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The cold dark matter (CDM) model, wherein the dark matter is treated as a pressureless perfect fluid,
provides a good fit to galactic and cosmological data. With the advent of precision cosmology, it should be
asked whether this simplest model needs to be extended, and whether doing so could improve our
understanding of the properties of dark matter. One established parametrization for generalizing the CDM
fluid is the generalized dark matter (GDM) model, in which dark matter is an imperfect fluid with pressure
and shear viscosity that fulfill certain postulated closure equations. We investigate these closure equations
and the three new parametric functions they contain: the background equation of state w, the speed of sound
c2s and the viscosity c2vis. Taking these functions to be constant parameters, we analyze an exact solution of
the perturbed Einstein equations in a flat GDM-dominated universe and discuss the main effects of the three
parameters on the cosmic microwave background (CMB). Our analysis suggests that the CMB alone is not
able to distinguish between the GDM sound speed and viscosity parameters, but that other observables,
such as the matter power spectrum, are required to break this degeneracy. In order to elucidate further the
meaning of the GDM closure equations, we also consider other descriptions of imperfect fluids that have a
nonperturbative definition and relate these to the GDM model. In particular, we consider scalar fields, an
effective field theory (EFT) of fluids, an EFT of large-scale structure, nonequilibrium thermodynamics and
tightly coupled fluids. These descriptions could be used to extend the GDM model into the nonlinear
regime of structure formation, which is necessary if the wealth of data available on those scales is to be
employed in constraining the model. We also derive the initial conditions for adiabatic and isocurvature
perturbations in the presence of GDM and standard cosmological fluids and provide the result in a form
ready for implementation in Einstein-Boltzmann solvers.
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I. INTRODUCTION

It is now a century since Einstein proposed his theory of
gravity, general relativity (GR). In that time, GR has passed
every experimental test [1] and has few, if any, serious
competitors. However, this experimental success necessi-
tates the existence of dark matter (DM) and dark energy
(DE), collectively called the dark sector, in order for
galactic and cosmological observations to be satisfied.
Although GR is then consistent with the observations, this
implies that the total energy density of the present-day
Universe is dominated by the dark sector, for which we do
not have any nongravitational evidence.
In order to achieve agreement with the observations [2], it

is sufficient to treat DM and DE as two noninteracting
perfect fluids with very simple properties. In particular, DM
is modeled with zero pressure (Pc ¼ 0) and DE is modeled
as a cosmological constant Λ with constant energy density
ρΛ ¼ Λ

8πG and pressure PΛ ¼ −ρΛ. The assumption of
vanishing pressure for DM means that the DM is cold,

collisionless and single streaming.1 This simplemodel of the
dark sector, together withGR as the theory of gravity and the
Standard Model (SM) describing the known constituents of
matter, forms the standard ΛCDM model of cosmology.
While the DE component of the dark sector is a more

recent addition to the standard cosmological model, the
evidence for DM goes back much further [3,4]. Further
evidence comes from a variety of galactic [5–8], galaxy
cluster [9–11], gravitational lensing [12,13], CMB [2,14]
and large-scale structure observations [15–18]. The low
baryonic energy density as inferred from calculations of the
big bang nucleosynthesis and observations of the abundance
of light elements [19,20] shows that DMcannot be baryonic.
As mentioned above, the evidence for the dark sector is

all gravitational in nature. This has led to the consideration
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1Note that once shell crossing occurs on small scales,
technically speaking, CDM ceases to be cold in the sense that
the phase space distribution that satisfies the collisionless
Boltzmann equation develops velocity dispersion. However,
initially cold DM that undergoes shell crossing is still commonly
referred to as CDM, although a pressureless fluid description is
not possible anymore, and one usually resorts to N-body
simulations or the so-called effective theory of large-scale
structure to solve for the collisionless dynamics of dark matter
in this stage; see Sec. IV B.
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of alternative theories of gravity in lieu of including DM
and DE as new components of the universe; see Ref. [21]
for a review. For the question of whether phenomena
attributed to DM may be due to the gravitational field not
correctly described by GR, one particularly interesting
observation is the bullet cluster [9,22]. In this system, the
baryonic gas appears to be spatially separated from the
dominant contribution to the lensing potential. Thus, in aGR
framework, the baryonic gas cannot be the source of the
gravitational potential, and an additional matter component
is required. The lensing potential of the bullet cluster has
minimawhere CDMwould be expected to reside, providing
further support for the DM hypothesis. If a different theory
of gravity from GR is the correct explanation, then it would
have to be nonlocal or contain additional degrees of freedom
in such a way as to mimic CDM, such as in [23,24].
Although there is no lack of physically motivated particle

dark matter candidates [25], it is commonly assumed that all
such candidates behave as a pressureless fluid. Therefore,
they are indistinguishable in terms of their purely gravita-
tional properties and can all be modeled as a CDM fluid. As
mentioned above, this simple modeling of the darkmatter as
CDM is consistent with the cosmological and galactic
observations. However, to date there have been no convinc-
ing detections of dark matter in direct and indirect searches,
and these searches have already ruled outmany theoretically
favored regions in parameter space [26–31].
The assumption of a pressureless perfect fluid does not

hold for all dark matter candidates. For instance, a massive
neutrino can act as warm dark matter [32–34], and it can be
modeled as an imperfect fluid with a nonvanishing pressure
and viscosity in the regime where linear perturbation theory
applies [35]. Another interesting example is an axion Bose-
Einstein condensate, which can also be interpreted as a
classical scalar field [36]. This behaves similarly to
collisionless DM [37,38], but exhibits a scale-dependent
quantum pressure. While the background expansion is
identical to CDM, small perturbations around the
Friedmann background therefore behave like a fluid with
nonadiabatic pressure [39–41]. Even a weakly interacting
massive particle (WIMP), which is the most widely
accepted dark matter candidate, does not behave as a
pressureless perfect fluid on all scales and times relevant
for structure formation [42,43]. According to the so-called
“effective field theory of large-scale structure” (EFTofLSS)
[44–47] (see also [48,49]), even ideal CDM, an initially
exactly perfect pressureless fluid, is better described as an
imperfect fluid at the level of the Friedmann background
and linear perturbations, due to unresolved small-scale
nonlinearities. In all these cases, the expansion history and
evolution of linear dark matter perturbations is modified in
a distinctive way. Thus, we could distinguish between and
constrain these models using the CMB and other probes of
the expansion history and large-scale structure formation.
Interestingly, observed halo properties deviate from

expectations of ΛCDM and might hint at dark matter
being more complicated than CDM. For instance, many

observed halo density profiles have cores in their centers
rather than cusps [50], and some have substructures [51]
that are at odds with ΛCDM simulations and suggest that
DM might not be collisionless. Also, the low observed
mass function of small halos seems to be in conflict with
expectations from ΛCDM simulations [52–54].
Warm DM [55,56], condensate DM [38,57] or interact-

ing DM [58] can all alleviate some problems of ΛCDM. In
light of the lack of a detection of a DM particle, the interest
in DM beyond CDM and the improved precision of
cosmological data (notably the Planck satellite [2]), it is
timely to explore all possible avenues for constraining the
nature of dark matter. In general, any deviation away from
CDM could introduce new properties for DM and so
potentially influence cosmological observables, thus
allowing us to investigate the nature of DM.
Searching for signatures beyond ΛCDM in cosmological

data requires the specification of an alternativemodel, which
is typically either “fundamental” or phenomenological. The
fundamental approach considers a specific model in which,
at least in principle, every observable can be worked out.
Examples of this include axions [59], collisionless warm
darkmatter [60,61], collisionless massive neutrinos [35,62],
self-interacting massive neutrinos [63,64], DM coupled to
dark radiation [65,66], DM coupled to neutrinos or photons
[67–70], DM coupled to DE [71–73] or Chaplygin gas [74].
These fundamental (in the sense of specific) models, usually
come with a low-dimensional parameter space that can be
well constrained by the data. The main downside of the
fundamental approach is that each model has to be studied
separately. On the other hand, the phenomenological
approach introduces, in a more or less ad hoc way, some
modifications of theΛCDMmodel [75–82] that parametrize
some basic physical properties shared by a range of
fundamental models, but usually without the ability to
explicitly map between parameter spaces. Although pri-
marily developed for DE rather than DM, there are also
parametrizations that are somewhat in between those two
extremes and guarantee a mapping to the parameter space of
the fundamental models [83–90]. This usually comes at the
price of a very large parameter and free-function space such
that only specific subspaces can be studied in practice.
In this paper, we use the generalized dark matter (GDM)

model [75], a purely phenomenological approach to con-
straining DM properties in the linear regime. The model
contains one time-dependent free function, the background
equation of state parameter wðaÞ≡ P̄g=ρ̄g,

2 and two free
functions c2sðk; aÞ (the sound speed) and c2visðk; aÞ (the
viscosity), which are allowed to depend on scale k as well
as the scale factor a, but are solution independent. This
independence from the solution is why we refer to
wðaÞ; c2sðk; aÞ and c2visðk; aÞ as parameters. The equation
of state is not assumed to be of the barotropic form

2Note that we use w to denote the background equation of state
of DM rather than DE.
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Pg ≠ PgðρgÞ; i.e., the GDMpressurePg is not assumed to be
a unique function of the GDM energy density ρg.
Subsequently, the sound speed c2s is not related to w in
the standard fashion, where c2s would be equal to the so-

called adiabatic sound speed c2aðaÞ≡ _̄Pg= _̄ρg. Considering
only scalar perturbations, GDM is determined by these three
functions, the “GDM parameters”:

wðaÞ; c2sðk; aÞ; c2visðk; aÞ; ð1:1Þ

plus the particular expressions for the linearly perturbed
GDMpressureΠg and shearΣg in terms ofGDMdensity and
velocity perturbation δg and θg and parameters; see Sec. II
and [75].
GDM has been shown to be a universal tool to constrain

the properties of dark matter in a very wide range. For
example, it is able to describe ultrarelativistic matter, or a
dark fluid that can simultaneously behave as DM and DE
[75]. It has also been employed to establish that a large
fraction of the ultrarelativistic component is freely stream-
ing, as expected for the cosmic neutrino background [91].
Here, we are interested in GDM as an extension of CDM.

Thus, we consider GDM that is close to CDM, in the sense
that w; c2s ; c2vis ≪ 1. For the case where CDM is replaced by
GDM with w as a free parameter and c2s ¼ c2vis ¼ 0, w has
been constrained using WMAP data to be jwj < Oð10−1Þ
[77] at the 95% confidence level (C.L.) and with the Planck
2013 data release [92] to be jwj < Oð10−3Þ [81] at the
99.7% C.L., in both cases combined with various other
probes of the expansion history and structure formation.
Similar constraints usingWMAPhave been obtained in [76],
although thatmodel slightly differs fromGDM; see Sec. II D.
In that paper, the case w ¼ c2s , and c2vis ¼ 0 was also
constrained, with the result jwj < Oð10−6Þ at the 99.7%C.L.
In a companion paper [93], we presented the first study

jointly constraining all three GDM parameters w, c2s and
c2vis. Using only the Planck 2015 data release [94] supple-
mented by either Hubble space telescope or baryon
acoustic oscillations data, we found jwj < Oð10−3Þ and
c2s ; c2vis < Oð10−6Þ, both at the 99.7%C.L. In a future work,
we intend to extend this analysis to consider degeneracies
with other extensions of the base ΛCDMmodel, such as the
curvature ΩK , the inclusion of isocurvature modes and
considering the neutrino mass as a free parameter rather
than fixing it to a specific value. We will also allow the
GDM parameters to vary with a and k.
Recently our constraints on constant GDM parameters

have been confirmed by another group [95]. In that work
time-varying GDM parameters proportional to a−2, mim-
icking warm dark matter, have also been constrained,
and their values today are w; c2s ; c2vis < Oð10−10Þ at the
99% C.L.
If it turns out that nonzero GDM parameters are favored,

we would interpret this as evidence that DM is more

complicated than CDM.3 If CDM remains the favored
model, it would be worthwhile to extend the analysis to
time- and scale-dependent GDM parameters, as well as to
also extend the GDM model itself to deal with quasilinear
and nonlinear scales. These scales are relevant for galaxy
and Lyman-α surveys [15–18,99], which will help to break
degeneracies but, on the other hand, are also much harder to
employ due to their inherently nonlinear physics.
In this paper, we investigate the GDM parametrization in

order to better understand the nature of the GDM param-
eters. We also explore its relation to several physical
models in order to elucidate to which of them the GDM
parameters may relate to. This may be used as a guide for
possible future improvements and generalizations of it,
particularly in the nonlinear regime. Specifically, the
models we study are nonequilibrium thermodynamics,
effective theories of CDM and fluids, a particular class
of scalar field dark matter and tightly coupled fluids.
The structure of the paper is as follows. In Sec. II we

define the GDMmodel along with some notation and some
straightforward extensions. We then focus on the cosmo-
logical phenomenology of the GDM model in Sec. III. In
particular, we derive all possible types of initial conditions
and use the adiabatic mode to analyze the perturbations of a
simplified GDMmodel using an exact solution as well as in
a more realistic situation containing all known forms of
matter and radiation. That analysis is then used to discuss
CMB observables calculated with a modified CLASS code
[100] in which we implemented GDM and the modified
adiabatic and isocurvature initial conditions. The two most
important results of this investigation are that the sound
speed c2s and viscosity c2vis are strongly degenerate in the
CMB (for adiabatic initial conditions) and that, unlike
CDM, the GDM isocurvature mode is distinguishable from
the baryon isocurvature mode. In Sec. IV we consider
models that are more fundamental than GDM, in the sense
that they are only defined for the background and linear
perturbations, but also nonperturbatively. The aim is to
better understand in which circumstances those models can
be described by GDM in the linear regime. This sheds some
light on the interpretation of the GDM closure equations for
pressure and shear and serves as a guide for future
extensions of GDM into the nonlinear regime of structure
formation. Section IVA shows that nonequilibrium thermo-
dynamics allows for shear and pressure perturbations that
can be approximated by GDM. We relate the EFTofLSS to
GDM in Sec. IV B. In Sec. IV C we review that both
monotonically rolling and oscillating scalar fields allow a
DM-like behavior that can be mapped to GDM. Section IV

3In [96,97] it was shown that a GDM model with c2s ¼ c2a and
c2vis ¼ 0 can parametrize completely different physical situations
in which DM is CDM, but either interacts with DE energy or
gravity behaves differently from GR. This kind of degeneracy can
never be eliminated in linear perturbation theory, as has been first
exemplified in [98].
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D shows that an effective theory of imperfect fluids based
on scalar fields contains particular scale-dependent GDM
pressure perturbations, although it is, in general, more
complex. In Sec. IV E we consider a fluid composed of two
tightly coupled adiabatic fluids, which nevertheless gives
rise to a nonadiabatic pressure of the GDM type in certain
limits. We conclude in Sec. V.

II. A SHORT OVERVIEW OF THE GDM MODEL

The GDM model is a phenomenological description of a
fluid where the pressure Pg and shear Σg fluid variables are
related to the density and velocity variables via two closure
equations. As this description is formulated, and is only
valid, in a linearly perturbed Friedman-Robertson-Walker
(FRW) universe, we first give a short description of
cosmological perturbation theory before discussing the
defining relations of the model.
Throughout this work we use the conventions of Misner-

Thorne-Wheeler [101] where spacetime indices and spatial
indices are denoted by lowercase Greek and lowercase
Latin letters, respectively.

A. The energy-momentum tensor

The energy-momentum tensor of a general fluid has the
form

Tμν ¼ ðρþ PÞuμuν þ Pgμν þ Σμν; ð2:1Þ

where ρ is the energy density, P is the pressure and Σμν is
the symmetric anisotropic stress tensor obeying
uμΣμν ¼ Σμ

μ ¼ 0. We choose the four-velocity uμ (nor-
malized to uμuμ ¼ −1) to be in the Landau-Lifshitz (LL)
frame; thus it is defined as the energy eigenvector of the
energy-momentum tensor uαTα

ν ¼ −ρuν.
4

Although the GDM fluid may be used in any theory of
gravity, we work exclusively within general relativity. The
metric gμν obeys the Einstein equations

Gμν ¼ 8πGTμν; ð2:2Þ

which are sourced by the total energy-momentum tensor
Tμ

ν of matter. The latter is a sum of the individual energy-
momentum tensors for each matter component indexed
by “I” as

Tμ
ν ¼

X
I

TI
μ
ν ¼ Tg

μ
ν þ TDE

μ
ν þ TSM

μ
ν þ � � � ; ð2:3Þ

where the label “g” stands for GDM, “SM” for Standard
Model, and “DE” for dark energy. The Standard Model

fields may be further split into photons, neutrinos and
baryons, labeled with “γ”, “ν” and “b,” respectively. Each
individual energy-momentum tensor TI

μ
ν takes the form

(2.1) with density ρI, pressure PI , LL four-velocity uIμ

and shear ΣI
μν. Unless otherwise indicated, the energy-

momentum tensors are assumed to be separately conserved
∇μTI

μ
ν ¼ 0, and the conservation of the total energy-

momentum tensor is a consequence of (2.2).
The conservation and the Einstein equations do not

provide enough information to solve for the pressure PI and
the shear ΣI

μν. These two fluid quantities have to be
specified in terms of the density ρI, the four-velocity uμI ,
the metric gμν and possibly additional degrees of freedom
like the particle number density nI. The closure equations
for PI and ΣI

μν determine the physical properties of the
fluid I.

B. The Friedman universe and its perturbations

1. Perturbed metric and matter variables

The perturbed FRW metric to linear order is

ds2 ¼ a2
�
−ð1þ 2ΨÞdτ2 − 2 ~∇iζdτdxi

þ
��

1þ 1

3
h

�
γij þDijν

�
dxidxj

�
; ð2:4Þ

where aðτÞ is the scale factor of conformal time τ, γij is the
metric (used to raise and lower three-dimensional indices)

of a three-dimensional space of constant curvature κ, ~∇i is

the covariant derivative of γij andDij ¼ ~∇i
~∇j − 1

3
γij ~∇2

is a
traceless derivative operator. The perturbed metric contains
the four scalar modes Ψ, h, ζ and ν from which we find it
useful to define the metric variable

η ¼ 1

6
ð ~∇2

ν − hÞ: ð2:5Þ

We omit the four-vector and the two tensor modes as they
are not responsible for structure formation. We also find it
convenient to work with Fourier-space transfer functions
which depend on wave number k. In particular, in flat

spacetime we expand a perturbed variable Aðτ; ~xÞ ¼R
d3k
ð2πÞ3 e

i~k·~x ~Aðτ; kÞξAð~kÞ where ~Aðτ; kÞ is the transfer func-

tion of variable Aðτ; ~xÞ and ξAð~kÞ the primordial random
perturbation. Since there is no confusion arising, we omit
the tilde from the Fourier-space variables.
For each fluid component the four-velocity is para-

metrized as

u0 ¼ −að1þΨÞ; ui ¼ −a ~∇iθ; ð2:6Þ
4Note that a heat flux qν does not appear in Tμν because of our

choice of uν to be the LL frame. There is no loss of generality
with this choice.
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where θ is the scalar velocity perturbation of the fluid and
the fluid index was suppressed for brevity.5 Furthermore,
we perturb the density as ρ ¼ ρ̄ð1þ δÞ and the pressure as
P ¼ ρ̄ðwþ ΠÞ where w is the (background) equation of
state and Π ¼ δP=ρ̄ is the normalized pressure perturba-
tion. With these considerations the energy-momentum
tensor for each fluid becomes

T0
0 ¼ −ρ̄ð1þ δÞ; ð2:7aÞ

T0
i ¼ −ðρ̄þ P̄Þ ~∇iθ; ð2:7bÞ

Ti
0 ¼ ðρ̄þ P̄Þ ~∇iðθ − ζÞ; ð2:7cÞ

Ti
j ¼ ρ̄ðwþ ΠÞδij þ ðρ̄þ P̄ÞDi

jΣ; ð2:7dÞ

where the index “I” on the fluid variables is again
suppressed for brevity. Note that on a FRW back-
ground Σ̄μν ¼ 0; hence, the shear appears only at the
perturbed level through the scalar mode Σ6 (as we have
ignored vector and tensor modes). The total energy-
momentum tensor is analogously defined using the total
variables. For instance, ρ̄δ ¼ P

Iρ̄IδI and likewise for the
other perturbations.

2. The background and perturbed equations

The Einstein equation (2.2) for the unperturbed FRW
background becomes the two Friedmann equations

3H2 þ 3κ ¼ 8πGa2ρ̄; ð2:8Þ

2 _HþH2 þ κ ¼ −8πGa2P̄; ð2:9Þ

where H ¼ _a
a and dots denote derivatives with respect to

conformal time τ. Once again, ρ̄ ¼ P
I ρ̄I and P̄ ¼ P

IP̄I .
For the Ith component energy conservation ∇μTI

μ
ν ¼ 0

implies that

_̄ρI ¼ −3Hð1þ wIÞρ̄I; ð2:10Þ

wI ≡ P̄I

ρ̄I
; ð2:11Þ

and similarly for the total energy-momentum tensor.
Related to the equation of state is the adiabatic sound
speed defined via

c2aI ≡
_̄PI

_̄ρI
¼ wI −

_wI

3Hð1þ wIÞ
: ð2:12Þ

If wI is time independent, then c2aI ¼ wI .
For notational simplicity we denote the GDM equation

of state wg by w (without the subscript g) and denote the
total equation of state parameter wtot ¼ P̄=ρ̄ to distinguish
it from w. At the background level, the GDM equation of
state is completely determined by a time-dependent func-
tion wðaÞ.7 Likewise, the adiabatic sound speed is also
completely determined by wðaÞ.
At the linearized level, in Fourier space, the Einstein

equation (2.2) for scalar modes gives the four equations

Hð _h − 2k2ζÞ − 6H2Ψ − 2ðk2 − 3κÞη ¼ 8πGa2ρ̄δ;

ð2:13aÞ

2_ηþ 2HΨþ κð_νþ 2ζÞ ¼ 8πGa2ðρ̄þ P̄Þθ; ð2:13bÞ

− ḧ − 2H _hþ 6H _Ψþ 6ðH2 þ 2 _HÞΨ − 6κη

þ 2k2ðη −Ψþ _ζ þ 2HζÞ ¼ 24πGa2ρ̄Π; ð2:13cÞ

and

1

2
ν̈þ _ζ þHð_νþ 2ζÞ þ η −Ψ ¼ 8πGa2ðρ̄þ P̄ÞΣ:

ð2:13dÞ

For the matter fluids we need to perturb ∇μTI
μ
ν ¼ 0.

This gives two first-order equations: the continuity
equation

_δI ¼ 3HðwIδI − ΠIÞ − ð1þ wIÞ
�
k2ðθI − ζÞ þ 1

2
_h

�

ð2:14Þ

and the Euler equation

_θI ¼ −ð1 − 3c2aIÞHθI þ
ΠI

1þ wI
−
2

3
ðk2 − 3κÞΣI þΨ:

ð2:15Þ

Up to this point the gauge has not been fixed. Standard
gauges are easily obtained: Synchronous gauge requires
ζ ¼ Ψ ¼ 0, while conformal Newtonian gauge sets ν ¼
ζ ¼ 0 and identifies the second Newtonian potential
as Φ≡ η ¼ −h=6.

5Note that our notation for the velocity perturbation θ is related
to [75,102] via θ ¼ ðv − BÞHu=k ¼ θMB=k2.

6Note that our notation for the shear Σ is related to [75,102] via
ð1þ wÞk2Σ ¼ wπHu ¼ 3

2
ð1þ wÞσMB.

7Specifying wðaÞ does not determine the functional form
P ¼ Pðρ;…Þ, such that the (nonperturbative) equation of state
is unknown. However, on the background level any equation of
state assumes the form P̄ ¼ P̄ðρ̄;…Þ ¼ wðaÞρ̄ and thus wðaÞ
parametrizes the equation of state relevant for the background.
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As is common, and also very useful, we define gauge-
invariant variables. Two standard gauge-invariant variables
are the Bardeeen potentials Φ̂ and Ψ̂ defined as

Φ̂≡ ηþH
�
1

2
_νþ ζ

�
; ð2:16aÞ

Ψ̂≡Ψ −
1

a
∂τ

�
a

�
1

2
_νþ ζ

��
; ð2:16bÞ

while a third useful gauge-invariant metric variable is

R≡ Φ̂þ 2

3

_̂ΦþHΨ̂
ð1þ wÞH : ð2:17Þ

Two gauge-invariant variables that we use further below are

Δ̂g ≡ δg þ 3ð1þ wÞHθg; ð2:18aÞ

Θ̂g ≡ θg − ζ −
1

2
_ν; ð2:18bÞ

corresponding to the rest frame or comoving GDM density
perturbation and the conformal Newtonian GDM velocity
perturbation, respectively.

C. Definition of the GDM model

The variables ΠI and ΣI are not determined by the fluid
equations (2.14) and (2.15). In the case of fluids, the closure
equations forΠI and ΣI must be specified in terms of metric
and other fluid variables. If the fluid is comprised of
particles, ΠI and ΣI can be expressed in terms of the
distribution function of the microscopic theory that satisfies
a Boltzmann equation. Whether closure equations for ΠI
and ΣI in terms of the other fluid variables can be derived
depends on the details of the microscopic theory and
the availability of approximations for the evaluation of
the phase space integrals. For instance, ultrarelativistic
collisionless radiation, such as massless neutrinos, has
Πν ¼ δν=3. However, in general, no closed form equation
for Σν can be derived without making some approxima-
tions. If the microscopic theory is that of a classical field
rather than specified in terms of particles, the explicit form
of the energy-momentum tensor in terms of the field and
its derivatives follows from the field Lagrangian.
Alternatively, the equation of state and the closure equation
may be postulated to achieve a desired physical behavior, as
is the case for the GDM model.
The scalar perturbations δg; θg;Πg;Σg of GDM satisfy

the continuity and Euler equations of (2.13) (with I ¼ g)
and two postulated closure equations for the pressure
perturbation Πg and the shear Σg [75]. These are

Πg ¼ c2aδg þ ðc2s − c2aÞΔ̂g ð2:19aÞ
and

_Σg ¼ −3HΣg þ
4

1þ w
c2visΘ̂g: ð2:19bÞ

Making the gauge invariance explicit is useful as the shear
Σg and the nonadiabatic pressure

Πnad ≡ Πg − c2aδg ð2:20Þ
are always gauge invariant independently of their particular
definition. The significance of this particular choice of the
closure equations (2.19) will be discussed in the next
subsection.
We note here that our equation for the shear is slightly

different than the form originally postulated in [75]. The
difference is in the −3HΣg term which in the case of [75] is

replaced by − 3c2a
w HΣg in our notation. We chose this

modification of the original equation in order to easily
allow for crossing the w ¼ 0 point if a time-dependent
equation of state is used. Clearly if _w ¼ 0 the two
formulations agree.
To summarize, the GDMmodel is defined by designing a

conserved energy-momentum tensor Tμν
g of the form (2.7) in

the LL frame. The background pressure P̄g is determined by
the time-dependent equation of state parameterwwhich also
gives rise to an adiabatic sound speed (2.12). The normal-
ized pressure perturbation Πg is algebraically given by
(2.19a) and depends on the free function c2sða; kÞ, the sound
speed, which determines the equation of state at the level of
linear perturbations. The scalar mode of the anisotropic
stress, Σg, obeys the differential equation (2.19b) which
contains the free function c2visða; kÞ, the viscosity. While the
adiabatic sound speed c2a is completely determined once the
equation of state wðaÞ is specified, the sound speed c2sðk; aÞ
and the viscosity c2visðk; aÞ are free functions that can depend
on space and time but are independent of the solution,
particularly the matter and metric perturbations.
We note that [2,64,103,104] refer to the GDMmodel [75]

but do not include the Hubble friction −3HΣg in the shear
equation (2.19b). Instead they start with the standard
equations for a moment expansion of the Boltzmann
equation for all the Fn≥3 moments and insert a viscosity
parameter in the corresponding shear equation as above
while at the same time keeping theF3 term.However, in [75]
the friction term was designed to mimic the missing third
moment F3 of the distribution function in (2.19b), effec-
tively closing theBoltzmann hierarchy through this approxi-
mation. This does not mean that the hierarchy Fn≥3 is
irrelevant, but that the combined effect of the higher
moments can be approximated by the friction term. For
ultrarelativistic collisionless particles this form can be
derived on subhorizon scales from the Boltzmann hierarchy;
see Appendix B of [105]. It is also known that the GDM
parametrization can model the collisionless Boltzmann
equation for nonrelativistic particles [35,62]. In [104] it
was noticed that GDM without the friction term does not
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provide a good fit to freely streamingmassless neutrinos. An
independent friction term of the form RcHΣg can arise from
the collision term in the Boltzmann equation [102], and if
Rc ≫ 1, then the hierarchyFn≥3 becomes irrelevant and can
be truncated by setting Fn≥3 ¼ 0.

D. Simple extensions of GDM

In order to close the continuity (2.14) and Euler (2.15)
equations for the generalized dark matter fluid, we postu-
lated two closure equations for the pressure perturbationΠg

and the shear Σg (2.19), as proposed in [75]. In this section
we discuss simple extensions, or modifications, of these
two closure equations.

1. Pressure

Writing (2.19a) explicitly,

Πg ¼ c2sδg þ 3ð1þ wÞðc2s − c2aÞHθg; ð2:21Þ

we see that c2s is proportional to δg, so we expect only c2s,
and not the other variables, to determine the sound speed.
The adiabatic sound speed c2a is not a priori related to c2s
and does not affect the sound speed deep inside the horizon
sinceHθg is suppressed by a factor ðH=kÞ2 compared to δg.
In the case where c2s ¼ c2a we recover the standard
expression Πg ¼ c2aδg. Therefore the nonadiabatic pressure
(2.20)8 of GDM, i.e.,

Πnad ¼ ðc2s − c2aÞΔ̂g; ð2:24Þ

is a simple ansatz that allows for an effective sound speed
c2s if c2s ≠ c2a, but reduces to the standard adiabatic pressure
in the case c2s ¼ c2a.
The above requirements, however, are not sufficient to

determine the shape of Πnad. Consider, for instance,

Πextended
nad ¼ ðc2s − c2aÞ

�
ð1 − C1 − C2ÞΔ̂g

þ C1

�
δg þ 3Hð1þ wÞ

�
1

2
_νþ ζ

��

þ C2½δg − 3ð1þ wÞη�
�
; ð2:25Þ

where C1 and C2 are two new parameters which are
restricted in the range 0 ≤ C1; C2 ≤ 1 and the terms
multiplying C1 and C2 are the gauge-invariant GDM
density perturbations in the Newtonian and flat gauges,
respectively. One recovers the GDM model by setting
C1 ¼ C2 ¼ 0. All three gauge-invariant density perturba-
tions have the property that c2s becomes the sound speed
deep inside the horizon, while the factor c2s − c2a ensures
that Πnad vanishes for c2s ¼ c2a. One could add other gauge-
invariant variables to Πextended

nad ; however, if they do not
involve δg they cannot influence the sound speed. In
terms of gauge-invariant variables, Eq. (2.24) may also
be written as

Πextended
nad ¼ ðc2s − c2aÞ½Δ̂g − 3Hð1þ wÞðC1 þ C2ÞΘ̂g

− 3ð1þ wÞC2Φ̂�; ð2:26Þ

where the gauge-invariant potential Φ̂ and gauge-invariant
velocity perturbation Θ̂ are defined by (2.16a) and (2.18b),
respectively. Interestingly the effective field theory
approach of [48] is of this form with C1 ¼ 1 and C2 ¼ 0.
A common justification for the form Πnad ¼ ðc2s − c2aÞΔ̂g

is described in [75,107,110]. The argument is that the
sound speed should be defined in the fluid rest frame9 as
seen by an observer comoving with the fluid. Alternatively,

8Several definitions of the “(intrinsic) entropy perturbation” Γ
related to the nonadiabatic pressure Πnad exist in the literature. In
particular, [75,106–108] define

Γ≡
_̄P
P̄

�
δP
_̄P
−
δρ
_̄ρ

�
¼ 1

w
Πnad; ð2:22Þ

while [109] defines

Γ≡ δP
_̄P
−
δρ
_̄ρ
¼ ρ̄

_̄P
Πnad: ð2:23Þ

As these two different definitions of Γ are not well behaved in
situations where P̄ and _̄P can cross zero, we choose to work
directly with Πnad.

9The fluid rest frame is determined by the fluid four-velocity.
Usually this is chosen to be the LL frame (used in this work). If
however the fundamental degree of freedom is a scalar field, then
another natural choice is the scalar frame, or, if there is a particle
species with conserved particle number present, a natural choice
is the Eckart frame. It should be noted that under a frame change
given by a Lorentz boost and to linear order in the boost velocity,
Π and δ remain invariant while θ does not. It would then seem
that our expressions for Δ̂g and Πnad, Eqs. (2.18a) and (2.24),
should transform accordingly with the boost velocity (as they
contain θg). However, Δ̂g and Πnad were defined under the
assumption of the LL frame, and not in a general frame; in
particular, θg is the scalar mode contained in the four-velocity of
the LL frame of GDM. Once the frame has been fixed, we cannot
expect the resulting expressions to be manifestly frame covariant.
One also needs to keep in mind that there is a distinction between
a frame choice, that is, the physical definition of the four-velocity
in the energy-momentum tensor, and a gauge choice, that is, the
fixing of the space-time coordinate system. From a practical point
of view these two choices have many things in common. Both are
necessary to remove redundancy in the description, and also
aspects of the choice of gauge can be connected to a four-velocity
field [111]. We return to the issue of frame choice in Sec. IVA.
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one can simply choose a gauge adapted to the rest frame in
which Tg

i
0
jrf ¼ Tg

0
ijrf ¼ 0 (equivalently θgjrf ¼ ζjrf ¼ 0).

In this gauge it is then postulated that c2s ¼ δPg=δρgjrf ¼
Πg=δgjrf is a parameter of the theory that does not explicitly
depend on the particular solution of Πg and δg. After
performing a gauge transformation away from the rest
frame, we obtain the GDM form (2.21). A similar argument
in which the rest frame is replaced by either the conformal
Newtonian or the flat frame leads to the second or third
expressions in (2.25), respectively. Since the sound speed is
a fluid property, the fluid rest frame is arguably a more
natural choice compared to the two geometrical frames. In
any case, the assumption that there exists any frame in
which Πg=δgjframe is a solution-independent function is
quite strong. In Sec. IV we study several models where this
happens either exactly or approximately. In those cases
where such a frame exists, it turns out to be the fluid
rest frame.
In addition to the arbitrariness of which gauge-invariant

combination to use in order to define Πnad, there is no
reason to expect that Πnad is related to them algebraically.
Indeed, as we show in Secs. IVA and IV E, if GDM is
thought of as arising from nonequilibrium thermodynamics
or from two tightly coupled perfect fluids, Πnad satisfies a
first-order differential equation similar to that of the GDM
shear, Σg. This additional degree, however, oscillates with a
similar frequency as δg albeit with a small phase shift.
Therefore we expect that neglecting a possible dynamical
contribution toΠnad can be compensated for by adjusting c2s
and c2vis in the GDM model.

2. Bulk viscosity

Yet another possible contribution to Πnad is bulk vis-
cosity Pbulk, a contribution to the isotropic stress whose
main effect is not to modify the sound speed but to impede
the isotropic expansion of the fluid. Note that while the
freedom to choose wðaÞ would easily accommodate bulk
viscosity in GDM at the background level, the shape of
Πnad (2.24) excludes this possibility. The main effect of
bulk viscosity could be modeled by adding a term

c2bulkH
−1 ~∇2Θ̂g to Πnad. We expect its main effect to be

similar to shear (or anisotropic stress) Σg
i
j which impedes

shearing flows Di
jΘ̂g rather than ~∇2Θ̂g. In the context of

cosmology this has been studied in [43,112–116]. Bulk
viscosity is known to be irrelevant for radiation [117].
However there is no a priori reason to neglect it in
applications to DM [42,43]. We do not study bulk viscosity
in detail in the present work.

3. Shear viscosity

The tightly coupled photon-baryon fluid is a well-known
example for an imperfect fluid with small shear. The shear
is suppressed by the small number R−1

c ¼ τcH, where τc is

the mean time between collisions of photons and free
electrons. This allows a truncation of the Boltzmann
hierarchy of the photon distribution function and justifies
the fluid description. This example (see [102,106]) there-
fore suggests the following generalization of the GDM
shear (2.19b):

_Σextended
g ¼ −3HRcΣg þ

4

1þ w
~c2visΘ̂g: ð2:27Þ

One could therefore think of RcðaÞ as a new parameter,
which is set to 1 in [75] in order to match the behavior of
freely streaming radiation; see Appendix B of [105]. The
limit Rc ¼ 0 is realized in elastic dark energy models where
~c2vis acts as rigidity rather than viscosity [118] and is
therefore of less interest in applications to DM. If
Rc ≫ 1, the shear at leading order in R−1

c becomes
algebraically related to the other perturbations [102], which
leads to

Σextended
g ≃ 4

ð1þ wÞH
~c2vis

dIC þ 3Rc
Θ̂g: ð2:28Þ

Here, we introduced by hand a constant parameter dIC > 0,
the leading-order power Σg ∝ τdIC of the solution to
Eq. (2.27) for kτ → 0. This ensures that for c2vis ¼ ~c2vis
the solution of (2.27) will initially agree with (2.29). For
adiabatic initial conditions dIC ¼ 2 while for isocurvature
modes dIC ¼ 0 (CDM or baryon isocurvature), dIC ¼ 2
(neutrino isocurvature density) and dIC ¼ 1 (neutrino iso-
curvature velocity).
In the case of the photon-baryon plasma we have

Rc ≫ 1, giving rise to an effectively algebraic shear with
c2vis ∝ R−1

c ~c2vis. In the following we set Rc ¼ 1 such that

Σalg
g ¼ 4

ð1þ wÞH
c2vis

dIC þ 3
Θ̂g ð2:29Þ

exactly agrees with Hu’s (2.19b) at early times, i.e. as
kτ → 0, and approximately at later times. Figure 1 shows a
comparison between the GDM shear (2.19b) and the
algebraic version (2.29), for adiabatic initial conditions.
Both versions qualitatively agree and lead to a similar
damping of GDM density perturbations, as is depicted in
Fig. 2.
For Rc ¼ 1 and ~c2vis ¼ c2vis Eq. (2.27) becomes the GDM

closure equation (2.19b) which was designed to describe
the shear in a medium composed of freely streaming
particles, where the friction term −3HΣg serves as an
approximation to the Boltzmann hierarchy [35,75,105].
Following the argument that led us toΠextended

nad (2.25), we
can now extend Σalg

g (2.29) by adding other gauge-invariant
combinations of θg in addition to Θ̂g. While in (2.25) we
avoided including terms involving k2θg, we now avoid
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adding terms involving δg to Σg in order to make the
physical effects of Πg and Σg as distinct as possible. The
only other gauge-invariant velocity perturbation apart from
Θ̂g that can be constructed solely from the metric and θg is
the GDM-comoving curvature perturbation HRg ¼ θgþ
Hη ¼ Θ̂g þHΦ̂, such that

Σextented;alg
g ¼ 4

5ð1þ wÞH c2visðΘ̂g þ C3HΦ̂Þ ð2:30Þ

with 0 < C3 < 1.

III. PHENOMENOLOGY OF THE
GDM MODEL

In this section we discuss the CMB phenomenology of
the GDM model, first analytically and then numerically
with CLASS. After determining the growing initial con-
dition modes in Sec. III A, we solve analytically the
algebraic GDM model where the shear is given by
(2.29) and the universe is purely GDM dominated, in
Sec. III B. The main results are that (i) the metric potential
Φ̂ necessarily decays below a scale k−1d given by (3.25), that
(ii) on an even smaller scale, k−1J , sound waves may form,
and that (iii) on a yet smaller scale k−1damp acoustic
oscillations are impossible to form. Section III C outlines
the equations for Φ̂ in a universe filled with a realistic
mixture of fluids and gives a qualitative discussion for how
the CMB observables depend on Φ̂ and the GDM param-
eters. Finally in Sec. III D we discuss the numerical

solution for Φ̂ and various observable CMB power spectra
that have been employed in [93] to constrain the full GDM
model (2.19).

A. Initial conditions

We start by determining all possible initial condition
modes for scalar perturbations. We assume that in the limit
τ → 0, the GDM parameters w, c2s and c2vis are time
independent and much smaller than unity. This assumption
is relevant and justified a posteriori, given that the con-
straints obtained on GDM as dark matter strongly constrain
jwj < Oð10−3Þ and c2s ; c2vis < Oð10−6Þ [93]. Thus, we
construct the initial condition modes as a series expansion
in w, c2s and c2vis, keeping only the lowest relevant order. Let
us also note that adiabatic initial conditions in the case
where c2vis ¼ 0 have been derived in [119].
In addition to GDM we include all standard fluids

which are the baryons, CDM (denoted by a subscript
“c”), photons and neutrinos, the latter assumed to be
massless in the deep radiation era. These are grouped
into radiation (photons and neutrinos; denoted by a
subscript “r”), and matter (baryons, CDM and GDM;
denoted by a subscript “m”). Keeping CDM in addition
to GDM can be useful in studies where DM is a mixture
of CDM and GDM, or simply to make a modification of
the Boltzmann code tidier. The curvature and the
cosmological constant terms can be safely ignored at
early times.
When numerically integrating the Einstein-Boltzmann

system of equations, one starts the integration on super-
horizon scales H−1

k ≡ kH−1 ≪ 1. If the initial time is
chosen deep enough in the radiation era, such that correc-
tions toH ¼ 1=τ are small, then the superhorizon condition
simplifies to x ¼ kτ ≪ 1. Thus, x may be used as a time
coordinate and, in addition, as a series expansion parameter
in a way specified below.
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FIG. 1. Comparison between dynamical (2.19b) and algebraic
(alg) (2.29) shear with adiabatic initial conditions for a set of
standard cosmological parameters. The upper panel shows the
overdamped case c2vis ¼ c2s , the lower panel the case c2vis ≪ c2s .
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FIG. 2. Comparison of the time evolution of a single k-mode of
the GDM density perturbation Δ̂g for w ¼ 0 and c2s ¼ 0.01. The
upper and lower panels compare c2vis ¼ 0 (solid curve) to c2vis ¼
0.1c2s and c2vis ¼ c2s , respectively. In each panel we show the
dynamical and algebraic shear models, (2.19b) and (2.29), with
adiabatic initial conditions for a set of standard cosmological
parameters.
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1. Background evolution

The background density is the sum of the radiation
and matter component ρ̄ ¼ ρ̄r þ ρ̄m, which individually
evolve as

ρ̄r ¼ ρ̄ri

�
ai
a

�
4

; ð3:1Þ

ρ̄m ¼ ρ̄di

�
ai
a

�
3

þ ρ̄gi

�
ai
a

�
3ð1þwÞ

; ð3:2Þ

where ai is the scale factor and ρ̄ri, ρ̄di and ρ̄gi the radiation,
dust (CDMþ baryons) and GDM densities, respectively,
all evaluated at the initial time. We further define

fmr ≡ ρ̄mi

ρ̄ri
and λk ≡

8πG
3
ρ̄mi

k
ffiffiffiffiffiffiffiffiffiffiffiffi
8πG
3
ρ̄ri

q ai ð3:3Þ

and the relative species contributions

SX ≡ ρ̄Xi
ρ̄mi

; SY ≡ ρ̄Yi
ρ̄ri

; ð3:4Þ

where ρ̄mi ¼ ρ̄di þ ρ̄gi and where X may be c, b or g and Y
either γ or ν.
The procedure for obtaining the initial conditions

requires an expansion of all variables as a power series
in x. While in the standard calculation (without GDM), a
series in integer powers of x suffices, the GDM density term
which is of the form a3ð1þwÞ ≈ a3ð1þ 3w ln aÞ requires the
addition of terms involving ln x and powers thereof. We
expect that in the limit w → 0 and also as Sg → 0, the
standard radiation-matter solution should be reproduced;
hence, assuming that all expansion coefficients are w
independent, the only plausible expansion is

~a≡ fmr

aiλk
aðxÞ¼

�
1þ1

4
λkx

�
x

þwSgx
�X∞
n¼1

aðwÞn xn−1þ lnx
X∞
n¼1

aðln;wÞn xn−1þ���
�
þ���

ð3:5Þ

where aðwÞn and aðln;wÞn are coefficients to be determined and
where we have ignored terms involving higher powers of w
and ln x. Note that ðln xÞ2 ≫ j ln xj for small enough x such
that it is not clear a priori that our ansatz [see also (3.8)
below] solves the Einstein and fluid equations, and if so,
that the approximate solution is a good solution. However,
the full numerical solution of (A1) shows that this is indeed
a good approximation.
Inserting (3.5) into the Friedmann equation determines

the coefficients as aðwÞ1 ¼ aðln;wÞ1 ¼ 0,

aðln;wÞ2 ¼ −
3λk
4

; aðwÞ2 ¼ 3λk
4

�
1

2
− ln

�
λk
fmr

��
; ð3:6aÞ

and for all n ≥ 3,

aðln;wÞn ¼ 0; aðwÞn ¼ −Anð−λkÞn−1; ð3:6bÞ
where

Anþ1 ¼
n − 1

2ðnþ 1ÞAn −
3

22n−1ðnþ 1Þðn − 1Þðn − 2Þ
ð3:6cÞ

with A3 ¼ 1
16

as the starting value. Ignoring the w and ln x
corrections, which amounts to approximating the GDM
component as CDM, incorrectly predicts several leading-
order solutions for thematter-type isocurvature perturbations.

2. Perturbations

In order to find the allowed initial conditions for the
perturbations and their initial time and scale dependence,
we expand all perturbational variables as a series involving
the small parameter x following a similar procedure as in
[120]. In the standard case without GDM, a power series in
x suffices; however, as in the background case, the presence
of the background GDM density scaling as a3ð1þwÞ requires
the inclusion of powers of ln x. For convenience, we work
with the dimensionless variables σ ≡ 2

3
k2Σ and v≡ kθ.

The problem of finding the initial condition comprises
two parts: (i) determine how many regular growing mode
solutions exist (corresponding to the adiabatic and various
isocurvature modes), and (ii) obtain the solutions to the
perturbed field equations as a series in x (and ln x) thereby
allowing the numerical integration to start at a convenient
time without mixing adiabatic and isocurvature modes.
We adopt the synchronous gauge by setting Ψ ¼ ζ ¼ 0.

This gauge has a residual gauge mode which is set to zero
by discarding decaying initial conditions.10

Following [120] we assume that photons and baryons are
tightly coupled through Thomson scattering, such that vγ ¼
vb and all higher moments of the photon Boltzmann
hierarchy vanish. In addition, on superhorizon scales the
Boltzmann hierarchy of neutrinos can be truncated at third
order (due to free-streaming), keeping only δν, vν and σν.
The resulting equations are displayed in Appendix A.
In order to construct the initial condition modes, we need

to specify an ansatz for the solution of the perturbational
variables

10In the synchronous gauge, the CDM velocity perturbation
satisfies avc ¼ const which is identical for the solution to the
residual gauge mode. The residual gauge freedom allows us to set
this constant to zero, vc ≡ 0. This is not true for any other type of
fluid, including GDM, where vg has a solution different from the
residual gauge mode.
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P ¼ fη; h; δb; δc; δγ; vγ; δν; vν; σν; δg; vg; σgg: ð3:7Þ

By inspection of the x-dependence of the scale factor (3.5)
we choose the following ansatz for the solution:

P ¼ P0 þ P1xþ PðεÞ
1 xþ Pðln;εÞ

1 x ln x

þ P2x2 þ PðεÞ
2 x2 þ Pðln;εÞ

2 x2 ln xþ � � � ð3:8Þ

where ε is a proxy for the GDM parameters w and c2s ,
assumed to have the same smallness. The coefficients
without an ε label are independent of w and c2s , and we
keep only linear order in ε in the ansatz to avoid higher
powers of ln x. In the limit ε → 0, one recovers the standard
ΛCDM initial conditions. We note that the constant term h0
for the metric variable h can be set to zero by a gauge
transformation. An ansatz containing powers like x1−3w as
used in [121] does not work if we want to recover all
possible modes, adiabatic and isocurvature.
For the GDM density contrast δg we also include the term

δðln;εÞg0 ln x, which is necessary to find the GDM isocurvature

mode for w ≠ c2s. Thus, δg ¼ δg0 þ δðln;εÞg0 ln xþ � � �, where
the remaining terms follow the expansion in (3.8). This
additional term does not introduce a new type of initial
condition. When w ¼ c2s no pure lnðxÞ term is required.

3. Solution method

The ansatz (3.8) is used in the perturbed Einstein and
fluid equations (A1), and the coefficients for the same
powers of x and ln x are matched, thus providing a
consistent solution. We collect all variables in the set

A ¼ Aε¼0 þAε; ð3:9Þ

with Aε¼0 ¼ fP0;P1;P2;…g containing the zeroth-order

coefficients in ε and Aε ¼ fPðεÞ
1 ;Pðln;εÞ

1 ;PðεÞ
2 ;…g contain-

ing the correction due to ε. We expand all functions up to
order xn, with the exception of η, σν and σg which avoids
the introduction of coefficients with label nþ 1.
We chose n ¼ 4 and used a brute force method to test for

every possible subset I i;test of P0 where i ¼ 1;…; 2jP0j,
whether or not jAε¼0 − I i;testj equals the rank of the system
of linear equations with ε ¼ 0. Out of the 211 test sets, there
are 72 that fulfill this criterion but only four of them with
maxðjI i;testjÞ ¼ 6. We choose

Imodes ¼ fη0; δν;0; vν;0; δc;0; δb;0; δg;0g: ð3:10Þ

The other three possible sets are obtained by exchanging
δν;0 with δγ;0 and vν;0 with vγ;0. Finally we solve for the
remaining coefficients in P, that is, Aε¼0 − Imodes and Aε,
such that they are expressed as functions of Imodes.

In all the modes displayed below and in Appendix A, we
only include the leading powers of x unless the leading-
order solution is constant or it is suppressed by the product
of c2vis and ε, in which case we include the next-to-leading
order as well. The modes have been checked to agree to
reasonable accuracy with the solution which includes all
powers up to x4 as well as with a numerical integration of
Eq. (A1). We note that the initial condition modes also hold
for the algebraic version of the GDM shear (2.29).

4. Adiabatic (Ad)

Setting η0 ¼ 1 (which we can always do via rescaling)
and all remaining perturbations in Imodes (3.10) to zero, the
adiabatic mode is

η ¼ 1 −
5þ 4Sν

12ð15þ 4SνÞ
x2; h ¼ 1

2
x2;

δc ¼ δb ¼ −
1

4
x2; δγ ¼ δν ¼ −

1

3
x2;

δg ¼
�
−
1

4
þ 3c2s − 5w

8

�
x2;

vγ ¼ −
1

36
x3; vν ¼ −

23þ 4Sν
36ð15þ 4SνÞ

x3;

vg ¼ −
�
1

16
c2s þ

2c2vis
3ð15þ 4SνÞ

�
x3;

σν ¼
2

3ð15þ 4SνÞ
x2; σg ¼

8c2vis
3ð15þ 4SνÞ

x2:

The adiabatic initial conditions agree with those presented
in [95] upon Taylor expansion in ε and c2vis. A comparison
of terms next-to-leading order in x would reveal differences
compared to [95], as our solution contains terms involving
ln x even for the adiabatic mode.

5. Isocurvature modes

There are five growing isocurvature modes in the GDM
model: the radiation-type neutrino isocurvature density
(NID) and neutrino isocurvature velocity (NIV) and the
matter-type CDM isocurvature (CI), baryon isocurvature
(BI) and GDM isocurvature (GI). As we do not use these
modes in the phenomenology of the rest of this section, we
display them in Appendix A.
We remark that in searches for signatures of isocurvature

modes within ΛCDM, only one of the BI and the CI is
included in the analysis since they are completely degen-
erate [122,123]. The situation of a GDM isocurvature mode
is more interesting than CDM, since the Cls of BI and GI
modes are no longer degenerate if either w or c2s is nonzero.

B. Evolution of GDM perturbations and decay of Φ̂

Let us consider a flat GDM dominated universe with
algebraic shear (2.29) such that the 00 equation (2.13a), 0i
equation (2.13b) and shear may be manipulated into
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k2Φ̂ ¼ −4πGa2ρ̄gΔ̂g; ð3:11Þ

_̂ΦþHΨ̂ ¼ 4πGa2ρ̄gð1þ wÞΘ̂g; ð3:12Þ

Σalg
g ¼ 4

5Hð1þ wÞ c
2
visΘ̂g; ð3:13Þ

where the gauge-invariant variables Φ̂, Ψ̂ and R are given
by (2.16a), (2.16b) and (2.17), respectively.
In this case the ij Einstein equations take the form

H−1 _̂Φ ¼
�
3

2
ð1þ wÞ þ 12

5
c2vis

�
ðR − Φ̂Þ − Φ̂; ð3:14aÞ

H−1 _R ¼ −
�
k
H

�
2 2

3ð1þ wÞ
�
c2sΦ̂þ 4

5
c2visðR − Φ̂Þ

�
:

ð3:14bÞ

Using e-folding time N defined by ∂N ¼ H−1∂τ, denoting
∂N by a prime and assuming constant w; c2s and c2vis,
Eq. (3.14) assumes the form of a damped harmonic
oscillator

Φ̂00 þ
�
k
H

�
2
��

c2s þ
8c2visð1þ 3c2sÞ
15ð1þ wÞ

�
Φ̂þ 8c2vis

15ð1þ wÞ Φ̂
0
�

þ
�
1þ 3

2
ð1þ wÞ þ 12

5
c2vis

�
Φ̂0 ¼ 0: ð3:15Þ

The above equation shows that the integrated Sachs-Wolfe
(ISW) effect in the GDM dominated universe vanishes for
c2s ¼ c2vis ¼ 0, irrespective of the value of w. In this case
_R ¼ 0 and the equation admits _̂Φ ¼ 0 such that Φ̂ freezes
during GDM domination.11 On the other hand, if c2s or c2vis
is nonzero thenR is sourced, but only on subhorizon scales
due to the overall factor ðk=HÞ2. Notice however that once
w is time dependent, the analogue of (3.15) contains terms

proportional to Φ̂ and therefore will generally admit _̂Φ ¼ 0.
A thorough discussion of the effect of small DM sound
speed on the ISW effect can be found in [125]. Let us also
emphasise that the coefficients of Φ̂ and Φ̂0 are manifestly
non-negative for w > −1=3 and positive c2vis and c2s ; hence
the potential decays, in general.
Sound waves are possible if c2vis < c2s , and the effective

propagation speed is close to c2s if c2vis ≪ c2s . For c2vis ≳
0.57c2s on the other hand, the potential decays without

oscillations. All of these properties may be extracted from
the exact solution to (3.15) as we examine in more detail
below.
In order to find the exact solution to (3.15) it is easier to

transform back to τ as an independent variable. In a flat
GDM-dominated universe the Friedman equation gives
H−1 ¼ τð1þ 3wÞ=2 so that (3.15) transforms into

̈Φ̂þ
�
6½5ð1þ wÞ þ 4c2vis�

5ð1þ 3wÞ
1

τ
þ 4ð1þ 3wÞc2vis

15ð1þ wÞ k2τ

�
_̂Φ

þ k2
�
c2s þ

8c2visð1þ 3c2sÞ
15ð1þ wÞ

�
Φ̂ ¼ 0: ð3:16Þ

Defining y ¼ −γc2visk2τ2, where

γ ¼ 2ð1þ 3wÞ
15ð1þ wÞ ; ð3:17Þ

transforms the equation into

y
d2Φ̂
dy2

þ ðβ − yÞ dΦ̂
dy

− αΦ̂ ¼ 0; ð3:18Þ

where

α ¼ 1þ 3c2s
1þ 3w

þ 15c2sð1þ wÞ
8c2visð1þ 3wÞ ; ð3:19Þ

β ¼ 35þ 45wþ 24c2vis
10ð1þ 3wÞ : ð3:20Þ

Equation (3.18) is Kummer’s differential equation whose
regular solution is the Kummer confluent hypergeometric
function Mða; b; yÞ such that

Φ̂ ¼ A0Mðα; β;−γk2τ2c2visÞ; ð3:21Þ

where A0 is a constant. The regular solutions (3.21)

automatically satisfy _̂Φðτ ¼ 0Þ ¼ 0. The nonregular solu-
tion of (3.18) is of the form BðkτÞ−ndM, which in the limit
kτ → 0 behaves as

ðkτÞ−nd ; nd ¼ 1þ 4ð5þ 6c2visÞ
5ð1þ 3wÞ ; ð3:22Þ

and is therefore a decaying mode and is of no interest to us.
The general solution (3.21) evolves through four regimes

of behavior. For a given Fourier mode k, the solution starts
on superhorizon scales from τ ¼ 0 with a constant ampli-
tude which persists even after horizon crossing. It begins to
decay around the scale kd, and then on smaller scales the
solution will continue to either decay monotonously or
enter an acoustic regime, leading to a period of oscillations.
This is determined by the relative magnitude of two further

11We could allow mildly negative sound speeds, in which case

a constant potential may also be achieved if c2s ¼ − 8c2visð1þ3c2s Þ
15ð1þwÞ and

c2vis ≥ 0. However, we do not allow this possibility as it does not
seem natural and requires fine-tuning to ensure stability. This
stabilizing property has also been observed for the GDM shear in
[124].
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scales, the Jeans scale kJ and the overdamping scale kdamp.

Once the Jeans scale is crossed, Φ̂ begins a period of
oscillations until the overdamping scale is reached, where
oscillations cease and Φ̂ simply decays. As can be seen in
Fig. 3, depending on the values of the GDM parameters c2s
and c2vis, the solution may go through only the oscillation
regime (thick yellow line) or only through the overdamping
regime (thin blue line) or both (red line). The Jeans and
the overdamping scales can be estimated by examining
the zeros of the confluent hypergeometric function
Mðα; β;−yÞ. In [126] it is proved that they are bounded
by y− < y < yþ where

y� ¼ 2α − β � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðα − βÞ − β

p
; ð3:23Þ

which in our case translates to the two scales k−1� ¼
ffiffi
γ

p
cvisτffiffiffiffi
y�

p .

The scale k− may be identified with the Jeans scale
kJ ¼ k−, while the scale kþ may be related to the over-
damping scale if kþ is real.
We now discuss several special cases and regimes of

(3.21) and use them to estimate the above three scales,
namely, kd, kJ, and kdamp in terms of the GDM parameters.

Without loss of generality we set Φ̂ðτ ¼ 0Þ ¼ A0 ¼ 1.

1. Case 1: c2s ;c2vis = 0

The nondecaying solution is Φ̂ ¼ 1 as is immediately
clear from (3.15). This generalizes the standard CDM
solution to the case of nonzero constant w, leading to a
zero ISW effect.

2. Case 2: cskτ ≪ 1 and cviskτ ≪ 1

At early times [see Eq. (13.1.2) of [127]] the solution to
the potential is

Φ̂≃ 1 −
γαc2vis
β

k2τ2; ð3:24Þ

which is constant to lowest order in k2 and decays at next-
to-leading order if w > −1=3 and c2s ; c2vis > 0. Therefore
for reasonable values of GDM parameters, jwj; c2s ; c2vis ≪ 1,
the potential can only decay. Using (3.24) and taking the
limit of small GDM parameters, the comoving scale below
which the potential starts to decay is

k−1d ðτÞ≡ τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2s þ

8

15
c2vis

r
: ð3:25Þ

The above definition is such that for k ¼ kd, the potential
has dropped to Φ̂ ¼ 13=14 ≈ 0.93. The time evolution of
the potential for three different combinations of c2s and c2vis,
keeping the same kd ¼ 10=τ and w ¼ 0, is shown in Fig. 3.
Observables that directly probe the large-scale structure
will be sensitive to both the Jeans scale and the over-
damping scale, which will be defined further below.
However, for the CMB it is mostly the decay scale kd,
below which Φ̂ starts to decay, which matters. Therefore
one should expect a strong negative degeneracy between c2s
and c2vis in the CMB spectrum, and this was verified in [93].

3. Case 3: c2vis = 0

This is the zero shear viscosity case. The solution may be
found by either taking the limit c2vis → 0 of (3.21) with the
help of Eq. 13.3.2 of [127] or by setting c2vis ¼ 0 in (3.16)

cs
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FIG. 3. The solid curves show the exact solution Φ̂ in a flat GDM dominated universe for three GDM parameters as specified in the
legend. In all cases we set w ¼ 0. The left panel shows that horizon entry at kτ≃ 1 does not influence Φ̂. However, around
kτ≃ kdτ ¼ 10, the potential decays for all three combinations of c2s and c2vis. Up to this time the solution is well described by (3.24) as is
indicated by the dot-dashed curve. The right panel shows the details of the decay. The dashed curves display the envelope of (3.27),
which is valid in the acoustic regime starting at kJ, and the dotted curves exhibit the asymptotic behavior in the overdamped regime
(3.32) starting well after the last oscillation at kdamp. There is no acoustic regime for c2vis ¼ c2s (blue, thin line). For c2vis ¼ 0 the acoustic
oscillations never stop. In the case of nonzero c2vis the acoustic regime is accompanied by exponential decay during which the effective
sound speed c2eff < c2s is reduced.
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and transforming it into Bessel’s equation. The exact
solution in this case simplifies to the well-known result

Φ̂ ¼ A1JnðcskτÞ
ðcskτÞn

; n ¼ 5þ 3w
2ð1þ 3wÞ ; ð3:26Þ

where A1 is a normalization constant and Jn is the Bessel
function of order n. The envelope is nearly constant outside
the Jeans scale and decays as τ−n−1=2 once cskτ ≥ 1 as can
also be seen through the thick yellow line and its dashed
envelope in the right panel of Fig. 3. Deep inside the Jeans
scale cskτ ≪ 1 the potential oscillates with frequency csk
as is seen by the thick yellow solid curve in Fig. 3.

4. Case 4: cvis ≪ cs and cviskτ ≪ 1

Rather than taking the limit of vanishing viscosity we
may expand the exact solution (3.21) in cvis=cs ≪ 1 and
cviskτ ≪ 1 using Eq. (13.3.7) of [127], leading to

Φ̂≃ A2e
−γc2visk

2τ2=2

ðceffkτÞβ−1
Jβ−1ðceffkτÞ; ð3:27Þ

where A2 is a normalization constant. It may easily be
shown that β > 3=2 for w > − 1

3
, and therefore the solution

is always decaying for large kτ, as we discuss further below.
Keeping nonzero c2vis has a further effect. The solution

(3.27) oscillates with frequency ceffk where the effective12

sound speed is

c2eff ¼ c2s −
2c2vis

5ð1þ wÞ
�
1þ 3w − 4

�
c2s −

2

5
c2vis

��
ð3:28aÞ

≃ c2s −
2

5
c2vis; ð3:28bÞ

where the second line holds for small GDM parameters. We
notice that the algebraic shear (on which we have based our
calculation) slightly decreases the sound speed, and this is
seen in the upper panel of Fig. 2, while the dynamical shear
has the opposite effect. Note that the expression (3.28a)
determines the effective sound speed beyond the approxi-
mation cviskτ ≪ 1, in the sense that the solution for Φ̂ as
determined by (3.27) is the lowest term in an expansion in
terms of a series of Bessel functions Jβ−1þβnðceffkτÞ for
βn ¼ 0…∞. It is also worth emphasizing that the effective
sound speed is different from c2s even if c2s ¼ c2a, and hence,
even if Pg ¼ wρg for constant w.
Remembering that −β þ 1

2
< −1, the envelope of (3.27)

decays as e−γc
2
visk

2τ2=2τ−βþ1=2 once k ≥ kd, as can be seen by
the red dashed curve in the right panel of Fig. 3. This may
be derived using Eq. (9.2.1) of [127] which involves the

large-argument expansion of the Bessel function,
i.e., ceffkτ ≫ 1.13

Let us now estimate the Jeans scale kJ. In this regime the
relevant parameter that determines the start of the acoustic
regime is c2eff , so we will write the sound speed in terms of
this quantity. Rearranging (3.28a) and solving for c2s in
terms of c2vis, c

2
eff and w, we find

c2s ¼
ð1þ wÞc2eff þ 2ð1þ3wÞc2vis

5
þ 16c4vis

25

1þ wþ 8c2vis
5

ð3:29Þ

so that c2s is always positive as long as both c2vis and c
2
eff are

positive and w > −1=3. We now expand (3.23) for small w,
c2eff assuming that they are both of the same order, i.e.,
OðwÞ ∼Oðc2effÞ, and for small c2vis assuming that it is of
order Oðc4effÞ. This gives the GDM Jeans scale kJ ≃ k− as

k−1J ðτÞ≡ 2ceffτffiffiffiffiffiffiffiffi
105

p ≈ 0.2ceffτ: ð3:30Þ

Note that taking the limit c2vis → 0 in (3.27) reproduces
(3.26) of case 3, i.e., cvis ¼ 0, as expected.

5. Case 5: cvis=cs ≳ 1 or k ≳ kþ
This is the case related to the overdamping regime where

the solution decays without any oscillations. In order to
determine the scale where this happens, one may start from
(3.23), expand in small GDM parameters and associate the
overdamping scale with kþ. However, as β always
decreases kþ, a better estimate is obtained if we set β ¼
0 in (3.23) which leads us to the definition of the over-
damping scale as kdampcvisτ≡ 2

ffiffiffiffiffiffiffiffi
α=γ

p
. Once again, we

expand this expression for small GDM parameters, now
assuming that OðwÞ ∼Oðc2sÞ ∼Oðc2visÞ; i.e., c2vis is now
assumed to be of the same order as c2s . The resulting
expression

k−1dampðτÞ ¼
cvisτffiffiffiffiffi

30
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 15c2s
8c2vis

q ≈
0.18cvisτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 15c2s

8c2vis

q ð3:31Þ

is now valid not only if c2vis ≪ c2s but also if c2vis ≫ c2s (in
which case kþ is no longer real). Interestingly, for scales
below k−1damp the exact solution (3.21) decays with a power
law

Φ̂≃ A3ðcviskτÞ−2α; ð3:32Þ

for some constant A3 [see Eq. (13.1.5) of [127]), rather than
exponentially as one might expect from (3.27). This is
shown by the red and blue dotted lines in the right panel of

12We continue to call c2s the sound speed for convenience. 13This is valid as long as ceff is sufficiently larger than cvis.
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Fig. 3. The limit kτ → ∞ is contained in case 3 through
(3.26) and case 5 through (3.32), which shows that Φ̂ → 0

as kτ → ∞ if either c2s or c2vis is nonzero.
The exact solution (3.21) does not admit oscillations and

has no exponential decay if kþ ¼ k− as may be seen by the
blue lines in the right panel of Fig. 3. For small GDM
parameters this occurs for

c2vis ≥
15

2ð3þ ffiffiffiffiffiffiffiffi
105

p Þ c
2
s ð3:33Þ

which approximates to c2vis ≳ 0.57c2s .
It is worth noticing that the behavior between k−1d and

maxðk−1J ; k−1dampÞ is such that for fixed kd the decay is
quickest for c2vis ¼ 0 as may be seen in the left panel
of Fig. 3.
We remarked already in footnote 11 that a fine-tuned

negative sound speed c2s ¼ − 8
15
c2vis can lead to a constant Φ̂

if c2vis > 0 because k−1d ¼ 0. This generalizes case 0 to
include the possibility Φ̂ ≠ Ψ̂. If on the other hand the
negative sound speed satisfies jc2s j > − 8

15
c2vis and therefore

k−1d > 0, we are in the regime (3.33) where the potential
simply decays as (3.32) below k−1d without oscillations.
To close this section about the behavior of GDM

perturbations, we note that Hu’s nonadiabatic pressure
Πnad (2.24) is rather special compared to its extended
version Πnad

extended (2.26). If we instead use the extended
version Πnad

extended, Eq. (3.14b) changes to

H−1 _R ¼ −
2

3ð1þ wÞ
�
k
H

�
2
�
c2sΦ̂þ 4

5
c2visðR − Φ̂Þ

�

þ 3ðc2a − c2sÞ½ðC1 þ C2ÞðR − Φ̂Þ þ C2Φ̂�;
ð3:34Þ

which adds a k-independent source for R, leading to k-
independent terms proportional to Φ̂ in the analogue of
(3.16). Therefore, the curvature perturbation R is not
conserved on superhorizon scales unless either C1 ¼ C2 ¼
0 or c2s ¼ c2a (i.e., adiabatic fluid) so that an ISW effect is
generated by GDM even for the case c2s ¼ c2vis ¼ 0 (baring
the trivial case where w ¼ 0 in addition). This property of
Hu’s Πnad, that c2s does not influence superhorizon modes,
was observed before in [119].
A similar analysis of the behavior of linear perturbations

was performed in [48] for the “Newtonian” model (2.26)
with C1 ¼ 1 and C2 ¼ 0 and for a particular time depend-
ence of GDM parameters c2s and c2vis, which will be
discussed in Sec. IV B. There it was also observed that
when w ¼ 0 the large-scale perturbations are solely sensi-
tive to the combination c2s þ 8

15
c2vis as in (3.25).

C. Behavior of Φ̂ for a mix of GDM,
baryons and radiation

In this section we qualitatively discuss the evolution of the
potential Φ̂ in the presence of a mixture of baryons, photons,
neutrinos and GDM, as is relevant for the CMB and large-
scale structure formation. This mixture may be treated as a
cosmological fluidwith equation of statewtot, adiabatic sound
speed c2a;tot given by ð1þ wtotÞc2a;tot ¼

P
Ið1þ wIÞΩIc2aI

and total nonadiabatic pressure perturbation Πnad;tot ¼
Π − c2a;totδ. The GDM does not couple to photons or to
baryons; however, it affects the CMB through gravity. Thus,
in this section we examine howGDM affects the evolution of
the gravitational potential Φ̂ which in turn leaves its imprint
on the CMB spectrum, for instance, through the ISW effect,
lensing and acoustic driving [128–132].
As in the last subsection, we rewrite the spatial trace

Einstein equation (2.13c) for a flat cosmology (κ ¼ 0)
using the traceless Einstein equation (2.13d) to eliminate Ψ̂,
in terms of the two first-order equations for Φ̂ and R,

Φ̂0 ¼ −Φ̂þ 3ð1þ wtotÞ
�
1

2
ðR − Φ̂Þ þH2Σ

�
; ð3:35aÞ

R0 ¼ 1

1þ wtot

�
Πnad;tot −

2k2

3H2
c2a;totΦ̂

�
−
2k2

3
Σ: ð3:35bÞ

It is then transparent how the evolution of Φ̂ depends on
wtot;Πnad;tot and Σ. We discuss each of these in turn.

1. The equation of state wtot

The total background equation of state wtot depends on
the relative abundances and equations of state of the
cosmological fluids. It determines the time dependence
of a and H and gives rise to c2a;tot. It also determines the
time of radiation-matter equality when wtot interpolates
between 1=3 and w, and the time of the transition between
GDM and Λ domination, with wtot approaching −1 in the
latter.
If the right-hand side of (3.35b) vanishes, R remains

constant. However, Φ̂ still retains some temporal evolution
if wtot is time dependent. Only in the case where Σ ¼ 0 and
_wtot ¼ 0 does the potential approach a constant, as was the
case in a purely GDM dominated universe with c2s ¼ c2vis ¼
0 studied in the previous subsection. In the realistic
universe we consider in this section, wtot is expected to
be weakly time dependent even during matter domination
since baryons and GDM have a slightly different equation
of state, in general. In Fig. 4 we display the evolution of a
single k mode of the potential Φ̂, where ΛCDM (black
dotted line), w ¼ 0.01 (dark-blue dashed line) and w ¼
−0.01 (light-blue dot-dashed line) give an approximately
constant potential during matter domination which sub-
sequently decays at very late times asΛ eventually comes to
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dominate. Observe also that the case w > 0 has a larger
freeze-out value than w ¼ 0, and the opposite happens for
w < 0. This is easily understood: increasingw shifts the time
of radiation-matter equality earlier such that a given kmode
spends less time during the era of radiation domination and
therefore experiences stronger decay until it freezes out
during GDM domination. The opposite is true when w is
decreased. Finally, let us note that during GDM domination
c2a;tot ≃ c2a and Πnad;tot ≃ Πnad, such that c2a;tot has no
significant effect on Φ̂.

2. Nonadiabatic pressure Πnad;tot

Consider a mixture of cosmological fluids that may also
be pairwise coupled and therefore exchange energy and
momentum. Their energy-momentum tensors would then
not be individually conserved, in general, but instead

∇μTI
μ
ν ¼ JIν;

X
I

JIν ¼ 0; ð3:36Þ

with the background value of the exchange current JIν
denoted by QI ≡ J̄I0. Then the total nonadiabatic pressure
is given by [106]

Πnad;tot ¼
1

1þ wtot

X
I<J

ΩIΩJð1þ wIÞð1þ wJÞ

× ðc2aI − c2aJÞ
�

δI
1þ wI

−
δJ

1þ wJ

�

−
1

3Hρ̄

δ

1þ wtot

X
I

c2aIQI

þ 1

ρ̄

X
I

ρ̄IΠInad; ð3:37Þ

which is the sum of three terms. The first term (first two
lines) is the relative entropy perturbation and vanishes
initially for adiabatic initial conditions. It is suppressed
when the sound speeds are very similar, when ΩI ≪ 1 or
when ΩI ≪ ΩJ for all I < J. In ΛCDM this is the case
during radiation domination when the dominating species,
neutrinos and photons, have the same sound speed c2a;ν ¼
c2a;γ and during matter or Λ domination, where the
dominating clustering species CDM has c2a;c ¼ 0 and
1þ wΛ ¼ 0. The second term (third line), proportional
to δ, manifestly modifies the sound speed of the total
density perturbation if the fluids exchange energy. This is a
subleading effect for standard cosmological fluids, e.g.,
after recombination when baryons lose a tiny fraction of
their energy to photons [133]. The third term (last line), the
intrinsic nonadiabatic pressure, is usually assumed to be
absent in ΛCDM,14 but does appear in Λ-GDM. It is given
by (2.24) since GDM is the only fluid that admits a sizable
intrinsic nonadiabatic pressure.
In a nutshell, we expect Πtot

nad to be a subleading effect in
ΛCDM and mostly relevant around the radiation-matter
equality, when it is dominated by the relative entropy
perturbation between matter and radiation. In Λ-GDM,
even well within matter domination,Πnad causes Φ̂ to decay
below the scale k−1d given by (3.25) as can be seen by the
green solid curve in Fig. 4. We investigate possible physical
origins for Πnad in Sec. IV.

3. The shear Σ
In ΛCDM the shear Σ interpolates between a mixture of

mainly neutrino and photon shear during radiation domi-
nation and vanishes during matter or Λ domination for
massless neutrinos. In Λ-GDM, during matter domination,
the GDM shear Σg provides the dominant contribution to
the total shear Σ leading to potential decay, as is displayed
by the red dashed curve in Fig. 4. In addition, the total shear
causes a difference between Φ̂ and Ψ̂ (see the lower panel in
Fig. 4), such that _Σ adds a contribution to the ISW effect.
The same effect occurs for the lensing potential [132]; any
line-of-sight projection of Ψ̂þ Φ̂ will be affected by Σ as
well as by Φ̂.

D. How GDM affects the CMB

We now discuss the effects that a GDM component may
have on the CMB in the case of adiabatic initial conditions.
We present the CMB power spectra and compare ΛCDM
(black dots) to four cases of Λ-GDM: c2s ¼ 0.01 (solid
green line), c2vis ¼ 0.02 (long-dashed red line), w ¼ 0.01
(short-dashed dark-blue line) and w ¼ −0.01 (dot-dashed
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FIG. 4. Comparison of the effect of w and c2s and c2vis on a single
k mode of the potential Φ; see the legend in Fig. 5. Compared to
Fig. 3, the universe is now filled, in addition, with photons,
neutrinos, baryons and a cosmological constant. The lower panel
shows the effect of shear Σ causing a Φ̂=Ψ̂ ≠ 1.

14Although any fluid with internal degrees of freedom, for
instance a baryon fluid, has, in general, some internal non-
adiabatic pressure.

KOPP, SKORDIS, and THOMAS PHYSICAL REVIEW D 94, 043512 (2016)

043512-16



light-blue line). We fix the standard cosmological param-
eters to the best-fit Planck values [2] in all cases. All spectra
were produced using a version of the CLASS code [93,100]
modified to incorporate GDM.

1. Effect of w

In the case of pure CDM, the most distinctive effect on
DTT

l ¼ lðlþ 1ÞCTT
l =2π is a modification of the heights of

the first few acoustic peaks that depends on ωc, the
dimensionless CDM density [128,134]. This is because
the CDM abundance affects the time of radiation-matter
equality and therefore which modes enter the horizon
during radiation domination. During radiation domination,
Φ̂ decays and boosts the observed CMB temperature
[128,134] due to acoustic driving. Increasing the CDM
density pushes radiation-matter equality earlier, which
reduces acoustic driving and lowers the amplitude of the
peaks. Indeed, one of the best pieces of evidence for dark
matter comes from the CMB spectrum, as the absence of
CDM would introduce large acoustic driving, boosting the
peak amplitude and leading to a spectrum that completely
disagrees with observations.
In the case of GDM, increasing the dimensionless

GDM density ωg gives a rather similar effect to CDM
since the equation of state is taken to be small, jwj ≪ 1
[75–77,81,93,95]. Larger values for w will result in GDM
behaving more like radiation, in effect creating large
acoustic driving and boosting the CMB peaks to values
inconsistent with observations.
Even thoughw is taken to be small, its actual value is still

of importance as the GDM density approximately scales as

a3ρ̄g∝
∼
ωgð1þ 3w lnð1þ zÞÞ: ð3:38Þ

In particular, its greatest effect is to shift the time of
radiation-matter equality for fixed ωg. Increasing w raises
the amount of GDM in the past (leading to smaller acoustic
driving which in turn reduces the peak heights), and this is
similar to increasing the dimensionless GDM density ωg.
Accordingly, we expect w and ωg to be anticorrelated. This
effect has been discussed in [75] and observationally shown
in [77,93].
In Fig. 5 we compare the temperature and E-mode

polarization power spectra, DTT
l and DEE

l , in a ΛCDM
model to two Λ-GDM models with w ¼ �0.01. The dotted
curve is the reference ΛCDM model with all GDM
parameters set to zero and the remaining parameters taken
from Planck [94]. The w ¼ 0.01 model (dark-blue dashed
line) is below that of ΛCDM for the first few peaks, and the
opposite is true for w ¼ −0.01 (light-blue dot-dashed line).
Note that the time difference in horizon entry Δτk¼H ≃
0.1 Mpc is much smaller than the shift in the time of
radiation-matter equality Δτeq ≃ 25 Mpc. Therefore, the
main reason for the modification of the peak heights when

w is varied is a shift of the radiation-matter equality time,
denoted by arrows in Fig. 4. In that plot we show the time
evolution of a single k-mode of Φ̂ that corresponds to the
third Cl peak. In addition, the time of recombination is
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FIG. 5. Comparison of the effect of w and c2s and c2vis on
temperature power spectrumDTT

l and E-mode polarization power
spectrum DEE

l . T0 is the mean CMB temperature. The lower
panels show ration between the cases with a nonzero GDM
parameter and a ΛCDM reference model. The panels labeled “no
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EXTENSIVE INVESTIGATION OF THE GENERALIZED … PHYSICAL REVIEW D 94, 043512 (2016)

043512-17



shifted by Δτ� ≃ Δτeq, and therefore the size of the sound
horizon at recombination is reduced for positive w. Since
the decrease of the sound horizon is accompanied by a
decrease in the angular diameter distance to recombination
(as varying w directly affects the Hubble parameter H), the
change in the peak positions is rather moderate compared to
the case where ωg is varied. Nevertheless, the peaks move
slightly to the left (right) for negative (positive) w.
Panels 2–4 of theDTT

l part of Fig. 5 and panels 2–3 of the
DEE

l part, show the ratio of the Cls with nonzero GDM
parameters to the reference model Cls, making the change
of relative peak heights and also the shift of peak positions
more visible. More specifically, the Cl ratio is displayed
without the effect of lensing (panel 3 of either part) and
without the ISW effect (panel 4 in the DTT

l part). These Cls
have been calculated by artificially removing the ISW and/
or lensing terms in CLASS. It is clear that it is mostly the
first few peaks that are affected by the ISWeffect as well as
all scales larger than the first peak, while the higher peaks
are affected by lensing. At low l, the ISW effect for the
w ¼ 0.01 model is slightly larger than ΛCDM, while for
the w ¼ −0.01 model it is slightly smaller because the
potential freezes to a slightly larger constant value in the
former. This fairly small effect was discussed in
the previous subsection (see also Fig. 4). The effect of
the equation of state w on the lensing amplitude is shown
by the dark-blue dashed (w ¼ 0.01) and light-blue dot-
dashed (w ¼ −0.01) curves in Fig. 6. This can be under-
stood from Fig. 4; a positive w allows Φ̂ to freeze out earlier
and therefore at a larger value.

2. Effect of c2s and c2vis
Let us now turn to the effects of the perturbative GDM

parameters, namely, the sound speed c2s and viscosity c2vis.
An important property of CDM is that during CDM
domination, Φ̂ freezes to a constant value. For a GDM
dominated universe we saw in (3.25) that Φ̂ will be time
dependent and decay below

k−1d ðτÞ ¼ τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2s þ

8

15
c2vis

r
;

as long as c2s or c2vis is nonzero. We therefore expect these
two parameters to be degenerate in the CMB, and indeed
the cases c2s ¼ 0.01 and c2vis ¼ 0.02 lead to very similar
CMB observables. Two further GDM scales that we have
uncovered in the previous subsections are the Jeans and
overdamping scales k−1J ¼ 0.2ceffτ [see (3.30)] and k−1damp ¼
2
15
c2visk

−1
d [by combining (3.31) with (3.25)], respectively.

All three scales are marked in Fig. 4 at τ ¼ τ�, the
conformal time at recombination. However, these scales
are not visible in the CMB. The reason for this is that the
CMB spectra are mostly determined by the photon

temperature δg=4 which is only indirectly sensitive to
GDM dynamics, while the potentials play a lesser role;
moreover, their effects (such as ISW) are convolved over a
wide range of time scales. This makes the GDM scales
invisible by eye in the CMB spectra even though the size of
the residuals compared to ΛCDM is mainly determined by
k−1d ðτ�Þ. In contrast, at z ¼ 0, the potential decay scale
kdðz ¼ 0Þ and the Jeans scale kJðz ¼ 0Þ are clearly visible
in the matter power spectrum, as we see in Fig. 7.
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Potential decay for nonzero c2s and c2vis leads to smaller
CMB lensing compared to ΛCDM and, at the same time,
larger (and continuous across time) ISW. This is observed
by comparing panels 2 and 4 in the DTT

l part for the effect
on ISW and panels 2 and 3 in both temperature and
polarization parts of Fig. 5 for the effect on lensing.
Neither the “no lensing” nor the “no ISW” Cls are directly
observable, but the lensing potential power spectrum Dϕϕ

l

and the temperature-lensing cross correlation DTϕ
l , dis-

played for all models in Fig. 6, are directly observable. We
observe that nonzero c2s or c2vis leads to a reduction of the

lensing potential power spectrum Dϕϕ
l (upper panel) and

lensing B-mode power DBB
l (lower panel). The lensing-

temperature cross correlationDTϕ
l (middle panel), however,

is boosted for nonzero c2s ; c2vis because a larger fraction of
the temperature anisotropies are caused by the ISW effect.
This is clear from the fainter lines in the DTϕ

l panel which
have been calculated by artificially removing the ISW term.
During the radiation matter transition, a nonzero c2s or c2vis
leads to a quicker decay of the potential and therefore can
boost the acoustic driving of the observed temperature of
the first couple of CMB peaks. For the chosen parameter
values c2s ¼ 0.01, c2vis ¼ 0.02, this is a subdominant effect
compared to lensing and the ISW effect, as may be seen in
the “no lensing, no ISW” panel in Fig. 5. Since k−1d is a
length scale appearing in the perturbations, we do not
expect that varying k−1d will affect the size of the various
CMB imprints to the same degree. Indeed for much smaller
constant parameters, such as c2s ¼ 10−6, the only remaining
effect on the CMB spectra is the reduced lensing compared
to ΛCDM [93]. On the other hand, if c2s and c2vis grow with
redshift, i.e., as c2s ; c2vis ∝ a−2, then the CMB will be mostly
sensitive to k−1d at early times; see the discussion in [95].
The total linear matter power spectrum at z ¼ 0 is shown

in Fig. 7. The scales k−1d where the potentials start to decay,
k−1J below which GDM oscillates, and k−1damp below which
GDM is overdamped, are also shown. We expect the
constraints on c2s and c2vis to improve considerably and
their degeneracy to be broken, if small-scale late-time
structure formation data are combined with the CMB.
However, to fully utilize these data would require an
extension of the GDM model into the nonlinear regime.
This is one of the motivations for the comparison of GDM
to other models in the next section.
We remark that the case of negative c2s has been studied

in [74,76]. We do not think that it makes sense to consider
negative c2s ; c2vis since they lead to exponential instabilities
unless one fine-tunes the viscosity as discussed at the end of
Sec. III B. We checked that, for small enough negative
values jc2s j; jc2visj < 10−6, the numerical integration works
and gives rise to reasonably looking results. Within some
range of parameter space, the potential Φ̂ grows slightly

without exploding, but only when numerical integration is
restricted to times and scales relevant for the CMB. This
qualitatively new and phenomenologically interesting fea-
ture of growing potentials might be expected in alternative
theories of gravity (see [135]) but not from dark matter. We
therefore suggest using a parametrization suited for alter-
native theories of gravity for this purpose [83–85,135].

IV. CONNECTION BETWEEN COVARIANT
IMPERFECT NONADIABATIC FLUIDS

AND GDM

It is certainly possible that not all dark matter models can
be brought into the GDM form. As onewould like to use the
GDM model to test alternative DM models and determine
whether they are allowed or even favored by the CMB, we
have to assess which realistic particle and field-based DM
models can actually be brought into the GDM form. For
instance, in the case of particle-based models, one concern
may be that the phase-space distribution function fgðxμ; pνÞ
and its dynamics, as governed by the Boltzmann equation,
does not allow for a truncation or closure of the hierarchy at
lmax ¼ 2. In this case, additional cumulants of fgðxμ; pνÞ
beyond the first three (δg, θg and Σg) may be necessary. The
collisionless case includes warm DM which can be
described as GDM in the linear regime of structure for-
mation [35]. For the collisional case parametrizations based
on the Boltzmann equation were recently presented in
[136,137]. We leave it to future work to investigate the
connection of GDM to the phase space description of
collisionless and collisional DM and therefore the connec-
tion of GDM to specific models of particle DM.
As we discuss below, if DM has internal degrees of

freedom, then a GDM description may be possible in
certain circumstances. Such is the case for nonequilibrium
thermodynamics, the effective theory of fluids of
Ballesteros [138] and the case of tightly coupled interacting
adiabatic fluids. Alternatively, the GDM model may arise
as an effective description of pure CDM once small-scale
modes are integrated out [44], and lastly, as an effective
fluid reformulation of scalar field models.
Most of these models have a nonperturbative definition.

This is desirable if the model is to also be used in the mildly
nonlinear and fully nonlinear regimes of structure forma-
tion. It is known that higher-order perturbation theory based
on imperfect fluids improves the modeling of CDM in the
mildly nonlinear regime [44,48]. Similarly it is known that
even in the fully nonperturbative regime of structure
formation, a self-gravitating scalar field is a viable alter-
native to particle dark matter [38].

A. GDM arising from thermodynamics

In this subsection, we consider nonequilibrium fluids
that are close to thermal equilibrium, such that thermody-
namic relations still hold. Fluids of this kind are well-
known instances of imperfect fluids and therefore offer a
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clear physical interpretation of the GDM parameters and
serve as candidates for extensions of the GDM model into
the nonlinear regime.
Fluids that are not in thermal equilibrium can develop

(i) bulk viscosity, a special kind of nonadiabatic pressure
proportional to ∇μuμ that hampers the fluid expansion,15

(ii) shear viscosity, proportional to the trace-free part of
∇ðμuνÞ that impedes shearing flows, and (iii) diffusion flux,
which is proportional to the gradient of a particular thermo-
dynamic potential and which acts to smooth out those
gradients. Bulk viscosity16 arises when the collision times
between particles are long, when the fluid consists of a
mixture of relativistic and nonrelativistic particles, or when
the particles have internal degrees of freedom [139–143].
Similarly, shear viscosity is related to the free-streaming
time τc between collisions, with the photon-baryon fluid and
freely streaming massless neutrinos being well-known
examples of this.17 Diffusion (or heat) flux exists whenever
the energy flux is not exactly aligned with the particle flux,
which happens for instance in the photon-baryon fluid at
next-to-leading order in the tight-coupling approximation.
Bulk and shear viscosity as well as diffusion flux are related
to entropy production and give rise to imperfect terms in the
energy-momentum tensor [140,146] and, as we will see,
nonadiabatic pressure. It is also known that WIMP dark
matter, although usually described as a pressureless perfect
fluid, is better modeled by an imperfect fluid with shear and
bulk viscosity, as well as pressure [43,147].
The shape of the energy-momentum tensor depends on

the definition of the fluid four-velocity uμ, in other words,
the frame. A natural choice is the so-called energy or
Landau-Lifshitz (LL) frame defined through uαTα

ν ¼
−ρuν. We adopt this frame throughout this paper, and
we denote the corresponding four-velocity by uμ. This
frame enforces the constraint uαΣα

ν ¼ 0, and prevents the
occurrence of a term qðμuνÞ, where qμ is the heat flux, in the
energy-momentum tensor (2.1).
If a conserved particle current

Nν ¼ nuν þ jν ð4:1Þ
exists, the equation of motion for n is found from

∇νNν ¼ 0: ð4:2Þ
In general, Nν is not aligned with the energy flux ρuν, in
which case the diffusion flux jν is nonzero. Since n ¼
−Nμuμ is the number density, we have jνuν ¼ 0, such that
j̄ν vanishes on FRW and δjν is gauge invariant in linear

perturbation theory. If Nν exists and is nonzero, it is
common to choose the Eckart frame [148] defined via
Nν ¼ nnν, rather than the LL frame. The Eckart frame
requires a term proportional to qðμnνÞ to be added to the
energy-momentum tensor (2.1).
Under a frame transformation given by a Lorentz boost,

the four-velocity and the spatial vectors qν and jν do not
remain invariant to linear order in the boost velocity, while
all other functions entering Nν and Tμν remain frame
invariant [149,150]. The combination

~qν ¼ qν − jν
ρþ p
n

ð4:3Þ

is also frame invariant to linear order in the boost velocity
[149] and can therefore be interpreted as a frame-indepen-
dent definition of the heat flux in linear perturbation theory.
The information in the generalized heat flux ~qν is stored
entirely in the diffusion flux jν when the LL frame is
adopted, while in the Eckart formulation it is stored entirely
in the (standard) heat flux qν. Note that qμ directly enters
the energy-momentum tensor Tμν, while jν does not.
Therefore, whether a heat-diffusion-type departure from
a perfect fluid is included in the energy-momentum tensor
depends on the frame chosen. In the Eckart frame, jν ¼ 0
and hence Nν assumes a perfect fluid form, while Tμν

develops the additional imperfect term qðμnνÞ. In the LL
frame, Tμν retains its perfect fluid form but Nν receives
imperfect corrections through jμ.
We stick to the Landau-Lifshitz (or energy) frame unless

otherwise stated. One good reason to choose the LL frame
is that it always exists, regardless of the existence of a
species with conserved particle number. There are some
other good reasons for this choice, which will be discussed
further below.
In the GDM model, if c2s ≠ c2a the total GDM pressure

cannot be obtained from a barotropic equation of state, i.e.,
P ≠ PðρÞ. Therefore, it is natural to assume that the
pressure has to depend on some other quantity as well,
for instance, the particle number density n, the chemical
potential μ, the temperature T, or the entropy S, such that
P ¼ Pðρ; n; μ; T; S;…Þ. The obvious complication with
this idea is that the GDM model contains neither of those
additional degrees of freedom. However, we will assume
that the thermodynamic relations (4.4) are valid, allowing
us to assume that the equation of state is given by P ¼
Pðρ; SÞ in the absence of bulk viscosity.
The main results of this section are that δS, although in

general dynamical, is sourced only by Δ̂g [see (4.23)] and
that a mapping to GDM is possible in two limits: (1) where
the heat conduction vanishes and δS is nondynamical (see
Sec. IVA 3) or (2) where the heat conduction becomes very
large and the δS becomes algebraically related to Δ̂g (see
Sec. IVA 4). That the pressure is, in general, dynamical is
also expected from kinetic theory [151].

15Note that within this subsection we do not display the
subscript g on the nonequilibrium imperfect fluid quantities for
notational simplicity.

16Often also called second, volume or dilatational viscosity.
17See also [113,116,117,144,145] for a discussion of viscosity

in a cosmological context.
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1. Landau-Lifshitz imperfect fluid

Let us first review the LL imperfect fluid derivation
adapted to our notation. We assume in the following that
the thermodynamic relations (which are guaranteed to hold
in local thermal equilibrium)

ρþ p ¼ μnþ Ts; ð4:4aÞ
dρ ¼ μdnþ Tds ðGibbs relationÞ; ð4:4bÞ

dp ¼ ndμþ sdT ðGibbs-Duhem relationÞ; ð4:4cÞ
still hold in situations that are slightly off-equilibrium.
Here, s is the entropy density, n is the conserved particle
number density and p is the thermodynamic pressure. In
the absence of bulk viscosity the thermodynamic pressure
would equal P, which suggests the definition

Pbulk ¼ P − p; ð4:5Þ
for the bulk pressure Pbulk.
The derivation of the LL imperfect fluid equations uses

the conservation equations in the form ∇αTα
ν ¼ 0 and

∇νNν ¼ 0. Making use of (4.4a), the energy-momentum
tensor can be written as

Tμ
ν ¼ ðμnþ TsÞuμuν þ Pbulkuμuν þ Pδμν þ Σμ

ν: ð4:6Þ
With the help of (4.2), (4.4c) and the normalization
condition uνuν ¼ −1, the expression for uν∇αTα

ν gives

uν∇αTα
ν ¼ −T∇νðsuνÞ þ μ∇νjν þ uν∇αðΣα

ν þPbulkqανÞ;
ð4:7Þ

where qμν ¼ gμν þ uμuν is the projector on uν-orthogonal
hypersurfaces. Energy-momentum conservation plus the
identities Σα

νuν ¼ qανuν ¼ 0 give rise to the evolution
equation

∇νSν ¼ −jν∇ν
μ

T
−
1

T
Σα

ν∇αuν −
Pbulk

T
∇νuν; ð4:8Þ

for the entropy current,

Sν ≡ suν −
μ

T
jν: ð4:9Þ

The definition of Sν is suggested by the fact that it takes this
form in local thermal equilibrium within kinetic theory
[152].18 In order to guarantee ∇νSν ≥ 0, Landau and
Lifshitz postulate the following constitutive relations:

Σμν ¼ −2ηLL
�
qαμqβν −

1

3
qμνqαβ

�
∇ðαuβÞ; ð4:10aÞ

Pbulk ¼ − ζLL∇βuβ; ð4:10bÞ

jμ ¼ − κLL

�
nT

ρþ p

�
2

qνμ∇ν
μ

T

≕− ~κLLqνμ∇ν
μ

T
: ð4:10cÞ

The non-negative coefficients ηLL, ζLL and κLL are known
as shear viscosity, bulk viscosity and heat conduction,
respectively. In the last line we defined ~κLL for later
convenience.
We now briefly return to the discussion of the frame

choice. It is not well known in the cosmology literature that
the Eckart and LL theories are not equivalent [154]. This
inequivalence points to a flaw of the theory of nonequili-
brium thermodynamics since a physical state should never
depend on a frame choice.19 A remedy to this puzzle was
recently put forward by Ván and Biró [155], where it was
suggested to modify the thermodynamic relations (4.4) if
the frame of the fluid and the frame of the thermometer that
measures T are different from the LL frame. It was shown
that a particular generalization of (4.4), explicitly contain-
ing the fluid and thermometer velocities, leads to a
manifestly frame-covariant set of closure relations involv-
ing one equation for the frame-independent quantity ~qμ,
rather than two separate equations for jμ and qμ as in [154].
This set of closure equations then reduces to (4.10) once the
LL frame is chosen, while it does not reduce to the closure
equations of Eckart in the Eckart frame. By modifying the
thermodynamic relations (4.4) according to [155], the
solution obtained in the Eckart frame can by mapped to
a solution obtained in the LL frame through a boost, which
immediately follows from the frame covariance of the
conservation equations, as was shown in [155].
With the standard Gibbs relations (4.4), the Eckart frame

leads to unphysical instabilities. Choosing the Eckart frame
with the Gibbs relations of [155], however, leads to a stable
solution that is not equivalent to the solution obtained by
Eckart [117,148]. Support for the LL frame also comes
from kinetic theory [156,157] and its stability properties
compared to other frames [154,158,159].20 The most
conservative and reasonable frame choice therefore seems
to us to be the LL frame [162].21

18It is exactly this equation that receives quadratic corrections
Qν in causal nonequilibrium thermodynamics [149,153]. Note
that in [154] it was proven that all first-order theories apart from
LL are unstable, where first order here means that Sν depends
linearly on the energy-momentum tensor and the particle flux.

19For the same reason why a physical state cannot depend on
the gauge choice. In both cases, frame and gauge choice, the
mathematical result depends on these choices, but the physical
state must be invariant.

20Although the LL theory contains superluminal effects, they
are unimportant [158]. Making the theory causal [149,153]
comes at the price of having more differential equations and
free functions while giving rise to only unobservable small
corrections compared to the LL theory [160,161].
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Let us now continue with our task to connect the LL
theory with the GDM model. One might wonder what the
physical significance of the parameter κLL in (4.10c) is,
since jν does not directly affect the energy-momentum
tensor: Both n and jν can affect ρ and uν only via the
equation of state p ¼ pðρ; nÞ, but they have no effect if the
equation of state is barotropic p ¼ pðρÞ. We discuss this
further below where we perturb the LL theory around a
FRW background.

2. Linear perturbations of the LL theory

From now on we set the bulk viscosity Pbulk to zero. This
simplifies the notation in the following paragraphs and also
makes it manifest that nonadiabatic pressure does not
require bulk viscosity, which is, in any case, not part of
the GDM model. Nevertheless bulk viscosity might not be
negligible in some situations (see the discussion in [117]
and [43,112] in the context of CDM); we plan to add this to
GDM in future work.
In linear perturbation theory, taking into account only

scalar modes, the LL closure relations (4.10) give

Σ ¼ 2ηLL
aρ̄ð1þ wÞ Θ̂; ð4:11aÞ

j ¼ ~κLLð _̄ξθ − δξÞ; ð4:11bÞ

where we have defined the normalized chemical potential

ξ≡ μ

T
ð4:12Þ

and the gauge-invariant scalar perturbation j via ji ¼ ~∇ij.
It is also useful to rewrite the thermodynamic relations in
terms of ξ and the entropy per particle

S ¼ s
n

ð4:13Þ

as

ρþ p ¼ nTðSþ ξÞ; ð4:14aÞ

dS ¼ ðSþ ξÞ
�

dρ
ρþ p

−
dn
n

�
; ð4:14bÞ

dξ ¼ðSþ ξÞ
�

dp
ρþ p

−
dT
T

�
: ð4:14cÞ

The entropy evolution equation (4.8) on a linearly per-
turbed FRW spacetime then reads ∇νSν ¼ 0 since both jν

and Σμ
ν are spatial tensors and vanish at the background

level. Explicitly this gives

_̄S ¼ 0; ð4:15aÞ

_δS ¼ −
~κLLk2

an̄
ðS̄þ ξ̄Þð _̄ξθ − δξÞ: ð4:15bÞ

The first result means that there is no entropy production
within linear perturbation theory. This is a direct conse-
quence of discarding bulk viscosity. Nonetheless, entropy
perturbations are generally nonzero for nonvanishing κLL
and are dynamical.
The perturbed LL equations are known to be relevant in

cosmology: Heat conduction and shear viscosity have
similar and equally important effects in the photon-baryon
plasma. They are proportional to the mean free time of
photons τc [117,129,130] giving rise to Silk damping of
baryon acoustic oscillations [164]. The photon-baryon fluid
is also an example where the bulk viscosity can be
neglected, since its magnitude compared to the shear
viscosity is suppressed by the large number of photons
per baryon [117].
Equations (4.15) can only play a role in the evolution of

the density and velocity perturbations if the pressure P also
depends on S.22 Assuming a general P ¼ Pðρ; SÞ we obtain

_̄P ¼ ∂P̄
∂ρ̄

				
S̄

_̄ρ; ð4:16Þ

δP ¼ ∂P̄
∂ρ̄

				
S̄
δρþ ∂P̄

∂S̄
				
ρ̄

δS: ð4:17Þ

Eliminating ∂P̄
∂ρ̄ jS̄ we find

Π ¼ c2aδþ
1

ρ̄

∂P̄
∂S̄

				
ρ̄

δS; ð4:18Þ

Πnad ¼
1

ρ̄

∂P̄
∂S̄

				
ρ̄
δS: ð4:19Þ

At this point we cannot conclude that c2a is the sound speed
since δSmight have nontrivial dynamics similar to δ. In the
absence of bulk viscosity, the entropy perturbation has the
straightforward interpretation of a relative entropy between
δ and δn,

21There are however different opinions on this matter: In [163]
it was argued that the Eckart frame is more physical than the LL
frame.

22We could equally assume an equation of state of the form
P ¼ Pðρ; nÞ, P ¼ Pðρ; ξÞ, P ¼ Pðn; SÞ, or any other combina-
tion of ρ, n, S, ξ, T. They can be shown to lead to identical results
(4.25) and (4.27). To show this, Eq. (4.2) and the thermodynamic
relations IVA 2 have to be employed, in particular, the Maxwell
relations following from ddS ¼ 0 and ddξ ¼ 0.
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δS ¼ ðS̄þ ξ̄Þ
�

δ
1þ w

−
δn
n

�
ð4:20Þ

[see (4.14b)], and therefore we expect that, in general, δS
can modify the sound speed. The relation (4.20) shows that
the relative entropy perturbation between ρ and n is in fact
an entropy perturbation in the thermodynamic sense if the
fluid is in a thermal state and also explains why Πnad is
known as the “entropy perturbation.” A system in local
thermal equilibrium defined by two state variables may
equally be expressed by any other set of two linearly
independent state variables due to the relations (4.4).
We assume this property to be true also off equilibrium,
such that we may assume ξ ¼ ξðρ; SÞ and therefore
dξ ¼ ∂ξ

∂ρ jSdρþ ∂ξ
∂S jρdS. On a linearly perturbed FRW

spacetime without bulk viscosity, this leads to

_̄ξ ¼ −3H
∂ξ̄
∂ρ̄

				
S̄
ð1þ wÞρ̄; ð4:21Þ

δξ ¼ ∂ξ̄
∂ρ̄

				
S̄
ρ̄δþ ∂ξ̄

∂S̄
				
ρ̄

δS: ð4:22Þ

Inserting this into (4.15b) gives

_δS ¼ ~κLLk2

n̄a
ðS̄þ ξ̄Þ

�
ρ̄
∂ξ̄
∂ρ̄

				
S̄
Δ̂g þ

∂ξ̄
∂S̄

				
ρ̄

δS

�
: ð4:23Þ

This result shows that Πnad in (4.19) is, in general, a
dynamical degree of freedom and sourced by Δ̂g. In the
remainder of this section we will investigate under which
conditions δS ¼ 0 and δS ∝ Δ̂g and therefore establish a
connection to GDM.

3. GDM as a LL perfect fluid with a conserved
particle number

For a perfect fluid, ηLL ¼ ζLL ¼ κLL ¼ j ¼ 0, and (4.23)
simplifies to

_δS ¼ 0; ð4:24Þ

showing that δS is constant in time and does not have a
large impact on the dynamics of δ and θ. The dynamics of
the perfect fluid variables ρ, uμ with a general P ¼ Pðρ; SÞ
are thus modeled by a particular GDM model where

w≡ P̄ðρ̄; S̄Þ
ρ̄

; ð4:25aÞ

c2s ¼ c2a ¼
∂P̄
∂ρ̄

				
S̄
; ð4:25bÞ

c2vis ¼ 0; ð4:25cÞ

with a corresponding adiabatic sound speed (2.12). It is
thus clear why c2a ¼ ∂P̄

∂ρ̄ jS̄ is called the adiabatic sound
speed: It is calculated from a general equation of state with
the entropy held fixed. The relation to GDM is a good
approximation since δS is constant in time. Furthermore,
the relation to GDM becomes exact for adiabatic initial
conditions, i.e., δS ¼ 0.
Note that in order to arrive at this result, we do not have

to use any thermodynamic relations, and we could have
equally derived (4.25) by assuming an equation of state
P ¼ Pðρ; nÞ and showing that the particular combination
δ=ð1þ wÞ − δn=n̄ is slowly varying compared to δ using
the perturbed particle conservation equation (4.2) and the
continuity equation (2.14). Therefore the result (4.25) holds
for any perfect fluid with a conserved particle number and
does not require the additional assumption of being in a
thermal state. Also note that c2s ¼ c2a holds even for
nonlinear perturbations [165].
A discussion of the equation of state pðρ; SÞ of an ideal

nonrelativistic gas in the context of cosmological pertur-
bation theory can be found in [166].

4. GDM as a LL imperfect fluid with a conserved
particle number

As we discussed above, although the GDM model lacks
a particle conservation or alternatively an entropy evolution
equation, it may still be used to describe a perfect fluid even
for the case P ¼ Pðρ; SÞ, since δS is either time indepen-
dent or zero. It is clear, however, that the GDM model
cannot, in general, describe an imperfect fluid completely,
as in that case δS will be dynamical. Fortunately, as we
show here, there are situations where the GDM model can
be used to describe imperfect fluids as an approximation,
by effectively removing the additional degree of freedom
(usually associated with S) that is present in the LL theory.
Equation (4.23) may be solved using an approximation

scheme analogous to the tight-coupling approximation for
two interacting fluids (see Sec. IV E). In the limit of large
~κLL the last bracket in (4.23) has to be parametrically
smaller than _δS in order for linear perturbation theory to
apply. Therefore at leading order in an expansion in κ−1LL the
rest-frame density perturbations Δ̂g and the entropy per-
turbation δS become proportional to each other,

δS ¼ −
∂ξ̄
∂ρ̄ jS̄
∂ ξ̄
∂S̄ jρ̄

ρ̄Δ̂g þOð~κLL−1Þ: ð4:26Þ

Inserting this leading-order solution into (4.18) gives the
GDM pressure equation (2.19a) with sound speed

c2s ¼ c2a −
∂P̄
∂S̄

				
ρ̄

∂ξ̄
∂ρ̄ jS̄
∂ ξ̄
∂S̄ jρ̄

¼ ∂P̄
∂ρ̄

				
ξ̄

: ð4:27aÞ
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Thus in the large ~κLL limit the sound speed is given by
c2s ¼ ∂P̄

∂ρ̄ jξ̄ which should be contrasted with the perfect fluid
case κLL ¼ 0 where c2s ¼ c2a ¼ ∂P̄

∂ρ̄ jS̄. The other two GDM

parameters, equation of state w and viscosity c2vis arise as

w ¼ P̄ðρ̄; ξ̄Þ
ρ̄

; ð4:27bÞ

c2vis ¼
dIC þ 3

2

HηLL
aρ̄

; ð4:27cÞ

where we have mapped the LL shear (4.11a) directly into
the form of the algebraic GDM shear (2.29), which
explicitly depends on the initial conditions (to remind
the reader, for adiabatic initial conditions dIC ¼ 2).
Let us point out that it is only as a matter of convenience

that we use the dimensionless23 “viscosity speed” squared
c2vis rather than ηLL as it is precisely that combination of
variables that appears in the phenomenology: First of all it
is known that for freely streaming ultrarelativistic radiation
c2vis ¼ c2s ¼ 1=3 [75]. In addition, as we have shown, for
the algebraic shear the combination c2s þ 8

15
c2vis determines

the scale where the potential decays and that the effective
sound speed is c2eff ≃ c2s − 2

5
c2vis (see Sec. III).

Observe how (4.27a) offers an interpretation for Πnad as
the thermodynamic entropy perturbation, clearly deserving
the name “entropy perturbation,” which Πnad is often

referred to as. Since _̄S ¼ 0, this is not necessarily related
to entropy production, as the linearized entropy fluctuations
average to zero when integrated over all space. However,
entropy is indeed produced at second order in perturbation
theory.
For nonrelativistic particles of mass m the chemical

potential satisfies S ¼ m=T − ξþ 5=2 such that _̄ξ ¼
−m _̄T=T̄2 for _̄S ¼ 0; hence, a nonzero _̄ξ seems natural.
However, it is less clear whether the large κLL limit can be
naturally achieved in a dark matter model.
In closing this subsection, we remark that there are other

approaches to nonequilibrium thermodynamics [167,168]
or imperfect fluids [169] that might be better-suited
candidates for an extension of GDM into the nonlinear
regime of structure formation.

B. GDM arising from an effective theory
of CDM large-scale structure

As the Einstein and fluid equations are intrinsically
nonlinear, the FRWbackground and the linear perturbations
should both be affected by the small-scale nonlinearities
(backreaction), generating imperfect contributions to the
CDMenergy-momentum tensor aswell as pressure [44].We

therefore expect that the CDM background and linear
perturbations should be described as GDM with (nonzero)
GDM parameters that increase with time as the nonlinear
scale grows in the late universe and that are approximately
scale independent on the linear scales under considera-
tion [170].
The form of the effective energy-momentum tensor can

be derived through a coarse-graining of the microscopic
equations (the lowest two moments of the Boltzmann
hierarchy) and a subsequent gradient expansion [44–47].
In [44,171] it was argued that this leads to a LL-type
imperfect fluid energy-momentum tensor whose time-
dependent coefficients (equation of state, sound speed
and viscosities) can be extracted by matching to the
microscopic theory.
It was later emphasized in [46,172], that the effective

energy-momentum tensor is a spatially local function of ρ,
uμ and the Riemann tensor because there exists a hierarchy
of spatial scales kvpτfs ≪ 1 (where vp ≪ 1 is the average
particle velocity and τfs is the free-streaming time of a
particle) such that kvpτfs ≪ 1 means that scales of interest
are larger than the mean free path. On the other hand, the
stress-energy-momentum tensor cannot be a local function
in time due to the absence of a temporal hierarchy of scales
since the free-streaming time is of the same order of
magnitude as the age of the universe τfsH ¼ Oð1Þ.24
Nevertheless a local-in-time approximation of the
energy-momentum tensor turns out to be a good approxi-
mation for certain applications in perturbation theory
[172,173].
The relevance of the effective field theory of large-scale

structure (EFTofLSS) in the context of GDM is that it
shows that even “ordinary” CDM has a FRW background
and linear perturbations that are more completely described
by an imperfect fluid with nonzero w, c2s and c2vis, and a
bulk viscosity term with parameter c2bulk ¼ −P̄bulk=ρ̄.
As mentioned above, these GDM-type terms arise in the

EFTofLSS because both linear perturbations and the back-
ground get renormalized by small-scale physics that has
been integrated out. The numerical values and their time,
scale and cosmology dependence (in particular, the nor-
malization of the matter power spectrum) can be estimated
using perturbation theory (see Appendix D of [44] and
[171]), or more accurately using N-body simulations
[47,172,174]. At z ¼ 0

w; c2s ; c2vis ≃Oð10−6Þ≃ ð10 × k−1nl HÞ2; ð4:28Þ

and they scale approximately with redshift like the variance
of the peculiar velocity in linear perturbation theory

23We set the speed of light to 1.

24This is in contrast to a collisional fluid where usually a small
mean free path kvpτc ≪ 1 is accompanied by a small mean free
time τfsH ≪ 1 leading to an energy-momentum tensor that is a
temporally and spatially local function of the δ and θ.
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ðfDHÞ2, where D is the linear growth function and f ¼
d lnD=d ln a the linear growth rate and knl ≃ 4.6 hMpc−1

is the nonlinear scale below which the EFT breaks down
[172].25 The second relation in (4.28) shows that
k−1d ≃ 10k−1nl . Therefore, the largest characteristic scale
k−1d of the imperfect fluid is within the range of validity
of the effective theory.
We note that the shear in GDM is nonlocal in time

since (2.19b) can be formally integrated, Σg ¼
R
τ gðτ; τ0;

Θ̂gðτ0ÞÞdτ0. Nonetheless, we saw that the qualitative behav-
ior is well captured by the local-in-time algebraic version
(2.29); see Figs. 1 and 2. In the EFTofLSS the stress tensor
and therefore Πg, Σg and bulk viscosity are nonlocal
functions in time of Φ̂, Δ̂g, Θ̂g. We find a similar effect
in our investigation of tightly coupled fluids further below;
see Fig. 10.
Those two examples suggest that, for the search of

signatures of pressure and imperfect fluid behavior of dark
matter, it is sufficient to focus on one specific choice of
parametrization of the stress tensor in terms of Φ̂, Δ̂g, Θ̂g

and a set of free functions: w and c2s for the pressure and c2vis
for the viscosity. We find in [93], using Planck and baryon
acoustic oscillations data, that the constraints on c2s , c2vis <
Oð10−6Þ have a similar magnitude as the best-fitting
parameters of the EFTofLSS. However, we note that the
proximity of those numbers is an accident and has no
immediate consequence for EFTofLSS. This is because we
assumed parameters to be constant in time, while those of
EFTofLSS decrease with increasing redshift, making the
CMB less sensitive to EFTofLSS parameters at early times.
Constraining GDM parameters with particular time
dependence and via principal components is left to future
work. Then it might be possible to measure the parameters
of the EFTofLSS in data.
We also note that a similar approach for an EFT of LSS

has been put forward in [48] where a parametric set of
equations similar to the algebraic GDM model was used
from the outset, albeit with a small difference (see
Sec. II D). The shear viscosity was assumed to be of LL
form (4.10a), such that the parametrization could be applied
to higher-order perturbation theory.

C. GDM arising from scalar fields

Scalar fields have often been linked to effective fluids on
a cosmological background. Here we reexamine this
relation, connect it to the GDM model and discuss further
possibilities beyond GDM. As it turns out, the effective
behavior depends on whether the value of the scalar field ϕ
crosses zero; hence we consider two possibilities

separately: a case with no oscillations in the background
value of ϕ and the opposite.

1. No oscillations in the background value of ϕ

It is well known that quintessence scalar fields with a
canonical kinetic term X ¼ − 1

2
∇μϕ∇μϕ and potential

VðϕÞ can be described by an effective fluid. In the appendix
of [75] it was already noted that a quintessence scalar field
is described by a GDM model with an arbitrary (and, in
general, time-dependent) equation of state w ¼ X̄−V

X̄þV, sound
speed c2s ¼ 1 and viscosity c2vis ¼ 0.
A generalization of the standard quintessence field by

introducing a noncanonical kinetic term Kðϕ; XÞ, hence
dubbed k-essence, was proposed in [175]. The action takes
the form

I ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16πG
Rþ Kðϕ; XÞ þ Lm

�
: ð4:29Þ

One may define a fluid velocity

~uμ ¼ −
1ffiffiffiffiffiffi
2X

p ∇μϕ ð4:30Þ

provided X > 0 (and _ϕ > 0). For instance, although this
condition holds on a cosmological background, it does not
hold in the static spherically symmetric case. Hence, the
fluid description is not generally applicable in all situations.
If X > 0, then it is clear that ~uμ ~uμ ¼ −1, such that ~uμ

provides a natural vector field representing the fluid
velocity. The frame defined by ~uμ is called the scalar frame.
The association to a fluid is valid both on a FRW

background and at the linear perturbation level, and this is
sufficient to make a connection to GDM. The relevant
variables are [175]

w ¼ K
2X̄KX − K

; ð4:31aÞ

c2s ¼
KX

2X̄KXX þ KX
; ð4:31bÞ

c2vis ¼ 0; ð4:31cÞ

where KX ≡ ∂K
∂X. If Kðϕ; XÞ ¼ X − VðϕÞ then one recovers

the quintessence case. Let us note that the sound speed in
the k-essence case is, in general, time dependent; however,
it is always spatially constant.
The k-essence model has traditionally been used in the

context of inflation or dark energy. However, by carefully
choosing K one can design models which are more suitable
for dark matter. It was shown by Scherrer [176] that for
shift-symmetric k-essence [K ¼ KðXÞ only], it is possible
to obtain models which approach ΛCDM, albeit with

25We get the estimate (4.28) and the time dependence ðfDHÞ2
for c2s by inspection of Eqs. (3,51,84) of [45]. That w and c2vis
should be of the same order of magnitude as c2s follows from
Appendix D of [44].
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c2s ≈ 0. In particular, for any KðXÞ which has an extremum
at X ¼ X0, we may expand it as KðXÞ ≈ K0þ
K2ðX − X0Þ2 þ � � �. The field equations for ϕ may then
be integrated once to get

ffiffiffiffi
X

p
KX ¼ F0a−3 where F0 is an

integration constant.26 Then one obtains ρ ¼ −K0 þ
2F0

ffiffiffiffiffiffi
X0

p
a−3 and P ¼ K0 þ F2

0

4K2X0
a−6, which is valid as

long as F0K−1
2 X−3=2

0 a−3 ≪ 1.
Identifying ρΛ ¼ −K0 and separating out the cosmo-

logical constant leaves us with a GDM component with
ρg ¼ ρg;0a−3 where ρg;0 ¼ 2F0

ffiffiffiffiffiffi
X0

p
. The sound speed and

equation of state obey the strict relation

c2s ¼ 2w ¼ F0

4K2X
3=2
0

a−3 ð4:32Þ

and are always time dependent. Thus, givenK2 and X0, one
can match the required GDM energy density today by
choosing the integration constant F0 appropriately. This in
turn fixes w and c2s completely.
For the k-essence action above, it may be shown that ~uμ

coincides with the LL velocity uμ; however, this is not the
case for more general actions of the Horndeski class. In [86]
it was shown that more general scalar field actions
necessarily lead to imperfect fluids and, in particular, the
appearance of shear and bulk viscosities as well as heat
flux. For instance, k-essence that is nonminimally coupled
to gravity via a term

R
d4x

ffiffiffiffiffiffi−gp 1
16πG e

ϰðϕÞR in the action
necessarily leads to bulk viscosity and is therefore a model
beyond GDM. The addition of a cubic termR
d4x

ffiffiffiffiffiffi−gp
Gð1Þðϕ; XÞ□ϕ in the action leads to a non-

adiabatic pressure that is more general than the form
considered here in (2.25); however, it still leads to zero
shear just like k-essence. Nonzero shear arises when the
quartic and quintic terms of the Horndeski action are
included. It is unknown at the moment whether there exists
a subset of the Horndeski action that is more general than k-
essence, but which still conforms to the GDM template
(with perhaps shear viscosity).
A different type of scalar field model that is not of the

Horndeski class is the imperfect dark matter model [177],
which extends the mimetic dark matter model of [178]. It
seems plausible that it also has a close correspondence
with GDM.

2. Background value of ϕ oscillates

If the background value of the scalar ϕ̄ is oscillating
around a potential minimum, then the results (4.31) do not
apply. This is because ∂μϕ̄ changes sign and X̄ momen-
tarily vanishes such that (4.30) is not a well-defined four-
velocity. It was shown in [23,36] that oscillating scalar
fields provide a working alternative to particle dark matter.

In the appendix of [75] it was pointed out that a GDM fluid
may still provide an effective description if one averages
the Einstein equations over several oscillation periods. A
very interesting example is an oscillating real classical
Klein-Gordon field with Pg ¼ K ¼ X −m2ϕ2=2, which
describes certain types of axion dark matter [179]. While
the background expansion is identical to CDM on cosmo-
logically relevant time scales, small perturbations around
the Friedmann background behave like a fluid with non-
adiabatic pressure [39–41]. The sound speed is only
solution independent in the fluid comoving frame, the
nonadiabatic pressure is of the GDM form [180] and the
approximate mapping to GDM is given by

w ¼ 0; ð4:33aÞ

c2s ¼
�
1þ

�
k

2am

�
−2
�

−1 ≃
�

k
2am

�
2

; ð4:33bÞ

c2vis ¼ 0; ð4:33cÞ

for scales much larger than the Compton wavelength
k ≪ kC ≡ am. When the Klein-Gordon scalar ϕ is split
into a slowly varying complex field ψ and a high frequency
part eimt [39,181], it is easy to see that ψ solves the
Schrödinger-Poisson equation and that a dustlike behavior
emerges above the Jeans scale

k−1ψ ;J ≃ a−1ðGρ̄gÞ−1=4m−1=2; ð4:34Þ

which is the de Broglie wavelength of a k-mode of ψ .27 It is
guaranteed that there is a range of modes within the Jeans
scale for which (4.33) applies if the envelope of ϕ is much
smaller than the Planck mass [184]. A new method to
numerically solve the Klein-Gordon equation without time
averaging and without employing the nonrelativistic limit
was developed in [185], where it was also implemented in
the CMB code CLASS.
It is remarkable that for both the nonoscillating and

oscillating background scalars, the nonadiabatic pressure is
of GDM type, i.e., C1 ¼ C2 ¼ 0 in (2.26); see [86] and
[180], respectively.

26The integration constant F0 may easily be related to an initial
condition for X at a specific initial time.

27The authors of [182] disagree with (4.33) and (4.34), and find
that for an oscillating scalar field the Jeans scale is the Compton
scale. Their approach does not involve averaging over time scales
m−1. Moreover, in [106] the authors argue, in Sec. VI-4, that the
dynamics of scalar perturbations may be qualitatively different if
averaged background quantities are used in the perturbation
equations. Therefore, there appears to be no consensus on
whether a GDM fluid with (4.33), and thus a Schrödinger field
with (4.34), describes perturbations of an oscillating real Klein-
Gordon field. However, the majority of the axion literature agrees
with the view presented in this article, for instance, [37,39–
41,57,59,179–181,183]. In particular, recent numerical studies
[184,185] found (4.33) and (4.34) to be accurate for scales larger
than the Compton wavelength.
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D. GDM arising from effective field theory
for fluids

In [138,186], the authors studied the class of actions
of three scalars φa, a ¼ 1, 2, 3, which are invariant
under volume-preserving internal diffeomorphisms that
send φa → ~φaðφbÞ with detð∂ ~φa=∂φbÞ ¼ 1. See [187]
for a review of the pullback formalism and [72] for
applications to the coupling of dark matter to dark
energy. The fields φaðτ; xiÞ label the Lagrangian fluid
volume elements such that xiðτ;φaÞ are the trajectories of
the fluid volume element labeled by φa. The assumed
symmetry leads to the automatic conservation of the
current

Sμ ≡ sǔμ; ð4:35Þ

where

s≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðBabÞ

q
; Bab ≡ gμν∂μφ

a∂νφ
b; ð4:36Þ

and the four-velocity ǔμ is defined as

ǔμ ≡ −
1

6n
ϵμαβγ ~ϵabc∂αφ

a∂βφ
b∂γφ

c; ð4:37Þ

with the totally antisymmetric symbols having the con-
ventions ϵ0123 ¼ −1= ffiffiffiffiffiffi−gp

and ~ϵ123 ¼ 1. We discuss the
physical meaning of the conserved current Sμ further
below. Actions where φa is accompanied by only one
derivative have been studied in [188–191] and give rise
to perfect fluids without the need for Lagrange multi-
pliers. They are therefore interesting starting points for
general and consistent parametrizations of fluids.
In order to go beyond perfect fluids, more than one

derivative per φa is necessary [138,192,193]. The most
general action compatible with the assumed symmetry can
be expanded in the number of gradients ∂μ ≪ Λc acting on
each field, where Λc is the cutoff scale of the effective
theory. At leading order (LO) and next-to-leading order
(NLO) the most general action is [138]

I ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16πG
RþFðsÞþ 1

Λ2
c

X4
i¼0

hIðsÞfI þLm

�
;

ð4:38aÞ

where F and hI are smooth functions of n and

f0 ¼ ðgμν þ ǔμǔνÞ∇μǔα∇νǔα; f1 ¼ ðǔμ∇μsÞ2;
f2 ¼ ∇μs∇μs; f3 ¼ ∇μǔν∇νǔμ;

f4 ¼ ϵαβμν∇αǔβ∇μǔν: ð4:38bÞ

If h4 were a constant, the term
ffiffiffiffiffiffi−gp

h4f4 would be a pure
boundary term in (4.38). In general, h4ðsÞ contributes only
to vector modes, while the background evolution and scalar
modes are unaffected [138], so we drop it in what follows.
It was shown in [192] that Sμ, denoted there by J μ,
indeed fulfills the criteria of a conserved entropy current
of a nonequilibrium thermal fluid. However, the some-
what unusual combination of imperfect stress-energy-
momentum and a conserved Sμ means that the EFT of
fluids describes nondissipative imperfect fluids [138,192].
Comparing to Sec. IVA, the imperfect contributions to the
stress-energy-momentum tensor of LL theory are strictly
dissipative, ∇μSμ > 0, while those of the EFT of fluids are
strictly nondissipative, ∇μSμ ¼ 0.28 In order to simplify the
subsequent discussion and to emphasize the connection to
GDM, we set to zero the combination

h0 þ 3s2ðh1 − h2Þ þ h3 ¼ 0; ð4:39Þ

thereby eliminating all NLO corrections to the FRW
background. This leaves only two free functions,

αEFT − 1 ¼ 16πG
Λ2
c

ðh0 þ h3Þ; ð4:40Þ

γEFT − 1 ¼ 48πG
Λ2
c

s2h2; ð4:41Þ

relevant for the scalar perturbations. The leading-order
action, with all hI ¼ 0, gives rise to an adiabatic perfect
fluid and has been used in the context of cosmology before
[72,186]. By disregarding vector perturbations (and there-
fore 2 of the available 3 d.o.f. provided by the φa), and
using the results for the background φ̄a ¼ δaj x

j and func-
tional metric derivatives [187],

δǔμ

δgαβ
¼ 1

2
ǔμǔαǔβ;

δs
δgαβ

¼ −
s
2
ðgαβ þ ǔαǔβÞ; ð4:42Þ

we obtain s̄ ¼ a−3, the background energy density

ρ̄g ¼ −F̄ ¼ −Fðs̄Þ;

and equation of state

w ¼ −1 −
1

3

d lnð−F̄Þ
d ln a

: ð4:43aÞ

Note that ρ̄g does not contain any time derivatives of the
fields φa. Therefore, in contrast to conventional scalar field
theories, no differential equation has to be solved for the
background dynamics of any of the three fields φa.

28We thank G. Ballesteros for pointing this out to us.
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The adiabatic sound speed c2a is related to w as
usual [(2.12)].
The scalar perturbations can be parametrized by a single

scalar φ [138] as δφa ¼ δaj
~∇jφ.

29 The number density
perturbation δs ¼ δs=s̄ and the entropy velocity perturba-
tion then assume the following form:

δǔi ¼ −a ~∇i

�
_̂φþ 1

2
_νþ ζ

�
; ð4:44Þ

δs ¼ 3ηþ ~∇2
φ̂; ð4:45Þ

where φ̂ ¼ φ − ν=2 is gauge invariant. These expressions
agree with [138] if the conformal Newtonian gauge is
chosen. The components of the perturbed energy-
momentum tensor (2.7) take the form30

δg ¼ ð1þ wÞδs; ð4:46aÞ

θg ¼ _̂φþ 1

2
_νþ ζ þ ðγ̄EFT − 1ÞH

8πGð1þ wÞa2ρ̄g
Δ̂s; ð4:46bÞ

Πg ¼ c2aδg þ
γ̄EFT − 1

24πGa2ρ̄g
~∇2Δ̂s; ð4:46cÞ

Σg ¼
½ _̄αEFT þ 2ðᾱEFT − 1ÞH� _̂φþ ðᾱEFT − 1Þ ̈φ̂

8πGa2ρ̄gð1þ wÞ ; ð4:46dÞ

where we defined the gauge-invariant number density
perturbation in the entropy frame

Δ̂s ¼ δs þ 3H
�
_̂φþ 1

2
_νþ ζ

�
:

The LL frame δui ¼ −a ~∇iθg agrees with the entropy frame
δǔi only to LO, such that the NLO contribution to θg in

(4.46b) may be interpreted as heat flux.31 The nonadiabatic
pressure Πnad ¼ Πg − c2aδg is given by

Πnad ¼
γ̄EFT − 1

24πGa2ρ̄g
~∇2Δ̂s ð4:47Þ

and turns out to be proportional to the divergence of the
heat flux. Since Δ̂s describes fluctuations of the entropy
density, the name nonadiabatic pressure is justified. Since
both Πnad and Σg have no LO contribution, we can

eliminate _̂φ and Δ̂s with their LO expressions: Θ̂g ¼ _̂φ

and Δ̂g ¼ ð1þ wÞΔ̂s, to obtain closure equations for Πnad

and Σg in terms of Δ̂g and Θ̂g. We get

Πnad ¼
γ̄EFT − 1

24πGa2ð1þ wÞρ̄g
~∇2Δ̂g; ð4:48aÞ

Σg ¼
ᾱEFT − 1

8πGa2ð1þ wÞρ̄g

��
_̄αEFT

ᾱEFT − 1
þH

�
Θ̂g

þ c2aΔ̂g

1þ w
þ Ψ̂

�
: ð4:48bÞ

The NLO correction to the pressure takes exactly the GDM
form. However, it is a particular subclass of all allowedΠnad

of GDM: the time dependence of c2s − c2a can be chosen
freely via γEFT, but the scale dependence is fixed
to c2s − c2a ∝ k2.
One limitation is that Πnad ≪ Δ̂g in order for the EFT

expansion to be valid. This is not a problem if the EFT is
applied to dark matter where we expect Πg ≪ δg. The fact
that nonadiabatic corrections to the sound speed are
proportional to ðk=HÞ2 is a consequence of the EFT being
a gradient expansion that describes a perfect fluid at leading
order. Since s̄ ¼ a−3, choosing F ∝ s gives rise to w ¼ 0,
while any other w can be achieved by specifying an
appropriate FðsÞ. Therefore, as in GDM, one is completely
free to choose any time dependence of w.
In the expression for Σg [(4.48b)] we used the LO Euler

equation to eliminate ̈φ̂. The shear cannot be brought into
either dynamical or algebraic GDM form, i.e., proportional
solely to Θ̂g. Nonetheless, the coefficient of Θ̂g in (4.48b)
can be matched with the algebraic GDM shear (2.29) such
that, at least approximately,

29In [138] the symbol s is used for the scalar mode but here we
use φ in order to avoid conflict with the entropy density s.

30We found a few typos in the equations of [138] and urge
caution when comparing our results to that work. Two typos
concern the shear: the right-hand side of Eq. (60) of [138] is
missing an overall minus sign [restoring this sign in Eq. (60)
makes the equation consistent with Eqs. (72) and (76)]. The right-
hand side of Eq. (61) is missing a factor 1=a2. Restoring the factor
1=a2 and the missing minus sign makes both equations consistent
with Eqs. (72) and (76) of [138] and our (4.46d). There is also a
typo in the expression for the energy frame velocity perturbation
θ, which in [138] is denoted by θR=k2 and can be constructed
from Eqs. (66), (67), (68) and (73). The resulting expression
deviates from our (4.46b) by a sign difference in the NLO part. To
check that our perturbed energy-momentum tensor (4.46) is
correct, we confirmed that the continuity equation (2.14) is
identically satisfied and that the Euler equation (2.15) agrees with
the equation of motion for φ̂.

31This heat flux is not related to ~qμ (4.3), since there are no
conserved particles in the EFT of fluids. In the LL frame the
entropy current reads Sν ¼ suν þQν, where Qμ is second order
in deviations from thermal equilibrium, but with contributions
linear in perturbations around FRW [149,192]. This should be
contrasted to the corresponding expression in LL theory (4.9) for
which Qμ ¼ 0. If we do not insist on a thermodynamic inter-
pretation of the EFTof fluids, then we can interpret the conserved
current (4.35) as particle current Nμ and the four-velocity (4.37)
as Eckart frame nμ, in which case Qν simply becomes the
diffusion flux jν.
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w ¼ −1 −
1

3

d lnð−F̄Þ
d ln a

; ð4:49aÞ

c2s ¼ c2a −
H2

24πGð1þ wÞa2ρ̄g
ðγ̄EFT − 1Þ

�
k
H

�
2

; ð4:49bÞ

c2vis ¼
ðdIC þ 3ÞH
32πGa2ρ̄g

½ _̄αEFT þHðᾱEFT − 1Þ�: ð4:49cÞ

We note that the corresponding GDM model is, in general,
not a good approximation as, once αEFT ≠ 1, the appear-
ance of Δ̂g in (4.48b) will give rise to a modification of the
effective sound speed. A priori this modification is as
important as the corrections coming from γEFT in (4.48a)
since both terms are of the form k4δg in the Euler
equation (2.15). However, in applications to dark matter,
where c2a and ᾱEFT − 1 are both small, the leading departure
from GDM is due to the Ψ̂ term appearing in (4.48b) which
is then very similar to the proposed Σextended;alg

g Eq. (2.30).
Cosmological perturbation theory with only h2 nonzero

in the NLO action has been studied in [193]. Since this
violates our assumption (4.39) this theory corresponds to a
different subclass of the full theory. In the most general case
where 6n2h1 ≠ ðΛ2

c=8πGÞðαEFT − γEFTÞ and therefore
(4.39) does not hold, the background receives NLO
corrections similar to bulk viscosity which also complicates
the structure of Πnad. The behavior of the general theory
with independent hI is beyond the scope of this paper, in
which case both the background and the perturbations
receive corrections reminiscent of bulk viscosity. In par-
ticular, (4.46a) ceases to hold, signaling the presence of
intrinsic entropy perturbations.

E. GDM arising from two interacting adiabatic fluids

1. Definition of the model

General description.—Interacting fluids have been
investigated in the context of dark matter coupled to one
of the known species, for instance, neutrinos and photons
[67–70] or to dark energy [71–73]. We do not follow this
approach here, but a similar one where the interaction is
assumed to be between two dark species, and we inves-
tigate whether their combined effect can be effectively
described by GDM. This happens, for instance, if dark
matter is tightly coupled to dark radiation as in [65,66].
It was shown in [194,195] how two perfect fluids can be

combined into a single imperfect fluid with anisotropic
stress and heat flow. This framework for creating an
imperfect fluid from perfect fluids, however, is not useful
in a situation where the background four-velocities of the
constituent fluids are the same and the misalignment
between them is purely perturbative. The situation where
several fluids are coupled in linear perturbation theory is
treated in [106,145,196,197] and is our starting point.

In the following we use the labels 1 and 2 for the two
coupled adiabatic (but otherwise unspecified) fluids. For
simplicity, we also assume that their respective equations of
state are specified by constant-w parameters, w1 and w2, as
this is sufficient to obtain a GDM-like pressure.
Our formulation closely follows [90], where an inter-

action of a dark matter and a dark energy component was
studied in the so-called parametrized post-Friedmann
framework. Here, however, we assume that the DE is
uncoupled, and instead we use the coupled set of equations
for the purpose of obtaining a combined GDM behavior, as
we show further below. For all components, including the
combined fluid, we assume the LL frame.
The combined stress-energy-momentum tensor is

Tg
μ
ν ¼ T1

μ
ν þ T2

μ
ν; ð4:50Þ

with ∇μTg
μ
ν ¼ 0. The stress-energy-momentum tensors of

the two constituents are not individually conserved since
the two constituents exchange energy and momentum via
the current JIμ ≡ −sIJμ. Here, s1 ¼ 1 and s2 ¼ −1, such
that ∇μT2

μ
ν ¼ Jν ¼ −∇μT1

μ
ν and all other I ≠ 1, 2 in

(3.36) have JIμ ¼ 0. For the two constituents, the coupling
current Jν can be split into a background part Q≡ J̄0 (as
J̄i ¼ 0) and two linear scalar perturbations qint ≡ δJ0 and
~∇iSint ¼ δJi. Let us point out that although we do not
specify the current Jν nonperturbatively, the model with
pure momentum exchange has a straightforward nonper-
turbative extension.
Equations of motion for the constituents.—The back-

ground current Q describes an energy transfer between the
two components

_̄ρI þ 3HρIð1þ wIÞ ¼ sIQ: ð4:51Þ

Perturbatively, each component’s density contrast δI
evolves according to

_δI ¼ −ð1þ wIÞ
�
k2ðθI − ζÞ þ 1

2
_h

�
þ sI
ρ̄I

½qint −QδI�;

ð4:52aÞ

while the momentum divergence θI evolves as

_θI ¼ −ð1 − 3wIÞHθI þ
wI

1þ wI
δI −

2

3
ðk2 − 3κÞΣI

þΨþ sI
ρ̄Ið1þ wIÞ

½Sint −Qð1þ wIÞθI�: ð4:52bÞ

The mixture variables.—For the mixture we define the
total (background) density and pressure according to (4.50)
as ρ̄g ¼ ρ̄1 þ ρ̄2 and P̄g ¼ P̄1 þ P̄2, respectively. The total
equation of state w of the mixture is equal to the average
equation of state over the two components
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w ¼
X
I¼1;2

rIwI with rI ¼
ρ̄I
ρ̄g

: ð4:53Þ

Note that 0 < rI < 1 and
P

I¼1;2rI ¼ 1. Although each
individual component has a constant-w equation of state,
the mixture’s equation of state is evolving so that its
adiabatic sound speed is

c2a ¼
w1 þ Rmixw2

1þ Rmix
−

w12Q
3ð1þ wÞHρ̄g

; ð4:54Þ

where we defined w12 ¼ w1 − w2 and

Rmix ≡ ρ̄2ð1þ w2Þ
ρ̄1ð1þ w1Þ

¼ r2ð1þ w2Þ
r1ð1þ w1Þ

: ð4:55Þ

With the above definitions the scalar perturbations of the
mixture energy-momentum tensor (4.50) are related to the
components through

δg ¼
X
I¼1;2

rIδI; ð4:56aÞ

ð1þ wÞθg ¼
X
I¼1;2

rIð1þ wIÞθI; ð4:56bÞ

Πg ¼
X
I¼1;2

rIΠI →
X
I¼1;2

rIwIδI; ð4:56cÞ

ð1þ wÞΣg ¼
X
I¼1;2

rIð1þ wIÞΣI: ð4:56dÞ

From (4.54) and (4.56), or by making use of (3.37) with
Q2 ¼ −Q1 ¼ Q, we find that the nonadiabatic pressure of
the mixture, Πnad ¼ Πg − c2aδg, is given by

Πnad¼w12

�
Q

3ð1þwÞHρ̄g
Δ̂gþ

Rmixð1þwÞ
ð1þRmixÞ2

S12

�
; ð4:57Þ

where the gauge-invariant variable S12 is defined by

S12 ¼
δ1

1þ w1

−
δ2

1þ w2

−Q

�
1

ρ1ð1þ w1Þ
þ 1

ρ2ð1þ w2Þ
�
θg:

ð4:58Þ

The variables δg, θg, S12 and θ12 ¼ θ1 − θ2 provide a
complete set of alternative dynamical variables describing
the mixture.

2. Equations of motion for the combined fluid

The total background energy density of the mixture
evolves as usual according to (2.10), while the combined
variables δg and θg obey the usual uncoupled fluid
equations (2.14) and (2.15), respectively.

The equations of motion for the new set of variables, S12
and θ12, can be found in [106,197]. The latter reference
contains the fully general equations where the constituent
fluids are themselves allowed to have GDM-type non-
adiabatic pressure. We adapt those equations here in the
case of constant-w constituents. The equations of motion
for the two difference variables S12 and θ12 follow
from IV E 1 and are

_S12¼−k2θ12−
Qρ̄gð1þw1þw2Þ

ρ̄1ρ̄2ð1þw1Þð1þw2Þ
Δ̂gþQ

�
1

ρ̄2
−
1

ρ̄1

�
S12

þQ

�
1

ρ̄1ð1þw1Þ
þ 1

ρ̄2ð1þw2Þ
�
×

×

�
qint
Q

−Ψþ
�
H−

_Q
Q

�
θgþ

2

3
ðk2−3κÞΣg

�
;

ð4:59aÞ

for S12 and

_θ12¼
�
H½r1ð1þw1Þð3w2−1Þþr2ð1þw2Þð3w1−1Þ�

−
Qr2ð1þw2Þ

ρ̄1
þQr1ð1þw1Þ

ρ̄2

�
θ12
1þw

þ w12

1þw
Δ̂g

þw1r2ð1þw2Þþw2r1ð1þw1Þ
1þw

S12−
2

3
ðk2−3κÞΣ12

þ
�

1

ρ̄1ð1þw1Þ
þ 1

ρ̄2ð1þw2Þ
�
ðSint−QθgÞ; ð4:59bÞ

for θ12, where Σ12 ¼ Σ1 − Σ2.
Note that forming the pressure perturbation via Πg ¼

c2aδg þ Πnad by using (4.57) and (4.54) results in

Πg ¼ c2ajQ¼0δg þ
w12Q
ρ̄g

θg þ
w12Rmixð1þ wÞ
ð1þ RmixÞ2

S12: ð4:60Þ

This means that if S12 ¼ 0 then the pressure assumes the
GDM form (2.21) with c2s ¼ c2ajQ¼0 ≠ c2a, even though
Q ≠ 0. This is reminiscent of the thermodynamics studied
in Sec. IVA 3, where the sound speed c2s ¼ ∂P

∂ρ jS ¼
c2ajS¼const even if the entropy S is not constant.
We now show whether and how GDM behavior emerges

from the system of two interacting adiabatic fluids. We see
that the Πnad in (4.57), built out of sum and difference
variables, already has a very suggestive form: If the second
term were absent then we would be left with the exact
GDM expression (2.24). The first term, however, disap-
pears if Q ¼ 0, and the only way to obtain a GDM-type
Πnad is to find S12 ∝ Δ̂g. We thus consider these two cases
separately: with energy exchange Q ≠ 0 and with no
energy exchange (Q ¼ qint ¼ 0).
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3. Energy exchange: Q ≠ 0

The suggestive form of Πnad in (4.57) when Q ≠ 0
indicates that when S12 → 0 the GDM model is recovered.
Since in this case there is net energy flow between the
constituent fluids, this means that the two fluids are not in
equilibrium and it is not surprising to find that c2s ≠ c2a.

32

In order to effectively remove the S12 degree of freedom
we assume that a situation exists where the two fluids are
tightly coupled. In particular, assuming a tight-coupling
relation of the form

qint¼Q

�
Ψ−

�
H−

_Q
Q

�
θgþ

2

3
ðk2−3κÞΣg

�
þ ρ̄gHRc

ð1þwÞS12;

ð4:61Þ

where Rc is a tight-coupling parameter such that in the limit

R−1
c → 0 and using (4.59a), the condition Sð0Þ12 ¼ 0 is

enforced to leading order in R−1
c .

Since we work at lowest order in tight coupling,
discarding all OðR−1

c Þ terms in Πg, the θ12 degree of
freedom does not enter. Thus, within this approximation,
justifiable for the case R−1

c ≪ Q=ðρ̄gHÞ, we do not have to

enforce θð0Þ12 ¼ 0 in addition to Sð0Þ12 ¼ 0. Therefore, assum-
ing only (4.61) we get at lowest order in R−1

c a nonadiabatic
pressure of the GDM form (2.24) resulting in

w ¼ r1w1 þ r2w2; ð4:62aÞ

c2s ¼
w1 þ Rmixw2

1þ Rmix
¼ c2ajQ¼0: ð4:62bÞ

The next order in R−1
c introduces corrections in c2s which

depend on the (still) dynamical θð0Þ12 , spoiling the GDM
template. The situation is similar to the large-~κLL limit in
Sec. IVA 4, where δS becomes dynamical and the diffusion
flux becomes nonzero at next to leading order in the
expansion in ~κLL

−1. Here we have the option to ensure

that θð0Þ12 ¼ 0 in addition to Sð0Þ12 ¼ 0, as discussed in
Appendix B.

4. No energy exchange: Q= qint = 0

The Q ¼ qint ¼ 0 assumption is justified for the photon-
baryon fluid tightly coupled through Thomson scattering,

when thermal equilibrium is assumed and justified [106],
and second-order perturbative effects like thermalization of
acoustic oscillations can be neglected [198]. Here, we take
a more general approach which reduces to the photon-
baryon case when w1 ¼ 1=3 and w2 ¼ 0.
Equations (4.59) simplify to

_S12 ¼ −k2θ12 ð4:63aÞ

and

_θ12¼H½r1ð1þw1Þð3w2−1Þþr2ð1þw2Þð3w1−1Þ� θ12
1þw

þ w12

1þw
Δ̂gþ

w1r2ð1þw2Þþw2r1ð1þw1Þ
1þw

S12þ

−
2

3
ðk2−3κÞΣ12þ

�
1

ρ̄1ð1þw1Þ
þ 1

ρ̄2ð1þw2Þ
�
Sint;

ð4:63bÞ

and Πnad is determined by S12 as

Πnad ¼
w12Rmixð1þ wÞ
ð1þ RmixÞ2

S12: ð4:64Þ

In order to proceed further, we need to specify the variable
Sint in terms of other perturbations. Naturally we must have
a term which imposes the tight-coupling condition θ1 ¼ θ2
in a certain limit. Hence, without loss of generality we set

Sint ¼ −HRcð1þ w1Þρ̄1θ12 þ ~Sint þOðR−1
c Þ; ð4:65Þ

where ~Sint is still unspecified and Rc is a function of time
only. Let us point out that the first term could be obtained
from the following nonperturbative definition:

Jν ¼ 1

3
Rc∇νuνðρ1 þ P1Þðuμ1 − uμ2Þ:

The parameter Rc can be interpreted as collision effi-
ciency related to the mean free time τc ¼ 1=ðRcHÞ, or
opacity τ−1c . In the case of the photon-baryon fluid, Sint
can be calculated from kinetic theory [106] and also leads
to a friction term, like in (2.19b), for the shear Σg. In the
limit HRc → ∞ we get θ12 → 0, which is the tight-
coupling condition. Hence to zeroth order in tight

coupling, we have θð0Þ12 ¼ 0 such that (4.63a) gives
_Sð0Þ12 ¼ 0. This means that Sð0Þ12 is a time-independent
function that is related to a choice of initial conditions.
We can choose adiabatic initial conditions such that

Sð0Þ12 ¼ 0. Hence to zeroth order, we find that the mixture
is purely adiabatic, i.e., Πnad ¼ 0.
In order to find the solution to order R−1

c , we follow a
similar approach as in the case of the photon-baryon fluid.

32A situation of energy exchange exists for baryons after
recombination and therefore outside the realm of the two-fluid
GDM, when the Compton cooling of baryons modifies the
baryon sound speed [133]. Another situation might be an
interaction of dark matter with dark energy [90]. In those cases,
however, there is no tight coupling. In addition, this would
necessarily require an extension of the GDM model since the
GDM component is not conserved; the baryons lose energy in the
first scenario and the DM loses energy in the second.
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From (4.55) it follows that 1þ Rmix ¼ ð1þ wÞ=
½r1ð1þ w1Þ�. We then rearrange the _θ12 in Eq. (4.63b) to
get, to lowest order in R−1

c ,

θð1Þ12 ¼ Rmix

ð1þ RmixÞHRc

�
w12

1þ w
Δ̂g −

2

3
ðk2 − 3κÞΣ12

þ 1þ Rmix

ρ̄2ð1þ w2Þ
~Sint

�
: ð4:66Þ

This is the next-to-leading-order correction to the tight-
coupling solution. Inserting the above equation into the one
for _S12 gives the first correction for S12 as

Sð1Þ12 ¼ −k2
Z

τ

0

dτ0
Rmix

ð1þ RmixÞHRc

�
w12

1þ w
Δ̂g

−
2

3
ðk2 − 3κÞΣ12 þ

1þ Rmix

ρ̄2ð1þ w2Þ
~Sint

�
; ð4:67Þ

where the integrand is evaluated at time τ0.
It does not seem that (4.67) reproduces the GDM

pressure relation even though the appearance of the rest
frame density perturbation Δ̂g is promising. We have
already argued that it is natural that Πnad is dynamical,
in other words, a temporally nonlocal function of δg and θg.
The effect of the nonlocality of S12 is that Πnad is slightly
out of phase with Δ̂g in the acoustic regime, leading
to damping in addition to viscosity, which can be inter-
preted as heat-diffusion flux; see Sec. IVA 4 and
[117,130,154,199,200].

To get an idea of how well Sð1Þ12 approximates the exact
S12, we can study the case where the two fluids are given by
photons (I ¼ 1) and baryons (I ¼ 2) that are tightly
coupled via Thomson scattering before recombination.
The variable Rc in this case can be calculated from kinetic
theory [106]

τ−1c ¼ HRc ¼ aneσT ≡ Xea−2 ~σT; ð4:68Þ
where σT is the Thomson cross section, ne is the number
density of free electrons and Xe ¼ ne=ðnH þ npÞ is the free
electron fraction. The last equality defines ~σT ¼
a3σTne=Xe ∼ 2.3048 × 10−5ð1 − YHeÞωb for helium frac-
tionYHe and dimensionless baryon densityωb. The resulting
equation for θγb ¼ θ12 agrees with [102,105].33

In this case ~Sint ¼ 0 while [102,105]

Σð1Þ
g ¼ 8

15HRc
Θ̂g ∼OðR−1

c Þ; ð4:69Þ

which is of the algebraic GDM (or the LL) shear form. In
Fig. 8 we compare the exact numerical solution from

CLASS (see [105]) to Σð1Þ
g .

Since the integrand is suppressed by ðHRcÞ−1, we expect
S12 to be small and thus that the sound speed will be nearly
adiabatic. On scales larger than the sound horizon, Δ̂g ¼
DðτÞΔ̂i

g such that

S12 ¼ −
1

12
k2
�

1

DðτÞ
Z

τ

0

dτ0
Rbγð3þ 4RbγÞ
ð1þ RbγÞ2

Dðτ0Þ
HRc

�
Δ̂g;

ð4:70Þ

where

Rbγ ¼ Rmix ¼
3ρ̄b
4ρ̄γ

¼ 3Sbfmr

4Sγ

a
ai

ð4:71Þ

for the baryon-to-photon ratio. Here, fmr is the ratio of
energy density in the form of nonrelativistic matter and
relativistic matter, Sb is the fraction of nonrelativistic matter
in the form of baryons and similarly Sγ is the fraction of
relativistic matter in the form of photons at some initial time
with scale factor ai. Figure 9 compares the exact and
approximate solution for S12 for a single wave number
k ¼ 0.1 Mpc−1. Instead of conformal time τ, we use the
time-dependent R−1

c as a time variable on the x axis. We see
that S12 ¼ 0 initially, and until R−1

c ¼ 0.005 both solutions
agree well.
Having determined the form of S12, the GDM functions

are found to be

w ¼ 1

3þ 4Rbγ
; c2a ¼

1

3ð1þ RbγÞ
; ð4:72aÞ

c2s ¼ c2a −
k2Rbγ

9ð1þ RbγÞð3þ 4RbγÞ

×
1

DðτÞ
Z

τ

0

dτ0
Rbγð3þ 4RbγÞDðτ0Þ
ð1þ RbγÞ2HRc

: ð4:72bÞ
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FIG. 8. Comparison of the exact shear Σg ¼ Σγ, when GDM is
set to describe the tightly coupled photon-baryon fluid to its
algebraic approximation that arises at next-to-leading order in
tight coupling.

33Note that the variable R used in [102,105] is the reciprocal of
our Rmix ¼ R−1.
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The key lesson from the photon-baryon example is that a
situation where a dark matter species is tightly coupled to
dark radiation [65] can be described as a GDM. It also
shows that we only expect mild deviations from the
adiabatic sound speed.
It is interesting to note that in the effective theory of

fluids [138], the nonadiabatic pressure has exactly the same
form c2s − c2a ∝ k2. To judge the importance of this term, we
can estimate the ratio ðc2s − c2aÞ=c2a. In other words, switch-
ing to the dimensionless variable x ¼ kτ, we need to

evaluate ϵs ≡ c2s
c2a
− 1, which is given analytically by

ϵs ¼ −
Rbγ

3ð3þ 4RbγÞ
1

DðτÞ
Z

x

0

dx0
Rbγð3þ 4RbγÞDðτ0Þ
ð1þ RbγÞ2HkRc

;

ð4:73Þ

and determine its size.
We now expand (4.73) in small x ¼ kτ and use the

adiabatic initial conditions from Appendix III A 4 in order
to get

ϵs → −
k

32Xe ~σT

�
λ2ka

iSb
fmrSγ

�
2

x5; ð4:74Þ

thus ϵs scales as x5. How big or small it is in the early
Universe depends on the constants we need to include.
Assuming Xe ∼ 1 and standard cosmological parameters
we find

ϵs ≃ −0.024
�

k
0.1 Mpc−1

�
6
�

τ

τrec

�
5

; ð4:75Þ

where τrec ≈ 281 Mpc is the conformal time of recombi-
nation where the tight-coupling approximation breaks
down.

In Fig. 10 we compare the two components of Πg, the
adiabatic c2aδg and the nonadiabatic Πnad [(4.64)]. We
divided Πnad by ϵs for two reasons. First, note that ϵs
was derived in the limit x ≪ 1 in which Πnad can be written
as Πnad ¼ c2aϵsΔ̂g such that only in this limit c2aΔ̂g and
Πnad=ϵs are expected to agree. But as is clear from Fig. 10
their magnitudes still agree for x ≫ 1. Thus, ϵs is a good
proxy for the relative importance of Πnad. Second, we
observe that although Πnad has a slightly shifted phase
compared to δg, it might still be a good approximation to
assume that Πnad ≃ c2aϵsΔ̂g. The damping caused by the
Πnad being slightly out of phase with Δ̂g could be taken into
account by adjusting c2vis.

V. CONCLUSION

We have presented an extensive investigation of the
generalized dark matter model, first proposed by Hu [75].
The GDM model extends the commonly used pressure-
less perfect fluid that describes cold dark matter in a
linearly perturbed FRW universe. GDM describes a
phenomenological imperfect fluid with two particular
closure equations (2.19) and three parametric functions:
its equation of state w, sound speed c2s and viscosity c2vis.
Note that CDM is recovered for w ¼ c2s ¼ c2vis ¼ 0. We
placed strong constraints on these parameters in a
companion paper [93], finding them to be consistent
with CDM.
We have calculated the adiabatic and isocurvature

initial conditions, and these are presented in Sec. III A
and in Appendix A. To understand the imprints of the
GDM model parameters on the CMB, we analytically
analyzed a simplified yet very similar version of GDM
(2.29) and found that the evolution of the gravitational
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FIG. 9. Comparison of the exact solution S12 of (4.63) and the

next-to-leading-order solution Sð1Þ12 (4.67) for the photon-baryon
case. The x axis uses R−1

c as time rather than τ to give an idea of
how well the tight-coupling solution works given some value of
Rc. The right end of the R−1

c axis corresponds to recombination.
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FIG. 10. Comparison of the adiabatic and nonadiabatic com-
ponents ofΠg, if GDM is the tightly coupled photon-baryon fluid.
We normalized Πnad by ϵs. This makes it visible when compared
to c2aδg and also shows that ϵs, which was estimated in the limit
x ≪ 1, works well also for large x. The kink at x ¼ 0.2 is caused
by CLASS using Sγb ¼ 0 until τ ¼ 2 Mpc.
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potential in a GDM dominated universe with small
w; c2s and c2vis is mainly determined by c2s and c2vis.
For physical values of these parameters (c2s ; c2vis ≥ 0),
they can only cause the gravitational potential to
decay and not to grow. This decay occurs on scales

below k−1d ≃ τ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2s þ 8c2vis=15

q
; see (3.25). The parame-

ters c2s and c2vis cause further, less degenerate, effects at
the Jeans (3.30) and damping (3.31) scales, which are
both on smaller scales. We expect the CMB to be less
sensitive to these smaller scales.
We numerically investigated the CMB power spectra in

Sec. III D. We found that c2s and c2vis appear to be very
degenerate in all CMB power spectra with adiabatic initial
conditions, consistent with the expectation from above that
the CMB is mostly affected by c2s and c2vis through the
combination k−1d . The decay of the potential below this
scale predominantly affects the CMB through the ISW
effect and lensing. The effect of the equation of state w on
the CMB spectra can be understood through its effect on
the time of radiation-matter equality.
We also investigated several alternatives to the GDM

model (see Sec. IV), most of which are defined non-
perturbatively. In principle, nonperturbative models such as
these are able to describe the nonlinear regime of structure
formation.
Thus, these models may be useful to look for signatures

beyond CDM in data like in [201,202] that probe the mildly
nonlinear and nonlinear regimes. Similarly, these models
can be employed in forecasts of GDM parameter con-
straints that will be possible in the future with LSS surveys
like Euclid [99]. We leave GDM constraints and forecasts
involving nonlinearities for a future study.
In this paper we focused on the linear regime and

showed how these models are related to GDM and, when
possible, how these models can be mapped to the GDM
parametric functions. In total we examined five models:
We considered the theory of nonequilibrium thermody-
namics of Landau and Lifshitz and pointed out that the
presence of a conserved particle current and its pertur-
bations can be accounted for by GDM in the perfect fluid
limit (4.25) or when the heat conduction is very large
(4.27). We presented the mapping to GDM parameters if
DM is modeled by a monotonously moving (4.31) or
oscillating scalar field (4.33). The latter case is important
if DM is a low mass axion. We also investigated the
imperfect fluid arising at next to leading order in an
effective field theory expansion based on the pullback
formalism of fluids and found that a certain subclass of
this theory can be modeled by GDM (4.49). According to
the EFTofLSS [44], even CDM develops imperfect fluid
behavior on linear scales. Here, we clarified the con-
nection of EFTofLSS parameters to GDM (4.28). Finally,
we considered the case where two fluids are tightly
coupled and therefore can be described by a single fluid.

In the tight-coupling limit with energy exchange, this
combined fluid has a nonadiabatic pressure of GDM form
(2.24) with GDM parameters (4.62). This two-fluid
model is the only model considered here that is not
defined nonperturbatively. However, other two-fluid mod-
els can be defined nonperturbatively, such as the model in
Sec. IV E 4 possessing only momentum exchange.
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APPENDIX A: INITIAL CONDITIONS
FOR SCALAR MODES

1. Einstein and fluid equations

For convenience, we multiply all equations with suitable
powers of ~a [see (3.5)] in order to avoid inverse powers of x
once we insert our anatz (3.8). The resulting necessary
equations used in the calculation of the initial condition
modes are as follows:
00-Einstein equation,

~a ~a0h0 − 2~a2η

¼ 3Sγδγ þ 3Sνδν

þ 3λk ~a

�
Sg

�
1 − 3w ln

�
λk
fmr

~a

��
δg þ Scδc þ Sbδb

�
:

ðA1aÞ

0i-Einstein equation,

2~a2η0 ¼ 3λk ~a

�
Sg

�
1þ w − 3w ln

�
λk
fmr

~a

��
vg þ Sbvγ

�

þ 4Sγvγ þ 4Sνvν: ðA1bÞ

CDM continuity,

δ0c ¼ −
1

2
h0: ðA1cÞ

Baryon continuity,

δ0b ¼ −vγ −
1

2
h0: ðA1dÞ

Photon continuity,
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δ0γ ¼ −
4

3
vγ −

2

3
h0: ðA1eÞ

Baryon-photon Euler,

�
1þ 3

4

Sb
Sγ

λk ~a

�
v0γ ¼

1

4
δγ −

3

4

Sb
Sγ

λk ~a0vγ: ðA1fÞ

Neutrino continuity,

δ0ν ¼ −
4

3
vν −

2

3
h0: ðA1gÞ

Neutrino Euler,

v0ν ¼
1

4
δν − σν: ðA1hÞ

Neutrino closure,

σ0ν ¼
4

15
vν þ

2

15
ðh0 þ 6η0Þ: ðA1iÞ

GDM continuity,

~a4δ0g¼3~a3 ~a0ðw−c2sÞδg−ð1þwÞ½ ~a4þ9ð ~a ~a0Þ2ðc2s−wÞ�vg
−
1

2
~a4ð1þwÞh0: ðA1jÞ

The GDM Euler equation,

~av0g ¼ ð3c2s − 1Þ ~a0vg þ ~a

�
c2s

1þ w
δg − σg

�
: ðA1kÞ

GDM shear equation,

~aσg0 þ 3~a0σg ¼ ~a
8c2vis

3ð1þ wÞ
�
vg þ

1

2
h0 þ 3η0

�
: ðA1lÞ

where we have used (2.19) to substitute for the GDM
pressure.

2. Isocurvature modes

Here we list all nondecaying isocurvature modes. These
are the radiation-type neutrino isocurvature density (NID)
and neutrino isocurvature velocity (NIV) and the matter-
type CDM isocurvature (CI), baryon isocurvature (BI) and
GDM isocurvature (GI).

a. Neutrino isocurvature density

Setting δν;0 ¼ 1 ¼ − Sγ
Sν
δγ;0 and all remaining perturba-

tions in Imodes [(3.10)] to zero, the neutrino isocurvature
density mode is

η ¼ −
Sν

6ð15þ 4SνÞ
x2; h ¼ SbSν

40Sγ
λkx3;

δc ¼ −
1

2
h; δb ¼

Sν
8Sγ

x2;

δγ ¼ −
Sν
Sγ

δν; δν ¼ 1 −
x2

6
;

δg ¼
Sν
5
x2
�
3c2visðw − c2sÞ
15þ 4Sν

−
Sbð1 − c2s þ 2wÞ

16Sγ
λkx

�
;

vγ ¼ −
Sν
Sγ

vν; vν ¼
1

4
x; vg ¼

2c2visSν
15ð15þ 4SνÞ

x3;

σν ¼
1

2ð15þ 4SνÞ
x2; σg ¼ −

8c2visSν
15ð15þ 4SνÞ

x2:

b. Neutrino isocurvature velocity

Setting vν;0 ¼ 1 ¼ − Sγ
Sν
vγ;0 and all remaining perturba-

tions in Imodes [(3.10)] to zero, the neutrino isocurvature
velocity mode is

η ¼ −
4Sν

3ð5þ 4SνÞ
x; h ¼ 3Sb

8Sγ
λkSνx2;

δc ¼ −
1

2
h; δb ¼

Sν
Sγ

x;

δγ ¼ −
Sν
Sγ

δν; δν ¼ −
4

3
x;

δg ¼
�
8c2visðw − c2sÞ

5þ 4Sν
−
3ð2 − 3c2s þ 5wÞSb

32Sγ
λkx

�
Sνx;

vγ ¼ −
Sν
Sγ

�
1 −

3λkSb
4Sγ

x

�
; vν ¼ 1 −

9þ 4Sν
6ð5þ 4SνÞ

x2;

vg ¼
8c2visSν

9ð5þ 4SνÞ
x2;

σν ¼
4

3ð5þ 4SνÞ
x; σg ¼ −

8c2visSν
3ð5þ 4SνÞ

x:

c. CDM isocurvature

Setting δc;0 ¼ 1 and all remaining perturbations in Imodes

[(3.10)] to zero, the CDM isocurvature mode is
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η ¼ −
1

6
λkScx; h ¼ λkScx;

δc ¼ 1 −
1

2
λkScx; δb ¼ −

1

2
λkScx;

δγ ¼ δν ¼ −
2

3
λkScx; δg ¼ −

Scð1 − 3c2s þ 4wÞ
2

λkx;

vγ ¼ vν ¼ −
1

12
λkScx2; vg ¼ −

1

6
c2sλkScx2;

σν ¼ −
Sc

6ð15þ 2SνÞ
λkx3; σg ¼

c2visð15 − 4SνÞ
9

σν:

Note that had we assumed a pure radiation background
(without the matter corrections to the scale factor evolu-
tion), σν would (incorrectly) seem to grow as x2 rather than
the standard result (x3), even in the case of a vanishing
GDM component. One finds similar deviations when the w
corrections to the scale factor are neglected.

d. Baryon isocurvature

The structure of the baryon isocurvature mode is
identical to the CDM isocurvature mode from which it
is obtained with the mappings δb ↔ δc and Sc ↔ Sb.

e. GDM isocurvature

Setting δg;0 ¼ 1 and all remaining perturbations in Imodes

[(3.10)] to zero, the GDM isocurvature mode is

η ¼ −
1

6

�
x−3c

2
s þ c2s − 3w ln

�
λk
fmr

��
λkSgx; h ¼ −6η;

δc ¼ δb ¼ −
1

2
h; δγ ¼ δν ¼ −

2

3
h;

δg ¼ x3ðw−c2sÞ þ 1

4

�
−2Sgx−3c

2
s þ 3ðw − c2sÞ þ 4Sgðc2s − 2wÞ

þ 6wSg ln

�
λk
fmr

��
λkx;

vγ ¼ vν ¼ −
1

12

�
x−3c

2
s þ 5

2
c2s − 3w ln

�
λk
fmr

��
λkSgx2;

vg ¼
1

2
c2sx;

σν ¼ −
1

6ð15þ 2SνÞ
�
x−3c

2
s þ 3c2sð65þ 4SνÞ

4ð15þ 2SνÞ

− 3w ln

�
λk
fmr

��
λkSgx3;

σg ¼ c2vis

�
4

15
c2sx2 −

15 − 4Sν
54ð15þ 2SνÞ

λkSgx3ð1−c
2
sÞ
�
:

Note that for w ≠ c2s the value of the parameter δg;0 does not
really specify the value of δg in the limit x → 0 due to the
pure log term in the expansion ansatz (3.8) for δg. To
ameliorate this problem, we have rewritten a lnðxÞ as xa − 1
which converges for x → 0 and gives better numerical
results.

APPENDIX B: GENERALIZED TIGHT COUPLING

In this appendix we consider a more general way to impose the tight-coupling conditions in the case of two interacting
fluids. In particular, we allow qint and Sint to be linear combinations of θ12 and S12 parametrized by an angle βc in the range
0 ≤ βc ≤ π. The relevant relations are

qint þQ

��
H −

_Q
Q

�
θg −Ψþ 2

3
ðk2 − 3κÞΣg

�
¼ ρ̄gHRc

ð1þ wÞ ½cosðβcÞS12 þ sinðβcÞHθ12� ðB1Þ

and

Sint −Qθg −
2

3
ðk2 − 3κÞ ρ̄1ρ̄2ð1þ w1Þð1þ w2Þ

ρ̄gð1þ wÞ Σ12 ¼ −ð1þ w1Þρ̄1Rc½− sinðβcÞS12 þ cosðβcÞHθ12�: ðB2Þ

This immediately implies that Sð0Þ12 ¼ θð0Þ12 ¼ 0. Rearranging the equations of motion for S12 and θ12 and keeping only the
lowest-order terms, we find

Sð1Þ12 ¼ 1

Rc

�
Qð1þ w1 þ w2Þ

ρ̄gH
cosðβcÞ −

Rmixw12

ð1þ RmixÞð1þ wÞ sinðβcÞ
�
Δ̂g ðB3Þ

and
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Hθð1Þ12 ¼ 1

Rc

�
Qð1þ w1 þ w2Þ

ρ̄gH
sinðβcÞ þ

Rmixw12

ð1þ RmixÞð1þ wÞ cosðβcÞ
�
Δ̂g: ðB4Þ

The Sð1Þ12 relation then leads to a sound speed

c2s ¼
w1 þ Rmixw2

1þ Rmix
þ w12Rmixð1þ wÞ

Rcð1þ RmixÞ2
�
Qð1þ w1 þ w2Þ

ρ̄gH
cosðβcÞ −

Rmix

ð1þ RmixÞ
w12

1þ w
sinðβcÞ

�
; ðB5Þ

which now depends on the angle βc. For general βc the term which includes cosðβcÞ is expected to be parametrically smaller
than the term including sinðβcÞ because it is suppressed by Q=ðρ̄gHÞ ≪ 1. We note that the tight-coupling condition

θð0Þ12 ¼ 0 is unnecessary when keeping only the lowest-order terms in R−1
c ; however, it is necessary when including the next-

to-leading order, as otherwise the dynamical θð0Þ12 will contribute to Πg and spoil the GDM template.
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