PHYSICAL REVIEW D 94, 043512 (2016)
Extensive investigation of the generalized dark matter model

Michael Kopp, Constantinos Skordis,” and Dan B. Thomas*

Department of Physics, University of Cyprus, 1, Panepistimiou Street, 2109 Aglantzia, Cyprus
(Received 25 May 2016; published 10 August 2016)

The cold dark matter (CDM) model, wherein the dark matter is treated as a pressureless perfect fluid,
provides a good fit to galactic and cosmological data. With the advent of precision cosmology, it should be
asked whether this simplest model needs to be extended, and whether doing so could improve our
understanding of the properties of dark matter. One established parametrization for generalizing the CDM
fluid is the generalized dark matter (GDM) model, in which dark matter is an imperfect fluid with pressure
and shear viscosity that fulfill certain postulated closure equations. We investigate these closure equations

and the three new parametric functions they contain: the background equation of state w, the speed of sound
2

vis®
the perturbed Einstein equations in a flat GDM-dominated universe and discuss the main effects of the three
parameters on the cosmic microwave background (CMB). Our analysis suggests that the CMB alone is not
able to distinguish between the GDM sound speed and viscosity parameters, but that other observables,
such as the matter power spectrum, are required to break this degeneracy. In order to elucidate further the
meaning of the GDM closure equations, we also consider other descriptions of imperfect fluids that have a
nonperturbative definition and relate these to the GDM model. In particular, we consider scalar fields, an
effective field theory (EFT) of fluids, an EFT of large-scale structure, nonequilibrium thermodynamics and
tightly coupled fluids. These descriptions could be used to extend the GDM model into the nonlinear
regime of structure formation, which is necessary if the wealth of data available on those scales is to be
employed in constraining the model. We also derive the initial conditions for adiabatic and isocurvature
perturbations in the presence of GDM and standard cosmological fluids and provide the result in a form

¢? and the viscosity c2 . Taking these functions to be constant parameters, we analyze an exact solution of

ready for implementation in Einstein-Boltzmann solvers.
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I. INTRODUCTION

It is now a century since Einstein proposed his theory of
gravity, general relativity (GR). In that time, GR has passed
every experimental test [1] and has few, if any, serious
competitors. However, this experimental success necessi-
tates the existence of dark matter (DM) and dark energy
(DE), collectively called the dark sector, in order for
galactic and cosmological observations to be satisfied.
Although GR is then consistent with the observations, this
implies that the total energy density of the present-day
Universe is dominated by the dark sector, for which we do
not have any nongravitational evidence.

In order to achieve agreement with the observations [2], it
is sufficient to treat DM and DE as two noninteracting
perfect fluids with very simple properties. In particular, DM
is modeled with zero pressure (P, = 0) and DE is modeled
as a cosmological constant A with constant energy density
PA = ﬁ and pressure P, = —p,. The assumption of
vanishing pressure for DM means that the DM is cold,
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collisionless and single streaming.' This simple model of the
dark sector, together with GR as the theory of gravity and the
Standard Model (SM) describing the known constituents of
matter, forms the standard ACDM model of cosmology.
While the DE component of the dark sector is a more
recent addition to the standard cosmological model, the
evidence for DM goes back much further [3,4]. Further
evidence comes from a variety of galactic [5-8], galaxy
cluster [9-11], gravitational lensing [12,13], CMB [2,14]
and large-scale structure observations [15-18]. The low
baryonic energy density as inferred from calculations of the
big bang nucleosynthesis and observations of the abundance
of light elements [19,20] shows that DM cannot be baryonic.
As mentioned above, the evidence for the dark sector is
all gravitational in nature. This has led to the consideration

"Note that once shell crossing occurs on small scales,
technically speaking, CDM ceases to be cold in the sense that
the phase space distribution that satisfies the collisionless
Boltzmann equation develops velocity dispersion. However,
initially cold DM that undergoes shell crossing is still commonly
referred to as CDM, although a pressureless fluid description is
not possible anymore, and one usually resorts to N-body
simulations or the so-called effective theory of large-scale
structure to solve for the collisionless dynamics of dark matter
in this stage; see Sec. IV B.
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of alternative theories of gravity in lieu of including DM
and DE as new components of the universe; see Ref. [21]
for a review. For the question of whether phenomena
attributed to DM may be due to the gravitational field not
correctly described by GR, one particularly interesting
observation is the bullet cluster [9,22]. In this system, the
baryonic gas appears to be spatially separated from the
dominant contribution to the lensing potential. Thus, ina GR
framework, the baryonic gas cannot be the source of the
gravitational potential, and an additional matter component
is required. The lensing potential of the bullet cluster has
minima where CDM would be expected to reside, providing
further support for the DM hypothesis. If a different theory
of gravity from GR is the correct explanation, then it would
have to be nonlocal or contain additional degrees of freedom
in such a way as to mimic CDM, such as in [23,24].

Although there is no lack of physically motivated particle
dark matter candidates [25], it is commonly assumed that all
such candidates behave as a pressureless fluid. Therefore,
they are indistinguishable in terms of their purely gravita-
tional properties and can all be modeled as a CDM fluid. As
mentioned above, this simple modeling of the dark matter as
CDM is consistent with the cosmological and galactic
observations. However, to date there have been no convinc-
ing detections of dark matter in direct and indirect searches,
and these searches have already ruled out many theoretically
favored regions in parameter space [26-31].

The assumption of a pressureless perfect fluid does not
hold for all dark matter candidates. For instance, a massive
neutrino can act as warm dark matter [32-34], and it can be
modeled as an imperfect fluid with a nonvanishing pressure
and viscosity in the regime where linear perturbation theory
applies [35]. Another interesting example is an axion Bose-
Einstein condensate, which can also be interpreted as a
classical scalar field [36]. This behaves similarly to
collisionless DM [37,38], but exhibits a scale-dependent
quantum pressure. While the background expansion is
identical to CDM, small perturbations around the
Friedmann background therefore behave like a fluid with
nonadiabatic pressure [39—41]. Even a weakly interacting
massive particle (WIMP), which is the most widely
accepted dark matter candidate, does not behave as a
pressureless perfect fluid on all scales and times relevant
for structure formation [42,43]. According to the so-called
“effective field theory of large-scale structure” (EFTofLSS)
[44-47] (see also [48,49]), even ideal CDM, an initially
exactly perfect pressureless fluid, is better described as an
imperfect fluid at the level of the Friedmann background
and linear perturbations, due to unresolved small-scale
nonlinearities. In all these cases, the expansion history and
evolution of linear dark matter perturbations is modified in
a distinctive way. Thus, we could distinguish between and
constrain these models using the CMB and other probes of
the expansion history and large-scale structure formation.

Interestingly, observed halo properties deviate from
expectations of ACDM and might hint at dark matter
being more complicated than CDM. For instance, many
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observed halo density profiles have cores in their centers
rather than cusps [50], and some have substructures [51]
that are at odds with ACDM simulations and suggest that
DM might not be collisionless. Also, the low observed
mass function of small halos seems to be in conflict with
expectations from ACDM simulations [52-54].

Warm DM [55,56], condensate DM [38,57] or interact-
ing DM [58] can all alleviate some problems of ACDM. In
light of the lack of a detection of a DM particle, the interest
in DM beyond CDM and the improved precision of
cosmological data (notably the Planck satellite [2]), it is
timely to explore all possible avenues for constraining the
nature of dark matter. In general, any deviation away from
CDM could introduce new properties for DM and so
potentially influence cosmological observables, thus
allowing us to investigate the nature of DM.

Searching for signatures beyond ACDM in cosmological
datarequires the specification of an alternative model, which
is typically either “fundamental” or phenomenological. The
fundamental approach considers a specific model in which,
at least in principle, every observable can be worked out.
Examples of this include axions [59], collisionless warm
dark matter [60,61], collisionless massive neutrinos [35,62],
self-interacting massive neutrinos [63,64], DM coupled to
dark radiation [65,66], DM coupled to neutrinos or photons
[67-70], DM coupled to DE [71-73] or Chaplygin gas [74].
These fundamental (in the sense of specific) models, usually
come with a low-dimensional parameter space that can be
well constrained by the data. The main downside of the
fundamental approach is that each model has to be studied
separately. On the other hand, the phenomenological
approach introduces, in a more or less ad hoc way, some
modifications of the ACDM model [75-82] that parametrize
some basic physical properties shared by a range of
fundamental models, but usually without the ability to
explicitly map between parameter spaces. Although pri-
marily developed for DE rather than DM, there are also
parametrizations that are somewhat in between those two
extremes and guarantee a mapping to the parameter space of
the fundamental models [83—90]. This usually comes at the
price of a very large parameter and free-function space such
that only specific subspaces can be studied in practice.

In this paper, we use the generalized dark matter (GDM)
model [75], a purely phenomenological approach to con-
straining DM properties in the linear regime. The model
contains one time-dependent free function, the background
equation of state parameter w(a) = P,/ /')g,2 and two free

functions c¢2(k,a) (the sound speed) and 2, (k,a) (the
viscosity), which are allowed to depend on scale k as well
as the scale factor a, but are solution independent. This
independence from the solution is why we refer to

w(a), c3(k,a) and c% (k,a) as parameters. The equation

of state is not assumed to be of the barotropic form

*Note that we use w to denote the background equation of state
of DM rather than DE.
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P, # P,(p,);i.e., the GDM pressure P, is not assumed to be
a unique function of the GDM energy density p,.

Subsequently, the sound speed c¢? is not related to w in

the standard fashion, where ¢? would be equal to the so-

called adiabatic sound speed c2(a) = fog/ P, Considering
only scalar perturbations, GDM is determined by these three
functions, the “GDM parameters”:

c2(k,a), 2 (k,a),

vis (1 1)
plus the particular expressions for the linearly perturbed
GDM pressure I1, and shear X, in terms of GDM density and
velocity perturbation 5, and 6, and parameters; see Sec. Il
and [75].

GDM has been shown to be a universal tool to constrain
the properties of dark matter in a very wide range. For
example, it is able to describe ultrarelativistic matter, or a
dark fluid that can simultaneously behave as DM and DE
[75]. Tt has also been employed to establish that a large
fraction of the ultrarelativistic component is freely stream-
ing, as expected for the cosmic neutrino background [91].

Here, we are interested in GDM as an extension of CDM.
Thus, we consider GDM that is close to CDM, in the sense
that w, c2, ¢, < 1. For the case where CDM is replaced by
GDM with w as a free parameter and ¢3 = ¢2_ = 0, w has
been constrained using WMAP data to be |w| < O(107")
[77] at the 95% confidence level (C.L.) and with the Planck
2013 data release [92] to be |w| < O(1073%) [81] at the
99.7% C.L., in both cases combined with various other
probes of the expansion history and structure formation.
Similar constraints using WMAP have been obtained in [76],
although that model slightly differs from GDM; see Sec. I1 D.
In that paper, the case w = c2, and c¢Z =0 was also
constrained, with the result |w| < O(107°) at the 99.7% C.L.

In a companion paper [93], we presented the first study
jointly constraining all three GDM parameters w, ¢2 and
c2. . Using only the Planck 2015 data release [94] supple-
mented by either Hubble space telescope or baryon
acoustic oscillations data, we found |w| < O(1073) and
c?, ¢, < O(107%), both at the 99.7% C.L. In a future work,
we intend to extend this analysis to consider degeneracies
with other extensions of the base ACDM model, such as the
curvature Qg, the inclusion of isocurvature modes and
considering the neutrino mass as a free parameter rather
than fixing it to a specific value. We will also allow the
GDM parameters to vary with a and k.

Recently our constraints on constant GDM parameters
have been confirmed by another group [95]. In that work
time-varying GDM parameters proportional to =2, mim-
icking warm dark matter, have also been constrained,
and their values today are w,c?,c2 < O(1071%) at the
99% C.L.

If it turns out that nonzero GDM parameters are favored,
we would interpret this as evidence that DM is more

w(a),
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complicated than CDM.* If CDM remains the favored
model, it would be worthwhile to extend the analysis to
time- and scale-dependent GDM parameters, as well as to
also extend the GDM model itself to deal with quasilinear
and nonlinear scales. These scales are relevant for galaxy
and Lyman-a surveys [15-18,99], which will help to break
degeneracies but, on the other hand, are also much harder to
employ due to their inherently nonlinear physics.

In this paper, we investigate the GDM parametrization in
order to better understand the nature of the GDM param-
eters. We also explore its relation to several physical
models in order to elucidate to which of them the GDM
parameters may relate to. This may be used as a guide for
possible future improvements and generalizations of it,
particularly in the nonlinear regime. Specifically, the
models we study are nonequilibrium thermodynamics,
effective theories of CDM and fluids, a particular class
of scalar field dark matter and tightly coupled fluids.

The structure of the paper is as follows. In Sec. II we
define the GDM model along with some notation and some
straightforward extensions. We then focus on the cosmo-
logical phenomenology of the GDM model in Sec. III. In
particular, we derive all possible types of initial conditions
and use the adiabatic mode to analyze the perturbations of a
simplified GDM model using an exact solution as well as in
a more realistic situation containing all known forms of
matter and radiation. That analysis is then used to discuss
CMB observables calculated with a modified CLASS code
[100] in which we implemented GDM and the modified
adiabatic and isocurvature initial conditions. The two most
important results of this investigation are that the sound
speed ¢? and viscosity ¢2, are strongly degenerate in the
CMB (for adiabatic initial conditions) and that, unlike
CDM, the GDM isocurvature mode is distinguishable from
the baryon isocurvature mode. In Sec. IV we consider
models that are more fundamental than GDM, in the sense
that they are only defined for the background and linear
perturbations, but also nonperturbatively. The aim is to
better understand in which circumstances those models can
be described by GDM in the linear regime. This sheds some
light on the interpretation of the GDM closure equations for
pressure and shear and serves as a guide for future
extensions of GDM into the nonlinear regime of structure
formation. Section IV A shows that nonequilibrium thermo-
dynamics allows for shear and pressure perturbations that
can be approximated by GDM. We relate the EFTofLSS to
GDM in Sec. IVB. In Sec. IVC we review that both
monotonically rolling and oscillating scalar fields allow a
DM-like behavior that can be mapped to GDM. Section [V

*In [96,97] it was shown that a GDM model with c2 =c?and
c%, = 0 can parametrize completely different physical situations
in which DM is CDM, but either interacts with DE energy or
gravity behaves differently from GR. This kind of degeneracy can
never be eliminated in linear perturbation theory, as has been first

exemplified in [98].
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D shows that an effective theory of imperfect fluids based
on scalar fields contains particular scale-dependent GDM
pressure perturbations, although it is, in general, more
complex. In Sec. IV E we consider a fluid composed of two
tightly coupled adiabatic fluids, which nevertheless gives
rise to a nonadiabatic pressure of the GDM type in certain
limits. We conclude in Sec. V.

II. A SHORT OVERVIEW OF THE GDM MODEL

The GDM model is a phenomenological description of a
fluid where the pressure P, and shear X, fluid variables are
related to the density and velocity variables via two closure
equations. As this description is formulated, and is only
valid, in a linearly perturbed Friedman-Robertson-Walker
(FRW) universe, we first give a short description of
cosmological perturbation theory before discussing the
defining relations of the model.

Throughout this work we use the conventions of Misner-
Thorne-Wheeler [101] where spacetime indices and spatial
indices are denoted by lowercase Greek and lowercase
Latin letters, respectively.

A. The energy-momentum tensor

The energy-momentum tensor of a general fluid has the

form
Tﬂl/ = (,0 + P)uﬂul/ + Pg/w + Z/w’ (21)

where p is the energy density, P is the pressure and %, is
the symmetric anisotropic stress tensor obeying
w%,, =%, =0. We choose the four-velocity u, (nor-
malized to u*u, = —1) to be in the Landau-Lifshitz (LL)
frame; thus it is defined as the energy ei§envect0r of the
energy-momentum tensor u, 7%, = —pu,,.

Although the GDM fluid may be used in any theory of
gravity, we work exclusively within general relativity. The
metric g,, obeys the Einstein equations

G,, = 8aGT (2.2)

v
which are sourced by the total energy-momentum tensor
T*, of matter. The latter is a sum of the individual energy-
momentum tensors for each matter component indexed
by “I’? aS

Tﬂu = ZTIMI/ = Tg”,, + TDE”IJ + TSM”D +e (23)
1

where the label “g” stands for GDM, “SM” for Standard
Model, and “DE” for dark energy. The Standard Model

“Note that a heat flux q, does not appear in T, because of our
choice of u, to be the LL frame. There is no loss of generality
with this choice.

PHYSICAL REVIEW D 94, 043512 (2016)

fields may be further split into photons, neutrinos and
baryons, labeled with “y”, “0”” and “b,” respectively. Each
individual energy-momentum tensor 7;*, takes the form
(2.1) with density p;, pressure P;, LL four-velocity u*
and shear X;#*. Unless otherwise indicated, the energy-
momentum tensors are assumed to be separately conserved
V,T}#, =0, and the conservation of the total energy-
momentum tensor is a consequence of (2.2).

The conservation and the Einstein equations do not
provide enough information to solve for the pressure P; and
the shear X;**. These two fluid quantities have to be
specified in terms of the density p;, the four-velocity uf,
the metric g,, and possibly additional degrees of freedom
like the particle number density n;. The closure equations
for P; and X;*¥ determine the physical properties of the
fluid 1.

B. The Friedman universe and its perturbations

1. Perturbed metric and matter variables

The perturbed FRW metric to linear order is
ds? = a2{—(1 +20)de? — 2V, {drdx
1 P

+ 1 +§h yl]+Dl]l/ dx dx . (24)

where a(7) is the scale factor of conformal time 7, y;; is the
metric (used to raise and lower three-dimensional indices)

of a three-dimensional space of constant curvature x, V; is

. o > 2.
the covariant derivative of y;; and D;; = V,V; —3y;;V isa
traceless derivative operator. The perturbed metric contains
the four scalar modes W, A, { and v from which we find it
useful to define the metric variable

—2

R\

= (V'u—h). (2.5)

1
6
We omit the four-vector and the two tensor modes as they
are not responsible for structure formation. We also find it
convenient to work with Fourier-space transfer functions
which depend on wave number k. In particular, in flat

spacetime we expand a perturbed variable A(r,X) =
Ik (3'21;3 e Az, k)&, (k) where A(z, k) is the transfer func-
tion of variable A(r,x) and fA(%) the primordial random
perturbation. Since there is no confusion arising, we omit
the tilde from the Fourier-space variables.

For each fluid component the four-velocity is para-
metrized as

uyg=—a(l+v), u; = —a%ié’, (2.6)
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where 6 is the scalar velocity perturbation of the fluid and
the fluid index was suppressed for brevity.5 Furthermore,
we perturb the density as p = p(1 + &) and the pressure as
P = p(w +1I) where w is the (background) equation of
state and IT = 6P/p is the normalized pressure perturba-
tion. With these considerations the energy-momentum
tensor for each fluid becomes

TUO = —lb(l + 5), (273)

70, = —(5 + P)V,0. (2.7b)

Tiy = (p+ P)V'(0-0), (2.7¢)

T, =pw+1)8; + (p+ P)D' %, (2.7d)

where the index “I” on the fluid variables is again
suppressed for brevity. Note that on a FRW back-
ground iﬂy = 0; hence, the shear appears only at the
perturbed level through the scalar mode ¥° (as we have
ignored vector and tensor modes). The total energy-
momentum tensor is analogously defined using the total
variables. For instance, pé = Y ,p;6; and likewise for the
other perturbations.

2. The background and perturbed equations

The Einstein equation (2.2) for the unperturbed FRW
background becomes the two Friedmann equations

3H2 + 3k = 82Ga?p, (2.8)

2H + H* + k = —872Ga*P, (2.9)
where H :g and dots denote derivatives with respect to
conformal time 7. Once again, p = Y _,;p; and P = _,P;.
For the Ith component energy conservation V,T,*, =0
implies that

pr==3H(1 +w)p;, (2.10)
P,
1= (2.11)

and similarly for the total energy-momentum tensor.
Related to the equation of state is the adiabatic sound
speed defined via

>Note that our notation for the velocity perturbation 6 is related
to £75,102] via 0 = (v — B)y,/k = Oup /K>
Note that our notation for the shear X is related to [75,102] via
(1 + W)k22 = Wy — % (1 + W)GMB.
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P, Wi
3, WHitw) 212
If w; is time independent, then ¢2, = w;.

For notational simplicity we denote the GDM equation
of state w, by w (without the subscript g) and denote the
total equation of state parameter w,,, = P/p to distinguish
it from w. At the background level, the GDM equation of
state is completely determined by a time-dependent func-
tion w(a).” Likewise, the adiabatic sound speed is also
completely determined by w(a).

At the linearized level, in Fourier space, the Einstein
equation (2.2) for scalar modes gives the four equations

H(h —2K%) — 6H2W — 2(k2 — 3k)y = 872G a2}ps,

(2.13a)
27+ 2HY + k(0 + 2) = 82Ga*(p + P)0,  (2.13b)
— i = 2Hh + 6HW + 6(H? 4 2H) W — 6k
+2Kk2(n — W + & + 2HE) = 24xGa*pll, (2.13¢)
and
%ﬁ+é+H(ﬂ+2C) +n—V =81Ga(p + P)x.
(2.13d)

For the matter fluids we need to perturb V,T/*, = 0.
This gives two first-order equations: the continuity
equation

& = 3H (w8 —TI;) = (1 +wy) |:k2(91 -{) +%h]

(2.14)

and the Euler equation

n, 2
L _Z(k2-3k)%, + 0.

h o - )
91 ( 3Cal>H91 + 1 T W, 3

(2.15)

Up to this point the gauge has not been fixed. Standard
gauges are easily obtained: Synchronous gauge requires
{ =W =0, while conformal Newtonian gauge sets v =
¢ =0 and identifies the second Newtonian potential
as & =5 =-h/6.

"Specifying w(a) does not determine the functional form
P = P(p,...), such that the (nonperturbative) equation of state
is unknown. However, on the background level any equation of
state assumes the form P = P(p,...) = w(a)p and thus w(a)
parametrizes the equation of state relevant for the background.

043512-5
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As is common, and also very useful, we define gauge-
invariant variables. Two standard gauge-invariant variables

are the Bardeeen potentials & and ¥ defined as

@Eﬂ—l—?‘((%f/—ké’), (2.16a)

@Ew-la,[acmgﬂ,
a 2

while a third useful gauge-invariant metric variable is

(2.16b)

. 2 b4 HE
(1>+_+7H_

R 3(1+w)H

(2.17)

Two gauge-invariant variables that we use further below are

A, =6,+3(1+w)H0,, (2.18a)

A 1.
®gEeg—§—§V, (2.18Db)
corresponding to the rest frame or comoving GDM density
perturbation and the conformal Newtonian GDM velocity
perturbation, respectively.

C. Definition of the GDM model

The variables I1; and X; are not determined by the fluid
equations (2.14) and (2.15). In the case of fluids, the closure
equations for I1; and X; must be specified in terms of metric
and other fluid variables. If the fluid is comprised of
particles, Il; and X; can be expressed in terms of the
distribution function of the microscopic theory that satisfies
a Boltzmann equation. Whether closure equations for IT;
and %; in terms of the other fluid variables can be derived
depends on the details of the microscopic theory and
the availability of approximations for the evaluation of
the phase space integrals. For instance, ultrarelativistic
collisionless radiation, such as massless neutrinos, has
IT, = 6,/3. However, in general, no closed form equation
for £, can be derived without making some approxima-
tions. If the microscopic theory is that of a classical field
rather than specified in terms of particles, the explicit form
of the energy-momentum tensor in terms of the field and
its derivatives follows from the field Lagrangian.
Alternatively, the equation of state and the closure equation
may be postulated to achieve a desired physical behavior, as
is the case for the GDM model.

The scalar perturbations 5., 0,,11,,Z, of GDM satisty
the continuity and Euler equations of (2.13) (with I = g)
and two postulated closure equations for the pressure
perturbation I1; and the shear X, [75]. These are

g =28, + (2= c2)A (2.19a)

9

and
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: 4 .
Y, = =3HZ, + +—— 3,0,

L (2.190)

Making the gauge invariance explicit is useful as the shear
%, and the nonadiabatic pressure

Mg =10, — 26, (2.20)
are always gauge invariant independently of their particular
definition. The significance of this particular choice of the
closure equations (2.19) will be discussed in the next
subsection.

We note here that our equation for the shear is slightly
different than the form originally postulated in [75]. The
difference is in the —3HZ, term which in the case of [75] is
replaced by — Sff HZ, in our notation. We chose this
modification of the original equation in order to easily
allow for crossing the w = 0 point if a time-dependent
equation of state is used. Clearly if w =0 the two
formulations agree.

To summarize, the GDM model is defined by designing a
conserved energy-momentum tensor 7% of the form (2.7) in
the LL frame. The background pressure Pg is determined by
the time-dependent equation of state parameter w which also
gives rise to an adiabatic sound speed (2.12). The normal-
ized pressure perturbation II, is algebraically given by
(2.19a) and depends on the free function ¢2(a, k), the sound
speed, which determines the equation of state at the level of
linear perturbations. The scalar mode of the anisotropic
stress, Zg, obeys the differential equation (2.19b) which

contains the free function ¢2,(a, k), the viscosity. While the
adiabatic sound speed c? is completely determined once the
equation of state w(a) is specified, the sound speed c2(k, a)
and the viscosity c2, (k, a) are free functions that can depend
on space and time but are independent of the solution,
particularly the matter and metric perturbations.

We note that [2,64,103,104] refer to the GDM model [75]
but do not include the Hubble friction —3HZX, in the shear
equation (2.19b). Instead they start with the standard
equations for a moment expansion of the Boltzmann
equation for all the F,.; moments and insert a viscosity
parameter in the corresponding shear equation as above
while at the same time keeping the F'5 term. However, in [75]
the friction term was designed to mimic the missing third
moment F3 of the distribution function in (2.19b), effec-
tively closing the Boltzmann hierarchy through this approxi-
mation. This does not mean that the hierarchy F,.; is
irrelevant, but that the combined effect of the higher
moments can be approximated by the friction term. For
ultrarelativistic collisionless particles this form can be
derived on subhorizon scales from the Boltzmann hierarchy;
see Appendix B of [105]. It is also known that the GDM
parametrization can model the collisionless Boltzmann
equation for nonrelativistic particles [35,62]. In [104] it
was noticed that GDM without the friction term does not
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provide a good fit to freely streaming massless neutrinos. An
independent friction term of the form R, /HZ, can arise from
the collision term in the Boltzmann equation [102], and if
R, > 1, then the hierarchy F',»; becomes irrelevant and can
be truncated by setting F,»3 = 0.

D. Simple extensions of GDM

In order to close the continuity (2.14) and Euler (2.15)
equations for the generalized dark matter fluid, we postu-
lated two closure equations for the pressure perturbation IT,,
and the shear ¥ (2.19), as proposed in [75]. In this section
we discuss simple extensions, or modifications, of these
two closure equations.

1. Pressure

Writing (2.19a) explicitly,

I, = ¢35, 4+ 3(1 + w)(ci — c2)HO,,

(2.21)

we see that ¢2 is proportional to 0,4, SO We expect only c2,
and not the other variables, to determine the sound speed.
The adiabatic sound speed c2 is not a priori related to c?
and does not affect the sound speed deep inside the horizon
since 0, is suppressed by a factor (H/ k)* compared to Oy
In the case where c¢? = c2 we recover the standard
expression 1, = c%ég. Therefore the nonadiabatic pressure

(2.20)% of GDM, i.e.,

IMha = (C? - C%)Agv (224)

is a simple ansatz that allows for an effective sound speed
c2 if ¢2 # 2, but reduces to the standard adiabatic pressure
in the case c? = c2.

The above requirements, however, are not sufficient to

determine the shape of I1,,4. Consider, for instance,

¥Several definitions of the “(intrinsic) entropy perturbation” I
related to the nonadiabatic pressure I1,,4 exist in the literature. In
particular, [75,106—108] define

p (5P 1
r=" (‘i - ‘i’)) A (2.22)
P\ p D w
while [109] defines
oP op p
=———— == (2.23)
P r P

As these two different definitions of I' are not well behaved in

situations where P and P can cross zero, we choose to work
directly with IT, 4.
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~

Hﬁ);:iended — (C_% — c%){(l —_ Cl —_ CZ)Ag

+C {55+3H(1 +w) (%im%)]

+Cy[8, = 3(1 4+ w)n] } (2.25)

where C; and C, are two new parameters which are
restricted in the range 0 < Cy,C, <1 and the terms
multiplying C; and C, are the gauge-invariant GDM
density perturbations in the Newtonian and flat gauges,
respectively. One recovers the GDM model by setting
C, = C, = 0. All three gauge-invariant density perturba-

tions have the property that ¢2 becomes the sound speed

deep inside the horizon, while the factor c2 — ¢2 ensures

that IT,,,4 vanishes for ¢2 = 2. One could add other gauge-
invariant variables to ITeXnded; however, if they do not
involve §, they cannot influence the sound speed. In
terms of gauge-invariant variables, Eq. (2.24) may also
be written as

[extiended — (02 _ cﬁ)[ﬁg =3H(1+w)(C, + Cz)@g

—3(1 +w)G, 9], (2.26)

where the gauge-invariant potential ¢ and gauge-invariant

velocity perturbation O are defined by (2.16a) and (2.18b),
respectively. Interestingly the effective field theory
approach of [48] is of this form with C; =1 and C, = 0.

A common justification for the form I,y = (2 — ¢2)A,
is described in [75,107,110]. The argument is that the
sound speed should be defined in the fluid rest frame’ as
seen by an observer comoving with the fluid. Alternatively,

“The fluid rest frame is determined by the fluid four-velocity.
Usually this is chosen to be the LL frame (used in this work). If
however the fundamental degree of freedom is a scalar field, then
another natural choice is the scalar frame, or, if there is a particle
species with conserved particle number present, a natural choice
is the Eckart frame. It should be noted that under a frame change
given by a Lorentz boost and to linear order in the boost velocity,
IT and 6 remain invariant while € does not. It would then seem
that our expressions for Ag and I1,,4, Egs. (2.18a) and (2.24),
should transform accordingly with the boost velocity (as they

contain ¢,). However, ﬁg and Il,,4 were defined under the
assumption of the LL frame, and not in a general frame; in
particular, 6, is the scalar mode contained in the four-velocity of
the LL frame of GDM. Once the frame has been fixed, we cannot
expect the resulting expressions to be manifestly frame covariant.
One also needs to keep in mind that there is a distinction between
a frame choice, that is, the physical definition of the four-velocity
in the energy-momentum tensor, and a gauge choice, that is, the
fixing of the space-time coordinate system. From a practical point
of view these two choices have many things in common. Both are
necessary to remove redundancy in the description, and also
aspects of the choice of gauge can be connected to a four-velocity
field [111]. We return to the issue of frame choice in Sec. IVA.
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one can simply choose a gauge adapted to the rest frame in
which T,/ | s = T,% | = 0 (equivalently 6, | = {|,; = 0).
In this gauge it is then postulated that ¢? = 6P, /dp,ls =
I1,/8,|; is a parameter of the theory that does not explicitly
depend on the particular solution of I, and &, After
performing a gauge transformation away from the rest
frame, we obtain the GDM form (2.21). A similar argument
in which the rest frame is replaced by either the conformal
Newtonian or the flat frame leads to the second or third
expressions in (2.25), respectively. Since the sound speed is
a fluid property, the fluid rest frame is arguably a more
natural choice compared to the two geometrical frames. In
any case, the assumption that there exists any frame in
which TI;/8,|¢ume is a solution-independent function is
quite strong. In Sec. IV we study several models where this
happens either exactly or approximately. In those cases
where such a frame exists, it turns out to be the fluid
rest frame.

In addition to the arbitrariness of which gauge-invariant
combination to use in order to define Il,,4, there is no
reason to expect that IT,4 is related to them algebraically.
Indeed, as we show in Secs. IVA and IVE, if GDM is
thought of as arising from nonequilibrium thermodynamics
or from two tightly coupled perfect fluids, IT,,4 satisfies a
first-order differential equation similar to that of the GDM
shear, Zg. This additional degree, however, oscillates with a
similar frequency as J, albeit with a small phase shift.
Therefore we expect that neglecting a possible dynamical
contribution to IT,,4 can be compensated for by adjusting c?
and cZ_ in the GDM model.

vis

2. Bulk viscosity

Yet another possible contribution to I, is bulk vis-
cosity Py, a contribution to the isotropic stress whose
main effect is not to modify the sound speed but to impede
the isotropic expansion of the fluid. Note that while the
freedom to choose w(a) would easily accommodate bulk
viscosity in GDM at the background level, the shape of
IT,,q4 (2.24) excludes this possibility. The main effect of
bulk viscosity could be modeled by adding a term

22 A . .
cﬁulkH_lv 0, to Il,,q. We expect its main effect to be
similar to shear (or anisotropic stress) Zgij which impedes

shearing flows D’ J@g rather than Vzég. In the context of
cosmology this has been studied in [43,112-116]. Bulk
viscosity is known to be irrelevant for radiation [117].
However there is no a priori reason to neglect it in
applications to DM [42,43]. We do not study bulk viscosity
in detail in the present work.

3. Shear viscosity

The tightly coupled photon-baryon fluid is a well-known
example for an imperfect fluid with small shear. The shear
is suppressed by the small number R;' = 7,H, where 7, is
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the mean time between collisions of photons and free
electrons. This allows a truncation of the Boltzmann
hierarchy of the photon distribution function and justifies
the fluid description. This example (see [102,106]) there-
fore suggests the following generalization of the GDM
shear (2.19b):

. 4
zgxtended — —3HRczg + H_—WZ-Z ® (227)

vis ' g*

One could therefore think of R.(a) as a new parameter,
which is set to 1 in [75] in order to match the behavior of
freely streaming radiation; see Appendix B of [105]. The
limit R, = O is realized in elastic dark energy models where
Esis acts as rigidity rather than viscosity [118] and is
therefore of less interest in applications to DM. If
R.> 1, the shear at leading order in R:' becomes
algebraically related to the other perturbations [102], which
leads to

4 E%is @
(1 + W)H dIC + 3RC g

sztcndcd ~ (228)

Here, we introduced by hand a constant parameter dic > 0,
the leading-order power X, o 7%c of the solution to
Eq. (2.27) for kr — 0. This ensures that for c¢2. = ¢2

V1S Vis
the solution of (2.27) will initially agree with (2.29). For
adiabatic initial conditions djc = 2 while for isocurvature
modes djc =0 (CDM or baryon isocurvature), dic = 2
(neutrino isocurvature density) and djc = 1 (neutrino iso-
curvature velocity).

In the case of the photon-baryon plasma we have
R. > 1, giving rise to an effectively algebraic shear with
c2 o R71¢2. . In the following we set R. = 1 such that

vis vis

4 2 ~
vis @ (2.29)

Zalg _
g (1+W>Hd1c+3 g

exactly agrees with Hu’s (2.19b) at early times, i.e. as
kt — 0, and approximately at later times. Figure 1 shows a
comparison between the GDM shear (2.19b) and the
algebraic version (2.29), for adiabatic initial conditions.
Both versions qualitatively agree and lead to a similar
damping of GDM density perturbations, as is depicted in
Fig. 2.

For R. = 1 and &2, = ¢2, Eq. (2.27) becomes the GDM
closure equation (2.19b) which was designed to describe
the shear in a medium composed of freely streaming
particles, where the friction term —3HZX, serves as an
approximation to the Boltzmann hierarchy [35,75,105].

Following the argument that led us to TIXfnded (2.25), we
can now extend £2'% (2.29) by adding other gauge-invariant
combinations of 6, in addition to C:)g. While in (2.25) we

avoided including terms involving k29q, we now avoid
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FIG. 1. Comparison between dynamical (2.19b) and algebraic

(alg) (2.29) shear with adiabatic initial conditions for a set of
standard cosmological parameters The upper panel shows the

overdamped case ¢ = 2, the lower panel the case ¢, < ¢2

VIS

adding terms involving 6, to X, in order to make the
physical effects of I1, and X, as distinct as possible. The
only other gauge-invariant velocity perturbation apart from
ég that can be constructed solely from the metric and 6, is
the GDM-comoving curvature perturbation HR, = 0,+

Hn = ég + H®P, such that

Zextented.al g 4

R — P
9 5( + W)H v1s( + CgH )

(2.30)

with 0 < C3 < 1.

w=0, =001, k = 0.1 Mpc™"

C%‘S: 0

—— 2,=001 E

----- c%,iS: 0.01 (alg)

—— 2,=0.001

CEELL Lm— 0.001 (alg)

0 500 1000 1500
7 [Mpc]

2000

FIG.2. Comparison of the time evolution of a single k-mode of
the GDM density perturbation A for w =0 and ¢2 = 0.01. The
upper and lower panels compare ¢, = 0 (solid curve) to %, =
0.1¢? and ¢2 = ¢, respectively. In each panel we show the
dynamlcal and algebraic shear models, (2.19b) and (2.29), with
adiabatic initial conditions for a set of standard cosmological

parameters.
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III. PHENOMENOLOGY OF THE
GDM MODEL

In this section we discuss the CMB phenomenology of
the GDM model, first analytically and then numerically
with CLASS. After determining the growing initial con-
dition modes in Sec. III A, we solve analytically the
algebraic GDM model where the shear is given by
(2.29) and the universe is purely GDM dominated, in
Sec. III B. The main results are that (i) the metric potential
) necessarily decays below a scale kgl given by (3.25), that
(ii) on an even smaller scale, k7!, sound waves may form,
and that (iii) on a yet smaller scale k;!  acoustic
oscillations are impossible to form. Section III C outlines
the equations for d in a universe filled with a realistic
mixture of fluids and gives a qualitative discussion for how
the CMB observables depend on & and the GDM param-
eters. Finally in Sec. IIID we discuss the numerical

damp

solution for & and various observable CMB power spectra
that have been employed in [93] to constrain the full GDM
model (2.19).

A. Initial conditions

We start by determining all possible initial condition
modes for scalar perturbations. We assume that in the limit
7 — 0, the GDM parameters w, c¢7 and c2 are time
independent and much smaller than unity. This assumption
is relevant and justified a posteriori, given that the con-
straints obtained on GDM as dark matter strongly constrain
lw| < O(1073) and ¢2,c2, < O(107°) [93]. Thus, we
construct the initial condition modes as a series expansion
inw, ¢2 and cm, keeping only the lowest relevant order. Let
us also note that adiabatic initial conditions in the case
where c = 0 have been derived in [119].

In add1t10n to GDM we include all standard fluids
which are the baryons, CDM (denoted by a subscript
“c”), photons and neutrinos, the latter assumed to be
massless in the deep radiation era. These are grouped
into radiation (photons and neutrinos; denoted by a
subscript “r”’), and matter (baryons, CDM and GDM;
denoted by a subscript “m”). Keeping CDM in addition
to GDM can be useful in studies where DM is a mixture
of CDM and GDM, or simply to make a modification of
the Boltzmann code tidier. The curvature and the
cosmological constant terms can be safely ignored at
early times.

When numerically integrating the Einstein-Boltzmann
system of equations, one starts the integration on super-
horizon scales H;' = kH™' < 1. If the initial time is
chosen deep enough in the radiation era, such that correc-
tions to H = 1/7 are small, then the superhorizon condition
simplifies to x = kr < 1. Thus, x may be used as a time
coordinate and, in addition, as a series expansion parameter
in a way specified below.
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1. Background evolution

The background density is the sum of the radiation
and matter component p = p, + p,,, which individually

evolve as
_ _ a; 4
Pr="Pri\ — | >
a

~ _ a; 3 _ a; 3(14+w)
Pm = Pai\ — +pgi - s
a a

where a; is the scale factor and p,;, p4; and p,; the radiation,
dust (CDM + baryons) and GDM densities, respectively,
all evaluated at the initial time. We further define

(3.1)

(3.2)

=2 and =3P

Pri k \/ %ﬁ ri
and the relative species contributions

SX:@9 SY:@7

3.4
Pmi Pri ( )

where p,,; = pgi + py and where X may be ¢, b or gand Y
either y or v.

The procedure for obtaining the initial conditions
requires an expansion of all variables as a power series
in x. While in the standard calculation (without GDM), a
series in integer powers of x suffices, the GDM density term
which is of the form a>**) ~ a3(1 4 3wIn a) requires the
addition of terms involving Inx and powers thereof. We
expect that in the limit w — 0 and also as S, — 0, the
standard radiation-matter solution should be reproduced;
hence, assuming that all expansion coefficients are w
independent, the only plausible expansion is

a= Fnr a(x)= (1 +1/1kx>x

a;ly 4
+wS x [f: aglw)x”‘l + lnxf:ag“’”’)x’l—] +.. ] .
n=1 n=1
(3.5)
where a,SW) and a,(lln’w) are coefficients to be determined and

where we have ignored terms involving higher powers of w
and In x. Note that (In x)? > | In x| for small enough x such
that it is not clear a priori that our ansatz [see also (3.8)
below] solves the Einstein and fluid equations, and if so,
that the approximate solution is a good solution. However,
the full numerical solution of (A1) shows that this is indeed
a good approximation.

Inserting (3.5) into the Friedmann equation determines

the coefficients as a\") = a{™" =0,
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n,w w 1
= e () e

and for all n > 3,

(In,w) (w)

ap, ™" =0, ay” = =A, (=)™, (3.6b)
where
A _ n-—1 4 3
T2+ 1) 22 T+ D(n=1)(n-2)
(3.6¢)

with A; = 11—6 as the starting value. Ignoring the w and In x
corrections, which amounts to approximating the GDM
component as CDM, incorrectly predicts several leading-
order solutions for the matter-type isocurvature perturbations.

2. Perturbations

In order to find the allowed initial conditions for the
perturbations and their initial time and scale dependence,
we expand all perturbational variables as a series involving
the small parameter x following a similar procedure as in
[120]. In the standard case without GDM, a power series in
x suffices; however, as in the background case, the presence
of the background GDM density scaling as a>(!**) requires
the inclusion of powers of In x. For convenience, we work
with the dimensionless variables ¢ =2 k*% and v = k6.

The problem of finding the initial condition comprises
two parts: (i) determine how many regular growing mode
solutions exist (corresponding to the adiabatic and various
isocurvature modes), and (ii) obtain the solutions to the
perturbed field equations as a series in x (and In x) thereby
allowing the numerical integration to start at a convenient
time without mixing adiabatic and isocurvature modes.

We adopt the synchronous gauge by setting ¥ = ¢ = 0.
This gauge has a residual gauge mode which is set to zero
by discarding decaying initial conditions."”

Following [120] we assume that photons and baryons are
tightly coupled through Thomson scattering, such that v, =
v, and all higher moments of the photon Boltzmann
hierarchy vanish. In addition, on superhorizon scales the
Boltzmann hierarchy of neutrinos can be truncated at third
order (due to free-streaming), keeping only J,, v, and o,.
The resulting equations are displayed in Appendix A.

In order to construct the initial condition modes, we need
to specify an ansatz for the solution of the perturbational
variables

"“In the synchronous gauge, the CDM velocity perturbation
satisfies av, = const which is identical for the solution to the
residual gauge mode. The residual gauge freedom allows us to set
this constant to zero, v, = 0. This is not true for any other type of
fluid, including GDM, where v, has a solution different from the
residual gauge mode.
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P =A{nh,b6,,6.6,v (3.7)

s 0ys 0y 8,0, 6,84, 05,04}

By inspection of the x-dependence of the scale factor (3.5)
we choose the following ansatz for the solution:

P="Po+Pix+ ng)x + Pﬁln’g)xlnx

+Pox? + Py 4 Py

x*Inx+--- (3.8)
where ¢ is a proxy for the GDM parameters w and c2,
assumed to have the same smallness. The coefficients
without an ¢ label are independent of w and ¢2, and we
keep only linear order in ¢ in the ansatz to avoid higher
powers of In x. In the limit € — 0, one recovers the standard
ACDM initial conditions. We note that the constant term /£,
for the metric variable & can be set to zero by a gauge
transformation. An ansatz containing powers like x' 3" as
used in [121] does not work if we want to recover all
possible modes, adiabatic and isocurvature.

For the GDM density contrast 6, we also include the term

5;161‘8) In x, which is necessary to find the GDM isocurvature

mode for w # 2. Thus, 5, = 6,0 + 5;161’8) Inx + -- -, where

the remaining terms follow the expansion in (3.8). This
additional term does not introduce a new type of initial
condition. When w = ¢2 no pure In(x) term is required.

3. Solution method
The ansatz (3.8) is used in the perturbed Einstein and
fluid equations (Al), and the coefficients for the same
powers of x and Inx are matched, thus providing a
consistent solution. We collect all variables in the set

A= A0 4 A, (3.9)

with A5=0 = {P,, P|, Ps, ...} containing the zeroth-order
coefficients in € and A¢ = {7756), P(lln’e), ng), ...} contain-
ing the correction due to e. We expand all functions up to
order x", with the exception of 7, ¢, and 6, which avoids

the introduction of coefficients with label n + 1.
We chose n = 4 and used a brute force method to test for

every possible subset Z; . of P, where i =1, ..., 2Pl
whether or not | A0 — 7, .| equals the rank of the system

of linear equations with £ = 0. Out of the 2'! test sets, there
are 72 that fulfill this criterion but only four of them with
max(|Z; s |) = 6. We choose

Zmodes = {10+ 8,0+ 1.0+ 6.0+ Op.05 5g,0}- (3.10)
The other three possible sets are obtained by exchanging
0,0 With 6,4 and v, with v, . Finally we solve for the
remaining coefficients in P, that is, A*=" — 7, 4ec and A%,
such that they are expressed as functions of 7 ges-
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In all the modes displayed below and in Appendix A, we
only include the leading powers of x unless the leading-
order solution is constant or it is suppressed by the product
of ¢ and ¢, in which case we include the next-to-leading
order as well. The modes have been checked to agree to
reasonable accuracy with the solution which includes all
powers up to x* as well as with a numerical integration of
Eq. (A1). We note that the initial condition modes also hold

for the algebraic version of the GDM shear (2.29).

4. Adiabatic (Ad)

Setting 1y = 1 (which we can always do via rescaling)
and all remaining perturbations in 7, 4. (3.10) to zero, the
adiabatic mode is

5+48S,

1
N [ — 2 h==y2
1 12(15 1 45,) " 2
1 1
60 :5;, = —Z.X'z, 67 :51, = —gxz,
1 3c2-5w
N
1 23445,
v, =——X", Vy=—"5"7z o %>
"~ 736 36(15 + 45,)
_ 1, 2c3; 3
Vg = [ECS+3(15+4SD)}X’
2 2 8C3is 2

T35 148)" 0 99T 3(15+48,)"

The adiabatic initial conditions agree with those presented
in [95] upon Taylor expansion in € and cZ. A comparison
of terms next-to-leading order in x would reveal differences
compared to [95], as our solution contains terms involving
Inx even for the adiabatic mode.

5. Isocurvature modes

There are five growing isocurvature modes in the GDM
model: the radiation-type neutrino isocurvature density
(NID) and neutrino isocurvature velocity (NIV) and the
matter-type CDM isocurvature (CI), baryon isocurvature
(BI) and GDM isocurvature (GI). As we do not use these
modes in the phenomenology of the rest of this section, we
display them in Appendix A.

We remark that in searches for signatures of isocurvature
modes within ACDM, only one of the BI and the CI is
included in the analysis since they are completely degen-
erate [122,123]. The situation of a GDM isocurvature mode
is more interesting than CDM, since the C;s of BI and GI

modes are no longer degenerate if either w or ¢2 is nonzero.

B. Evolution of GDM perturbations and decay of

Let us consider a flat GDM dominated universe with
algebraic shear (2.29) such that the 00 equation (2.13a), 0i
equation (2.13b) and shear may be manipulated into

043512-11



KOPP, SKORDIS, and THOMAS

Kd = —4nGa*p,A,, (3.11)

® + HY = 42Ga?p,(1 +w)0,, (3.12)
4 .

yile 2 0 (3.13)

g m GisYgs

where the gauge-invariant variables ®, ¥ and R are given
by (2.16a), (2.16b) and (2.17), respectively.
In this case the ij Finstein equations take the form

(3.14a)

(3.14b)

Using e-folding time N defined by 9y = H~'9,, denoting
Oy by a prime and assuming constant w,c? and cZ,
Eq. (3.14) assumes the form of a damped harmonic

oscillator

. k\? 8c2 (1 +3c2)] « 8c2,
(I)// -~ 2 vis s (I> iy (I)I
i (H) Hcﬁ 15(1+ w) ] 50 +w }

(3.15)

3 12 .
+ {1 +§(1+w)+§034q>’—0.

The above equation shows that the integrated Sachs-Wolfe
(ISW) effect in the GDM dominated universe vanishes for

c? = ¢, =0, irrespective of the value of w. In this case

R =0 and the equation admits & = 0 such that & freezes
during GDM domination.'' On the other hand, if ¢2 or ¢,
is nonzero then R is sourced, but only on subhorizon scales
due to the overall factor (k/H)?. Notice however that once

w is time dependent, the analogue of (3.15) contains terms

proportional to ® and therefore will generally admit d=0.
A thorough discussion of the effect of small DM sound
speed on the ISW effect can be found in [125]. Let us also
emphasise that the coefficients of d and & are manifestly
non-negative for w > —1/3 and positive ¢2_ and c?; hence
the potential decays, in general.

Sound waves are possible if ¢Z, < ¢, and the effective

propagation speed is close to ¢? if ¢, < cZ. For ¢% >

0.57¢2 on the other hand, the potential decays without

"We could allow mildly negative sound speeds, in which case
8c2 (1+3c7)
IS and
%, > 0. However, we do not allow this possibility as it does not
seem natural and requires fine-tuning to ensure stability. This
stabilizing property has also been observed for the GDM shear in

[124].

a constant potential may also be achieved if ¢2 = —
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oscillations. All of these properties may be extracted from
the exact solution to (3.15) as we examine in more detail
below.

In order to find the exact solution to (3.15) it is easier to
transform back to 7z as an independent variable. In a flat
GDM-dominated universe the Friedman equation gives
H=' = z(1 + 3w)/2 so that (3.15) transforms into

= [6[5(1 4¢3 ]1  4(1+3w)c ;
(I)+{ [( +W)+ Cv1s]_+ ( + W)Cvlsk2f}¢)

5(1+3w) T 15(1 +w)
8¢2 (1+3¢2)] 5
k|2 4+ ) =0. 3.16
- [“Jr 15(1 +w) (3.16)
Defining y = —yc% k*%, where
2(1 4 3w)
_cUrow) 3.17
TTI5(0+w) (3.17)
transforms the equation into
9 b .
— —y)——ad =0, 3.18
ydy2+(ﬂ y)dy a (3.18)
where
1+3c¢2  15¢2(1 +w) (3.19)
a= , :
1+3w  8c2 (1 +3w)
35 + 45w + 24¢2,
p= 2D OWT Ay (3.20)

10(1 + 3w)

Equation (3.18) is Kummer’s differential equation whose
regular solution is the Kummer confluent hypergeometric
function M(a, b, y) such that

& = AgM(a. p. —yk>e2c2),

vis

(3.21)

where A, is a constant. The regular solutions (3.21)

automatically satisfy ®(z = 0) = 0. The nonregular solu-
tion of (3.18) is of the form B(kz)™"«M, which in the limit
kt — 0 behaves as

4(5 + 6C3is)

(kz)™, 5(113w)

ng =1+ (3.22)

and is therefore a decaying mode and is of no interest to us.

The general solution (3.21) evolves through four regimes
of behavior. For a given Fourier mode k, the solution starts
on superhorizon scales from 7 = 0 with a constant ampli-
tude which persists even after horizon crossing. It begins to
decay around the scale ky, and then on smaller scales the
solution will continue to either decay monotonously or
enter an acoustic regime, leading to a period of oscillations.
This is determined by the relative magnitude of two further
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scales, the Jeans scale k; and the overdamping scale kgyp-

Once the Jeans scale is crossed, ® begins a period of
oscillations until the overdamping scale is reached, where
oscillations cease and & simply decays. As can be seen in
Fig. 3, depending on the values of the GDM parameters c2
and c¢2,, the solution may go through only the oscillation
regime (thick yellow line) or only through the overdamping
regime (thin blue line) or both (red line). The Jeans and
the overdamping scales can be estimated by examining
the zeros of the confluent hypergeometric function
M(a,p,—y). In [126] it is proved that they are bounded
by y_ <y <y, where

yi =2a-f£2yala—-p)-p.

(3.23)

which in our case translates to the two scales k3! = %

The scale k_ may be identified with the Jeans scale
k; = k_, while the scale k, may be related to the over-
damping scale if k, is real.

We now discuss several special cases and regimes of
(3.21) and use them to estimate the above three scales,
namely, k4, k;, and Kg,mp in terms of the GDM parameters.

Without loss of generality we set ®(z = 0) = Ay = 1.

1. Case 1: ¢2,c2,,=0

The nondecaying solution is d=1asis immediately
clear from (3.15). This generalizes the standard CDM

solution to the case of nonzero constant w, leading to a
zero ISW effect.

124 ey — —
A+ 2, =001 ]
L0 ]
ost b k=ka ]
t b=k ]
e 06F T k= Kaamp .
2=0.0065, ¢2,=0.0065 ]
04f : ]
2=0.0084, ¢2, =0.003
0.2¢ =001,  &,.=0. \ }i ]
0.0F o — - 1—ay(krevs)?/B -\ ]

0.1 0.5 1.0 5.0 10.0 50.0100.0
kt
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2. Case 2: ckt < 1 and ¢kt < 1

At early times [see Eq. (13.1.2) of [127]] the solution to
the potential is

2
& =1 - Misga2 (3.24)

which is constant to lowest order in k? and decays at next-
to-leading order if w > —1/3 and ¢2, 2 > 0. Therefore
for reasonable values of GDM parameters, |w|, ¢2, ¢4, < 1,
the potential can only decay. Using (3.24) and taking the
limit of small GDM parameters, the comoving scale below

which the potential starts to decay is

(3.25)

The above definition is such that for k = kg, the potential
has dropped to & = 13/14 ~ 0.93. The time evolution of
the potential for three different combinations of ¢ and 2,
keeping the same kg = 10/7 and w = 0, is shown in Fig. 3.
Observables that directly probe the large-scale structure
will be sensitive to both the Jeans scale and the over-
damping scale, which will be defined further below.

However, for the CMB it is mostly the decay scale kq,

below which & starts to decay, which matters. Therefore

one should expect a strong negative degeneracy between c?

and c%is in the CMB spectrum, and this was verified in [93].
3. Case 3: ¢%,=0

This is the zero shear viscosity case. The solution may be

found by either taking the limit c2.. — 0 of (3.21) with the

vis

. 2 o .
help of Eq. 13.3.2 of [127] or by setting c;;; = 0 in (3.16)
100
(R S ]
1074 Yy
& ]
107f D 1
......... (kﬂT)fM \'i"-,
10710F - - - c*'v(kfms)y/?(k.r)*siiﬂ/2 \\.“\ 4
\
1013 . . . ' .
20 50 100 200 500
kt

FIG. 3. The solid curves show the exact solution & in a flat GDM dominated universe for three GDM parameters as specified in the
legend. In all cases we set w = 0. The left panel shows that horizon entry at kz =1 does not influence d. However, around
kz = kqt = 10, the potential decays for all three combinations of ¢ and c2,. Up to this time the solution is well described by (3.24) as is
indicated by the dot-dashed curve. The right panel shows the details of the decay. The dashed curves display the envelope of (3.27),
which is valid in the acoustic regime starting at k;, and the dotted curves exhibit the asymptotic behavior in the overdamped regime
(3.32) starting well after the last oscillation at kgymp. There is no acoustic regime for c2 = c? (blue, thin line). For ¢2 = 0 the acoustic

vis
oscillations never stop. In the case of nonzero c¢2, the acoustic regime is accompanied by exponential decay during which the effective
sound speed c%; < ¢? is reduced.
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and transforming it into Bessel’s equation. The exact
solution in this case simplifies to the well-known result

AIJn(CSkT)
(cekt)"

543w

@: e —
’ " 2(143w)’

(3.26)
where A; is a normalization constant and J,, is the Bessel
function of order n. The envelope is nearly constant outside
the Jeans scale and decays as z~"~'/? once c,kz > 1 as can
also be seen through the thick yellow line and its dashed
envelope in the right panel of Fig. 3. Deep inside the Jeans
scale ¢kt < 1 the potential oscillates with frequency c,k
as is seen by the thick yellow solid curve in Fig. 3.

4. Case 4: c;s < ¢g and ¢kt < 1

Rather than taking the limit of vanishing viscosity we
may expand the exact solution (3.21) in c;,/c, < 1 and
cyiskt < 1 using Eq. (13.3.7) of [127], leading to

R Aze—yesisszz/Z

= 7(ceffkr)ﬂ_1 (3.27)

Jp-i (Cefrkt),

where A, is a normalization constant. It may easily be
shown that § > 3/2 forw > — %, and therefore the solution
is always decaying for large kz, as we discuss further below.

Keeping nonzero c2_ has a further effect. The solution
(3.27) oscillates with frequency ¢k where the eﬁ”ecz‘ive12
sound speed is

cz-:cz—%i318 14+3w—-4 cz,—%CQ- (3.28a)
eff N 5(1+W) s 5 vis .
2
=2 —gc%b, (3.28b)

where the second line holds for small GDM parameters. We
notice that the algebraic shear (on which we have based our
calculation) slightly decreases the sound speed, and this is
seen in the upper panel of Fig. 2, while the dynamical shear
has the opposite effect. Note that the expression (3.28a)
determines the effective sound speed beyond the approxi-
mation c,; k7 << 1, in the sense that the solution for & as
determined by (3.27) is the lowest term in an expansion in
terms of a series of Bessel functions J_;.z (cekz) for
B, =0...00. It is also worth emphasizing that the effective
sound speed is different from 2 even if ¢2 = ¢2, and hence,
even if P, = wp, for constant w.

Remembering that —f +% < —1, the envelope of (3.27)
decays as e 7wk @207 +1/2 onee k > kg, as can be seen by
the red dashed curve in the right panel of Fig. 3. This may
be derived using Eq. (9.2.1) of [127] which involves the

12 . .
We continue to call ¢ the sound speed for convenience.
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large-argument Bessel function,
i.e., CeffkT > 1.13

Let us now estimate the Jeans scale ;. In this regime the
relevant parameter that determines the start of the acoustic
regime is c2;, so we will write the sound speed in terms of
this quantity. Rearranging (3.28a) and solving for ¢? in

2 2 .
terms of ¢Z,, c5 and w, we find

expansion of the

) 2(143w)c%, | 16ct
(I +w)ei + 5 + 5

2
1+w+%

(3.29)

¢l =

2 . . . 2 2
so that cy is always positive as long as both c; and ¢z are

positive and w > —1/3. We now expand (3.23) for small w,
c%; assuming that they are both of the same order, i.e.,

O(w) ~ O(c%;), and for small c2 assuming that it is of

order O(c%,). This gives the GDM Jeans scale k; = k_ as

(3.30)

Note that taking the limit ¢2, — 0 in (3.27) reproduces
(3.26) of case 3, i.e., c,;, = 0, as expected.

5. Case 5: cyis/cs 21 ork >k,

This is the case related to the overdamping regime where
the solution decays without any oscillations. In order to
determine the scale where this happens, one may start from
(3.23), expand in small GDM parameters and associate the
overdamping scale with k,. However, as f always
decreases k., a better estimate is obtained if we set f =
0 in (3.23) which leads us to the definition of the over-
damping scale as kgumpCyis7 = 24/a/y. Once again, we
expand this expression for small GDM parameters, now
assuming that O(w) ~ O(c?) ~ O(c%,); ie., c%, is now
assumed to be of the same order as c2. The resulting
expression

CyisT 0.18¢y;7

- 15¢2 ~ 15¢2
\/30\/1 + 1 \/1 + 15

vis vis

(3.31)

Kgamp (7)

is now valid not only if ¢2,, < ¢Z but also if cZ > ¢? (in
which case k. is no longer real). Interestingly, for scales
below kgalmp the exact solution (3.21) decays with a power

law
b = Ay (cyskr) 2, (3.32)
for some constant A5 [see Eq. (13.1.5) of [127]), rather than

exponentially as one might expect from (3.27). This is
shown by the red and blue dotted lines in the right panel of

“This is valid as long as c. is sufficiently larger than c..
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Fig. 3. The limit kt — oo is contained in case 3 through
(3.26) and case 5 through (3.32), which shows that b -0
as kr — oo if either ¢? or ¢2 is nonzero.

The exact solution (3.21) does not admit oscillations and
has no exponential decay if k, = k_ as may be seen by the
blue lines in the right panel of Fig. 3. For small GDM
parameters this occurs for

, 15

P 3.33
=23+ V103) 339

. . 2 2
which approximates to c3;, 2 0.57c;.

It is worth noticing that the behavior between k3! and
max (k7' k3] ) is such that for fixed kq the decay is

damp

quickest for ¢2, =0 as may be seen in the left panel
of Fig. 3.

We remarked already in footnote 11 that a fine-tuned

negative sound speed c? 8 (2 canlead to a constant $

15 v1s
if ¢2. > 0 because kd1 = 0. This generalizes case O to

VIS

1nclucle the possibility ® # 0. If on the other hand the
negatwe sound speed satisfies |c?| > — & ¢Z and therefore
k‘ > (0, we are in the regime (3.33) where the potential
s1mply decays as (3.32) below k! without oscillations.

To close this section about the behavior of GDM
perturbations, we note that Hu’s nonadiabatic pressure
I1,.4 (2.24) is rather special compared to its extended
version IT,,4*"ed (2.26). If we instead use the extended

version IT,,4"%d Eq. (3.14b) changes to

: 2 k2 4 .
-1 _ _ 2
HIR = 73<1+W><—> { 1+l (R-9)

+3(c2 = A)[(C) + C)(R = @) + C, ),
(3.34)

which adds a k-independent source for R, leading to k-
independent terms proportional to $ in the analogue of
(3.16). Therefore, the curvature perturbation R is not
conserved on superhorizon scales unless either C; = C, =
0 or ¢2 = ¢2 (i.e., adiabatic fluid) so that an ISW effect is
generated by GDM even for the case ¢? = ¢2,; = 0 (baring
the trivial case where w = 0 in addition). This property of
Hu’s I1,,,4, that ¢ does not influence superhorizon modes,
was observed before in [119].

A similar analysis of the behavior of linear perturbations
was performed in [48] for the “Newtonian” model (2.26)
with C; = 1 and C, = 0 and for a particular time depend-
ence of GDM parameters c2 and cm, which will be
discussed in Sec. IV B. There it was also observed that
when w = 0 the large- scale perturbations are solely sensi-

tive to the combination ¢7 + & ¢Z; as in (3.25).
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C. Behavior of ¢ for a mix of GDM,
baryons and radiation

In this section we qualitatively discuss the evolution of the
potential & in the presence of a mixture of baryons, photons,
neutrinos and GDM, as is relevant for the CMB and large-
scale structure formation. This mixture may be treated as a
cosmological fluid with equation of state w, adiabatic sound
speed cg o given by (1 + Wtot)‘%,tot = > (1+w)Qcy
and total nonadiabatic pressure perturbation Il =
Im- cg’mt&. The GDM does not couple to photons or to
baryons; however, it affects the CMB through gravity. Thus,
in this section we examine how GDM affects the evolution of
the gravitational potential & which in turn leaves its imprint
on the CMB spectrum, for instance, through the ISW effect,
lensing and acoustic driving [128-132].

As in the last subsection, we rewrite the spatial trace
Einstein equation (2.13c) for a flat cosmology (x = 0)
using the traceless Einstein equation (2.13d) to eliminate ¥,
in terms of the two first-order equations for $ and R,

P = - +3(1 + wyy) F (R—-®)+ szl ., (3.35a)

2
1 2> <] 2k
R = 1_'_7“} |:Hnad.t0t - 377_[2 C%z.totq)] - TZ' (3'35]3)
tot

It is then transparent how the evolution of & depends on
Wiots nad.or @and Z. We discuss each of these in turn.

1. The equation of state wy;

The total background equation of state w,, depends on
the relative abundances and equations of state of the
cosmological fluids. It determines the time dependence
of a and H and gives rise to c2 . It also determines the
time of radiation-matter equality when w,, interpolates
between 1/3 and w, and the time of the transition between
GDM and A domination, with w,,, approaching —1 in the
latter.

If the right-hand side of (3.35b) vanishes, 'R remains
constant. However, & still retains some temporal evolution
if wy, 1s time dependent. Only in the case where £ = 0 and
Wit = 0 does the potential approach a constant, as was the
case in a purely GDM dominated universe with ¢? = ¢2, =
0 studied in the previous subsection. In the realistic
universe we consider in this section, w,, iS expected to
be weakly time dependent even during matter domination
since baryons and GDM have a slightly different equation
of state, in general. In Fig. 4 we display the evolution of a
single k mode of the potential ®, where ACDM (black
dotted line), w = 0.01 (dark-blue dashed line) and w =
—0.01 (light-blue dot-dashed line) give an approximately
constant potential during matter domination which sub-
sequently decays at very late times as A eventually comes to
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FIG.4. Comparison of the effect of w and ¢? and % on a single

k mode of the potential ®; see the legend in Fig. 5. Compared to
Fig. 3, the universe is now filled, in addition, with photons,
neutrinos, baryons and a cosmological constant. The lower panel
shows the effect of shear ¥ causing a &/¥ # 1.

dominate. Observe also that the case w > 0 has a larger
freeze-out value than w = 0, and the opposite happens for
w < 0. This is easily understood: increasing w shifts the time
of radiation-matter equality earlier such that a given k mode
spends less time during the era of radiation domination and
therefore experiences stronger decay until it freezes out
during GDM domination. The opposite is true when w is
decreased. Finally, let us note that during GDM domination

o =c% and Tl,q. = e, such that c2,; has no

significant effect on ®.

2. Nonadiabatic pressure 11,4 (ot

Consider a mixture of cosmological fluids that may also
be pairwise coupled and therefore exchange energy and
momentum. Their energy-momentum tensors would then
not be individually conserved, in general, but instead

Z]lu =0,
1

with the background value of the exchange current J;,
denoted by Q; = J},. Then the total nonadiabatic pressure
is given by [106]

VT, =Jn, (3.36)

1
Mhad ot = thot ;9191(1 +w)(1+wy)

o) o)
X(Cil_cgl)( ! ! )

1+W1_1+WJ
1 o

- 2
3Hp 1 + Wit 2 Qi

T
I .
+ F Zplnlnad9
T

(3.37)
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which is the sum of three terms. The first term (first two
lines) is the relative entropy perturbation and vanishes
initially for adiabatic initial conditions. It is suppressed
when the sound speeds are very similar, when Q; < 1 or
when Q; < Q; for all I < J. In ACDM this is the case
during radiation domination when the dominating species,
neutrinos and photons, have the same sound speed ¢2, =

Z,y and during matter or A domination, where the
dominating clustering species CDM has ¢2. =0 and
1 4+ wy =0. The second term (third line), proportional
to 6, manifestly modifies the sound speed of the total
density perturbation if the fluids exchange energy. This is a
subleading effect for standard cosmological fluids, e.g.,
after recombination when baryons lose a tiny fraction of
their energy to photons [133]. The third term (last line), the
intrinsic nonadiabatic pressure, is usually assumed to be
absent in ACDM,'* but does appear in A-GDM. It is given
by (2.24) since GDM is the only fluid that admits a sizable
intrinsic nonadiabatic pressure.

In a nutshell, we expect IT?!, to be a subleading effect in
ACDM and mostly relevant around the radiation-matter
equality, when it is dominated by the relative entropy
perturbation between matter and radiation. In A-GDM,
even well within matter domination, IT,,4 causes dto decay
below the scale k7! given by (3.25) as can be seen by the
green solid curve in Fig. 4. We investigate possible physical
origins for I1,,4 in Sec. IV.

c

3. The shear ¥

In ACDM the shear X interpolates between a mixture of
mainly neutrino and photon shear during radiation domi-
nation and vanishes during matter or A domination for
massless neutrinos. In A-GDM, during matter domination,
the GDM shear %, provides the dominant contribution to
the total shear X leading to potential decay, as is displayed
by the red dashed curve in Fig. 4. In addition, the total shear
causes a difference between & and W (see the lower panel in
Fig. 4), such that 3 adds a contribution to the ISW effect.
The same effect occurs for the lensing potential [132]; any
line-of-sight projection of ¥ + & will be affected by X as
well as by .

D. How GDM affects the CMB

We now discuss the effects that a GDM component may
have on the CMB in the case of adiabatic initial conditions.
We present the CMB power spectra and compare ACDM
(black dots) to four cases of A-GDM: ¢2 = 0.01 (solid
green line), ¢2. = 0.02 (long-dashed red line), w = 0.01

Vis

(short-dashed dark-blue line) and w = —0.01 (dot-dashed

14Although any fluid with internal degrees of freedom, for
instance a baryon fluid, has, in general, some internal non-
adiabatic pressure.
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light-blue line). We fix the standard cosmological param-
eters to the best-fit Planck values [2] in all cases. All spectra
were produced using a version of the CLASS code [93,100]
modified to incorporate GDM.

1. Effect of w

In the case of pure CDM, the most distinctive effect on
DIT = I(1+ 1)CI" /2x is a modification of the heights of
the first few acoustic peaks that depends on @, the
dimensionless CDM density [128,134]. This is because
the CDM abundance affects the time of radiation-matter
equality and therefore which modes enter the horizon
during radiation domination. During radiation domination,
P decays and boosts the observed CMB temperature
[128,134] due to acoustic driving. Increasing the CDM
density pushes radiation-matter equality earlier, which
reduces acoustic driving and lowers the amplitude of the
peaks. Indeed, one of the best pieces of evidence for dark
matter comes from the CMB spectrum, as the absence of
CDM would introduce large acoustic driving, boosting the
peak amplitude and leading to a spectrum that completely
disagrees with observations.

In the case of GDM, increasing the dimensionless
GDM density w, gives a rather similar effect to CDM
since the equation of state is taken to be small, |w| < 1
[75-77,81,93,95]. Larger values for w will result in GDM
behaving more like radiation, in effect creating large
acoustic driving and boosting the CMB peaks to values
inconsistent with observations.

Even though w is taken to be small, its actual value is still
of importance as the GDM density approximately scales as

a*pyw,(1 +3wlin(l + z)). (3.38)
In particular, its greatest effect is to shift the time of
radiation-matter equality for fixed w,. Increasing w raises
the amount of GDM in the past (leading to smaller acoustic
driving which in turn reduces the peak heights), and this is
similar to increasing the dimensionless GDM density w,.
Accordingly, we expect w and w, to be anticorrelated. This
effect has been discussed in [75] and observationally shown
in [77,93].

In Fig. 5 we compare the temperature and E-mode
polarization power spectra, DIT and DFE, in a ACDM
model to two A-GDM models with w = £0.01. The dotted
curve is the reference ACDM model with all GDM
parameters set to zero and the remaining parameters taken
from Planck [94]. The w = 0.01 model (dark-blue dashed
line) is below that of ACDM for the first few peaks, and the
opposite is true for w = —0.01 (light-blue dot-dashed line).
Note that the time difference in horizon entry At;_y =
0.1 Mpc is much smaller than the shift in the time of
radiation-matter equality Az, =25 Mpc. Therefore, the
main reason for the modification of the peak heights when
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FIG. 5. Comparison of the effect of w and ¢? and c% on

temperature power spectrum D! 7 and E-mode polarization power
spectrum DFE. T, is the mean CMB temperature. The lower
panels show ration between the cases with a nonzero GDM
parameter and a ACDM reference model. The panels labeled “no
lensing” and “no lensing, no ISW” have been calculated without
the effect of lensing and without the ISW effect.

w is varied is a shift of the radiation-matter equality time,
denoted by arrows in Fig. 4. In that plot we show the time
evolution of a single k-mode of d that corresponds to the
third C; peak. In addition, the time of recombination is
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shifted by Az, = Az, and therefore the size of the sound
horizon at recombination is reduced for positive w. Since
the decrease of the sound horizon is accompanied by a
decrease in the angular diameter distance to recombination
(as varying w directly affects the Hubble parameter H), the
change in the peak positions is rather moderate compared to
the case where w,, is varied. Nevertheless, the peaks move
slightly to the left (right) for negative (positive) w.

Panels 24 of the D] 7 part of Fig. 5 and panels 2-3 of the
DEE part, show the ratio of the C;s with nonzero GDM
parameters to the reference model C;s, making the change
of relative peak heights and also the shift of peak positions
more visible. More specifically, the C, ratio is displayed
without the effect of lensing (panel 3 of either part) and
without the ISW effect (panel 4 in the D! part). These C;s
have been calculated by artificially removing the ISW and/
or lensing terms in CLASS. It is clear that it is mostly the
first few peaks that are affected by the ISW effect as well as
all scales larger than the first peak, while the higher peaks
are affected by lensing. At low [, the ISW effect for the
w = 0.01 model is slightly larger than ACDM, while for
the w = —0.01 model it is slightly smaller because the
potential freezes to a slightly larger constant value in the
former. This fairly small effect was discussed in
the previous subsection (see also Fig. 4). The effect of
the equation of state w on the lensing amplitude is shown
by the dark-blue dashed (w = 0.01) and light-blue dot-
dashed (w = —0.01) curves in Fig. 6. This can be under-
stood from Fig. 4; a positive w allows ® to freeze out earlier
and therefore at a larger value.

2. Effect of c¢? and c%,

Let us now turn to the effects of the perturbative GDM
parameters, namely, the sound speed ¢? and viscosity ¢
An important property of CDM is that during CDM
domination, & freezes to a constant value. For a GDM

dominated universe we saw in (3.25) that ® will be time
dependent and decay below

/ 8
kCTl(T) =7 C% + Eceis’

as long as c2 or c%is is nonzero. We therefore expect these

two parameters to be degenerate in the CMB, and indeed
the cases ¢2 = 0.01 and ¢2, = 0.02 lead to very similar
CMB observables. Two further GDM scales that we have
uncovered in the previous subsections are the Jeans and
overdamping scales k7' = 0.2¢7 [see (3.30)] and kg;mp =
Zc2 k3! [by combining (3.31) with (3.25)], respectively.
All three scales are marked in Fig. 4 at 7z =17,, the
conformal time at recombination. However, these scales
are not visible in the CMB. The reason for this is that the

CMB spectra are mostly determined by the photon
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FIG. 6. Lensing potential power spectrum Df’P, lensing temper-
ature cross spectrum D,T‘b and lensing B-mode power spectrum

DBB_ The faint lines in the second panel show D! without the
ISW effect. The different lines correspond to the legend in Fig. 5.

temperature 6,/4 which is only indirectly sensitive to
GDM dynamics, while the potentials play a lesser role;
moreover, their effects (such as ISW) are convolved over a
wide range of time scales. This makes the GDM scales
invisible by eye in the CMB spectra even though the size of
the residuals compared to ACDM is mainly determined by
kgl(r*). In contrast, at z = 0, the potential decay scale
kq(z = 0) and the Jeans scale k;(z = 0) are clearly visible
in the matter power spectrum, as we see in Fig. 7.
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FIG. 7. Total matter power spectrum P(k) at z = 0, where the
lines correspond to the legend in Fig. 5.
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Potential decay for nonzero ¢? and c¢2, leads to smaller
CMB lensing compared to ACDM and, at the same time,
larger (and continuous across time) ISW. This is observed
by comparing panels 2 and 4 in the D7 part for the effect
on ISW and panels 2 and 3 in both temperature and
polarization parts of Fig. 5 for the effect on lensing.

Neither the “no lensing” nor the “no ISW” C;s are directly
observable, but the lensing potential power spectrum D;M’

and the temperature-lensing cross correlation DIT’/’, dis-
played for all models in Fig. 6, are directly observable. We
observe that nonzero ¢2 or c%is leads to a reduction of the
lensing potential power spectrum D}M’ (upper panel) and
lensing B-mode power D?# (lower panel). The lensing-

. T .
temperature cross correlation D, ¢ (middle panel), however,
is boosted for nonzero c¢2, c%is because a larger fraction of

the temperature anisotropies are caused by the ISW effect.
This is clear from the fainter lines in the Dle’ panel which
have been calculated by artificially removing the ISW term.
During the radiation matter transition, a nonzero ¢2 or ¢,
leads to a quicker decay of the potential and therefore can
boost the acoustic driving of the observed temperature of
the first couple of CMB peaks. For the chosen parameter
values ¢? = 0.01, ¢2, = 0.02, this is a subdominant effect
compared to lensing and the ISW effect, as may be seen in
the “no lensing, no ISW” panel in Fig. 5. Since k7' is a
length scale appearing in the perturbations, we do not
expect that varying k3! will affect the size of the various
CMB imprints to the same degree. Indeed for much smaller
constant parameters, such as ¢z = 1075, the only remaining
effect on the CMB spectra is the reduced lensing compared
to ACDM [93]. On the other hand, if ¢ and ¢2,; grow with
redshift, i.e., as ¢2, ¢2,, & a2, then the CMB will be mostly
sensitive to kgl at early times; see the discussion in [95].

The total linear matter power spectrum at z = 0 is shown
in Fig. 7. The scales k7! where the potentials start to decay,
k;l below which GDM oscillates, and kgalmp below which
GDM is overdamped, are also shown. We expect the
constraints on ¢? and ¢2 to improve considerably and
their degeneracy to be broken, if small-scale late-time
structure formation data are combined with the CMB.
However, to fully utilize these data would require an
extension of the GDM model into the nonlinear regime.
This is one of the motivations for the comparison of GDM
to other models in the next section.

We remark that the case of negative ¢2 has been studied
in [74,76]. We do not think that it makes sense to consider
negative c?, ¢ since they lead to exponential instabilities
unless one fine-tunes the viscosity as discussed at the end of
Sec. III B. We checked that, for small enough negative
values |c2|, |c% | < 1075, the numerical integration works

and gives rise to reasonably looking results. Within some
range of parameter space, the potential P grows slightly
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without exploding, but only when numerical integration is
restricted to times and scales relevant for the CMB. This
qualitatively new and phenomenologically interesting fea-
ture of growing potentials might be expected in alternative
theories of gravity (see [135]) but not from dark matter. We
therefore suggest using a parametrization suited for alter-
native theories of gravity for this purpose [83-85,135].

IV. CONNECTION BETWEEN COVARIANT
IMPERFECT NONADIABATIC FLUIDS
AND GDM

It is certainly possible that not all dark matter models can
be brought into the GDM form. As one would like to use the
GDM model to test alternative DM models and determine
whether they are allowed or even favored by the CMB, we
have to assess which realistic particle and field-based DM
models can actually be brought into the GDM form. For
instance, in the case of particle-based models, one concern
may be that the phase-space distribution function f,(x*, p,)
and its dynamics, as governed by the Boltzmann equation,
does not allow for a truncation or closure of the hierarchy at
Imax = 2. In this case, additional cumulants of f (x*, p,)
beyond the first three (5,, 6, and X)) may be necessary. The
collisionless case includes warm DM which can be
described as GDM in the linear regime of structure for-
mation [35]. For the collisional case parametrizations based
on the Boltzmann equation were recently presented in
[136,137]. We leave it to future work to investigate the
connection of GDM to the phase space description of
collisionless and collisional DM and therefore the connec-
tion of GDM to specific models of particle DM.

As we discuss below, if DM has internal degrees of
freedom, then a GDM description may be possible in
certain circumstances. Such is the case for nonequilibrium
thermodynamics, the effective theory of fluids of
Ballesteros [138] and the case of tightly coupled interacting
adiabatic fluids. Alternatively, the GDM model may arise
as an effective description of pure CDM once small-scale
modes are integrated out [44], and lastly, as an effective
fluid reformulation of scalar field models.

Most of these models have a nonperturbative definition.
This is desirable if the model is to also be used in the mildly
nonlinear and fully nonlinear regimes of structure forma-
tion. It is known that higher-order perturbation theory based
on imperfect fluids improves the modeling of CDM in the
mildly nonlinear regime [44,48]. Similarly it is known that
even in the fully nonperturbative regime of structure
formation, a self-gravitating scalar field is a viable alter-
native to particle dark matter [38].

A. GDM arising from thermodynamics

In this subsection, we consider nonequilibrium fluids
that are close to thermal equilibrium, such that thermody-
namic relations still hold. Fluids of this kind are well-
known instances of imperfect fluids and therefore offer a
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clear physical interpretation of the GDM parameters and
serve as candidates for extensions of the GDM model into
the nonlinear regime.

Fluids that are not in thermal equilibrium can develop
(1) bulk viscosity, a special kind of nonadiabatic pressure
proportional to V,u* that hampers the fluid expansion,
(i1) shear viscosity, proportional to the trace-free part of
Vi u, that impedes shearing flows, and (iii) diffusion flux,
which is proportional to the gradient of a particular thermo-
dynamic potential and which acts to smooth out those
gradients. Bulk Viscosity16 arises when the collision times
between particles are long, when the fluid consists of a
mixture of relativistic and nonrelativistic particles, or when
the particles have internal degrees of freedom [139-143].
Similarly, shear viscosity is related to the free-streaming
time 7. between collisions, with the photon-baryon fluid and
freely streaming massless neutrinos being well-known
examples of this.'” Diffusion (or heat) flux exists whenever
the energy flux is not exactly aligned with the particle flux,
which happens for instance in the photon-baryon fluid at
next-to-leading order in the tight-coupling approximation.
Bulk and shear viscosity as well as diffusion flux are related
to entropy production and give rise to imperfect terms in the
energy-momentum tensor [140,146] and, as we will see,
nonadiabatic pressure. It is also known that WIMP dark
matter, although usually described as a pressureless perfect
fluid, is better modeled by an imperfect fluid with shear and
bulk viscosity, as well as pressure [43,147].

The shape of the energy-momentum tensor depends on
the definition of the fluid four-velocity u*, in other words,
the frame. A natural choice is the so-called energy or
Landau-Lifshitz (LL) frame defined through u,7%, =
—pu,. We adopt this frame throughout this paper, and
we denote the corresponding four-velocity by u*. This
frame enforces the constraint u, %%, = 0, and prevents the
occurrence of a term g, u,), where g, is the heat flux, in the
energy-momentum tensor (2.1).

If a conserved particle current

NY = nu* + j* (4.1)
exists, the equation of motion for »n is found from
V,N* = 0. (4.2)

In general, N” is not aligned with the energy flux pu”, in
which case the diffusion flux j* is nonzero. Since n =
—N*u,, is the number density, we have j*u, = 0, such that
j¥ vanishes on FRW and §;* is gauge invariant in linear

“Note that within this subsection we do not display the
subscript g on the nonequilibrium imperfect fluid quantities for
notational simplicity.

Often also called second, volume or dilatational viscosity.

See also [113,116,117,144,145] for a discussion of viscosity
in a cosmological context.
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perturbation theory. If NY exists and is nonzero, it is
common to choose the Eckart frame [148] defined via
NY = nn?, rather than the LL frame. The Eckart frame
requires a term proportional to g*“n*) to be added to the
energy-momentum tensor (2.1).

Under a frame transformation given by a Lorentz boost,
the four-velocity and the spatial vectors ¢, and j* do not
remain invariant to linear order in the boost velocity, while
all other functions entering N* and T,, remain frame
invariant [149,150]. The combination

- _ . ptp
9y = 49v — Ju
n

(4.3)

is also frame invariant to linear order in the boost velocity
[149] and can therefore be interpreted as a frame-indepen-
dent definition of the heat flux in linear perturbation theory.
The information in the generalized heat flux g, is stored
entirely in the diffusion flux j¥ when the LL frame is
adopted, while in the Eckart formulation it is stored entirely
in the (standard) heat flux g,. Note that g, directly enters
the energy-momentum tensor T,,, while ;¥ does not.
Therefore, whether a heat-diffusion-type departure from
a perfect fluid is included in the energy-momentum tensor
depends on the frame chosen. In the Eckart frame, ;¥ = 0
and hence N” assumes a perfect fluid form, while T,
develops the additional imperfect term g,n,). In the LL
frame, T, retains its perfect fluid form but N” receives
imperfect corrections through j*.

We stick to the Landau-Lifshitz (or energy) frame unless
otherwise stated. One good reason to choose the LL frame
is that it always exists, regardless of the existence of a
species with conserved particle number. There are some
other good reasons for this choice, which will be discussed
further below.

In the GDM model, if ¢2 # c2 the total GDM pressure
cannot be obtained from a barotropic equation of state, i.e.,
P # P(p). Therefore, it is natural to assume that the
pressure has to depend on some other quantity as well,
for instance, the particle number density n, the chemical
potential y, the temperature 7', or the entropy S, such that
P=P(p,n,uT,S,...). The obvious complication with
this idea is that the GDM model contains neither of those
additional degrees of freedom. However, we will assume
that the thermodynamic relations (4.4) are valid, allowing
us to assume that the equation of state is given by P =
P(p,S) in the absence of bulk viscosity.

The main results of this section are that 45, although in
general dynamical, is sourced only by Ag [see (4.23)] and
that a mapping to GDM is possible in two limits: (1) where
the heat conduction vanishes and S is nondynamical (see
Sec. IV A 3) or (2) where the heat conduction becomes very
large and the 6S becomes algebraically related to Ag (see
Sec. IV A 4). That the pressure is, in general, dynamical is
also expected from kinetic theory [151].
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1. Landau-Lifshitz imperfect fluid

Let us first review the LL imperfect fluid derivation
adapted to our notation. We assume in the following that
the thermodynamic relations (which are guaranteed to hold
in local thermal equilibrium)

p+p=mun+Ts, (4.4a)
dp = pdn + Tds (Gibbs relation), (4.4b)
dp = ndu + sdT  (Gibbs-Duhem relation),  (4.4c)

still hold in situations that are slightly off-equilibrium.
Here, s is the entropy density, n is the conserved particle
number density and p is the thermodynamic pressure. In
the absence of bulk viscosity the thermodynamic pressure
would equal P, which suggests the definition

Py =P —p, (4.5)
for the bulk pressure Py.

The derivation of the LL imperfect fluid equations uses
the conservation equations in the form V,7%, =0 and
V,N* = 0. Making use of (4.4a), the energy-momentum
tensor can be written as
T, = (un + Ts)u'u, + Pygtt'u, + P&, +2#,.  (4.6)
With the help of (4.2), (4.4c) and the normalization
condition u”u, = —1, the expression for u*V,T%, gives

Myv(zTal/ = _Tvu(suy) +/’tvvjy + uyva(zab + Pbulkqau)’
(4.7)

where g, = g,, + u,u, is the projector on u”-orthogonal
hypersurfaces. Energy-momentum conservation plus the
identities X%, u” = g*,u¥ = 0 give rise to the evolution
equation

oo M1 Prui
VS =-pV, ===V u —-——=V u*, 4.8
l/S .] l/T T 14 au T l/u ( )

for the entropy current,

i,

SV =suh —= v 4.9

s =5 (49)

The definition of S* is suggested by the fact that it takes this

form in local thermal equilibrium within kinetic theory

[152]."% In order to guarantee V,S” >0, Landau and
Lifshitz postulate the following constitutive relations:

Bt is exactly this equation that receives quadratic corrections
Q" in causal nonequilibrium thermodynamics [149,153]. Note
that in [154] it was proven that all first-order theories apart from
LL are unstable, where first order here means that S* depends
linearly on the energy-momentum tensor and the particle flux.
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1
Z;w = _277LL (qaﬂq/jv - §Clﬂyqaﬁ> V(auﬁ), (4103)

Py = — CLLVﬂMﬂ7 (4-10b)
. nT \2 u
Ju = —KLL <H_p> qyyvu ?
- o M
= —KLLq ”VD?, (4.10(:)

The non-negative coefficients 7y, {1 and k;; are known
as shear viscosity, bulk viscosity and heat conduction,
respectively. In the last line we defined «y; for later
convenience.

We now briefly return to the discussion of the frame
choice. It is not well known in the cosmology literature that
the Eckart and LL theories are not equivalent [154]. This
inequivalence points to a flaw of the theory of nonequili-
brium thermodynamics since a physical state should never
depend on a frame choice.”” A remedy to this puzzle was
recently put forward by Van and Bir6 [155], where it was
suggested to modify the thermodynamic relations (4.4) if
the frame of the fluid and the frame of the thermometer that
measures 7T are different from the LL frame. It was shown
that a particular generalization of (4.4), explicitly contain-
ing the fluid and thermometer velocities, leads to a
manifestly frame-covariant set of closure relations involv-
ing one equation for the frame-independent quantity g,
rather than two separate equations for j, and g, as in [154].
This set of closure equations then reduces to (4.10) once the
LL frame is chosen, while it does not reduce to the closure
equations of Eckart in the Eckart frame. By modifying the
thermodynamic relations (4.4) according to [155], the
solution obtained in the Eckart frame can by mapped to
a solution obtained in the LL frame through a boost, which
immediately follows from the frame covariance of the
conservation equations, as was shown in [155].

With the standard Gibbs relations (4.4), the Eckart frame
leads to unphysical instabilities. Choosing the Eckart frame
with the Gibbs relations of [155], however, leads to a stable
solution that is not equivalent to the solution obtained by
Eckart [117,148]. Support for the LL frame also comes
from kinetic theory [156,157] and its stability properties
compared to other frames [154,158,159].20 The most
conservative and reasonable frame choice therefore seems
to us to be the LL frame [162].21

For the same reason why a physical state cannot depend on
the gauge choice. In both cases, frame and gauge choice, the
mathematical result depends on these choices, but the physical
state must be invariant.

2()Although the LL theory contains superluminal effects, they
are unimportant [158]. Making the theory causal [149,153]
comes at the price of having more differential equations and
free functions while giving rise to only unobservable small
corrections compared to the LL theory [160,161].
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Let us now continue with our task to connect the LL
theory with the GDM model. One might wonder what the
physical significance of the parameter xj; in (4.10c) is,
since j, does not directly affect the energy-momentum
tensor: Both n and j, can affect p and u” only via the
equation of state p = p(p, n), but they have no effect if the
equation of state is barotropic p = p(p). We discuss this
further below where we perturb the LL theory around a
FRW background.

2. Linear perturbations of the LL theory

From now on we set the bulk viscosity Py, to zero. This
simplifies the notation in the following paragraphs and also
makes it manifest that nonadiabatic pressure does not
require bulk viscosity, which is, in any case, not part of
the GDM model. Nevertheless bulk viscosity might not be
negligible in some situations (see the discussion in [117]
and [43,112] in the context of CDM); we plan to add this to
GDM in future work.

In linear perturbation theory, taking into account only
scalar modes, the LL closure relations (4.10) give

2 )
=T g, (4.11a)
ap(l +w)

j =R (80— 5¢), (4.11b)

where we have defined the normalized chemical potential

i
1]

(4.12)

NI

and the gauge-invariant scalar perturbation j via j; = V,j.
It is also useful to rewrite the thermodynamic relations in
terms of £ and the entropy per particle

s
5=2 (4.13)
as
p+p=nT(S+E&), (4.14a)
_ dp__dn
_ dp__dr
dE =(S +¢&) (pﬂ) T). (4.14c)

The entropy evolution equation (4.8) on a linearly per-
turbed FRW spacetime then reads V,8* = 0 since both j,

2 There are however different opinions on this matter: In [163]
it was argued that the Eckart frame is more physical than the LL
frame.
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and X¥, are spatial tensors and vanish at the background
level. Explicitly this gives

§=0. (4.15a)

~ 2 .
MUK (54 g o - o).

an

58 = —

(4.15b)

The first result means that there is no entropy production
within linear perturbation theory. This is a direct conse-
quence of discarding bulk viscosity. Nonetheless, entropy
perturbations are generally nonzero for nonvanishing xy;
and are dynamical.

The perturbed LL equations are known to be relevant in
cosmology: Heat conduction and shear viscosity have
similar and equally important effects in the photon-baryon
plasma. They are proportional to the mean free time of
photons 7. [117,129,130] giving rise to Silk damping of
baryon acoustic oscillations [164]. The photon-baryon fluid
is also an example where the bulk viscosity can be
neglected, since its magnitude compared to the shear
viscosity is suppressed by the large number of photons
per baryon [117].

Equations (4.15) can only play a role in the evolution of
the density and velocity perturbations if the pressure P also
depends on S.** Assuming a general P = P(p, S) we obtain

oP

p= % S,‘), (4.16)
5P = g;) 35,0 + g? ﬁas. (4.17)
Eliminating 9 |5 we find
=26+ %% p(ss, (4.18)
M, = [—})% 5 (4.19)

At this point we cannot conclude that ¢ is the sound speed
since 85 might have nontrivial dynamics similar to 8. In the
absence of bulk viscosity, the entropy perturbation has the
straightforward interpretation of a relative entropy between
d and 6n,

We could equally assume an equation of state of the form
P =P(p,n), P=P(p,&), P=P(n,S), or any other combina-
tion of p, n, S, &, T. They can be shown to lead to identical results
(4.25) and (4.27). To show this, Eq. (4.2) and the thermodynamic
relations IV A 2 have to be employed, in particular, the Maxwell
relations following from ddS = 0 and ddé = 0.
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- o) on

[see (4.14b)], and therefore we expect that, in general, 5S
can modify the sound speed. The relation (4.20) shows that
the relative entropy perturbation between p and # is in fact
an entropy perturbation in the thermodynamic sense if the
fluid is in a thermal state and also explains why II,,4 is
known as the “entropy perturbation.” A system in local
thermal equilibrium defined by two state variables may
equally be expressed by any other set of two linearly
independent state variables due to the relations (4.4).
We assume this property to be true also off equilibrium,
such that we may assume &= E(p,S) and therefore

(4.20)

ag | $dp + \ ,dS. On a linearly perturbed FRW
spacetlme w1th0ut bulk viscosity, this leads to
E=3H2| (1+w)p, 421
5. | (14w (421)
%5
13 po + oS. 4.22
&= ol o3, (4.22)

Inserting this into (4.15b) gives

A

na pa

=, 2
5s - Fuk <3+§>< + %

55) (4.23)

This result shows that 1,4 in (4.19) is, in general, a
dynamical degree of freedom and sourced by Ag. In the
remainder of this section we will investigate under which
conditions 65 = 0 and S Ag
connection to GDM.

and therefore establish a

3. GDM as a LL perfect fluid with a conserved
particle number
For a perfect fluid, n;;, = {1, = ki1, = j = 0, and (4.23)
simplifies to
85 =0, (4.24)
showing that oS is constant in time and does not have a
large impact on the dynamics of ¢ and 6. The dynamics of

the perfect fluid variables p, u* with a general P = P(p, S)
are thus modeled by a particular GDM model where

P(p.S)

w=——>>= 4.25a
5 (4.25a)
P
2=a=% (4.25b)
Ip
2, =0, (4.25¢)
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with a corresponding adiabatic sound speed (2.12). It is

()P |S

thus clear why ¢2 = is called the adiabatic sound

speed: It is calculated from a general equation of state with
the entropy held fixed. The relation to GDM is a good
approximation since S is constant in time. Furthermore,
the relation to GDM becomes exact for adiabatic initial
conditions, i.e., 6S = 0.

Note that in order to arrive at this result, we do not have
to use any thermodynamic relations, and we could have
equally derived (4.25) by assuming an equation of state
P = P(p,n) and showing that the particular combination
5/(1+w)—én/n is slowly varying compared to & using
the perturbed particle conservation equation (4.2) and the
continuity equation (2.14). Therefore the result (4.25) holds
for any perfect fluid with a conserved particle number and
does not require the additional assumption of being in a
thermal state. Also note that ¢? = c¢2 holds even for
nonlinear perturbations [165].

A discussion of the equation of state p(p, S) of an ideal
nonrelativistic gas in the context of cosmological pertur-
bation theory can be found in [166].

4. GDM as a LL imperfect fluid with a conserved
particle number

As we discussed above, although the GDM model lacks
a particle conservation or alternatively an entropy evolution
equation, it may still be used to describe a perfect fluid even
for the case P = P(p, S), since &S is either time indepen-
dent or zero. It is clear, however, that the GDM model
cannot, in general, describe an imperfect fluid completely,
as in that case 65 will be dynamical. Fortunately, as we
show here, there are situations where the GDM model can
be used to describe imperfect fluids as an approximation,
by effectively removing the additional degree of freedom
(usually associated with S) that is present in the LL theory.

Equation (4.23) may be solved using an approximation
scheme analogous to the tight-coupling approximation for
two interacting fluids (see Sec. IV E). In the limit of large
ki the last bracket in (4.23) has to be parametrically
smaller than 8S in order for linear perturbation theory to
apply. Therefore at leading order in an expansion in k] the
rest-frame density perturbations Ag and the entropy per-
turbation 6S become proportional to each other,

54 o
oS = —%pAg + O(KLL ]).

(4.26)
237
Inserting this leading-order solution into (4.18) gives the

GDM pressure equation (2.19a) with sound speed

oP

OE -
aﬁ |S 8_P
_ 5‘/) aﬁ E

2 2

4.27
€5 =Ca= 53 (4.27a)
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Thus in the large xy; limit the sound speed is given by
2 = ?Tg |E which should be contrasted with the perfect fluid
@ > |5- The other two GDM

parameters, equation of state w and viscosity ¢ arise as

case k; = 0 where ¢2 = ¢2 =

w8 (4.27b)
D
2 = et 3T (4.27¢)
2 ap

where we have mapped the LL shear (4.11a) directly into
the form of the algebraic GDM shear (2.29), which
explicitly depends on the initial conditions (to remind
the reader, for adiabatic initial conditions dic = 2).
Let us point out that it is only as a matter of convenience
that we use the dimensionless™ “viscosity speed” squared
ws rather than 7y as it is precisely that combination of
variables that appears in the phenomenology: First of all it
is known that for freely streaming ultrarelativistic radiation
c2 = c? =1/3 [75]. In addition, as we have shown, for

the algebraic shear the combination ¢? + & ¢Z determines
the scale where the potentlal decays and that the effective
sound speed is cZ; = c? —2c% (see Sec. III).

Observe how (4.27a) offers an interpretation for IT 4 as
the thermodynamic entropy perturbation, clearly deserving

the name “entropy perturbation,” which II,,4 is often

referred to as. Since S = 0, this is not necessarily related
to entropy production, as the linearized entropy fluctuations
average to zero when integrated over all space. However,
entropy is indeed produced at second order in perturbation
theory.

For nonrelativistic particles of mass m the chemical

potentlal satlsﬁes S=m/T-£+5/2 such that §—

—mT/ 72 for § = 0; hence, a nonzero f seems natural.
However, it is less clear whether the large «y; limit can be
naturally achieved in a dark matter model.

In closing this subsection, we remark that there are other
approaches to nonequilibrium thermodynamics [167,168]
or imperfect fluids [169] that might be better-suited
candidates for an extension of GDM into the nonlinear
regime of structure formation.

B. GDM arising from an effective theory
of CDM large-scale structure

As the Einstein and fluid equations are intrinsically
nonlinear, the FRW background and the linear perturbations
should both be affected by the small-scale nonlinearities
(backreaction), generating imperfect contributions to the
CDM energy-momentum tensor as well as pressure [44]. We

We set the speed of light to 1.
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therefore expect that the CDM background and linear
perturbations should be described as GDM with (nonzero)
GDM parameters that increase with time as the nonlinear
scale grows in the late universe and that are approximately
scale independent on the linear scales under considera-
tion [170].

The form of the effective energy-momentum tensor can
be derived through a coarse-graining of the microscopic
equations (the lowest two moments of the Boltzmann
hierarchy) and a subsequent gradient expansion [44—47].
In [44,171] it was argued that this leads to a LL-type
imperfect fluid energy-momentum tensor whose time-
dependent coefficients (equation of state, sound speed
and viscosities) can be extracted by matching to the
microscopic theory.

It was later emphasized in [46,172], that the effective
energy-momentum tensor is a spatially local function of p,
u* and the Riemann tensor because there exists a hierarchy
of spatial scales kv,7s << 1 (where v, < 1 is the average
particle velocity and 7y is the free-streaming time of a
particle) such that kv, 7¢ << 1 means that scales of interest
are larger than the mean free path. On the other hand, the
stress-energy-momentum tensor cannot be a local function
in time due to the absence of a temporal hierarchy of scales
since the free-streaming time is of the same order of
magnitude as the age of the universe g H = (9(1).24
Nevertheless a local-in-time approximation of the
energy-momentum tensor turns out to be a good approxi-
mation for certain applications in perturbation theory
[172,173].

The relevance of the effective field theory of large-scale
structure (EFTofLLSS) in the context of GDM is that it
shows that even “ordinary” CDM has a FRW background
and linear perturbations that are more completely described
by an imperfect fluid with nonzero w, ¢ and ¢, and a
bulk viscosity term with parameter cbLllk = —Pyu/P-

As mentioned above, these GDM-type terms arise in the
EFTofLLSS because both linear perturbations and the back-
ground get renormalized by small-scale physics that has
been integrated out. The numerical values and their time,
scale and cosmology dependence (in particular, the nor-
malization of the matter power spectrum) can be estimated
using perturbation theory (see Appendix D of [44] and
[171]), or more accurately using N-body simulations
[47,172,174]. Atz =0

w,c2, ¢ = 0(107%) =

2, ¢ (10 x ky'H)?,  (4.28)
and they scale approximately with redshift like the variance

of the peculiar velocity in linear perturbation theory

*This is in contrast to a collisional fluid where usually a small
mean free path kv,7. < 1 is accompanied by a small mean free
time 74 H < 1 leading to an energy-momentum tensor that is a
temporally and spatially local function of the & and 6.
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(fDH)?, where D is the linear growth function and f =
dInD/d1n a the linear growth rate and k, = 4.6 hMpc™!
is the nonlinear scale below which the EFT breaks down
[172].25 The second relation in (4.28) shows that
ky! = 10k;!. Therefore, the largest characteristic scale
k7' of the imperfect fluid is within the range of validity
of the effective theory.

We note that the shear in GDM is nonlocal in time
since (2.19b) can be formally integrated, £, = [* g(7.7/,
(:)g(r’ ))d7'. Nonetheless, we saw that the qualitative behav-
ior is well captured by the local-in-time algebraic version
(2.29); see Figs. 1 and 2. In the EFTofLSS the stress tensor
and therefore Il,, X, and bulk viscosity are nonlocal

functions in time of ®, Ag, (:)g. We find a similar effect
in our investigation of tightly coupled fluids further below;
see Fig. 10.

Those two examples suggest that, for the search of
signatures of pressure and imperfect fluid behavior of dark
matter, it is sufficient to focus on one specific choice of
parametrization of the stress tensor in terms of <f>, Ag, (:)g
and a set of free functions: w and c? for the pressure and c2,
for the viscosity. We find in [93], using Planck and baryon
acoustic oscillations data, that the constraints on c2, c%is <
O(107%) have a similar magnitude as the best-fitting
parameters of the EFTofLSS. However, we note that the
proximity of those numbers is an accident and has no
immediate consequence for EFTofLSS. This is because we
assumed parameters to be constant in time, while those of
EFTofLSS decrease with increasing redshift, making the
CMB less sensitive to EFTofLLSS parameters at early times.
Constraining GDM parameters with particular time
dependence and via principal components is left to future
work. Then it might be possible to measure the parameters
of the EFTofLSS in data.

We also note that a similar approach for an EFT of LSS
has been put forward in [48] where a parametric set of
equations similar to the algebraic GDM model was used
from the outset, albeit with a small difference (see
Sec. II D). The shear viscosity was assumed to be of LL
form (4.10a), such that the parametrization could be applied
to higher-order perturbation theory.

C. GDM arising from scalar fields

Scalar fields have often been linked to effective fluids on
a cosmological background. Here we reexamine this
relation, connect it to the GDM model and discuss further
possibilities beyond GDM. As it turns out, the effective
behavior depends on whether the value of the scalar field ¢
crosses zero; hence we consider two possibilities

*We get the estimate (4.28) and the time dependence (fDH)?
for ¢2 by inspection of Egs. (3,51,84) of [45]. That w and 2
should be of the same order of magnitude as ¢? follows from
Appendix D of [44].
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separately: a case with no oscillations in the background
value of ¢ and the opposite.

1. No oscillations in the background value of ¢

It is well known that quintessence scalar fields with a
canonical kinetic term X = -3V, ¢V#¢$ and potential
V(¢) can be described by an effective fluid. In the appendix
of [75] it was already noted that a quintessence scalar field
is described by a GDM model with an arbitrary (and, in

X-v

general, time-dependent) equation of state w = oy sound

speed ¢ = 1 and viscosity ¢ = 0.

A generalization of the standard quintessence field by
introducing a noncanonical kinetic term K(¢, X), hence
dubbed k-essence, was proposed in [175]. The action takes

the form

1
Z= | d*x/=g9|——=R+K(p.X .42
[ v R K@+ 2| 429
One may define a fluid velocity
i L g4 (4.30)
u, ——— .
H /2X H

provided X > 0 (and ¢ > (). For instance, although this
condition holds on a cosmological background, it does not
hold in the static spherically symmetric case. Hence, the
fluid description is not generally applicable in all situations.
If X >0, then it is clear that u,u* = —1, such that "
provides a natural vector field representing the fluid
velocity. The frame defined by #* is called the scalar frame.

The association to a fluid is valid both on a FRW
background and at the linear perturbation level, and this is
sufficient to make a connection to GDM. The relevant
variables are [175]

K
- 431
VT oXKy —K (4312)
K
d= K (4.31b)
2XKyy + Kx
2 =0, (4.31¢)

where Ky =K If K(¢, X) = X — V(¢) then one recovers
the quintessence case. Let us note that the sound speed in
the k-essence case is, in general, time dependent; however,
it is always spatially constant.

The k-essence model has traditionally been used in the
context of inflation or dark energy. However, by carefully
choosing K one can design models which are more suitable
for dark matter. It was shown by Scherrer [176] that for
shift-symmetric k-essence [K = K(X) only], it is possible
to obtain models which approach ACDM, albeit with
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¢? = 0. In particular, for any K(X) which has an extremum
at X=X, we may expand it as K(X)=~Ky+
K,(X — Xo)?> +---. The field equations for ¢ may then
be integrated once to get VXKy = Foa—> where F, is an
integration constant.”® Then one obtains p=-Ky+

2
2Fy/Xpa™3 and P = K, —i—‘l;ﬁa%, which is valid as

long as FoK7'X;¥?a™ < 1.

Identifying p, = —K; and separating out the cosmo-
logical constant leaves us with a GDM component with
Py = Pgoa> where p, o = 2Fy\/X. The sound speed and
equation of state obey the strict relation

Fy

= a_3 4.32
4K, X (4.32)

2 =2w

and are always time dependent. Thus, given K, and X,, one
can match the required GDM energy density today by
choosing the integration constant Fy appropriately. This in
turn fixes w and ¢? completely.

For the k-essence action above, it may be shown that u*
coincides with the LL velocity u*; however, this is not the
case for more general actions of the Horndeski class. In [86]
it was shown that more general scalar field actions
necessarily lead to imperfect fluids and, in particular, the
appearance of shear and bulk viscosities as well as heat
flux. For instance, k-essence that is nonminimally coupled
to gravity via a term [ d*x,/=gc-s ¥R in the action
necessarily leads to bulk viscosity and is therefore a model
beyond GDM. The addition of a cubic term
[d*x/=gG"(¢.X)O¢ in the action leads to a non-
adiabatic pressure that is more general than the form
considered here in (2.25); however, it still leads to zero
shear just like k-essence. Nonzero shear arises when the
quartic and quintic terms of the Horndeski action are
included. It is unknown at the moment whether there exists
a subset of the Horndeski action that is more general than k-
essence, but which still conforms to the GDM template
(with perhaps shear viscosity).

A different type of scalar field model that is not of the
Horndeski class is the imperfect dark matter model [177],
which extends the mimetic dark matter model of [178]. It
seems plausible that it also has a close correspondence
with GDM.

2. Background value of ¢ oscillates

If the background value of the scalar ¢ is oscillating
around a potential minimum, then the results (4.31) do not
apply. This is because 8,4(} changes sign and X momen-
tarily vanishes such that (4.30) is not a well-defined four-
velocity. It was shown in [23,36] that oscillating scalar
fields provide a working alternative to particle dark matter.

*The integration constant F, may easily be related to an initial
condition for X at a specific initial time.
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In the appendix of [75] it was pointed out that a GDM fluid
may still provide an effective description if one averages
the Einstein equations over several oscillation periods. A
very interesting example is an oscillating real classical
Klein-Gordon field with P, = K = X — m?¢?/2, which
describes certain types of axion dark matter [179]. While
the background expansion is identical to CDM on cosmo-
logically relevant time scales, small perturbations around
the Friedmann background behave like a fluid with non-
adiabatic pressure [39-41]. The sound speed is only
solution independent in the fluid comoving frame, the
nonadiabatic pressure is of the GDM form [180] and the
approximate mapping to GDM is given by

w =0, (4.33a)

k O\ -2\ -1 k \2
2 L ~ (L), (@33
Cs < (2am> > <2am) ( )
2 =0, (4.33¢)

for scales much larger than the Compton wavelength
k < kc = am. When the Klein-Gordon scalar ¢ is split
into a slowly varying complex field y and a high frequency
part ¢ [39,181], it is easy to see that y solves the
Schrodinger-Poisson equation and that a dustlike behavior
emerges above the Jeans scale

k—l

" ~ a"(Gﬁg)‘1/4m‘l/2,

(4.34)
which is the de Broglie wavelength of a k-mode of >’ It is
guaranteed that there is a range of modes within the Jeans
scale for which (4.33) applies if the envelope of ¢ is much
smaller than the Planck mass [184]. A new method to
numerically solve the Klein-Gordon equation without time
averaging and without employing the nonrelativistic limit
was developed in [185], where it was also implemented in
the CMB code CLASS.

It is remarkable that for both the nonoscillating and
oscillating background scalars, the nonadiabatic pressure is
of GDM type, i.e., C; = C, =0 in (2.26); see [86] and
[180], respectively.

2"The authors of [182] disagree with (4.33) and (4.34), and find
that for an oscillating scalar field the Jeans scale is the Compton
scale. Their approach does not involve averaging over time scales
m~!. Moreover, in [106] the authors argue, in Sec. VI-4, that the
dynamics of scalar perturbations may be qualitatively different if
averaged background quantities are used in the perturbation
equations. Therefore, there appears to be no consensus on
whether a GDM fluid with (4.33), and thus a Schrodinger field
with (4.34), describes perturbations of an oscillating real Klein-
Gordon field. However, the majority of the axion literature agrees
with the view presented in this article, for instance, [37,39—
41,57,59,179-181,183]. In particular, recent numerical studies
[184,185] found (4.33) and (4.34) to be accurate for scales larger
than the Compton wavelength.
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D. GDM arising from effective field theory
for fluids

In [138,186], the authors studied the class of actions
of three scalars ¢“, a =1, 2, 3, which are invariant
under volume-preserving internal diffeomorphisms that
send ¢ — p%(p") with det(0p/d¢p") = 1. See [187]
for a review of the pullback formalism and [72] for
applications to the coupling of dark matter to dark
energy. The fields ¢“(z,x') label the Lagrangian fluid
volume elements such that x(z, ¢¢) are the trajectories of
the fluid volume element labeled by ¢“ The assumed
symmetry leads to the automatic conservation of the
current

SH = s, (4.35)
where
s = y/det(B®), B = ¢9,00,¢", (4.36)
and the four-velocity ### is defined as
i+ = —ée”(’/}yéa,,caa(p"aﬂ(pbﬁy(p", (4.37)

with the totally antisymmetric symbols having the con-
ventions €"'% = —1/,/=g and €53 = 1. We discuss the
physical meaning of the conserved current S* further
below. Actions where ¢“ is accompanied by only one
derivative have been studied in [188—-191] and give rise
to perfect fluids without the need for Lagrange multi-
pliers. They are therefore interesting starting points for
general and consistent parametrizations of fluids.

In order to go beyond perfect fluids, more than one
derivative per ¢“ is necessary [138,192,193]. The most
general action compatible with the assumed symmetry can
be expanded in the number of gradients d, < A, acting on
each field, where A, is the cutoff scale of the effective
theory. At leading order (LO) and next-to-leading order
(NLO) the most general action is [138]

1 1<
I—/d“x\/—_g{%R#—F(s)—l—PZh,(S)fl-l-ﬁm],

i=0

(4.38a)
where F' and h; are smooth functions of n and
Jfo= (gﬂl/ + I’V‘Mﬁy)vﬂ’lavvﬁm fi= (ﬁ”vﬂs)2,
f2 = VﬂsV"s, f3 = V”IZ”VDIZ",
f4 = €“ﬂ””vaﬁﬁvﬂﬁy. (438b)
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If h, were a constant, the term /=gh, f4 would be a pure
boundary term in (4.38). In general, 4(s) contributes only
to vector modes, while the background evolution and scalar
modes are unaffected [138], so we drop it in what follows.
It was shown in [192] that S$¥, denoted there by J#,
indeed fulfills the criteria of a conserved entropy current
of a nonequilibrium thermal fluid. However, the some-
what unusual combination of imperfect stress-energy-
momentum and a conserved S$¥ means that the EFT of
fluids describes nondissipative imperfect fluids [138,192].
Comparing to Sec. IV A, the imperfect contributions to the
stress-energy-momentum tensor of LL theory are strictly
dissipative, VﬂS" > 0, while those of the EFT of fluids are
strictly nondissipative, V,§" = 0.%* In order to simplify the
subsequent discussion and to emphasize the connection to
GDM, we set to zero the combination

ho + 3s%(hy — hy) + hy = 0, (4.39)
thereby eliminating all NLO corrections to the FRW
background. This leaves only two free functions,

167G

agrr — 1 = v (ho + hs3), (4.40)
487G
YEFT — 1= A2 S2h2, (441)

c

relevant for the scalar perturbations. The leading-order
action, with all h; = 0, gives rise to an adiabatic perfect
fluid and has been used in the context of cosmology before
[72,186]. By disregarding vector perturbations (and there-
fore 2 of the available 3 d.o.f. provided by the ¢“), and
using the results for the background ¢ = 5jxf and func-

tional metric derivatives [187],

ot 1 s s
— el = —Z(¢"F + P 4.42
59 5 i, 59 2(9 + b)),  (4.42)
we obtain 5§ = a3, the background energy density
ﬁg = _F: _F(E)’
and equation of state
1dIn(=F)
=—-1—--——. 4.43
v 3 dina (4.43a)

Note that p, does not contain any time derivatives of the
fields ¢“. Therefore, in contrast to conventional scalar field
theories, no differential equation has to be solved for the
background dynamics of any of the three fields ¢*“.

“We thank G. Ballesteros for pointing this out to us.
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The adiabatic sound speed c2

usual [(2.12)].
The scalar perturbations can be parametrized by a single

is related to w as

scalar ¢ [138] as dp” = 5;?61-@29 The number density
perturbation 6, = 8s/5 and the entropy velocity perturba-
tion then assume the following form:

- /. 1
Sii; = —aV, (@ i g) , (4.44)
8, =3+ Vo, (4.45)

where $ = ¢ — v/2 is gauge invariant. These expressions
agree with [138] if the conformal Newtonian gauge is
chosen. The components of the gerturbed energy-
momentum tensor (2.7) take the form®

5, = (14+w)é;, (4.46a)
eg:¢+%a+c+%}, (4.46b)

M, = 25, + %@2& (4.46¢)

3, = o 2t - M0 Bt =06 (g g

where we defined the gauge-invariant number density
perturbation in the entropy frame

~ . 1
AS_5S+3H<(2;+§IJ+C>.

The LL frame du; = —a%,-eg agrees with the entropy frame
ou; only to LO, such that the NLO contribution to 6, in

In [138] the symbol s is used for the scalar mode but here we
use ¢ in order to avoid conflict with the entropy density s.

We found a few typos in the equations of [138] and urge
caution when comparing our results to that work. Two typos
concern the shear: the right-hand side of Eq. (60) of [138] is
missing an overall minus sign [restoring this sign in Eq. (60)
makes the equation consistent with Egs. (72) and (76)]. The right-
hand side of Eq. (61) is missing a factor 1/a®. Restoring the factor
1/a* and the missing minus sign makes both equations consistent
with Eqgs. (72) and (76) of [138] and our (4.46d). There is also a
typo in the expression for the energy frame velocity perturbation
@, which in [138] is denoted by @z /k* and can be constructed
from Egs. (66), (67), (68) and (73). The resulting expression
deviates from our (4.46b) by a sign difference in the NLO part. To
check that our perturbed energy-momentum tensor (4.46) is
correct, we confirmed that the continuity equation (2.14) is
identically satisfied and that the Euler equation (2.15) agrees with
the equation of motion for .
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(4.46b) may be interpreted as heat flux.*' The nonadiabatic
pressure I1,,q4 = I, — ¢35, is given by

y -1 =224
l_Inad:Lv A

4.47
24xGa’p, (4.47)

and turns out to be proportional to the divergence of the
heat flux. Since A, describes fluctuations of the entropy
density, the name nonadiabatic pressure is justified. Since
both Il,,q and X, have no LO contribution, we can

eliminate @ and As with their LO expressions: @_q =¢
and Ag =(1+ W)AS, to obtain closure equations for I1,,4

and X, in terms of Ag and @g. We get

Yerr — | =2 A
M, — VA, 4.48
T 242Ga?(1 + w)p, g (4.48a)
agrr — 1 et A
X, = H O
"7 82Ga2(1+ w)p, KaEFT —1" ) /
2A R
e R \1/} (4.48b)
I+w

The NLO correction to the pressure takes exactly the GDM
form. However, it is a particular subclass of all allowed IT,,4
of GDM: the time dependence of ¢? — ¢2 can be chosen
freely via ygpp, but the scale dependence is fixed
to ¢ — 2 x k%

One limitation is that I,y < Ag in order for the EFT
expansion to be valid. This is not a problem if the EFT is
applied to dark matter where we expect I, < §,. The fact
that nonadiabatic corrections to the sound speed are
proportional to (k/H)? is a consequence of the EFT being
a gradient expansion that describes a perfect fluid at leading
order. Since 5 = a3, choosing F « s gives rise to w = 0,
while any other w can be achieved by specifying an
appropriate F(s). Therefore, as in GDM, one is completely
free to choose any time dependence of w.

In the expression for X, [(4.48b)] we used the LO Euler

equation to eliminate ¢. The shear cannot be brought into
either dynamical or algebraic GDM form, i.e., proportional
solely to @g. Nonetheless, the coefficient of (:)g in (4.48b)

can be matched with the algebraic GDM shear (2.29) such
that, at least approximately,

3!This heat flux is not related to g, (4.3), since there are no
conserved particles in the EFT of fluids. In the LL frame the
entropy current reads S¥ = su* + Q¥, where Q* is second order
in deviations from thermal equilibrium, but with contributions
linear in perturbations around FRW [149,192]. This should be
contrasted to the corresponding expression in LL theory (4.9) for
which Q# = 0. If we do not insist on a thermodynamic inter-
pretation of the EFT of fluids, then we can interpret the conserved
current (4.35) as particle current N* and the four-velocity (4.37)
as Eckart frame n”, in which case Q” simply becomes the
diffusion flux j*.
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1dIn(=F)

YT T3 g

(4.49a)

- s
¢ 247G(1 4 w)a’p,

cl=

(7err — 1) <%> 2, (4.49b)

dic +3)H .. _
= % ey + H(ager — 1)), (4.49¢)

We note that the corresponding GDM model is, in general,
not a good approximation as, once agpr # 1, the appear-
ance of A o 1n (4.48b) will give rise to a modification of the
effective sound speed. A priori this modification is as
important as the corrections coming from yger in (4.48a)
since both terms are of the form k46g in the Euler
equation (2.15). However, in applications to dark matter,
where ¢2 and aggp — 1 are both small, the leading departure
from GDM is due to the ¥ term appearing in (4.48b) which

is then very similar to the proposed T4 Eq_ (2.30).

Cosmological perturbation theory with only %, nonzero
in the NLO action has been studied in [193]. Since this
violates our assumption (4.39) this theory corresponds to a
different subclass of the full theory. In the most general case
where 6n?h, # (A2/87G)(agrr — yerr) and  therefore
(4.39) does not hold, the background receives NLO
corrections similar to bulk viscosity which also complicates
the structure of I1,,4. The behavior of the general theory
with independent /; is beyond the scope of this paper, in
which case both the background and the perturbations
receive corrections reminiscent of bulk viscosity. In par-
ticular, (4.46a) ceases to hold, signaling the presence of
intrinsic entropy perturbations.

E. GDM arising from two interacting adiabatic fluids

1. Definition of the model

General description.—Interacting fluids have been
investigated in the context of dark matter coupled to one
of the known species, for instance, neutrinos and photons
[67-70] or to dark energy [71-73]. We do not follow this
approach here, but a similar one where the interaction is
assumed to be between two dark species, and we inves-
tigate whether their combined effect can be effectively
described by GDM. This happens, for instance, if dark
matter is tightly coupled to dark radiation as in [65,66].

It was shown in [194,195] how two perfect fluids can be
combined into a single imperfect fluid with anisotropic
stress and heat flow. This framework for creating an
imperfect fluid from perfect fluids, however, is not useful
in a situation where the background four-velocities of the
constituent fluids are the same and the misalignment
between them is purely perturbative. The situation where
several fluids are coupled in linear perturbation theory is
treated in [106,145,196,197] and is our starting point.
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In the following we use the labels 1 and 2 for the two
coupled adiabatic (but otherwise unspecified) fluids. For
simplicity, we also assume that their respective equations of
state are specified by constant-w parameters, w; and w,, as
this is sufficient to obtain a GDM-like pressure.

Our formulation closely follows [90], where an inter-
action of a dark matter and a dark energy component was
studied in the so-called parametrized post-Friedmann
framework. Here, however, we assume that the DE is
uncoupled, and instead we use the coupled set of equations
for the purpose of obtaining a combined GDM behavior, as
we show further below. For all components, including the
combined fluid, we assume the LL frame.

The combined stress-energy-momentum tensor is

Tgﬂy = Tl”y + TZ”V’

(4.50)

with V,T /= 0. The stress-energy-momentum tensors of
the two constituents are not individually conserved since
the two constituents exchange energy and momentum via
the current J;, = —s;J,,. Here, s; = 1 and s, = —1, such
that V,T,¢, =J, = -V, T\#, and all other [ # 1, 2 in
(3.36) have J;, = 0. For the two constituents, the coupling
current J, can be split into a background part Q = J, (as
J; = 0) and two linear scalar perturbations g, = 6J, and

VS = 6J;. Let us point out that although we do not
specify the current J, nonperturbatively, the model with
pure momentum exchange has a straightforward nonper-
turbative extension.

Equations of motion for the constituents.—The back-
ground current Q describes an energy transfer between the
two components

pr+3Hp (1 +wy) = 5,0. (4.51)
Perturbatively, each component’s density contrast J;
evolves according to

by = =(1 -4 w) [0, -0) + 3] + 2 g - 031

(4.52a)
while the momentum divergence #; evolves as
0, = —(1 = 3w, YHO, +—15, 2 (1 = 3%
1 DO 01T 3 1
St
+ U+ ——[Sin — O(1 +w;)b]. 4.52b
ﬁ1(1+W1)[ = O( wr)0;] ( )

The mixture variables.—For the mixture we define the
total (background) density and pressure according to (4.50)
as p, = py + py and P, = Py + P, respectively. The total
equation of state w of the mixture is equal to the average
equation of state over the two components
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P1

w= Z rpw;  with  r; = 5 (4.53)
—12 g

Note that 0 <, <1 and ) ;_;,r; = 1. Although each
individual component has a constant-w equation of state,

the mixture’s equation of state is evolving so that its
adiabatic sound speed is

2 = Wi+ Ruixwz, — wpQ . (4.54)
I 4+ Roix 3(1 +w)Hp,
where we defined w;, = w; — w, and
P> (1 1
Rmix E€2( i WZ) = r2( + Wz) . (455)
pr(l+w)  ri(1+w)

With the above definitions the scalar perturbations of the
mixture energy-momentum tensor (4.50) are related to the
components through

8,= Y ridy, (4.56a)
=12
(L+w)0, = ry(1+ w0, (4.56b)
=172
O, =Y rll = > rwsd,. (4.56¢)
=12 I1=12
(L+w)Zy =Y r(l+w)Z,. (4.56d)

I=1.2

From (4.54) and (4.56), or by making use of (3.37) with
0, = -0 = 0, we find that the nonadiabatic pressure of

the mixture, I1,,q = I, — ¢35, is given by

0 A
A
3(14+w)Hp, *

Rmix(1 +W)
(1 +Rmix)2

Mg =wi2 [ 512] ) (4'57)

where the gauge-invariant variable Sy, is defined by

o Q)

S, = - -
P70 4w 14w

1 1
Q[Pl(l +wp) +P2(1 + Wz)] %
(4.58)

The variables §,, 6,, Sy, and 6,, = 6, — 6, provide a
complete set of alternative dynamical variables describing
the mixture.

2. Equations of motion for the combined fluid

The total background energy density of the mixture
evolves as usual according to (2.10), while the combined
variables 5, and 6, obey the usual uncoupled fluid
equations (2.14) and (2.15), respectively.
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The equations of motion for the new set of variables, S,
and 6,,, can be found in [106,197]. The latter reference
contains the fully general equations where the constituent
fluids are themselves allowed to have GDM-type non-
adiabatic pressure. We adapt those equations here in the
case of constant-w constituents. The equations of motion
for the two difference variables S;, and 6,, follow
from IVE 1 and are

. p.(1+w+w " 1 1
S]Z:—kzeu— ng( ! 2) >Ag+ |:p__ :|

— —1|S
p1p2(1+wy)(1+w, .

p]

int Q 2 2
dint _= Z(k2=3K)2
x{ —|—<H )69+3(k 3k) g],
(4.59a)
for Sy, and

01,= {H[V1(1+W1)(3W2— 1) +ry(14w,) (3w —1)]

_QF2(1+W2)+QF1(1+W1)} 01>
P1 P2 l+w

wiry(1+wy) +wyr (1+w)) 2.,
+ o Sia 3(k 3k)Z1

Wi2 4
1 g
+w

1 1

+ |z += Sim—00,), 4.59b

[Pl(l‘f'wl) P2(1+W2)}( t 2 ( )
for 0,,, where X, = X, — Z,.

Note that forming the pressure perturbation via Il =
cf,ég + I1,,,4 by using (4.57) and (4.54) results in

Roix(1

W1_2Q9g gt mix ( +2W)
pg (1 + Rmix)

Hg = CZ‘Q:()ag + SlZ' (460)

This means that if S, = 0 then the pressure assumes the
GDM form (2.21) with ¢§ = ¢;|p_o # ¢z, even though
QO # 0. This is reminiscent of the thermodynamics studied

in Sec. IVA3, where the sound speed czzg—ﬂsz

€2 |s_const €Ven if the entropy S is not constant.

We now show whether and how GDM behavior emerges
from the system of two interacting adiabatic fluids. We see
that the I1,,4 in (4.57), built out of sum and difference
variables, already has a very suggestive form: If the second
term were absent then we would be left with the exact
GDM expression (2.24). The first term, however, disap-
pears if Q = 0, and the only way to obtain a GDM-type
I1,,,q is to find S}, x Ay. We thus consider these two cases
separately: with energy exchange Q # 0 and with no
energy exchange (Q = g, = 0).
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3. Energy exchange: Q # 0

The suggestive form of II,,4 in (4.57) when Q # 0
indicates that when S;, — 0 the GDM model is recovered.
Since in this case there is net energy flow between the
constituent fluids, this means that the two fluids are not in
equilibrium and it is not surprising to find that ¢2 # ¢2.*

In order to effectively remove the S, degree of freedom
we assume that a situation exists where the two fluids are
tightly coupled. In particular, assuming a tight-coupling
relation of the form

/_)gHRC

gu=0fi- (1-0)o, 2o < 1A

0 3
(4.61)

where R, is a tight-coupling parameter such that in the limit
R;' - 0 and using (4.59a), the condition Sg(? =0 is
enforced to leading order in R

Since we work at lowest order in tight coupling,
discarding all O(R;') terms in II,, the @), degree of
freedom does not enter. Thus, within this approximation,
justifiable for the case R;! < Q/ (pgH), we do not have to

enforce 99 = 0 in addition to § gg) = 0. Therefore, assum-

ing only (4.61) we get at lowest order in R;! a nonadiabatic
pressure of the GDM form (2.24) resulting in

W= riw, + ryw,, (4.62a)
R..
2= Wi T Rix W = Cg\gzo- (4.62b)
1 + Rmix

The next order in R:' introduces corrections in ¢ which
depend on the (still) dynamical 952), spoiling the GDM
template. The situation is similar to the large-xy; limit in
Sec. IVA 4, where S becomes dynamical and the diffusion
flux becomes nonzero at next to leading order in the

expansion in &y ~'. Here we have the option to ensure
LL

that 9(12) =0 in addition to S(lg) =0, as discussed in

Appendix B.

4. No energy exchange: Q =q;,; =0

The Q = g;,; = 0 assumption is justified for the photon-
baryon fluid tightly coupled through Thomson scattering,

A situation of energy exchange exists for baryons after
recombination and therefore outside the realm of the two-fluid
GDM, when the Compton cooling of baryons modifies the
baryon sound speed [133]. Another situation might be an
interaction of dark matter with dark energy [90]. In those cases,
however, there is no tight coupling. In addition, this would
necessarily require an extension of the GDM model since the
GDM component is not conserved; the baryons lose energy in the
first scenario and the DM loses energy in the second.
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when thermal equilibrium is assumed and justified [106],
and second-order perturbative effects like thermalization of
acoustic oscillations can be neglected [198]. Here, we take
a more general approach which reduces to the photon-
baryon case when w; = 1/3 and w, = 0.

Equations (4.59) simplify to

S1, = —k20,, (4.63a)
and
. 0
B0 =H[r (14+w1) 3wy = 1)+ ra(1+w2) Bwy = D] =2
N 1 1
L W Ag+W172( +wy) +wyri( +W1)S,2+
I+w 14+w
2 1 1
—=(k*=3K)Z), + + Sints
3030 [ﬁ1(1+wl) pa(14+wy)| ™
(4.63Db)
and I, is determined by S}, as
Rk (1
_WIZ le( +W) (464)

nad — m 12-

In order to proceed further, we need to specify the variable
Sine in terms of other perturbations. Naturally we must have
a term which imposes the tight-coupling condition ; = 6,
in a certain limit. Hence, without loss of generality we set

Sint = —HR.(1+w1)p1015 + Si + O(RZ'),  (4.65)
where S, is still unspecified and R, is a function of time

only. Let us point out that the first term could be obtained
from the following nonperturbative definition:

1
JV = §Rcvy””(,01 + Py) () = uth).

The parameter R. can be interpreted as collision effi-
ciency related to the mean free time 7, = 1/(R.H), or
opacity 7z;!. In the case of the photon-baryon fluid, S;,
can be calculated from kinetic theory [106] and also leads
to a friction term, like in (2.19b), for the shear Zg. In the
limit ‘HR. — oo we get 6, — 0, which is the tight-
coupling condition. Hence to zeroth order in tight

coupling, we have (9%%) =0 such that (4.63a) gives

Sgg) = 0. This means that Sg%) is a time-independent
function that is related to a choice of initial conditions.
We can choose adiabatic initial conditions such that
Sﬁ%) = 0. Hence to zeroth order, we find that the mixture
is purely adiabatic, i.e., I1,qg = 0.

In order to find the solution to order R:!, we follow a
similar approach as in the case of the photon-baryon fluid.
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From (4.55) it follows that 1+ R, = (1+w)/
[r1(1 + wy)]. We then rearrange the 6, in Eq. (4.63b) to
get, to lowest order in R_!,

(1) Rpnix Wi 4 2 2

0, = A ——(k*=3K)Z

27 (1 + Ryix ) HR, L+w s 31 KT
1+R, =
_+m“%] (4.66)
p2(14+wy)

This is the next-to-leading-order correction to the tight-
coupling solution. Inserting the above equation into the one

for § 12 gives the first correction for S;, as

(1) > [T, Rmix Wiz 4
S, =—k d
12 A ‘ (1 =+ Rmix)HRc |:1 +w !
2 14+ Ry =
—=(kK* = 3k)X — s 4.67
S sz ot g )

where the integrand is evaluated at time 7’.

It does not seem that (4.67) reproduces the GDM
pressure relation even though the appearance of the rest
frame density perturbation Ag is promising. We have
already argued that it is natural that IT,4 is dynamical,
in other words, a temporally nonlocal function of 5, and 6,,.
The effect of the nonlocality of S, is that I1,4 is slightly
out of phase with Ag in the acoustic regime, leading
to damping in addition to viscosity, which can be inter-
preted as heat-diffusion flux; see Sec. IVA4 and
[117,130,154,199,200].

To get an idea of how well Sglz) approximates the exact
S1,, we can study the case where the two fluids are given by
photons (I = 1) and baryons (/I =2) that are tightly
coupled via Thomson scattering before recombination.
The variable R, in this case can be calculated from kinetic
theory [106]

Tc_l = HRC = angO-T = Xea_zé’r, (468)

where oy is the Thomson cross section, n, is the number
density of free electrons and X, = n,/(ny + n,,) is the free
electron fraction. The last equality defines o; =
a*orn,/X, ~2.3048 x 107>(1 — Yy )w, for helium frac-
tion Yy, and dimensionless baryon density @,,. The resulting
equation for 6,, = 0,, agrees with [102,105).%
In this case S’im = 0 while [102,105]
(1) 8 &

T = ~ O(R:!
g 15HRC®9 O(R:,

(4.69)

which is of the algebraic GDM (or the LL) shear form. In
Fig. 8 we compare the exact numerical solution from

CLASS (see [105]) to =\

3Note that the variable R used in [102,105] is the reciprocal of
our Ry = R™\.
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FIG. 8. Comparison of the exact shear 2, =%, when GDM is
set to describe the tightly coupled photon-baryon fluid to its
algebraic approximation that arises at next-to-leading order in
tight coupling.

Since the integrand is suppressed by (HR,)~!, we expect
S1» to be small and thus that the sound speed will be nearly

adiabatic. On scales larger than the sound horizon, Ag =
D(z)A! such that

1 1 T
S2 =7 bml“

, Rey (3 +4Ry,) D()] 4
(1+Ry)* HR.| "
(4.70)

where

35 _3Sufma

R, =R . — :
b "X 4D, 48, d

; (4.71)

for the baryon-to-photon ratio. Here, f,,, is the ratio of
energy density in the form of nonrelativistic matter and
relativistic matter, S, is the fraction of nonrelativistic matter
in the form of baryons and similarly S, is the fraction of
relativistic matter in the form of photons at some initial time
with scale factor a'. Figure 9 compares the exact and
approximate solution for S;, for a single wave number
k = 0.1 Mpc~!. Instead of conformal time 7, we use the
time-dependent R ! as a time variable on the x axis. We see
that S, = 0 initially, and until R;' = 0.005 both solutions
agree well.

Having determined the form of S, the GDM functions
are found to be

1 1

_ S N 472
Y=3TaR, T34 Ry) KT
2 =c2— szbr
* T T 914 R,,)(3 +4R,,)
1 [t Ry (3+4R,)D("
x—/ pREiChs b;) @) 470)
D(T) 0 (1 +Rby) HRC
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—
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FIG. 9. Comparison of the exact solution S|, of (4.63) and the
next-to-leading-order solution SEIZ) (4.67) for the photon-baryon
case. The x axis uses R;! as time rather than 7 to give an idea of
how well the tight-coupling solution works given some value of
R,. The right end of the R>! axis corresponds to recombination.

The key lesson from the photon-baryon example is that a
situation where a dark matter species is tightly coupled to
dark radiation [65] can be described as a GDM. It also
shows that we only expect mild deviations from the
adiabatic sound speed.

It is interesting to note that in the effective theory of
fluids [138], the nonadiabatic pressure has exactly the same
form ¢? — ¢2 « k?. To judge the importance of this term, we
can estimate the ratio (c? — ¢2)/c2. In other words, switch-
ing to the dimensionless variable x = kz, we need to

evaluate e; = f—ﬁ — 1, which is given analytically by

Rby 1 /x dx/ Rby(3 + 4Rby)D(T/)
3(3 +4Rb},)D(T) 0 (1 +Rby)2Hch ’

(4.73)

€, = —

and determine its size.
We now expand (4.73) in small x = kz and use the
adiabatic initial conditions from Appendix III A 4 in order

to get
k /IzaiSb 2 5
€y —> — = X,
32X667 fmrSy

thus e, scales as x°. How big or small it is in the early
Universe depends on the constants we need to include.
Assuming X, ~ 1 and standard cosmological parameters

we find
k 6/ 7 \5
=-0.024( —— — 1, 4.75
63 (0'1 Mpc_l) (TTCC> ( )

where 7, ~ 281 Mpc is the conformal time of recombi-
nation where the tight-coupling approximation breaks
down.

(4.74)
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FIG. 10. Comparison of the adiabatic and nonadiabatic com-
ponents of I, if GDM is the tightly coupled photon-baryon fluid.
We normalized I1,,4 by €,. This makes it visible when compared
to cf,ég and also shows that ¢, which was estimated in the limit
x < 1, works well also for large x. The kink at x = 0.2 is caused
by CLASS using S, = 0 until 7 = 2 Mpc.

In Fig. 10 we compare the two components of I1,, the
adiabatic cﬁég and the nonadiabatic I1,4 [(4.64)]. We
divided II,,4 by ¢, for two reasons. First, note that ¢,
was derived in the limit x < 1 in which I1,,4 can be written
as I,g = c2e,A, such that only in this limit ¢2A, and
I1,.4/ €, are expected to agree. But as is clear from Fig. 10
their magnitudes still agree for x > 1. Thus, ¢, is a good
proxy for the relative importance of II4. Second, we
observe that although IT,,4 has a slightly shifted phase
compared to J,, it might still be a good approximation to

assume that IT,4 = cﬁesﬁg. The damping caused by the

I1,,4 being slightly out of phase with A , could be taken into

2

account by adjusting cy;..

V. CONCLUSION

We have presented an extensive investigation of the
generalized dark matter model, first proposed by Hu [75].
The GDM model extends the commonly used pressure-
less perfect fluid that describes cold dark matter in a
linearly perturbed FRW universe. GDM describes a
phenomenological imperfect fluid with two particular
closure equations (2.19) and three parametric functions:
its equation of state w, sound speed ¢ and viscosity c%is.
Note that CDM is recovered for w = ¢ = cZ = 0. We
placed strong constraints on these parameters in a
companion paper [93], finding them to be consistent
with CDM.

We have calculated the adiabatic and isocurvature
initial conditions, and these are presented in Sec. III A
and in Appendix A. To understand the imprints of the
GDM model parameters on the CMB, we analytically
analyzed a simplified yet very similar version of GDM
(2.29) and found that the evolution of the gravitational
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potential in a GDM dominated universe with small
w,c? and 2 is mainly determined by ¢? and c2.
For physical values of these parameters (c2,cZ > 0),
they can only cause the gravitational potential to

decay and not to grow. This decay occurs on scales

below k3! =17,/c2 +8c2 /15; see (3.25). The parame-

ters ¢ and c¢2 cause further, less degenerate, effects at
the Jeans (3.30) and damping (3.31) scales, which are
both on smaller scales. We expect the CMB to be less
sensitive to these smaller scales.

We numerically investigated the CMB power spectra in
Sec. I D. We found that ¢? and c2 appear to be very
degenerate in all CMB power spectra with adiabatic initial
conditions, consistent with the expectation from above that
the CMB is mostly affected by ¢ and ¢ through the
combination k3'. The decay of the potential below this
scale predominantly affects the CMB through the ISW
effect and lensing. The effect of the equation of state w on
the CMB spectra can be understood through its effect on
the time of radiation-matter equality.

We also investigated several alternatives to the GDM
model (see Sec. IV), most of which are defined non-
perturbatively. In principle, nonperturbative models such as
these are able to describe the nonlinear regime of structure
formation.

Thus, these models may be useful to look for signatures
beyond CDM in data like in [201,202] that probe the mildly
nonlinear and nonlinear regimes. Similarly, these models
can be employed in forecasts of GDM parameter con-
straints that will be possible in the future with LSS surveys
like Euclid [99]. We leave GDM constraints and forecasts
involving nonlinearities for a future study.

In this paper we focused on the linear regime and
showed how these models are related to GDM and, when
possible, how these models can be mapped to the GDM
parametric functions. In total we examined five models:
We considered the theory of nonequilibrium thermody-
namics of Landau and Lifshitz and pointed out that the
presence of a conserved particle current and its pertur-
bations can be accounted for by GDM in the perfect fluid
limit (4.25) or when the heat conduction is very large
(4.27). We presented the mapping to GDM parameters if
DM is modeled by a monotonously moving (4.31) or
oscillating scalar field (4.33). The latter case is important
if DM is a low mass axion. We also investigated the
imperfect fluid arising at next to leading order in an
effective field theory expansion based on the pullback
formalism of fluids and found that a certain subclass of
this theory can be modeled by GDM (4.49). According to
the EFTofLSS [44], even CDM develops imperfect fluid
behavior on linear scales. Here, we clarified the con-
nection of EFTofLSS parameters to GDM (4.28). Finally,
we considered the case where two fluids are tightly
coupled and therefore can be described by a single fluid.
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In the tight-coupling limit with energy exchange, this
combined fluid has a nonadiabatic pressure of GDM form
(2.24) with GDM parameters (4.62). This two-fluid
model is the only model considered here that is not
defined nonperturbatively. However, other two-fluid mod-
els can be defined nonperturbatively, such as the model in
Sec. IV E4 possessing only momentum exchange.
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APPENDIX A: INITIAL CONDITIONS
FOR SCALAR MODES
1. Einstein and fluid equations

For convenience, we multiply all equations with suitable
powers of a [see (3.5)] in order to avoid inverse powers of x
once we insert our anatz (3.8). The resulting necessary
equations used in the calculation of the initial condition
modes are as follows:

00-Einstein equation,

aa'h' —2a%y

= 35,5, + 35,5,

3 e -
+ 3/1ka{sg {1 - 3wln<fka>}5g + 8.5, + Sba,,}.

mr

(Ala)

0i-Einstein equation,

A
2a%y = 3/1,{&{59 [1 +w—3wln <fk &)]vg+Sbvy}

mr

+4S,v, +4S,v,. (Alb)
CDM continuity,
8. =—=N (Alc)
Baryon continuity,
/ 1 !
0, = —v, — Eh (Ald)

Photon continuity,
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4 2
5;:—51)},—51’[/. (Ale)
Baryon-photon Euler,
38, . . 1 38, ., -
(1 +ZS_}//1ka>’1};, :Zéy—zs—yllkalv},. (Alf)
Neutrino continuity,
2
S =——v —ZH Al
V=30 (Alg)
Neutrino Euler,
v, l('5 -0 (Alh)
14 4 14 12
Neutrino closure,
4 2
= — — (I +61). Ali
0, = =<ty + < (i +67) (Al)

GDM continuity,

a*s,=3a’d (w—c?)s,— (14+w)a*+9(aa')*(c2-w)v,

1
—5at (L w)h. (Alj)

The GDM Euler equation,

. . [

av;} = (3C%— l)alvg+a<1_’__wég_o-g>' (Alk)
GDM shear equation,

~ ~ . 8 1
Cngl + 3a’ag = Clm (Ug + Ehl + 37]l> . (All)

where we have used (2.19) to substitute for the GDM
pressure.

2. Isocurvature modes

Here we list all nondecaying isocurvature modes. These
are the radiation-type neutrino isocurvature density (NID)
and neutrino isocurvature velocity (NIV) and the matter-
type CDM isocurvature (CI), baryon isocurvature (BI) and
GDM isocurvature (GI).
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a. Neutrino isocurvature density

Setting 6,9 = 1 = —2—25%0 and all remaining perturba-
tions in Z 46 [(3.10)] to zero, the neutrino isocurvature

density mode is

Sl/ 2 SbSu

= - s = ﬂl 3’
T= 76015 +4s,)" 408, "+
1 S
6, =—=h, Sy = —=x2,
cT72 b= gs,”
S x?
5, =——6 o,=1——,
’ s, " v 6
5, = Sy 2 3ehi(w=c3)  Sp(1=ci +2w) axl.
75 15 448, 16S,
S, 1 2¢%.S, 3
v, =——0 v, =—X Vy = o X
! S, Y47 9 15(15+4S,)"
o, = o x?, 6, = oSS x2.
Y 2(15+48S) g 15(15 +45S,)
b. Neutrino isocurvature velocity
Setting v,y =1 = —% v, and all remaining perturba-

tions in Z,,4es [(3-10)] to zero, the neutrino isocurvature
velocity mode is

48 35,
=— Ly, h=20)8,22
T=73G514s)" gs, kot
1 S
S, =—=h = &,==2
c 2 ) b S},x’
S 4
6}’ - __U(Sw 51/ =—5%
S, 3
8c2.(w—c?) 3(2-3c2+5w)S,
5, = |—is s ] Aux| S, x,
g [ 5145, 325, S
v __i 1_3/1’<sz v _1_wx2
s, 48, 7 )’ Y 6(5+4S,)"
8chisSy 2
v, = —————Xx°,
97 9(5+48,)
4 SCEiSSD

T35 14s) %9 T T35 14s)

c. CDM isocurvature

Setting 6.y = 1 and all remaining perturbations in Z ges
[(3.10)] to zero, the CDM isocurvature mode is
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1
n= —g/lkSCx, h = A;S.x,
0. =1 1/15 op = 1/15
c — ) k9 Xy b — 2 k9 Xy

2 S.(1=3c2+4
§,=0,=—=MSx, O,=- (1=3c +4w),
3 2

1 L, )
v, =0, = —EﬂkSCx , vy = —gcsﬂkSCx ,
S 2 (15 —48,)
¢ ) 3’ _ _vis v .
T 76015+ 25,) " % 9 o

Note that had we assumed a pure radiation background
(without the matter corrections to the scale factor evolu-
tion), o, would (incorrectly) seem to grow as x° rather than
the standard result (x*), even in the case of a vanishing
GDM component. One finds similar deviations when the w
corrections to the scale factor are neglected.

d. Baryon isocurvature

The structure of the baryon isocurvature mode is
identical to the CDM isocurvature mode from which it
is obtained with the mappings 6, <> 0, and S, <> §},.

e. GDM isocurvature
Setting 5, = 1 and all remaining perturbations in Z ;oges
[(3.10)] to zero, the GDM isocurvature mode is
|
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1 > A
n=-q [x‘3c§ +¢2=3wln <—k>]/1kng, h = —6n,

mr

1 2
= = -—— = = ——h
b.=8,=—5h  5,=8,=-3h
1
5, = x30v=ed) 4 ) {—25'996_3”g +3(w—c3) +48,(c3 —2w)
A
+6ngln<fk )}Akx,
1 5 A
Uy =v,= _E |:.)C_363 +§C§ —3wln <]7kr>}/1ksgx2’
1
vy = Ec%x,
1 e 3c2(65+45,)
= _——— x s PR —
%= T6(15 + 25,) 4(15 +25,)
A
- 3wln<fk )]zksgx{
4 15— 48 5
_ 2_' 2 2_71/1 S 3(1—-c?) )
%9 = Cuis [15 N Tsa(15 4 28,) 0

Note that for w # ¢? the value of the parameter 6, does not
really specify the value of 6, in the limit x — O due to the
pure log term in the expansion ansatz (3.8) for 6, To
ameliorate this problem, we have rewritten a In(x) as x* — 1
which converges for x — 0 and gives better numerical
results.

APPENDIX B: GENERALIZED TIGHT COUPLING

In this appendix we consider a more general way to impose the tight-coupling conditions in the case of two interacting
fluids. In particular, we allow ¢;,; and S, to be linear combinations of 6, and S}, parametrized by an angle /.. in the range

0 < B, < 7. The relevant relations are

Q

g 0| (- D)o, 20

0 3

and

P12 (1 +wi)(1 +w,)
py(1+w)

2
Sint — Qgg 3 (kz - 3k)

This immediately implies that 5(1%) =0\ =

lowest-order terms, we find

(1) 1 Q(l +wy +W2)
S =o |
R, peH

and

iy = (1 +wi)piR.[=sin(B.)S) + cos(B.)HO,).

cos(f.) =

HR, :
= Pg’tRe [cos(f.)S12 + sin(f,.)HO ;)

(1 +w) (B1)

(B2)

1> = 0. Rearranging the equations of motion for S}, and 6;, and keeping only the

Ryixwin

(T Ro) (L) (B3)

sin(f3..) Ag
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1 [O(1 4wy +w,)

(1)
HO, = —
R, [ pyH

The S(llz) relation then leads to a sound speed

5 Wi+ Ry

sin(f3,) + (
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Rixwin
1 + Rmix)(1 + W)

cos(p) [, (B4)

cc =
’ 1 + Rmix Rc(l + Rmix)2

Wi Rpix (1 +w) [Q(l +wy +wy)

R w2 sin(ﬂc)], (B5)

cos(fe) = (1+Rpx) 1 +w

which now depends on the angle ... For general 3, the term which includes cos(f3..) is expected to be parametrically smaller
than the term including sin(f.) because it is suppressed by Q/(p,H) < 1. We note that the tight-coupling condition

O = 0is unnecessary when keeping only the lowest-order terms in R.!; however, it is necessary when including the next-

12 =
(0)

to-leading order, as otherwise the dynamical 6," will contribute to Il, and spoil the GDM template.
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