is created by
the fusion of νανα → π0) are helicity forbidden and have
zero amplitude at tree level. The charged current processes
can have either the meson in the initial state and the
charged lepton in the final state (e.g. K−ντ → τ−) or the
meson in the final state (e.g. νμμþ → πþ). The “charged
lepton in the final state” case is possible only if the
charged lepton is more massive than the meson, i.e. if that
lepton is a τ; at T < TQCD this not energetically feasible
for typical values of the incoming particles’ momenta,
since mτ ≫ TQCD. Therefore, for the rest of this section,
we focus on the problem of a charged meson in the final
state. The reaction is

να þ αþ → Aþ ðB8Þ
where α ¼ e or μ and A ¼ π or K. We are interested in the
thermal absorption rate Γfusion for the neutrinos as a
function of temperature T and neutrino energy Eν.
The simplest solution to this problem is to calculate the

rate of the inverse reaction of Eq. (B8) and use detailed
balance. In thermal equilibrium, there is a rate of decays
given by

dN
dVdt

¼ gAΓvac
Aþ→ναα

þ

Z
∞

0

4πp2
AdpA

ð2πÞ3

×
Z

1

−1

dμ0

2

mA

EA
fAðEAÞ½1 − fναðEναÞ�½1 − fαðEαÞ�;

ðB9Þ
where μ0 is the cosine of the angle of emission of the
neutrino in the rest frame of the Aþ, and the factor of

mA=EA is the inverse-Lorentz factor that accounts for the
longer lab-frame lifetime of Aþ at high energies. The
degeneracy factor is gA ¼ 1 for pions and kaons, but we
include it for later use with heavy mesons.
With the help of relativistic kinematics, we see that the

lab-frame neutrino energy is

Eνα ¼
1

2

�
1 −

m2
α

m2
A

�
ðEA þ pAμ

0Þ; ðB10Þ

so that Eq. (B9) can be rewritten in terms of a rate of decays
per unit volume per unit neutrino energy:

dN
dVdtdEνα

¼ gAΓvac
Aþ→ναα

þ

×
Z

∞

pA;min

4πp2
AdpA

ð2πÞ3
1

ð1 −m2
α=m2

AÞpA

×
mA

EA
fAðEAÞ½1 − fναðEναÞ�½1 − fαðEαÞ�:

ðB11Þ

The kinematically allowed range of Aþ momenta is
given by

1

2

�
1 −

m2
α

m2
A

�
ðEA − pAÞ ≤ Eνα ≤

1

2

�
1 −

m2
α

m2
A

�
ðEA þ pAÞ

ðB12Þ

or, using pA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
A −m2

A

p
and with some algebraic

manipulation,

EA ≥ EA;min ¼
ð1 −m2

α=m2
AÞ2m2

A þ 4E2
να

4Eναð1 −m2
α=m2

AÞ
: ðB13Þ

Turning the integral into one over the energy EA of Aþ
gives

dN
dVdtdEνα

¼ gA
Γvac
Aþ→ναα

þ

1 −m2
α=m2

A

×
Z

∞

EA;min

4πmAdEA

ð2πÞ3
× fAðEAÞ½1 − fναðEναÞ�½1 − fαðEαÞ�: ðB14Þ

Now this should equal the fusion rate of neutrinos, which is

dN
dVdtdEνα

¼ 4πE2
να

ð2πÞ3 fναðEναÞΓfusionðEναÞ: ðB15Þ

We therefore conclude that
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ΓfusionðEναÞ ¼
gAmAΓvac

Aþ→ναα
þ

ð1 −m2
α=m2

AÞE2
να

×
Z

∞

EA;min

fAðEAÞ
1 − fναðEναÞ
fναðEναÞ

× ½1 − fαðEαÞ�dEA: ðB16Þ

Next we substitute in the Bose-Einstein or Fermi-Dirac
phase space distributions, and note that Eα ¼ EA − Eνα ,
yielding

ΓfusionðEναÞ ¼
gAmAΓvac

Aþ→ναα
þ

ð1 −m2
α=m2

AÞE2
να

×
Z

∞

EA;min

eEνα=T

ðeEA=T − 1Þðe−EA=TeEνα=T þ 1Þ dEA

¼
gAmAΓvac

Aþ→ναα
þT

ð1 −m2
α=m2

AÞE2
να

Φ

�
EA;min

T
;
EA;min − Eνα

T

�
:

ðB17Þ

Here we have defined the dimensionless integral

Φða; bÞ ¼
Z

∞

0

ea−bdx
ðexþa − 1Þðe−x−b þ 1Þ

¼
X∞
j¼0

X∞
k¼0

Z
∞

0

ea−bð−1Þke−ð1þjÞðxþaÞe−kðxþbÞdx

¼ ea−b
X∞
j¼0

X∞
k¼0

ð−1Þke−ð1þjÞa−kb

1þ jþ k

¼ ea−b
X∞
m¼1

e−ma

m

Xm−1

k¼0

ð−ea−bÞk

¼ ea−b
X∞
m¼1

e−ma

m
1 − ð−ea−bÞm
1þ ea−b

¼ 1

eb−a þ 1

�X∞
m¼1

e−ma

m
þ
X∞
m¼1

ð−1Þm−1 e
−mb

m

�

¼ 1

eb−a þ 1
½− lnð1 − e−aÞ þ lnð1þ e−bÞ�

¼ 1

eb−a þ 1
ln
1þ e−b

1 − e−a
: ðB18Þ

Recall that EA;min is a function of Eνα and is given by
Eq. (B13). We then achieve the final simplification:

ΓfusionðEναÞ¼
gAmAΓvac

Aþ→ναα
þT

υð1þe−Eνα=TÞE2
να

×ln
1þeEνα=Te−ðυ2m2

Aþ4E2
να Þ=ð4υEναTÞ

1−e−ðυ2m2
Aþ4E2

να Þ=ð4υEναTÞ
; ðB19Þ

where υ ¼ 1 −m2
α=m2

A. Note that the numerical calculation
of the logarithm must be treated carefully since for EA;min −
Eνα ≫ T we are taking the logarithm of a number that is
very close to 1. For calculational purposes, we replace the
logarithm in Eq. (B19) by a truncation of its Taylor
expansion at the fifth order wherever the argument deviates
from unity by less than ϵ ¼ 10−3.

b. Rates for two-body fusion processes

The rate parameters for the key two-body fusion reac-
tions are shown in Table V.
Some parameters were not available in the Review of

Particle Properties [1]. Key among these are the decay
parameters for the weak decays of the ρ, ωð782Þ, and
K�ð892Þ vectormesons. Thesemesons are actually extremely
broad resonances, and their principal decay mode is into
lighter mesons. Electromagnetic and especially weak decay
modes are less common. Note that the helicity suppression
arguments that forbid e.g. π0 → νeνe do not apply to the
vector mesons.
The relevant decays of the charged vector mesons ρþ and

K�ð892Þþ can be obtained by noting that the virtual-W
diagram results in an effective vertex

Leff∋i e

2
ffiffiffi
2

p
sin θW

lXγ
μð1 − γ5ÞνX

1

m2
W

e

2
ffiffiffi
2

p
sin θW

× Vudmρfρ½ϵðρ−Þ�μ þ H:c:; ðB20Þ

where fρ is the ρ decay constant, and ½ϵðρ−Þ�μ is the
polarization of the “on-shell” ρ meson. The advantage of
this Lagrangian is that the well-measured decay τþ → ρþντ
is related to the decay of ρþ to a charged lepton and a
neutrino (predicted branching fraction ∼2 × 10−11). From a
tree-level calculation with this Lagrangian, we infer a ratio

Γðρþ → μþνμÞ
Γðτþ → ρþντÞ

¼ 2m3
τðm2

ρ −m2
μÞ2ð2m2

ρ þm2
μÞ

3m3
ρðm2

τ −m2
ρÞ2ð2m2

ρ þm2
τÞ
: ðB21Þ

These rates are included in Table V.
The rate for ρ0 → νXνX can be obtained by replacing the

terms in Eq. (B20) with the Z couplings and propagator:

Leff∋i e
4 sin θW cos θW

νXγ
μð1 − γ5ÞνX

1

m2
Z

effiffiffi
2

p
sin θW cos θW

×

�
1

2
− sin2θW

�
mρfρ½ϵðρ0Þ�μ þ H:c: ðB22Þ

Here the coupling of the vector Z current to the ρ0 meson
was related to the coupling of the vectorW current to the ρþ
using isospin SUð2Þ symmetry. The conclusion is that
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Γðρ0 → νeνeÞ
Γðτþ → ρþντÞ

¼ 8m3
τm3

ρ

3ðm2
τ −m2

ρÞ2ð2m2
ρ þm2

τÞ

×
ð1=2 − sin2θWÞ2

jVudj2
; ðB23Þ

and similarly for the other two flavors. In this relation, we
have used that mW ¼ mZ cos θW .
The same decay rate can be obtained by taking the

ratio

Γðρ0 → νeνeÞ
Γðρ0 → eþe−Þ ¼

1

2

�
1

2 sin θW cos θW

�
2
�
m2

ρ

m2
Z

�
2
�

1

sin θW cos θW

h0jðgu;Vuγiuþ gd;Vdγidþ gs;VsγisÞjα0i
h0jð2

3
uγiu − 1

3
dγid − 1

3
sγisÞjρ0i

�
2

: ðB24Þ

Note that the reaction ρ0 → eþ þ e− is mediated princi-
pally by the photon instead of the Z. The 1

2
is due to the fact

that the photon couples to right-handed as well as left-
handed electrons. The factor of mα=mρ is a combination of
kinematic factors appropriate if the decay constant is the
same for all octet members. The factor of
1=ð2 sin θW cos θWÞ is the ratio of the Z coupling to νe;L
to the photon coupling to eL (or eR). The factor ofm2

ρ=m2
Z is

the ratio of Z to photon propagators. The last term is the
ratio of Z coupling to α0 to γ coupling to ρ0, with gu;V ¼
1
4
− 2

3
sin2θW and gd;V ¼ gs;V ¼ − 1

4
þ 1

3
sin2θW . For the ρ0,

the last term can be computed using isospin symmetry.
The agreement between τ decay and eþe− → ρ0 is

good: the former predicts a partial width for ρ0 → νeνe of

1.01 × 10−11 MeV, and the latter predicts 9.5 × 10−12 MeV,

a difference of only 6%. The average is shown in the table.
No similar decay is allowed (i.e. it is not possible with a

single intermediate vector boson propagator) for the
K�ð892Þ0 or K�ð892Þ0 mesons because the current that
couples to the Z cannot change strangeness.
It is less clear how this procedure should be applied to

the ωð782Þ meson, which has no isospin. One might

approximate it as a pure ðuuþ ddÞ= ffiffiffi
2

p
state (i.e. with

no strange quark), and repeat the argument used for the
ρ0 → eþe− calculation with Eq. (B24). This result is shown
in the table; it is much more uncertain than the calculation
for the ρ0 since mixing with ss is allowed. Nevertheless, the
small rate for ωð782Þ production (as compared with ρ0)
suggests that it leads to an overall small correction to
neutrino opacities.

c. Three-body fusion processes

The final set of reactions that contribute to the neutrino
opacity are three-body fusions. As earlier, these reactions
can be either leptonic or hadronic in nature. We adopt the
prescription outlined in Sec. B 1 a for the hadronic reac-
tions. Given the hadronic and leptonic currents coupling to
the SM electroweak gauge bosons, we can enumerate all
three-body reactions that contribute to the neutrino opacity
in the same manner as earlier. We must keep in mind the
kinematic constraint that the rest mass of the product must
be greater than that of the reactants.
The matrix element for any three-body fusion reaction is

related to one for a two-particle to two-particle reaction by
crossing symmetry. Thus, we do not need to compute any

TABLE V. The parameters for reactions that go into Eq. (B19). Reactions relevant for the neutrino opacity are shown; antineutrinos are
similar. Particle masses are obtained from the Particle Data Group. Decay partial widths are obtained from the sources indicated. All
reactions in which a neutrino can produce a hadronic resonance below 1 GeV are included.

Reaction mA MeV gA υ Γvac
reverse MeV Rate method

Reactions involving the pseudoscalar meson octet
νe þ eþ → πþ 139.57 1 0.999987 3.110 × 10−18 PDG
νμ þ μþ → πþ 139.57 1 0.4269 2.528 × 10−14 PDG
νe þ eþ → Kþ 493.68 1 0.9999989 8.41 × 10−19 PDG
νμ þ μþ → Kþ 493.68 1 0.95419 3.38 × 10−14 PDG

Reactions involving vector mesons with nonzero isospin
νX þ ν̄X → ρ0 775.26 3 1 9.78 × 10−12 Average of τ decay and eþe− → ρ0; assumed isospin SUð2Þa
νe þ eþ → ρþ 775.26 3 0.9999996 7.00 × 10−11 τ decay
νμ þ μþ → ρþ 775.26 3 0.98143 6.80 × 10−11 τ decay
νe þ eþ → K�ð892Þþ 891.66 3 0.9999997 5.45 × 10−12 τ decay
νμ þ μþ → K�ð892Þþ 891.66 3 0.98596 5.33 × 10−12 τ decay

Reactions involving vector mesons with zero isospin
νX þ ν̄X → ωð782Þ 782.65 3 1 7 × 10−13 eþe− → ωð782Þ; assumed quark content ðūuþ d̄dÞ= ffiffiffi

2
p

aThe τ decay gives 1.01 × 10−11 and the eþe− → ρ0 computation gives 9.5 × 10−12.
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new matrix elements for this section. However, we need to
modify the treatment of the kinematics from the previous
case. Consider a general three-body fusion reaction,
να þ Aþ B → C. The scattering rate for an input neutrino
energy Eνα is given by the collision integral:

ΓðEναÞ ¼
1

2Eνα

Z
d3 ~pAd3 ~pBd3 ~pCð2πÞ4

× δðpνα þ pA þ pB − pCÞS
×
X

jMj2fAðEAÞfBðEBÞð1 ∓ fCðECÞÞ: ðB25Þ

All the symbols are defined identically to Eq. (B7). The
procedure to reduce the dimensionality of this integral is
exactly analogous to that in Sec. B 1 b and Ref. [111], with
one important difference. The variables finally left to
numerically integrate over are, as earlier, jpAj, jpBj and
μB ¼ p̂να · p̂B. If we consider the integration domain for the
two-particle to two-particle case, for a given value of jpAj,
energy constraints allow a maximum value of jpBj. For a
three-body fusion, jpBj has no upper bound, which greatly
expands the allowed phase space. With this caveat, the rest
of the procedure proceeds as it did for the other case.
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