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The null energy condition can be violated stably in generalized Galileon theories, which gives rise to
the possibilities of healthy nonsingular cosmologies. However, it has been reported that in many cases
cosmological solutions are plagued with instabilities or have some pathologies somewhere in the whole
history of the universe. Recently, this was shown to be generically true in a certain subclass of the
Horndeski theory. In this short paper, we extend this no-go argument to the full Horndeski theory and show
that nonsingular models (with flat spatial sections) in general suffer from either gradient instabilities or
some kind of pathology in the tensor sector. This implies that one must go beyond the Horndeski theory
to implement healthy nonsingular cosmologies.
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I. INTRODUCTION

Inflation [1–3] is now the strongest candidate of the early
universe scenario that explains current cosmological obser-
vations consistently. Nonetheless, alternative scenarios
deserve to be considered as well. First, in order to be
convinced that inflation indeed occurred in the early stage
of the universe, all other possibilities must be ruled out.
Second, even inflation cannot resolve the problem of the
initial singularity [4]. It is therefore well motivated to study
how good and how bad alternative possibilities are com-
pared to inflation. Nonsingular stages in the early universe,
such as contracting and bouncing phases [5], cannot only
be something that replaces inflation, but also “early-time”
completion of inflation just to get rid of the initial
singularity. In this paper, we address whether healthy
nonsingular cosmologies can be implemented in the frame-
work of general scalar-tensor theories.
If gravity is described by general relativity and the

energy-momentum tensor Tμν of matter satisfies the null
energy condition (NEC), that is, Tμνkμkν ≥ 0 for every null
vector kμ, then (assuming flat spatial sections) it follows
from the Einstein equations that dH=dt ≤ 0, whereH is the
Hubble parameter. This implies that an expanding universe
yields a singularity in the past, while NEC violation could
lead to singularity-free cosmology. However, violating the
NEC in a healthy manner turns out to be challenging. The
NEC is by construction satisfied for a canonical scalar field,
Tμνkμkν ¼ _ϕ2 ≥ 0. In a general noncanonical scalar-field
theory whose Lagrangian is dependent on ϕ and its first
derivative [6,7], the NEC can be violated, but NEC-
violating cosmological solutions are unstable because the
curvature perturbation has the wrong sign kinetic term.

Galileon theory [8] and its generalizations [9,10] involve
the scalar fieldwhoseLagrangian contains secondderivatives
of ϕ while maintaining the second-order nature of the equa-
tion of motion and thus erasing the Ostrogradsky instability.
In contrast to the previous case, it was found that theNECand
the stability of cosmological solutions are uncorrelated in
Galileon-type theories [11]. This fact gives rise to healthy
NEC-violating models of Galilean genesis [11–17] and
stable nonsingular bouncing solutions [18–20], as well as
novel dark energy and inflation models with interesting
phenomenology [21,22]. See also a recent review [23].
Although the Galileon-type theories do admit a stable

early stage without an initial singularity, the genesis/
bouncing universe must be interpolated to a subsequent
(possibly conventional) stage and the stable early stage
does not mean that the cosmological solution is stable at all
times during the whole history. Several explicit examples
[24–30] show that the sound speed squared of the curvature
perturbation becomes negative at around the transition
between the genesis/bouncing phase and the subsequent
phase, leading to gradient instabilities. In some cases the
universe can experience a healthy bounce, but then the
solution has some kind of singularity in the past or future
[19]. Although the gradient instabilities can be cured
by introducing higher spatial derivative terms [29,30] and
there are some models in which the strong coupling scale
cuts off the instabilities [31], it would be preferable if the
potential danger could be removed from the beginning. The
next question to ask therefore is whether the appearance of
instabilities is generic or a model-dependent nature. For
general dilation invariant theories a no-go theorem was
given in Ref. [32]. (A counterexample was presented in
Ref. [33], but it has an initial singularity.) Recently, it was
clearly shown in Ref. [34] that bouncing and genesis
models suffer from instabilities or have singularities for
the scalar-tensor theory whose Lagrangian is of the form*tsutomu@rikkyo.ac.jp
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L ¼ R
2κ

þG2ðϕ; XÞ −G3ðϕ; XÞ□ϕ;

X ≔ −
1

2
gμν∂μϕ∂νϕ; ð1Þ

where R is the Ricci scalar. This Lagrangian is widely used

in the attempt to obtain nonsingular stable cosmology.
The Lagrangian (1) forms a subclass of the most general

scalar-tensor theory with second-order field equations, i.e.,
the Horndeski theory [35]. The goal of this short paper is to
generalize the no-go argument of Ref. [34] to the full
Horndeski theory.

II. NO-GO THEOREM

We consider the Horndeski theory [35] in its complete
form,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
LH; ð2Þ

where

LH ¼ G2ðϕ; XÞ −G3ðϕ; XÞ□ϕ

þG4ðϕ; XÞRþG4;X½ð□ϕÞ2 − ð∇μ∇νϕÞ2�

þG5ðϕ; XÞGμν∇μ∇νϕ −
1

6
G5;X½ð□ϕÞ3

− 3□ϕð∇μ∇νϕÞ2 þ 2ð∇μ∇νϕÞ3�: ð3Þ

(The Lagrangian here is written in the form of the
generalized Galileon [10], but the two theories are in
fact equivalent [36].) In the full Horndeski theory, we
have four arbitrary functions of the scalar field ϕ and
X ¼ −gμν∂μϕ∂νϕ=2. The scalar field is coupled to the
Ricci scalar R and the Einstein tensor Gμν in the particular
way shown above. The structure of the Lagrangian (3)
guarantees the second-order nature of the field equations.
The equations of motion governing the background

cosmological evolution can be obtained by substituting
ds2 ¼ −N2ðtÞdt2 þ a2ðtÞδijdxidxj and ϕ ¼ ϕðtÞ to the
Horndeski action and varying it with respect to N, a,
and ϕ [36]. In this paper, we only consider a spatially flat
universe.
Linear perturbations around a spatially flat Friedmann‐

Lemaître‐Robertson-Walker spacetime in the Horndeski
theory were studied in Ref. [36]. Taking the unitary gauge,
δϕ ¼ 0, the spatial part of the metric can be written as
γij ¼ a2ðtÞe2ζðehÞij, where ζ is the curvature perturbation
and hij is the tensor perturbation. The quadratic actions for
hij and ζ are given, respectively, by [36]

Sð2Þh ¼ 1

8

Z
dtd3xa3

�
GT

_h2ij −
F T

a2
ð∂hijÞ2

�
ð4Þ

and

Sð2Þζ ¼
Z

dtd3xa3
�
GS

_ζ2 −
F S

a2
ð∂ζÞ2

�
: ð5Þ

Here, the coefficients are written as

F T ≔ 2½G4 − Xðϕ̈G5;X þ G5;ϕÞ�; ð6Þ

GT ≔ 2½G4 − 2XG4;X − XðH _ϕG5;X −G5;ϕÞ�; ð7Þ

where a dot denotes differentiation with respect to cosmic
time t, while F S and GS have more complicated depend-
ence on the functionsG2,G3,G4, andG5, the explicit forms
of which are found in Ref. [36]. It is reasonable to assume
that F T , GT , F S, and GS are smooth functions of time. To
avoid ghost and gradient instabilities, we require that

F T > 0; GT > 0; F S > 0; GS > 0: ð8Þ
If ϕ is minimally coupled to gravity, we have G4 ¼ const
and G5 ¼ 0, and hence F T ¼ GT ¼ const. In other words,
the time evolution of F T and GT is caused by nonminimal
coupling to gravity.
The crucial point for the no-go argument is that F S is

generically of the form

F S ¼
1

a
dξ
dt

− F T; ð9Þ

where

ξ ≔
aG2

T

Θ
; ð10Þ

with

Θ ≔ − _ϕXG3;X þ 2HG4 − 8HXG4;X − 8HX2G4;XX

þ _ϕG4;ϕ þ 2X _ϕG4;ϕX þ 2HXð3G5;ϕ þ 2XG5;ϕXÞ
−H2 _ϕð5XG5;X þ 2X2G5;XXÞ: ð11Þ

Since Θ is something written in terms of ϕ and H, it is
supposed to be a smooth function of time which is finite
everywhere. This then implies that ξ can never vanish
except at a singularity, a ¼ 0. The absence of gradient
instabilities is equivalent to

dξ
dt

> aF T > 0: ð12Þ

Integrating Eq. (12) from some ti to tf , we obtain

ξf − ξi >
Z

tf

ti

aF Tdt: ð13Þ

This is the key equation for the following argument, and it
was used to prove the no-go theorem in the subclass of the
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Horndeski theory withG4 ¼ const andG5 ¼ 0 in Ref. [34].
Remarkably, it turns out that essentially the same equation
holds in the full Horndeski theory.
Now, consider a nonsingular universe which satisfies

a > const (> 0) for t → −∞ and is expanding for large t.
The integral in the right hand side of Eq. (13) may be
convergent or not as one takes tf → ∞ and ti → −∞,
depending on the asymptotic behavior of F T . To allow the
integral to converge, it is necessary that F T approaches
zero sufficiently fast in the asymptotic past or future. For
the moment let us focus on the case where the integral is not
convergent.
Suppose that ξi < 0. Equation (13) reads

−ξf < jξij −
Z

tf

ti

aF Tdt: ð14Þ

Since the integral is an increasing function of tf , the right
hand side becomes negative for sufficiently large tf . We
therefore have ξf > 0, which means that ξ crosses zero.1

This is never possible in a nonsingular universe. It is
therefore necessary to have ξ > 0 everywhere. Writing
Eq. (13) as

−ξi > −ξf þ
Z

tf

ti

aF Tdt; ð15Þ

we see that the right hand side will be positive for ti → −∞
and hence ξi < 0. However, this is in contradiction to
the assumption that ξ is always positive. Thus, we have
generalized the no-go argument of Ref. [34] to the full
Horndeski theory.
The same no-go theorem holds even in the presence of

another field, provided at least that the field is described by

Lχ ¼ Pðχ; YÞ; Y ≔ −
1

2
gμν∂μχ∂νχ; ð16Þ

which is not coupled to the Horndeski field ϕ directly.
Now there are two degrees of freedom in the scalar sector

of cosmological perturbations. In terms of

~y ≔
�
ζ;

Θ
GT

δχ

_χ

�
; ð17Þ

the quadratic action can be written in the form [37–39]

Sð2Þ ¼
Z

dtd3xa3
�
_~yG_~y −

1

a2
∂~yF∂~yþ � � �

�
; ð18Þ

where

G ¼
�
GS þ Z −Z
−Z Z

�
; F ¼

�
F S −c2sZ
−c2sZ c2sZ

�
; ð19Þ

with

c2s ≔
P;Y

P;Y þ 2YP;YY
; Z ≔

�
GT

Θ

�
2 YP;Y

c2s
: ð20Þ

Here, GS and F S were defined previously and cs is the
sound speed of the χ field. We have the relation
2YP;Y ¼ ρþ P, where ρ is the energy density of χ and
P corresponds to the pressure of χ.
Ghost instabilities can be evaded if G is a positive

definite matrix. The condition amounts to

GS > 0;
YP;Y

c2s
> 0: ð21Þ

The propagation speed v can be determined by solving

detðv2G − FÞ ¼ 0; ð22Þ
yielding the condition for the absence of gradient insta-
bilities,

c2s > 0;
F S − c2sZ

GS
> 0: ð23Þ

We thus have the inequality

F S >
1

2

�
GT

Θ

�
2

ðρþ PÞ > 0; ð24Þ

and taking the same way we can show the no-go theorem
for the Horndeski þk-essence (or a perfect fluid) system.
The no-go theorem we have thus established can be

circumvented only if F T approaches zero sufficiently fast
either in the asymptotic past or the future, given the
assumption that the evolution of the scale factor is non-
singular.2 The normalization of vacuum quantum fluctua-
tions tells us that they would grow and diverge as F T → 0,
and hence the tensor sector is pathological in the asymp-
totic past or future.3 In the next section, we will demon-
strate that, in contrast to the cases in Refs. [29,30], it is
indeed possible to construct a model that exhibits a stable
transition from the Galilean genesis to inflation by allowing
for some kind of pathology in the tensor sector due to
vanishing F T .

III. STABLE TRANSITION FROM GENESIS TO DE
SITTER WITH PATHOLOGIES IN THE PAST

Let us turn to study a specific setup as an example:
Galilean genesis followed by inflation. Such an expansion

1We do not allow for discontinuity in ξ becauseF S is supposed
to be smooth. (This means that Θ cannot cross zero.)

2The “modified genesis” model proposed in Ref. [34] evades
the no-go theorem by the use of the vanishing scale factor in the
asymptotic past. In contrast, we are assuming that the expansion
history is nonsingular everywhere, i.e., a ≥ const.

3One could resolve this issue by the particular, fine-tuned
evolution of GT , which would offer a loophole.
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history was proposed in Refs. [29,30] as early-time
completion of the inflationary universe, and there it was
pointed out that the sound speed squared (or more
specifically F S) becomes negative at the transition from
the genesis phase to inflation. This is consistent with the
no-go theorem, because in the genesis phase we have
a → const as t → −∞ and F T ¼ const. The resultant
gradient instability is cured by the introduction of higher
order spatial derivatives arising in the effective field theory
approach [29] or in theories beyond Horndeski [30,40,41].
Working within the second-order theory, i.e., the

Horndeski theory, we are going to show in this section
that the stable transition is indeed possible if F T → 0 as
t → −∞ so that the integral in Eq. (13) is convergent. To do
so it is more convenient to use the Arnowitt-Deser-Misner
(ADM) form of the action rather than the original covariant
one [30]. The ADM decomposition of the Horndeski
Lagrangian leads to [40]

L ¼ A2ðt; NÞ þ A3ðt; NÞK þ A4ðt; NÞðK2 − K2
ijÞ

þ A5ðt; NÞðK3 − 3KK2
ij þ 2K3

ijÞ
þ B4ðt; NÞRð3Þ þ B5ðt; NÞKijGð3Þ

ij ; ð25Þ

where ϕ ¼ const hypersurfaces are taken to be constant

time hypersurfaces, and Kij, R
ð3Þ
ij , and G

ð3Þ
ij are the extrinsic

curvature, the Ricci tensor, and the Einstein tensor of the
spatial slices. The functions of ϕ and X in the covariant
Lagrangian are now the functions of t and the lapse
function N. Two of the six functions in the ADM
Lagrangian (25) are subject to the constraints

A4 ¼ −B4 − N
∂B4

∂N ; A5 ¼
N
6

∂B5

∂N ; ð26Þ

in accordance with the fact that there are four arbitrary
functions in the Horndeski theory.
The specific example we are going to study is given by

the functions of the form

A2 ¼ f−2ðαþ1Þ−δa2ðNÞ; A3 ¼ f−2α−1−δa3ðNÞ;
A4 ¼ −B4 ¼ −f−2α; A5 ¼ B5 ¼ 0; ð27Þ
where f ¼ fðtÞ is dependent only on t, and α and δ are
constant parameters satisfying 2α > 1þ δ > 1. This class
of models is similar to but different from that in Ref. [30].
The covariant form of the Lagrangian can be recovered by
reintroducing the scalar field, e.g., through −t ¼ e−ϕ and
N−1 ¼ e−ϕ

ffiffiffiffiffiffi
2X

p
and using the Gauss-Codazzi equations. In

terms of G2ðϕ; XÞ, G3ðϕ; XÞ;…, the Lagrangian is written
in a slightly more complicated form [42]. Without moving
to the covariant description, one can derive the equations of
motion for the homogeneous background directly from
variation of the ADM action with respect to N and the scale
factor a.

The evolution of the Hubble parameter,H≔N−1dlna=dt,
is dependent crucially on the choice of fðtÞ, and to describe
the genesis to de Sitter transition we take fðtÞ such that
f ∼ cð−tÞ ≫ 1 (c > 0) in the past and f ∼ const in the
future. In the early time, we have an approximate solution of
the form

H ≃ const
ð−tÞ1þδ ; ð28Þ

and hence the universe starts expanding from Minkowski,

a≃ 1þ const
ð−tÞδ ; ð29Þ

with N ≃ const. In the late time where f ≃ const, we have
an inflationary solution H ≃ const, again with N ≃ const.
For all the models described by (27), we have

F T ¼ GT ¼ f−2α > 0; ð30Þ
and hence the stability conditions for the tensor modes are
fulfilled. Since aF T ∼ ð−tÞ−2α with 2α > 1 as t → −∞,F T
possesses the desired property to evade the no-go theorem.
As a concrete example, we consider

a2 ¼ −
1

N2
þ 1

3N4
; a3 ¼

1

4N3
; ð31Þ

with α ¼ 1, δ ¼ 1=2, and

FIG. 1. Evolution of the Hubble parameter and the lapse
function around the genesis–de Sitter transition.
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fðtÞ ¼ c
2

�
−tþ lnð2 coshðstÞÞ

s

�
þ f1; ð32Þ

where the parameters are taken to be c ¼ 10−1, f1 ¼ 10,
and s ¼ 2 × 10−3. The background equations are solved
numerically to give the evolution of H and N as shown in
Fig. 1. It can be seen that the universe indeed undergoes the
genesis phase followed by inflation. For this background
solution we evaluate F S and GS numerically to judge its
stability. As presented in Fig. 2, we find that F S and GS
remain positive in the whole expansion history. This is in

contrast to the similar example in Refs. [29,30] which has
F S < 0 around the transition.
Although the present model can circumvent the

gradient instability at the genesis–de Sitter transition,
some pathologies arise in the t → −∞ limit. We see that
F T;GT ∼ ð−tÞ−2α and F S;GS ∼ ð−tÞ−2αþδ in the genesis
phase, leading to the vanishing quadratic action for tensor
and scalar fluctuations in the t → −∞ limit. This implies
that the validity of the perturbative expansion is question-
able early in the genesis phase, which is, in fact, worse
than what is required for violating the no-go theorem, i.e.,
F T → 0 as t → −∞.

IV. SUMMARY

In this paper, we have generalized the no-go argument of
Ref. [34] to the full Horndeski theory and shown that
nonsingular cosmological models with flat spatial sections
are in general plagued with gradient instabilities or some
pathological behavior of tensor perturbations. We have
presented an explicit example which is free from singu-
larities and instabilities but has a vanishing quadratic action
for the tensor perturbations (and for the curvature pertur-
bation as well) in the asymptotic past. To circumvent the
no-go theorem, it is therefore necessary to go beyond the
Horndeski theory. One direction is to consider a (yet
unknown) multifield extension of the Horndeski theory
[39,43–47] in which scalar fields are coupled nontrivially to
each other. Another is extending further the single-field
Horndeski theory as has been done recently, e.g., in
Refs. [40,41,48–53]. It would be interesting to explore
to what extent the no-go argument for nonsingular cos-
mologies can be generalized.
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