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Using three-dimensional simulations, we study the dynamics and final structure of merging solitonic
cores predicted to form in ultralight axion dark matter halos. The classical, Newtonian equations of motion
of a self-gravitating scalar field are described by the Schrodinger-Poisson equations. We investigate
mergers of ground state (boson star) configurations with varying mass ratios, relative phases, orbital
angular momenta and initial separation with the primary goal to understand the mass loss of the emerging
core by gravitational cooling. Previous results showing that the final density profiles have solitonic cores
and Navarro-Frenk-White-like tails are confirmed. In binary mergers, the final core mass does not depend
on initial phase difference or angular momentum and only depends on mass ratio, total initial mass, and
total energy of the system. For nonzero angular momenta, the otherwise spherical cores become rotating
ellipsoids. The results for mergers of multiple cores are qualitatively identical.
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I. INTRODUCTION

If dark matter consists of a cold, ultralight (pseudo)scalar
field, the statistical distribution and structural properties of
collapsed halos may be modified with respect to the
predictions of standard cold dark matter (CDM) [1-4].
String theory compactifications provide a class of well-
motivated candidate particles with axionlike properties
which are naturally ultralight, so-called ultralight axions
(ULASs) [5]. Observations that are sensitive to the small-
scale structure of dark matter halos thus open a unique
window onto fundamental physics.

Roughly speaking, Heisenberg’s uncertainty relation
suppresses gravitational collapse on scales below the de
Broglie wavelength of particles with virial velocities [6,7].
For halo masses of 108 M, at z ~ 5, this is of the order of
kpc if the particle mass is m ~ 10722 eV [8]. The strongest
constraint in this mass range to date follows from the
predicted suppression of early galaxy formation and the
measured optical depth to reionization, yielding m >
10722 eV [3]. While ULAs provide a well-motivated class
of candidate particles, the same phenomenology applies
more generally to any massive scalar field with negligible
self-interactions in a coherent nonthermal state, e.g. as a
consequence of being produced by vacuum realignment,
which include subclasses of scalar field dark matter
(SFDM) [9—-11] and Bose-Einstein condensate (BEC) dark
matter [12—15]. The class of scalars with negligible self-
interactions in the mass range relevant for constraints from
structure formation is often referred to as fuzzy dark matter
(FDM) [6]. We will follow this convention here.
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To clearly distinguish the effects of FDM from other
modifications of CDM with suppressed small-scale growth
such as warm dark matter, it will be necessary to search for
generic signatures of FDM on halo density profiles and
substructure. One such signature may be the existence of
compact solitonic cores embedded in a halo with NFW-like
density profile, found in cosmological simulations that used
the comoving Schrodinger-Poisson (SP) equations to
model FDM [16] (who used the notation YDM to empha-
size the wavelike nature of dark matter). Their density
profiles are governed by well-known equilibrium solutions
for self-gravitating scalar fields in the nonrelativistic regime
whose properties have been studied intensively in the
context of Newtonian boson stars [17-19] and BEC dark
matter [20—23]. The core mass obeys a scaling relation with

the mass of the host halo, MCNMé/ 3, which can be
motivated by identifying the characteristic scale height
of the solitonic core with the virial velocity de Broglie
wavelength [24]. The presence of solitonic cores was used
to fit the profiles of dwarf galaxies and suggested as a
possible solution of the cusp-core problem in CDM
cosmologies [4,25]. In collisions of solitonic cores with
exact phase opposition, destructive interference gives rise
to a short-range repulsive force between the cores [23]. As
the authors of [23] pointed out, in the context of galaxy
cluster observations with indications of an offset between
dark and stellar matter [26,27], this effect can provide an
alternative explanation to self-interacting dark matter.
These results suggest a rich phenomenology of hierar-
chical structure formation in the presence of solitonic halo
cores. They motivate an investigation of their potential
impact on halo substructure, baryonic physics, and the
properties of the earliest generation of galaxies. Ideally,
this would be achieved by direct simulations of the SP
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equations in large cosmological boxes. Requirements on
the spatial resolution of the SP equations, however, limit the
box size of currently affordable simulations to ~1 Mpc? in
the interesting range of m ~ 10722 eV [16], making a
detailed study of halo and subhalo core mergers infeasible.

On the other hand, since the time scales for major
mergers and subhalo evolution (determined by dynamical
friction) are large compared to the gravitational time scales
of the cores, much can be learned from the simplified
problem of isolated mergers of two cores with different
characteristic properties. One of the key questions is the
efficiency of gravitational cooling of the newly formed core
to shed mass and angular momentum as a function of the
binary parameters [28,29]. The results can be used, for
instance, in semianalytic models for galaxy formation in
FDM cosmologies.

In this work, we therefore address the simplified setup of
merging solitonic cores in three-dimensional Schrédinger-
Poisson (SP) simulations. This allows us to perform param-
eter studies of total energy, mass ratio, angular momenta,
and relative phase in order to map out their impact on the
merging time, final core mass, and final angular momentum.
Collisions and mergers of Newtonian boson stars have been
studied extensively in 2D [30,3 1] but we are unaware of fully
three-dimensional simulations with no imposed symmetries.
Furthermore, a systematic investigation of final core masses
after relaxation by gravitational cooling has been lacking so
far. In addition to studying binary mergers, we also relax the
assumption of isolated events by considering mergers of
multiple cores in fast succession in order to compare our
results with those presented in [24].

The remainder of this paper is structured as follows. In
Sec. II we briefly outline the underlying theory. Our numeri-
cal methods are described in Sec. I1I. In Sec. IV we summarize
results from an in depth analysis of binary mergers of two
solitonic cores. In Sec. V we extend this investigation to
mergers of multiple cores. We conclude in Sec. VI.

I1. SOLITONIC HALO CORES

The nonrelativistic dynamics of a coherent massive
scalar field can be described by a function y which is
governed by the Schrodinger-Poisson (SP) equations

2
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where the density is defined as p = |y|?. Simulations of the
(comoving) SP equations with cosmological initial con-
ditions show the formation of halo cores with solitonic
profiles [16] that coincide with spherically symmetric,
stationary solutions of the SP equations otherwise known
as (nonrelativistic) boson stars [32] [18,19]. Their radial
density profile is well approximated by [24]
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where r,. is the radius at which the density drops to one-half
its peak value and the central density is given by
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po=3.1x 1015< (4)

As in [24], we define the core mass M, as the mass
enclosed by r,. and note that in the case of a core with total
mass M it is
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[24] show evidence for the same scaling relation between
M., E, and M for the final state of multiple core mergers
where E and M refer to the total energy and mass of the
system instead of just the core. We revisit this claim in
Sec. V below.

The SP system and consequently the stationary solutions
obey a scaling symmetry of the form [33]:

{t,x,U,w,p} = {272,274, 220, 2%, 2%}, (6)

where 1 is an arbitrary parameter. Note that x o« p~!/4
consistent with the relation between the average density of
the core and its Jeans length [6]. Throughout this paper we
use an axion mass m = 2.5 x 1072? eV.

III. NUMERICAL METHODS

The Schrodinger equation in comoving coordinates [7]
was implemented into the cosmological hydro code Nyx
[34] in order to facilitate its later use for combined
simulations of dark matter and baryons. The field y is
discretized on a grid as an additional dark matter compo-
nent and integrated using a 4th order Runge-Kutta solver.
We employed the multigrid Gauss-Seidel red-black Poisson
solver provided by Nyx to compute the gravitational
potential. The cosmological scale factor was set to a = 1
in all of the simulations reported here. All simulations used
a grid size of 5123 cells.

In all runs, the total mass

and energy
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of the system was monitored. In the second line of Eq. (8),
we used the Madelung representation [35]

W= \/EeiS/h’

and in the last line we divided the total energy into gradient
energy K,, kinetic energy K,, and potential energy W.
Besides total energy, each contribution was measured
separately in order to follow the dynamics of a particular
system more closely. We use units [M] =M, and
[E] = M km?s~2.

In addition, conservation of total angular momentum

Lipl =, vl (Cim s

v=VS/m 9)

m

1 in
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was verified assuming that the density falls off sufficiently
rapidly that boundary terms vanish.

Owing to Eq. (6), the quantities defined above obey the
scaling relations

{M.K,.K,,W.L —>iM 2PK, K, WAL} (11)

During the relaxation of the system, waves emitted by
the merger carry mass and energy toward the numerical
boundaries. In order to avoid spurious reheating from
reflected waves, we follow [18] and place a “sponge” in
the outer regions of the grid by adding an imaginary
potential

V(r) = —éVo{Z + tanh[(r — r,)/3] — tanh(r, /) }
x O[r—r,. (12)

to the Schrodinger equation which efficiently absorbs
matter. Here r is the distance from the center of the
numerical domain. The Heaviside function ® ensures
that the nonphysical sponge is only added in the outer
regions r > r,. Let ry be half the box size. We then set
r,=1/8ry, ry=(ry+r,)/2, 6= (ry—r,) and
Vy = 0.6. Although our numerical domains are always
cubic, we use a spherical sponge since the final states of our
simulations are approximately spherically symmetric.

In all runs, the time steps were chosen such that they
fulfill the Courant-Friedrichs-Lewy (CFL) condition [36]

PHYSICAL REVIEW D 94, 043513 (2016)

m h
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where in all conducted runs the first argument is more
stringent than the second.

We tested our code by considering a single solitonic
core. It was shown in [18,30] that it is a virialized attractor
solution of a broad class of initial conditions. Hence, we
expect the core to be stable with low-amplitude excitations
caused by numerical errors.

The excitation manifests itself in a periodic variation in
the central density. Its amplitude decreases faster than
quadratically with resolution implying fast convergence
of our code. The central density varies at most on the
percent level if r. is resolved by at least 3 cells. For the
simulations described below, the typical resolution is greater
than 4 cells for all binary mergers and most multiple
mergers. The oscillation frequency matches the one found
in [18]. While kinetic and potential energy oscillate with
opposite phase, total mass and energy are conserved to better
than 1073, The oscillation of y in the complex plane has the
expected frequency [18].

We checked convergences of our code also for binary
mergers. Increasing the resolution by a factor of two alters the
results only negligibly. In all runs conserved quantities stay
constant to better than 1073 until matter is absorbed by the
sponge.

We use the yt toolkit [37] for our analysis of numerical
data and for the volume rendering of Fig. 4 and Fig. 8. Core
profiles were fitted employing the radial density profile
routines around the density maxima. Although cores with
nonvanishing angular momentum are not expected to be
perfectly spherical, we find that they can be well fitted by
Eq. (3). Below, we therefore always assume spherical
symmetry of the final state.

IV. BINARY CORE MERGERS

One of the distinctive features of hierarchical structure
formation in FDM cosmologies is the presence of halo and
subhalo cores evolving under a sequence of binary mergers
which, to very good approximation, can be considered as
isolated events.

As a consequence of the scaling relations in Eq. (6), the
initial conditions for an arbitrary binary collision are fully
parametrized by few defining parameters, i.e. the relative
velocity v and distance d between the cores, the mass ratio
u and total mass M, the phase difference ®, and the angular
momentum L, perpendicular to the orbital plane chosen to
be in the x-y-plane.

There are two distinct regimes. If the two cores are
unbound (E > 0) they superpose and pass through each
other almost undisturbed [30,31,38,39], behaving like
solitons in this regime. If instead the cores are bound
(E < 0), they merge rapidly forming a new core [30]. Our
main result is that the mass of the emerging core is largely
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independent of the initial angular momentum, distance and
relative phase, but depends on the ratio of initial core
masses and total energy.

In order to analyze the unbound case, we consider two
solitonic cores with y=M/My =M. /M., =2, L, =
0 M, Mpc km/s and v = 4 km/s. The cores are scaled
such that the heavier one has a central density

p(0) = 1.36 x 10" M Mpc=3, (14)
roughly corresponding to the present cosmic critical
density, giving a core radius r. = 11.6 kpc. We emphasize
that all results are independent of this overall scaling
of the problem. The two cores are placed centrally
in a 512 kpc cubic box with d = 256 kpc yielding E=
8.2 x 10°M km? s—2.
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Figure 1 shows the density profiles along the symmetry
axis and the evolution of global quantities (mass and energy
components) for two runs with relative phases ® =0
and ® = z. The final density distribution as well as the
evolution of the global quantities are practically indistin-
guishable in both cases. Only the interference pattern at the
time of superposition depends on the relative phase.

The observed interference pattern follows directly from a
superposition of the two solitonic cores. Initially, the cores
are placed at £3(7 = 0) = +d/2. The corresponding wave
function w(r, x) is given by

ll/(f’ x) — A1(|x +5C|)ei(kx/2+wz+<b/2)

+A2(|X _ 5\(| ei(—kx/2+mt—<1>/2)

(15)
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Head-on collision of two cores with mass ratio # = 2 and high relative velocity. Upper panels: density profiles at different

times for relative phases ® = 0 (left) and ® = z (right) along the symmetry axis. Numerical results are shown for the initial and final
state as well as for the time of maximal interference. For comparison, we plot the interference pattern predicted from Eq. (16) at the same
time. Deviations can be attributed mostly to a small offset in the time of maximal interference. Lower panels: mass and energy
contributions. Total energy and mass are conserved, while kinetic energy associated to the cores’ relative motion (K ) is transferred into
the interference pattern yielding large values of K, during the interaction. The equality of the lower panels shows the independence of

the evolution with respect to the initial phase shift ®.
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where (A;)? and (A,)? are the density profiles of the two
cores and k = mv) /i is the wave number corresponding to
their relative velocity. The time #;,, of maximal interference
is defined by %(#;,) = 0. At that time,

Jw (tine %) = A ([x])* + Ax([x])?

+ 2A,(|x])As(|x]) cos(kx + @)).  (16)
We thus expect that the period of the interference pattern is
given by the de Broglie wave length

2n  2rzh
A= = — (17)
corresponding to the relative velocity. Here, 4 = 12 kpc. It
is therefore well resolved by 12 cells.

The interference pattern predicted by Eq. (16) matches
the numerical results as seen in Fig. 1. During the
interaction, gravity slightly contracts the density profiles.
Neglecting this small effect, we see that they remain in a
superposition state of two solitonic cores even during their
interaction. As expected, the potential energy mildly
increases during the collision, while mass and total energy
are conserved. During the collision, the kinetic energy from
the cores’ relative motion is stored in the interference
pattern, strongly boosting the gradient energy contribution
K,. At later times, the energy is transferred back to the
cores’ motion. There is no significant decrease in velocity
or deformation of the density profiles due to the collision.
The cores thus indeed behave like solitons in this regime.

The evolution of a bound binary system with negative
total energy is very different. In this case, the cores rapidly
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merge and relax to a new solitonic core by gravitational
cooling [40]. One interesting exception is the case of binary
collisions with perfect phase opposition ¢ = 7 and equal
masses ¢ = 1 during which the destructive interference
gives rise to a repulsive effect, causing the cores to bounce
off each other [23].

For our study of bound binary collisions, we placed two
halos along the central axis in a 1024 kpc cubic box with
d = 256 kpc. As before, the cores are scaled such that the
central density of the heavier core obeys p(0) = p... We
need the larger box compared to the previous runs since the
two halos emit mass while merging. We require this mass to
be able to propagate sufficiently far away from the merger
before being absorbed inside the sponge.

In Fig. 2, we show the mass, energy and angular
momentum evolution of two representative runs with
p=1, v, =0km/s and L, =24 x10*M Mpc km/s.
We again emphasize that the system can be arbitrarily
rescaled using Eq. (6) without changing the results. On the
left, the two cores are in phase. They merge after approx-
imately one free fall time, #; = 0.94 Mpc/kms, and form a
new excited solitonic core within roughly one oscillation
period. The core’s frequency f =8 km/Mpc/s, implies
that it consists of only 70% of the initial mass [18] whereas
approximately 30% of the initial total mass was radiated off
by gravitational cooling. This estimate is confirmed by the
evolution of the total core mass M, = M, + M, and the
total mass M shown in Fig. 3. Initially, M, = iM as
expected, decreasing roughly by 30% during the merger.
After a while, the ejected mass reaches the sponge and is
absorbed. This does not alter the results, since in all
conducted runs, the ejected mass is roughly an order of
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FIG.2. Mass, energy and angular momentum evolution of two representative binary collisions with initial values 4 = 1, v; = 0 km/s,
and L, = 2.4 x 10*M, Mpc km/s (rescaled by 10%). Cores with equal phase (® = 0) immediately merge (left). In perfect phase
opposition (P = ), the two cores first mutually repel each other multiple times before merging (right). The bounces are indicated by
black arrows. The emerging cores are excited as seen by the oscillations of gradient and gravitational energy, K, and W. The loss of total
mass, energy, and angular momentum results from matter absorption inside the sponge.
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FIG. 3. Evolution of the core (solid lines) and total (dashed

lines) mass for binary mergers. The triplets identify the point
(u, ®,L.) in parameter space. Angular momentum is given in
units of [L,] = 10*M, Mpc km/s.

magnitude above the escape velocity v, = 1/2GM/r and
will not fall back onto the core.

In the case of solitonic cores with equal mass (¢ = 1) but
opposite phase (¢ = x), the destructive interference gives
rise to a repulsive interaction, causing the cores to bounce off
each other several times before merging (cf. right panel
of Fig. 2). This behavior was also observed in [23]. The
arrows indicate the bounces which result in a noticeable
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compression of the individual cores. Radiation produced by
each encounter results in a damping of the bounces and a
decreasing amplitude of the compression. Eventually, the
symmetry is broken by the accumulation of small numerical
errors producing a slight phase shift, causing the cores to
merge in the end. At later times, the evolution is qualitatively
identical to the case with & = 0 as can be seen by comparing
the core and halo mass evolution in Fig. 3.

Volume rendered images of both runs are shown in
Fig. 4. Especially in the upper panels, a noticeable
eccentricity of the newly formed core can be recognized.
These rotating ellipsoids are qualitatively those investigated
in [22,41-44]. In particular, their internal velocity fields
roughly confine density distributions on elliptical orbits. A
slice through a representative ellipsoid is shown in Fig. 5.
Further analysis will be the subject of future work.

We tested the sensitivity of the repulsive interaction to
small deviations from exact phase opposition by consid-
ering a phase difference ® = 7/8x. In this case, only a
single bounce occurs before the cores merge. Similarly, for
a mass ratio u = 2 and ¢ = x the cores merge without any
observable repulsion. These results suggest that in any
realistic scenario absent finely tuned phase opposition and
mass equality, repulsive behavior of colliding solitonic
cores can be ignored for all practical purposes.

We conducted a series of binary mergers spanning
the parameter space (u, ®,L.). For all runs, we set
vy =0km/s, p <2, and L, <7.2x 10*M Mpc km/s
so that the cores are bounded and overlap when reaching
the semiminor axis. Our main result is that the core mass

FIG. 4. Volume rendered images of two representative binary mergers in phase (top) and with opposite phase (bottom) showing the
central region of the computational domain at t = 0.7, r = 0.94, r = 2.0 and ¢t = 7.0 in Mpc/kms.
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FIG. 5. Slice through the symmetry plane of a representative
ellipsoid. Its density is color-coded while arrows denote the
strength and direction of its velocity field. It roughly forms closed
elliptical orbits.

evolution is nearly independent of these parameters within
the considered ranges. In all cases, the mass of the
emerging core is approximately 70% of the sum of the
progenitors’ core masses. The core and total mass evolution
of eight representative runs are shown in Fig. 3. The ratio
between final core and total masses is approximately one
fifth implying that 80% of the remaining bound mass
resides in the solitonic core while the remainder has formed
a diffuse halo around it. Note that due to the restriction to
small angular momenta and mass ratios, the total energy
varies only very little for all runs. The energy dependent
final core masses M.(E) of the above runs are shown in
Fig. 7 (run 1).

1e6 Evolution of M,
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Assuming a constant fraction of final to initial core
masses of ~70% even for u # 1 implies that the final core is
less massive than the more massive progenitor if u > 7/3.
We therefore expect the change of M. of the more massive
core to saturate at roughly this mass ratio. This is
qualitatively confirmed by our simulations. For u = 2,
the less massive core is completely disrupted and forms
a diffuse halo. Figure 6 shows the core mass evolution for
different mass ratios (left). Here, the initial core mass
corresponds to the more massive core. On the right, the
final radial density profiles can be seen. They consist of a
solitonic core well fitted by Eq. (3) and a shallow outer tail.
Interestingly, the tails in all cases approximately follow a
power law decline with a logarithmic slope of roughly —3
as expected for the outer parts of a Navarro-Frenk-White
(NFW) halo profile. This behavior is consistent with the
results of [24] but finding NFW-like halos already in the
case of binary mergers suggests that it may be more robust
than previously expected.

The fitted core masses are mildly energy dependent as
can be seen in Fig. 7 (run 2). They very broadly follow a
power law with

M. = 656 < E]
M

1/4
M3> MY? km=/2 12, (18)

In Fig. 7, the final core mass M. is normalized to the initial
total mass M in order to obtain an invariant relation with
respect to the scaling properties given in Eq. (11). For a
single solitonic core, M./M = 0.237 and |E|/M?> = 1.7 x
107MZ? km? s~ as indicated by the black star in the
upper right corner. This point is consistent with Eq. (18)
since a single core is the limit of infinite mass ratio. A
single core is the ground state solution of the SP system. It

1012 Final Radial Density Profiles

1011 |

1010 |

10°F

108

107}

10°

—

[x x p=1 . u=15 v 4 ,,:4]

FIG. 6. Binary mergers with different mass ratios u. Left: evolution of the core mass of the more massive core. Right: final radial
density profiles. Solid lines represent fitted core profiles as defined in Eq. (3). The black line corresponds to =3 as expected for the outer

parts of an NFW profile.
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FIG. 7. Core mass as a function of the total energy and mass.
The star indicates the relation for a single solitonic core. Run 1
denotes the simulations with almost equal total energy for
different angular momenta and phases. Runs 2 and 3 show the
dependence on mass ratio ¢ and total energy E, respectively.
Multiple core mergers are shown as run 4 (cf. Sec. V). See main
text for details.

is therefore the point of minimum energy and maximum
core mass per total mass.

Finally, we conducted a series of runs with & =0,
=1, L, =0 and varying d and v|| over a wide range of
energies. The fitted final core masses are collectively
shown in Fig. 7 (run 3). The dashed line corresponds to

M EIN\ 1/6
"_46.7<3|> MY km™ B3 (19)
M M

indicating a weaker energy dependence for 4 = 1 than for
larger mass ratios.

In conclusion, our results for binary mergers show
consistently that the final core mass does not depend on

FIG. 8.
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initial phase difference but only on mass ratio, total initial
mass, and total energy of the system. It depends on angular
momentum, relative distance and velocity only via the total
energy.

V. MERGERS OF MULTIPLE CORES

In order to study more complex, nonequilibrium prob-
lems we follow [24] and investigate mergers of multiple
cores. From our previous analysis we know that the
merging time of binaries is negligible with respect to the
typical freefall time. We can therefore safely assume that a
multimerger consists of a series of binary mergers within a
deeper gravitational well.

For all runs, we draw halo masses from a Gaussian
distribution within the 2¢-band around a chosen average
halo mass. We then place the halos uniformly inside the
central numerical domain, rejecting positions that would
result in an overlap of halos or close proximity to the outer
sponge. Rejected halo positions are redrawn until accept-
able. Halos are initialized with random phases. We simu-
lated multimergers of up to 13 halos. As a typical example,
Fig. 8 shows the volume rendered images of a multimerger
with 13 halos at three different times.

The final radial density profiles for all runs are presented
in Fig. 9. As in the case of binary mergers and in full
agreement with [24], their central regions can be fitted with
a solitonic core profile, Eq. (3), while the tails fall off like
r~3 consistent with the outer profile of an NFW halo. The
final core masses are summarized in Fig. 7 (run 4). We
cannot confirm the M, ~ (E/M)'/? scaling shown in [24]
which may in part be a consequence of the fact that, in
contrast with their analysis, all results in Fig. 9 are
normalized to the initial total mass M. This eliminates
any scaling with energy originating only from the scale
invariance of the SP system, making the results more
sensitive to the intrinsic energy dependence of multimerg-
ers. We verified that this discrepancy is unrelated to the
initial phase shifts of individual halos.

Density distribution of a multimerger simulation with 13 halos at different times.
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FIG. 9. Final radial density profiles for all conducted multi-
merger runs. Solid lines represent fitted core profiles as defined in
Eq. (3). The black line corresponds to »~> as expected for the
outer parts of an NFW profile.

VI. CONCLUSIONS

We presented an investigation of merging solitonic
halo cores in full three-dimensional simulations of the
Schrodinger-Poisson (SP) equations without assuming any
symmetries. These cores have been predicted to form in the
center of ultralight axion dark matter halos. Their structure
1s identical to Newtonian oscillaton solutions also known as
boson stars.

Our results demonstrate a number of robust features of
binary core mergers. Qualitatively, bound systems rapidly
merge within roughly one oscillation period of the emerg-
ing core after approaching a distance at which the char-
acteristic core radii overlap. It was shown in [45] that
luminous matter cannot follow these extreme dynamics and
is expelled from the gravitational potential.

During this dynamical phase, gravitational cooling is
most efficient and essentially determines the loss of mass
and angular momentum of the merged core, while contin-
uing to dampen its excitations during the ensuing several
oscillation periods. One exception is the case of perfect
phase opposition and equal masses in which case the cores
initially repel each other, leading to a bouncing behavior
until small accumulated phase differences again cause a
rapid merger on a dynamical time scale. Owing to the fine
tuning required for this situation, we do not consider it
relevant in the context of cosmology.

PHYSICAL REVIEW D 94, 043513 (2016)

The mass of the emerging core does not directly depend
on the binary angular momentum, initial distance, and
phase shift between the solitonic cores. It does depend
weakly on their mass ratio and total energy. The mass of the
more massive core can only be enhanced by binary mergers
with mass ratio u < 7/3. Otherwise, the smaller core is
completely disrupted and forms an NFW-like halo around
the more massive one.

Neither for the binary mergers nor for the sample of
multiple core mergers we were able to reproduce the
scaling of core mass with total energy and mass,
M, ~ (E/M)'/?, reported in [24]. After normalizing our
results to equal total mass using the scale invariance of the
SP equations in order to eliminate spurious scaling behav-
ior, we find no convincing evidence for a universal scaling
of core mass with total energy. More detailed analysis with
larger ranges of M, and E and comparison to cosmological
simulations of the SP system are needed to further elucidate
this discrepancy.

The final states of both the binary and multimergers are
roughly spherical symmetric. We confirm that their radial
density profiles consist of a solitonic core well modeled by
Eq. (3) and an NFW-like outer region falling off as =3 [24].
If the system is initialized with nonzero total angular
momentum, we qualitatively recover the rotating ellipsoidal
cores studied in [22,41-44].

Our results are useful for a refined modeling of the
properties of halo cores in FDM cosmologies, for instance
in stochastic merger tree realizations of the halo and
subhalo population [46]. This approach complements other
simplified structure formation models that include the
effects of the linear transfer function [47,48] and mass-
dependent collapse barrier [2,3,49] but neglect the presence
of solitonic cores. They might also help to understand the
relation of core and halo masses in cosmological FDM
simulations [24]. Eventually, the consequences of solitonic
cores for galaxy evolution will have to be better understood
in order to tighten the constraints on ultralight axion masses
from reionization, the UV luminosity function, or halo
substructure. Simulations of more realistic cosmological
setups including baryonic physics are in preparation.

ACKNOWLEDGMENTS

We thank C. Behrens, X. Du, D.J.E. Marsh, and J.
Veltmaat for helpful discussions. The simulations were
performed with resources provided by the North-German
Supercomputing Alliance (HLRN).

043513-9



SCHWABE, NIEMEYER, and ENGELS

[1] D.J. Marsh and P.G. Ferreira, Phys. Rev. D 82, 103528
(2010).

[2] D.J.E. Marsh and J. Silk, Mon. Not. R. Astron. Soc. 437,
2652 (2014).

[3] B. Bozek, D.J. E. Marsh, J. Silk, and R. F. G. Wyse, Mon.
Not. R. Astron. Soc. 450, 209 (2015).

[4] D.J.E. Marsh and A.-R. Pop, Mon. Not. R. Astron. Soc.
451, 2479 (2015).

[51 A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper,
and J. March-Russell, Phys. Rev. D 81, 123530 (2010).

[6] W. Hu, R. Barkana, and A. Gruzinov, Phys. Rev. Lett. 85,
1158 (2000).

[7] T.-P. Woo and T. Chiueh, Astrophys. J. 697, 850 (2009).

[8] P.-H. Chavanis, Phys. Rev. D 84, 043531 (2011).

[9] A. Sudrez and T. Matos, Mon. Not. R. Astron. Soc. 416, 87
(2011).

[10] L. A. Martinez-Medina and T. Matos, Mon. Not. R. Astron.
Soc. 444, 185 (2014).

[11] V. H. Robles, V. Lora, T. Matos, and F. J. Sanchez-Salcedo,
Astrophys. J. 810, 99 (2015).

[12] J. A. Frieman, C.T. Hill, A. Stebbins, and 1. Waga, Phys.
Rev. Lett. 75, 2077 (1995).

[13] T. Matos, F. S. Guzman, and L. A. Urefia-L6pez, Classical
Quantum Gravity 17, 1707 (2000).

[14] A. Suarez, H.V. Robles, and T. Matos, in Accelerated
Cosmic Expansion: Proceedings of the Fourth International
Meeting on Gravitation and Cosmology, edited by C. Moreno
Gonzdlez, E.J. Madriz Aguilar, and M.L. Reyes Barrera
(Springer International Publishing, New York, 2014) p. 107.

[15] J.-W. Lee, Phys. Lett. B 756, 166 (2016).

[16] H.-Y. Schive, T. Chiueh, and T. Broadhurst, Nat. Phys. 10,
496 (2014).

[17] R. Ruffini and S. Bonazzola, Phys. Rev. 187, 1767 (1969).

[18] F. S. Guzman and L. A. Urefia-L6pez, Phys. Rev. D 69,
124033 (2004).

[19] S.L. Liebling and C. Palenzuela, Living Rev. Relativ. 15, 1
(2012).

[20] M. R. Baldeschi, G. B. Gelmini, and R. Ruffini, Phys. Lett.
122B, 221 (1983).

[21] S.-J. Sin, Phys. Rev. D 50, 3650 (1994).

[22] T. Rindler-Daller and P.R. Shapiro, in Accelerated Cosmic
Expansion: Proceedings of the Fourth International Meeting
on Gravitation and Cosmology, edited by C. Moreno Gonzdlez,
J.E. Madriz Aguilar, and L. M. Reyes Barrera (Springer
International Publishing, Cham, 2014), pp. 163-182.

[23] A.Paredes and H. Michinel, Phys. Dark Univ. 12, 50 (2016).

[24] H.-Y. Schive, M.-H. Liao, T.-P. Woo, S.-K. Wong, T.
Chiueh, T. Broadhurst, and W.-Y.P. Hwang, Phys. Rev.
Lett. 113, 261302 (2014).

PHYSICAL REVIEW D 94, 043513 (2016)

[25] E. Calabrese and D. N. Spergel, arXiv:1603.07321.

[26] E.R. Carrasco, P. L. Gomez, T. Verdugo, H. Lee, R. Diaz,
M. Bergmann, J. E. H. Turner, B. W. Miller, and M. J. West,
Astrophys. J. Lett. 715, L160 (2010).

[27] R. Massey et al., Mon. Not. R. Astron. Soc. 449, 3393
(2015).

[28] E. Seidel and W.-M. Suen, Phys. Rev. Lett. 72, 2516
(1994).

[29] F. S. Guzman and L. A. Urefia-Lépez, Astrophys. J. 645,
814 (20006).

[30] A. Bernal and F.S. Guzmdn, Phys. Rev. D 74, 103002
(2006).

[31] J. A. Gonzalez and F. S. Guzman, Phys. Rev. D 83, 103513
(2011).

[32] To emphasize that this work is focused on galactic rather
than stellar scales, we will refer to these solutions as
(solitonic) cores instead of boson stars. All of our results,
however, are independent of this interpretation.

[33] S.U. Ji and S.J. Sin, Phys. Rev. D 50, 3655 (1994).

[34] A.S. Almgren, J. B. Bell, M. J. Lijewski, Z. Luki¢, and E.
Van Andel, Astrophys. J. 765, 39 (2013).

[35] E. Madelung, Z. Phys. 40, 322 (1927).

[36] M. Adeel Ajaib, arXiv:1302.5601.

[37] M.J. Turk, B.D. Smith, J.S. Oishi, S. Skory, S.W.
Skillman, T. Abel, and M. L. Norman, Astrophys. J. Suppl.
Ser. 192, 9 (2011).

[38] M. Naraschewski, H. Wallis, A. Schenzle, J. I. Cirac, and P.
Zoller, Phys. Rev. A 54, 2185 (1996).

[39] A. Rohrl, M. Naraschewski, A. Schenzle, and H. Wallis,
Phys. Rev. Lett. 78, 4143 (1997).

[40] A. Bernal and F.S. Guzman, Phys. Rev. D 74, 063504
(2006),.

[41] T. Rindler-Daller and P.R. Shapiro, ASP Conf. Ser. 432,
244 (2010).

[42] T. Rindler-Daller and P. R. Shapiro, Mon. Not. R. Astron.
Soc. 422, 135 (2012).

[43] B. Li, T. Rindler-Daller, and P. R. Shapiro, Phys. Rev. D 89,
083536 (2014).

[44] T. Rindler-Daller and P. R. Shapiro, Mod. Phys. Lett. A 29,
1430002 (2014).

[45] F. S. Guzman, J. A. Gonzilez, and J. P. Cruz-Pérez, Phys.
Rev. D 93, 103535 (2016).

[46] X. Du, C. Behrens, and J. C. Niemeyer, arXiv:1608.02575.

[47] H.-Y. Schive, T. Chiueh, T. Broadhurst, and K.-W. Huang,
Astrophys. J. 818, 89 (2016).

[48] A. Sarkar, R. Mondal, S. Das, S. K. Sethi, S. Bharadwaj, and
D.J. E. Marsh, J. Cosmol. Astropart. Phys. 04 (2016) 012.

[49] D.J. E. Marsh, arXiv:1605.05973.

043513-10


http://dx.doi.org/10.1103/PhysRevD.82.103528
http://dx.doi.org/10.1103/PhysRevD.82.103528
http://dx.doi.org/10.1093/mnras/stt2079
http://dx.doi.org/10.1093/mnras/stt2079
http://dx.doi.org/10.1093/mnras/stv624
http://dx.doi.org/10.1093/mnras/stv624
http://dx.doi.org/10.1093/mnras/stv1050
http://dx.doi.org/10.1093/mnras/stv1050
http://dx.doi.org/10.1103/PhysRevD.81.123530
http://dx.doi.org/10.1103/PhysRevLett.85.1158
http://dx.doi.org/10.1103/PhysRevLett.85.1158
http://dx.doi.org/10.1088/0004-637X/697/1/850
http://dx.doi.org/10.1103/PhysRevD.84.043531
http://dx.doi.org/10.1111/j.1365-2966.2011.19012.x
http://dx.doi.org/10.1111/j.1365-2966.2011.19012.x
http://dx.doi.org/10.1093/mnras/stu1453
http://dx.doi.org/10.1093/mnras/stu1453
http://dx.doi.org/10.1088/0004-637X/810/2/99
http://dx.doi.org/10.1103/PhysRevLett.75.2077
http://dx.doi.org/10.1103/PhysRevLett.75.2077
http://dx.doi.org/10.1088/0264-9381/17/7/309
http://dx.doi.org/10.1088/0264-9381/17/7/309
http://dx.doi.org/10.1016/j.physletb.2016.03.016
http://dx.doi.org/10.1038/nphys2996
http://dx.doi.org/10.1038/nphys2996
http://dx.doi.org/10.1103/PhysRev.187.1767
http://dx.doi.org/10.1103/PhysRevD.69.124033
http://dx.doi.org/10.1103/PhysRevD.69.124033
http://dx.doi.org/10.12942/lrr-2012-6
http://dx.doi.org/10.12942/lrr-2012-6
http://dx.doi.org/10.1016/0370-2693(83)90688-3
http://dx.doi.org/10.1016/0370-2693(83)90688-3
http://dx.doi.org/10.1103/PhysRevD.50.3650
http://dx.doi.org/10.1016/j.dark.2016.02.003
http://dx.doi.org/10.1103/PhysRevLett.113.261302
http://dx.doi.org/10.1103/PhysRevLett.113.261302
http://arXiv.org/abs/1603.07321
http://dx.doi.org/10.1088/2041-8205/715/2/L160
http://dx.doi.org/10.1093/mnras/stv467
http://dx.doi.org/10.1093/mnras/stv467
http://dx.doi.org/10.1103/PhysRevLett.72.2516
http://dx.doi.org/10.1103/PhysRevLett.72.2516
http://dx.doi.org/10.1086/504508
http://dx.doi.org/10.1086/504508
http://dx.doi.org/10.1103/PhysRevD.74.103002
http://dx.doi.org/10.1103/PhysRevD.74.103002
http://dx.doi.org/10.1103/PhysRevD.83.103513
http://dx.doi.org/10.1103/PhysRevD.83.103513
http://dx.doi.org/10.1103/PhysRevD.50.3655
http://dx.doi.org/10.1088/0004-637X/765/1/39
http://dx.doi.org/10.1007/BF01400372
http://arXiv.org/abs/1302.5601
http://dx.doi.org/10.1088/0067-0049/192/1/9
http://dx.doi.org/10.1088/0067-0049/192/1/9
http://dx.doi.org/10.1103/PhysRevA.54.2185
http://dx.doi.org/10.1103/PhysRevLett.78.4143
http://dx.doi.org/10.1103/PhysRevD.74.063504
http://dx.doi.org/10.1103/PhysRevD.74.063504
http://dx.doi.org/10.1111/j.1365-2966.2012.20588.x
http://dx.doi.org/10.1111/j.1365-2966.2012.20588.x
http://dx.doi.org/10.1103/PhysRevD.89.083536
http://dx.doi.org/10.1103/PhysRevD.89.083536
http://dx.doi.org/10.1142/S021773231430002X
http://dx.doi.org/10.1142/S021773231430002X
http://dx.doi.org/10.1103/PhysRevD.93.103535
http://dx.doi.org/10.1103/PhysRevD.93.103535
http://arXiv.org/abs/1608.02575
http://dx.doi.org/10.3847/0004-637X/818/1/89
http://dx.doi.org/10.1088/1475-7516/2016/04/012
http://arXiv.org/abs/1605.05973

