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Recently we have proposed a novel method to probe primordial gravitational waves from upper bounds
on the abundance of primordial black holes (PBHs). When the amplitude of primordial tensor perturbations
generated in the early Universe is fairly large, they induce substantial scalar perturbations due to their
second-order effects. If these induced scalar perturbations are too large when they reenter the horizon, then
PBHs are overproduced, their abundance exceeding observational upper limits. That is, primordial tensor
perturbations on superhorizon scales can be constrained from the absence of PBHs. In our recent paper we
have only shown simple estimations of these new constraints, and hence in this paper, we present detailed
derivations, solving the Einstein equations for scalar perturbations induced at second order in tensor
perturbations. We also derive an approximate formula for the probability density function of induced
density perturbations, necessary to relate the abundance of PBHs to the primordial tensor power spectrum,
assuming primordial tensor perturbations follow Gaussian distributions. Our new upper bounds from PBHs
are compared with other existing bounds obtained from big bang nucleosynthesis, cosmic microwave
background, LIGO/Virgo and pulsar timing arrays.
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I. INTRODUCTION

A stochastic background of primordial gravitational
waves (PGWs) with a huge range of wavelengths may
have been generated in the early Universe. Their power
spectrum reflects physical conditions in the early Universe,
and hence its constraints provide valuable information
for cosmology. PGWs of largest observable wavelengths
have been constrained by Planck [1] and BICEP2 [2], while
those of shorter wavelengths have been constrained by
limits on Neff , the effective number of degrees of freedom
of relativistic fermions, at big bang nucleosynthesis (BBN)
through the current abundance of the light elements [3], or
at photon decoupling through the anisotropy of cosmic
microwave background (CMB) [4,5]. Recently PGWs on
smaller scales have been constrained by upper limits on the
deviation of the CMB photons’ energy spectrum from the
Planck distribution [6,7]. Though BBN and CMB constrain
PGWs of a wide range of wavelengths, these upper bounds,
obtained through Neff , entail an assumption about the
number of relativistic species in the early universe, as is
discussed later. Furthermore, to obtain BBN or CMB
bounds we implicitly assume that any physical mecha-
nisms, both known and unknown, increase Neff , from
the standard value Neff ¼ 3.046 [8]. However, Neff can
decrease e.g. in brane world scenarios [9–11]. Recently we
proposed a new method to constrain PGWs in our recent
work [12], which is also applicable on a wide range of
wavelengths and in addition does not depend on the

aforementioned assumptions much. In this paper, we
present detailed derivations of the results presented there.
Our new method uses the formation of primordial black

holes (PBHs), formed in the early Universe, well before the
cosmic structure formation. One of the simple and plausible
mechanisms to form PBHs is the direct collapse of density
fluctuations during the radiation-dominated era, which
happens when the fractional density perturbation of order
unity reenters the Hubble horizon [13–15]. See also [16]
for an updated discussion of the formation condition and
[17–23] for numerical simulations of the PBH formation
process. There is no conclusive evidence for the existence
of PBHs in the present as well as in the past, and upper
bounds on their abundance over a wide mass range have
been obtained by various methods (see e.g. [24] and
references therein). One of the cosmological implications
of their absences is to constrain the power spectrum of the
curvature perturbation [25,26].1 In a broader context, PBHs
provide valuable information to exclude models of the early
Universe which predict an overproduction of PBHs.
As we have briefly discussed in our recent work [12],

PBHs can also be used to constrain tensor perturbations
generated in the early Universe, exiting the horizon once
and reentering the horizon later. This is because large tensor
perturbations induce large scalar perturbations (induced

1Other methods to constrain primordial scalar perturbations on
small scales include CMB spectral distortions [27–36], acoustic
reheating [37,38] and ultracompact minihalos [39,40].
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scalar perturbations) at second order in tensor perturba-
tions. If primordial tensor perturbations are too large,
induced scalar perturbations become also too large, and
then they collapse to overproduce PBHs shortly after their
horizon reenty, exceeding existing upper limits. That is,
primordial tensor perturbations can be constrained from
upper limits on PBHs.2,3 Whereas we have presented only
simple estimations to obtain these new constraints in [12],
in the present paper we show detailed derivations for them.
Due to our ignorance of the physics in the early

Universe, new upper limits on tensor perturbations on
small scales in themselves would be worthwhile. In
addition, there are models of the early Universe [60–67]
which can predict large tensor perturbations on small
scales, which makes our new upper limits even more
valuable (see the next section). Note that, if a model
predicts large tensor perturbations on small scales but also
large scalar perturbations at the same time, then such a
model would be more severely constrained from the
absence of PBHs generated from the first-order scalar
perturbations. In this paper we consider PBH formation
only from induced scalar perturbations, second order in
tensor perturbations, and thus our bounds on tensor
perturbations are conservative or model-independent, in
the sense that these bounds do not depend on first-order
scalar perturbations on small scales. Importantly, there are
models of the early Universe which predict not only large
tensor perturbations, but also large tensor-to-scalar ratio
on small scales, and our PBH bounds are particularly useful
to constrain these types of models, some of which are
reviewed in the next section.
This paper is organized as follows; In Sec. II we review

some of the early Universe models [60–67] which predict
large tensor-to-scalar ratio on small scales. In Sec. III
the radiation density perturbation generated from tensor
perturbations is calculated. Section IV is dedicated to a
discussion of upper bounds on tensor modes from PBHs
along with a comparison with those obtained from other
methods, and we conclude in Sec. V.

II. EARLY UNIVERSE MODELS PREDICTING
LARGE TENSOR-TO-SCALAR RATIO

ON SMALL SCALES

In [60], tensor power spectra were shown to be blue (i.e.
larger power on smaller scales) in cyclic/ekpyrotic models,
with the spectrum of scalar perturbations kept slightly red
(smaller power on smaller scales) to match observations on
large scales. The cyclic Universe entails the periodic
collisions of orbifold planes moving in an extra spatial
dimension, which is equivalently described by a scalar field
rolling back and forth in an effective potential. Each cycle
consists of an accelerated expansion phase, a slow con-
traction phase (the ekpyrotic phase), during which the
Universe is dominated by the kinetic energy as well as the
negative potential energy of the scalar field and primordial
fluctuations are generated, a rapid contraction phase fol-
lowed by a bounce at which matter and radiation are
generated, a phase dominated by the kinetic energy of the
scalar field, a radiation-dominated, expanding phase, and
finally a phase dominated by matter and dark energy. The
spectrum of scalar perturbations can be adjusted to be
slightly red by tuning the scalar field potential during
the ekpyrotic phase, and the tensor spectrum turns out to
be blue up to the scale corresponding to the end of the
ekpyrotic phase. For early Universe scenarios where the
spectrum of tensor perturbations is strongly blue, probing
them on CMB scales may be challenging, while constraints
on small-scale components, such as those discussed in this
paper, may provide useful information. Indeed, they noted
that the strongest constraint on their model parameters is
obtained from BBN constraints on high-frequency PGWs.
If the inflaton violates the null energy condition (NEC,

ρþ p ≥ 0), the Hubble parameter increases during infla-
tion (super inflation) and the spectral tilt nT becomes
positive, since nT ¼ −2ϵ ≡ 2 _H=H2 ∝ −ðρþ pÞ. In [61]
it was shown that NEC can be violated without the
instability of fluctuations of the inflaton. There a toy model
was introduced, with the energy density of the NEC-
violating inflaton ρ ¼ − _ϕ2=2þV0e−λϕ=Mpl , which leads to
a stage of pole-like inflation, when aðtÞ ∼ ð−tÞp, t < 0,
p ¼ −2=λ2 < 0. The background and fluctuations are
shown to be stable at the classical level. It was noted that
in this model, some mechanism, quantum effects or another
field, is necessary to avoid singularity at t → 0 and to drive
the Universe into a radiation-dominated epoch.
The spectrum of tensor perturbations generated during a

super inflation in the framework of loop quantum cosmol-
ogy (LQC) is calculated in [62]. There a strong blue tile
with nT ≃ 2 was obtained, while the form of the inflaton
potential to realize a scale-invariant power spectrum of
scalar perturbations was also discussed in their previous
works. In their scenario, the nondimensional power spec-
trum of tensor perturbations on smallest scales is roughly
given by the square of the Hubble parameter He at the end

2Second-order effects of scalar perturbations to induce tensor
perturbations (termed induced gravitational waves) have been
discussed in the literature [41–47]; we can place upper bounds on
scalar perturbations (which can be translated into upper bounds
on the abundance of PBHs [48–50]) from the nondetection of
GWs. Note that our present paper discusses an effect opposite to
this generation of induced gravitational waves.

3The direct gravitational collapse of nonlinear localized
gravitational waves has been discussed in the literature
[51–59], and so tensor perturbations may also be constrained
using this phenomenon. Still, the initial conditions and dynamics
of cosmological nonlinear gravitational waves during the
radiation-dominated era have not been well understood. Since
the dynamics of nonlinear radiation density perturbations is better
understood, we consider only scalar perturbations induced by the
tensor perturbation.
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of inflation in units of the Planck scale, and this implies that
He can be constrained e.g. by our PBH constraints. They
note thatHe is, in principle, also related to the amplitude of
scale-invariant curvature perturbations as well, but such a
relation has not been obtained yet in the scenarios they
consider.
Large tensor perturbations on small scales may also be

realized in the framework of the so-called generalized
G-inflation (G2-inflation) [63]. The action of G2-inflation
contains four generic functions K, G3, G4, G5 of ϕ and
X ¼ −∂μϕ∂μϕ=2. The quadratic action for the tensor
perturbations is

Sð2ÞT ¼
1

8

Z
dtd3xa3

�
GT

_h2ij −
F T

a2
ð∇hijÞ2

�
; ð2:1Þ

GT ≡ 2½G4 − 2XG4X − XðH _ϕG5X −G5ϕÞ�;
F T ≡ 2½G4 − Xðϕ̈G5X þG5ϕÞ�: ð2:2Þ

The squared sound speed is c2T ¼ F T=GT , which is not
necessarily unity in general cases. The parameters ϵ ≡
− _H=H2, fT ≡ _F T=HF T and gT ≡ _GT=HGT are intro-
duced, and they are assumed to be nearly constant. The
nondimensional power spectrum of the tensor perturbations
was obtained as

PT ¼ 8γT
G1=2
T

F 3=2
T

H2

4π2

����
−kyT¼1

; ð2:3Þ

where

νT ≡ 3 − ϵþ gT
2 − 2ϵ − fT þ gT

;

γT ¼ 22νT−3
���� ΓðνTÞ
Γð3=2Þ

����
2
�
1 − ϵ −

fT
2
þ gT

2

�
;

dyT ≡ cT
a
dt: ð2:4Þ

The tensor spectral tilt is given by nT ¼ 3 − 2νT, and the
tensor spectrum is blue (0 < nT) if 4ϵþ 3fT − gT < 0.
Also, if the sound speed becomes temporarily small, tensor
perturbations are enhanced on the corresponding scales.
A slightly red spectrum of the curvature perturbation,

while keeping the tensor spectrum strongly blue-tilted,
was also shown to be realized during a stringy thermal
contracting phase at temperatures beyond the so-called
Hagedorn temperature (the Hagedorn phase) in [64],
assuming a nonsingular bounce. In that scenario, primor-
dial curvature perturbations originate from statistical ther-
mal fluctuations, not by scalar field quantum fluctuations.
Scalar and tensor perturbations in large field chaotic

models with non-Bunch-Davies (non-BD) initial states
were analyzed in [65], and it was shown that in that model

also gravitational waves can be blue while maintaining
slightly red scalar perturbations. Normally, initial states for
perturbations are chosen to be Bunch-Davies (BD) vacuum
states, namely, perturbation modes on sub-Hubble scales
effectively propagate in vacuum states associated with flat
space. Non-BD initial states were characterized by the
Bogoliubov coefficients for each kmode and for both scalar
and tensor perturbations, which were denoted by αSk, β

S
k , α

T
k ,

βTk , with ðαS;Tk ; βS;Tk Þ ¼ ð1; 0Þ corresponding to the standard
BD initial states. These parameters are determined by
unknown high energy physics, and depending on the
choice of the above parameters, blue gravitational waves
were obtained while maintaining the scalar perturbations
slightly red.
Blue gravitational waves with slightly red scalar pertur-

bations were also obtained without violating NEC by
breaking the spatial diffeomorphism, usually imposed on
the dynamics of perturbations, in the context of effective
theory of inflation [66,67]. There, breaking of spatial
diffeomorphism was considered by effective quadratic
mass terms or derivative operators for metric fluctuations
in the Lagrangian during inflation without the necessity for
specifying the UV completion, while noting that it may be a
version of massive gravity coupled to an inflaton, some
model of inflation using vectors, or sets of scalars obeying
some symmetries.
Before closing this section, let us emphasize one

important assumption made throughout this paper. We
calculate evolution of primordial fluctuations assuming
they obey general relativity below some energy scale.
That energy scale and comoving wave number k of
primordial fluctuations are related as follows. The wave
number k is said to reenter the horizon when k ¼ aH,
where a and H are the scale factor and the Hubble
parameter. The scale factor can be eliminated by the
relation H2 ¼ H2

0Ωra−4, where Ωr is the radiation density
parameter andH0 is the current Hubble parameter, and here
they are taken as Ωr ¼ 5 × 10−5 and H0 ¼ 67 km=s=Mpc.
The Hubble parameter H and the temperature of
the universe T are related by (in natural units)
H2 ¼ 4π3g�T4=45, where g� is the degrees of freedom
of relativistic species here taken as g� ¼ 106.75. From
these relations the temperature and comoving wave number
are related by

T ¼
�
4π3

45
g�

�−1
4ðH0Ω

1=2
r k−2Þ−1

2

≃ 5 × 1010 GeV

�
k

1018 Mpc−1

�
: ð2:5Þ

For instance, if the theory is reduced to the standard
cosmology described by general relativity at T ¼
5 × 1010 GeV, then our upper limits summarized in
Fig. 4 are applicable for k < 1018 Mpc−1.
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III. RADIATION DENSITY PERTURBATIONS
GENERATED FROM TENSOR PERTURBATIONS

We work in the comoving gauge, in which the metric is
written as4

ds2 ¼ a2½−ð1þ 2ΦÞdη2 þ 2B;idηdxi

þ ðð1 − 2ΨÞδij þ 2hijÞdxidxj�; ð3:3Þ

where hij is the tensor perturbation satisfying
hij;i ¼ hii ¼ 0. Throughout this paper it is assumed that
the amplitude of initial tensor perturbations is much larger
than that of scalar perturbations (schematically,
ðscalarÞ ≪ ðtensorÞ), and so the scalar quantities in the
metric above should be regarded as second order in hij.
Hence, for scalar perturbations we write down the Einstein
equations keeping second-order terms only in hij. As is also
mentioned in the Introduction, our upper bounds from
PBHs on tensor perturbations thus obtained are applicable
even if this initial hierarchy between tensor and scalar
perturbations does not hold. This is because if the ampli-
tude of scalar perturbations is as larger as, or larger than
that of tensor perturbations, then the abundance of PBHs
increases when the amplitude of tensor modes is fixed.
Namely, assuming ðscalarÞ ≪ ðtensorÞ initially is most
conservative in placing upper bounds on tensor modes,
and hence our bounds are applicable even if that
assumption does not hold.
Let us write down the fundamental equations in the

following. We denote the energy density and pressure of the
dominating radiation by ρ and p, respectively, and write
p ¼ c2sρ, where cs is the speed of sound. In this paper we
restrict our attention to the formation of PBHs due to
collapse of radiation density perturbations during the
radiation-dominated era, and so we set cs ¼ 1=

ffiffiffi
3
p

in
calculations, though we leave cs unspecified in equations
below for generality. We decompose ρ and p as ρðη; xÞ ¼
ρ0ðηÞ þ δρðη; xÞ and pðη; xÞ ¼ p0ðηÞ þ δpðη; xÞ.

The zeroth-order Einstein equations yield

H2 ¼ 8πG
3

a2ρ0; ð3:4Þ

H2 −H0 ¼ 4πGa2ðρ0 þ p0Þ; ð3:5Þ

where H ≡ a0=a with the prime denoting differentiation
with respect to the conformal time η. These two equations
are combined to give

2H0 þ ð1þ 3c2s ÞH2 ¼ 0: ð3:6Þ

The Einstein equations at first order in hij give the
standard evolution equation for tensor modes as follows:

h00ij þ 2Hh0ij − Δhij ¼ 0: ð3:7Þ

The Einstein equations at second order in hij, derived in
the Appendix A, are as follows:

ΔΨ − 3HðΨ0 þHΦÞ −HΔBþ S1 ¼ 4πGa2δρ; ð3:8Þ

ðΨ0 þHΦþ S2Þ;i ¼ 0; ð3:9Þ

Ψ00 þHð2Ψþ ΦÞ0 þ ð2H0 þH2ÞΦ

þ 1

2
ΔðΦ −Ψþ B0 þ 2HBÞ þ S3 þ S4

¼ 4πGa2δp; ð3:10Þ

ðΦ −Ψþ B0 þ 2HB − 2S5Þ;ij ¼ 0: ð3:11Þ

In these equations the following terms, second order in hij,
source the scalar perturbations:

S1 ≡ −
1

4
h0ijh

ij0 − 2Hhijhij
0 þ hijΔhij

−
1

2
∂jhik∂khij þ 3

4
∂khij∂khij; ð3:12Þ

ΔS2 ¼ ∂iSi;

Si ¼ −hjk∂kh0ij þ
1

2
hjk

0∂ihjk þ hjk∂ih0jk; ð3:13Þ

S3 ≡ 3

4
h0ijh

ij0 þ hijhij
00 þ 2Hhijhij

0 − hijΔhij

þ 1

2
∂jhik∂khij −

3

4
∂khij∂khij; ð3:14Þ

ΔS4 ¼
1

2
ðΔSii − ∂i∂jSijÞ; ð3:15Þ

Δ2S5 ¼
1

2
ð3∂i∂jSij − ΔSiiÞ; ð3:16Þ

4Perturbations to the metric and energy momentum tensor are
written as (see [68] for more details)

ds2 ¼ a2½−ð1þ 2ΦÞdη2 þ 2B;idηdxi

þ fð1 − 2ΨÞδij − 2E;ij − 2hijgdxidxj�; ð3:1Þ
Tμν ¼ ðpþ δpÞgμν þ ðρþ δρþ pþ δpÞðuμ þ δuμÞðuν þ δuνÞ;

ð3:2Þ
where the spatial components of the velocity perturbation δuμ are
written as δui ¼ δu;i. Let us consider a coordinate transformation
of the form xμ → xμ þ ϵμðxμÞ, with ϵ0 ¼ −ϵ0; ϵi ¼ a2ϵi, ϵi ¼ ϵ;i.
Then E and δu transform as E → Eþ ϵ=a2, δu → δu − ϵ0. Here
we choose ϵ so that E ¼ 0, and then choose ϵ0 so that δu ¼ 0.
Both choices are unique, so that there is no freedom to make
further gauge transformations. This choice is sometimes called
the comoving gauge (e.g. [69]).
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Sij ≡ −hk0i h0jk − hikhk
00
j − 2Hhki h

0
jk þ hkl∂k∂lhij þ hkiΔhjk

− hkl∂l∂ihjk − hkl∂l∂jhik − ∂khjl∂lhki þ ∂lhjk∂lhki

þ 1

2
∂ihkl∂jhkl þ hkl∂i∂jhkl: ð3:17Þ

Using (3.7), S1, S3 and Sij are rewritten as follows:

S1 ¼ −
1

4
h0ijh

ij0 þ hijhij
00 −

1

2
∂jhik∂khij þ 3

4
∂khij∂khij;

ð3:18Þ

S3 ¼
3

4
h0ijh

ij0 þ 1

2
∂jhik∂khij −

3

4
∂khij∂khij; ð3:19Þ

Sij ¼ −hik
0
h0jk þ hkl∂k∂lhij − hkl∂l∂ihjk − hkl∂l∂jhik

− ∂khjl∂lhik þ ∂lhjk∂lhki þ
1

2
∂ihkl∂jhkl

þ hkl∂i∂jhkl: ð3:20Þ

The conservation of the energy-momentum tensor yields

δρ0 þ 3Hðδρþ δpÞ − ðρþ pÞΔB
− 3ðρþ pÞΨ0 − 2ðρþ pÞhijh0ij ¼ 0; ð3:21Þ

∂iðδpþ ðρþ pÞΦÞ ¼ 0: ð3:22Þ

From these equations one can derive the evolution
equation of Ψ as follows. First, Eqs. (3.21) and (3.22)
lead to (hereafter we work in Fourier space)

Φ0 ¼ −c2sð−k2Bþ 3Ψ0 þ 2hijh0ijÞ: ð3:23Þ

The term −k2B of the above can be eliminated by the
following relation, obtained from Eqs. (3.8) and (3.9):

−k2B ¼ −k2Ψ
H
þ 3S2 þ

S1
H

−
3

2
Hδr; ð3:24Þ

where δr ≡ δρ=ρ0. Using these and (3.11) as well as (3.6),
(3.10) can be rewritten as

Ψ00 þ 2HΨ0 þ c2sk2Ψ ¼ S: ð3:25Þ

Here,

S ≡ c2sS1 − S3 − k̂ik̂jSij þ 2c2sHhijh0ij ð3:26Þ

is the source term representing generation of scalar per-
turbations due to the tensor perturbations. From (3.9) and
(3.22), the energy density perturbation is given by

δr ¼
1þ c2s
c2sH

ðΨ0 þ S2Þ: ð3:27Þ

Eq. (3.25) can be formally solved as5

Ψðη; kÞ ¼ a−1ðηÞ
Z

η

0

d~ηgkðη; ~ηÞað~ηÞSð~η; kÞ; ð3:28Þ

where gk is the retarded Green’s function satisfying

g00k þ
�
c2sk2 −

a00

a

�
gk ¼ δðη − ~ηÞ: ð3:29Þ

During the radiation-dominated epoch, its solution can be
constructed by the two homogeneous solutions

v1ðk; ηÞ ¼ sinðcskηÞ; v2ðk; ηÞ ¼ cosðcskηÞ ð3:30Þ

as follows [45]:

gkðη; ~ηÞ ¼
v1ðk; ηÞv2ðk; ~ηÞ − v1ðk; ~ηÞv2ðk; ηÞ
v01ðk; ~ηÞv2ðk; ~ηÞ − v1ðk; ~ηÞv02ðk; ~ηÞ

¼ 1

csk
sin ðcskðη − ~ηÞÞ for η ≥ ~ηÞ: ð3:31Þ

The two point correlation function ofΨ can be expressed
as, denoting its nondimensional power spectrum by PΨ,

hΨðη; kÞΨ�ðη;KÞi

¼ 2π2

k3
δðk − KÞPΨðkÞ

¼ a−2ðηÞ
Z

η

0

dη1

Z
η

0

dη2gkðη; η1ÞgKðη; η2Þaðη1Þaðη2Þ

× hSðη1; kÞSðη2;KÞi: ð3:32Þ

In the following, let us write down the Fourier components
of the source S, given by (3.26). We begin by decomposing
hijðη; xÞ as (following [49]):

5We choose η ¼ 0 at the beginning of the radiation-dominated
era, and we assume the initial condition is Ψð0; kÞ ¼ 0. Strictly
speaking, however, Ψ is also generated before the radiation-
dominated era at second order in tensor perturbations, even
without intrinsic first-order scalar perturbations. That generation
is highly model-dependent, and hence we restrict attention to the
generation of Ψ only during the radiation-dominated era to adopt
the above initial condition. This neglect of the generation of Ψ
before the radiation-dominated era would probably lead to
conservative upper bounds on tensor perturbations, since in
general Ψ would be larger if the generation before η ¼ 0 is
additionally taken into account. An analogous assumption is also
made in the literature discussing induced gravitational waves (see
footnote 2).
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hijðη; xÞ ¼
Z

d3k

ð2πÞ3=2 e
ik·xðhþðη; kÞeþijðkÞ

þ h×ðη; kÞe×ijðkÞÞ; ð3:33Þ

where for k in the z-direction

eþ11ðẑÞ ¼ −eþ22ðẑÞ ¼ e×12ðẑÞ ¼ e×21ðẑÞ ¼ 1; others ¼ 0

ð3:34Þ

while for k̂≡ k=jkj in any other direction, erijðk̂Þðr ¼ þ;×Þ
is defined by applying on each of the indices i and j a
standard rotation, that takes the z-direction into the direc-
tion of k̂ (see e.g. [68]). Then one can check the following:

X
ij

erijðkÞesijðkÞ ¼ 2δrs: ð3:35Þ

Let us further decompose the Fourier components as
hrðη; kÞ ¼ Dðη; kÞhrðkÞ, where hrðkÞ is the initial ampli-
tude and Dðη; kÞ is the growth factor, which can be
obtained by solving the linear evolution equation (3.7)
for hij (dropping the decaying mode):

Dðη; kÞ ¼ sin kη
kη

: ð3:36Þ

It turns out that the Fourier components of the source S can
be written as follows (see Appendix B):

Sðη; kÞ ¼
X
rs

Z
d3k0

ð2πÞ3=2 h
rðk0Þhsðk − k0ÞArsðη; k; k0Þ;

ð3:37Þ

Arsðη; k; k0Þ ≡ f1ðη; k; k0ÞErs
1 ðk; k0Þ þ f2ðη; k; k0ÞErs

2 ðk; k0Þ:
ð3:38Þ

Here,

Ers
1 ðk; k0Þ ≡ k̂jk̂

kerikðk0Þeijs ðk − k0Þ;
Ers
2 ðk; k0Þ ≡ eijr ðk0Þesijðk − k0Þ; ð3:39Þ

and their nonzero components are written as6

Eþþ1 ðk; k0Þ ¼ −μ1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ22

q
;

E××
1 ðk; k0Þ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ22

q
; ð3:40Þ

Eþþ2 ðk; k0Þ ¼ 1þ μ21; E××
2 ðk; k0Þ ¼ 2μ1; ð3:41Þ

where μ ≡ k · k0=kk0 and

μ1 ≡ k0 · ðk − k0Þ
k0jk − k0j ¼

kμ − k0

jk − k0j ;

μ2 ≡ k · ðk − k0Þ
kjk − k0j ¼

k − k0μ
jk − k0j : ð3:42Þ

Also the above f1 and f2 are given by (see Appendix B)

f1ðη; k; k0Þ ¼ Dðη; k0Þ
�
∂η
 ∂η −

1

2
ð3− c2s Þk2 þ 3kk0μ − k02

	

×Dðη; jk− k0jÞ; ð3:43Þ

f2ðη; k; k0Þ ¼ Dðη; k0Þ
�
−
1

4
ð3þ c2s Þ∂η

 ∂η þ c2s∂2
η

þ 2c2sH∂η þ
1

8
ð1 − 3c2s Þk2 −

1

2
k0μðk − k0μÞ

þ 3

4
ð1þ c2s Þk02

	
Dðη; jk − k0jÞ; ð3:44Þ

where ∂η
 

is supposed to differentiate only Dðη; k0Þ in
the left.
Introducing the power spectrum of tensor perturbations as

hhrðkÞhs�ðKÞi ¼ 2π2

k3
δðk − KÞδrsPhðkÞ ð3:45Þ

and assuming hrðkÞ is Gaussian, we can obtain the following
expression for the correlation of the source:

hSðη1; kÞSðη2;KÞi

¼ πδðkþ KÞ
X
rs

Z
d3k0

Phðk0ÞPhðjk − k0jÞ
k03jk − k0j3

× Arsðη1; k; k0ÞArsðη2; k; k0Þ: ð3:46Þ

In this paper, we assume the following delta-function-type
tensor power spectrum:

PhðkÞ ¼ A2kδðk − kpÞ: ð3:47Þ

From (3.27) and (3.28), the energy density perturbation
can be calculated as

δrðη;kÞ¼
1þc2s
c2sH

X
rs

Z
d3k0

ð2πÞ3=2h
rðk0Þhsðk−k0ÞFrsðη;k;k0Þ;

ð3:48Þ

6These expressions are obtained by first setting k̂ ¼ ẑ, which is
possible due to isotropy, and by assuming k̂0 is on the z-y plane,
which is justified by the rotational invariance of Ers

1 and Ers
2 .
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Frsðη; k; k0Þ ≡
Z

d~ηð~η=ηÞArsð~η; k; k0Þð∂η −HÞgkðη; ~ηÞ

þDðη; k0Þ
�
−∂ηErs

1 þ
�
1

2
∂η
 þ ∂η

�

×

�
1 −

k0

k
μ

�
Ers
2

	
Dðη; jk − k0jÞ: ð3:49Þ

The power spectrum is defined by

hδrðη; kÞδ�rðη;KÞiC ≡ hδrðη; kÞδ�rðη;KÞi
− hδrðη; kÞihδ�rðη;KÞi

¼ 2π2

k3
δðk − KÞPδrðη; kÞ ð3:50Þ

and is obtained as follows:

Pδrðη; kÞ ¼
�
1þ c2s
c2s

�
2

A4

�
k
kp

�
2

η2Θ
�
1 −

k
2kp

�

×
X
rs

Frs

�
η; k; kp;

k
2kp

�
2

: ð3:51Þ

The time evolutions of this power spectrum for a few modes
are shown in Fig. 1, where A is set to unity. The power
spectrum takes the maximum value shortly after the
horizon crossing of each k mode (kη ¼ 1). After reaching
the maximum, it starts oscillations with the amplitude
almost constant, similarly to the behavior in the standard
linear cosmological perturbation theory. This is because the
tensor perturbations decay after the horizon crossing, and
so do the source terms, and then our fundamental equations
for scalar perturbations are reduced to the standard ones in
the linear theory.

IV. UPPER BOUNDS ON PGWS FROM PBHS

In order to place upper bounds on tensor modes from
PBHs, the abundance of PBHs needs to be related to
the primordial tensor power spectrum, which can be
accomplished by integrating the probability density
function (PDF) of the induced density perturbation
averaged over the horizon. In the following we first
estimate the moment when the PBH formation is most
efficient for each kp by calculating the dispersion of the
induced density perturbation, and then derive the PDF
at this moment.
Let us begin by noting that the average hδrðη; xÞi is

nonzero, since the density perturbation is generated by the
tensor perturbations. To evaluate this average we introduce
f3 and f4 by rewriting Frs as

Frsðη; k; k0Þ ¼ f3ðη; k; k0ÞErs
1 þ f4ðη; k; k0ÞErs

2 ; ð4:1Þ

where the explicit forms of f3 and f4 can be obtained by
using (3.38), though the integration over η can not be done
analytically for general k:

f3ðη; k; k0Þ ¼
Z

d~ηð~η=ηÞf1ð~η; k; k0Þð∂η −HÞgkðη; ~ηÞ

−Dðη; k0Þ∂ηDðη; jk − k0jÞ; ð4:2Þ

f4ðη; k; k0Þ ¼
Z

d~ηð~η=ηÞf2ð~η; k; k0Þð∂η −HÞgkðη; ~ηÞ

þDðη; k0Þ
�
1

2
∂η
 þ ∂η

�

×

�
1 −

k0

k
μ

�
Dðη; jk − k0jÞ: ð4:3Þ

Since only the zero-mode δrðη; k ¼ 0Þ contributes to
hδrðη; xÞi, we need f3 and f4 only in the limit of
k → 0, which are, under the assumption of the delta-
function-type power spectrum (3.47),

f3 ¼ 0;

f4 ¼ −
−1þ 2k2pη2 þ cosð2kpηÞ

24k2pη3
: ð4:4Þ

Hence,

hδrðη; x ¼ 0Þi

¼
Z

dk3

ð2πÞ3=2
1þ c2s
c2sH

Z
d3k0

ð2πÞ3=2
2π2

k3p
δðkÞA2kpδðk0 − kpÞ

× f4ðη; k ¼ 0; k0Þ × ð2 − ð−2ÞÞ

¼ −
ð1þ c2s ÞA2

6c2sk2pη2
f−1þ 2k2pη2 þ cosð2kpηÞg: ð4:5Þ

k 2kp

k 1.5kp

k 1kp

k 0.5kp

0 2 4 6 8 10
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r
,k

FIG. 1. The time evolution of the power spectrum for several
modes, with A set to unity.
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When kpη ≫ 1, the time average of this quantity asymp-
totes to

hδri ¼ −
ð1þ c2s Þ
3c2s

A2; ð4:6Þ

while hδri → 0 for kpη → 0.7 We denote the density
perturbation averaged over a sphere with comoving radius
R by δrðη; x; RÞ, the dispersion of which is related to the
power spectrum as follows:

σðη; RÞ ≡ ðhδrðη; x; RÞ2i − hδðη; xÞi2Þ1=2

¼
�Z

dk
k
W2ðkRÞPδrðη; kÞ

�
1=2

; ð4:7Þ

where W is the Fourier transform of the top-hat window
function: WðxÞ ¼ 3ðsin x − x cos xÞ=x3. Figure 2 shows
that the dispersion of the density perturbation at the horizon
crossing of some mode k1 smoothed over the horizon scale
at that moment (namely, η ¼ k−11 ), σðη ¼ k−11 ; R ¼ k−11 Þ, is
maximum and is ∼A2 at around k1 ∼ 0.7kp. That is, PBHs
are formed most efficiently at around this moment, and
therefore we restrict our attention to this moment in the
following.
To determine the abundance of PBHs, the PDF of the

density perturbations is necessary. Often the PDF of the
density perturbations is assumed to be Gaussian, but in our
problem it is highly non-Gaussian, since density perturba-
tions are generated by tensor perturbations, whose statis-
tical properties are assumed to be Gaussian. We can in
principle determine the PDF of δr by randomly generating
the Fourier modes of GWs fhrðkÞg repeatedly (for the
details see Appendix C), whose result is shown in Fig. 3.
The PDF PðδrÞ of δr thus obtained turns out to be well
approximated by the formula (C29). Then the fraction of

the volume which has collapsed into PBHs at their
formation is

β ¼
Z

∞

δr;th

~Pðδr − hδriÞdδr ¼
Z

∞

δr;th=A2

Pð~δrÞd~δr; ð4:8Þ

where δr;th is the threshold of PBH formation, in the
following assumed to be δr;th ¼ 0.4 [20,22].8 This quantity
β has been constrained on various masses and we use Fig. 9
of [24]. Then upper bounds on A2 for each β, correspond-
ing to different masses of PBHs, are shown in Fig. 4, in
which upper bounds are shown as a function of kp, using
the following relation between the PBH mass and the
comoving wave number of perturbations:

MPBH ¼ 2.2 × 1013M⊙
�

k
1 Mpc−1

�
−2
: ð4:9Þ

The dependence of the upper bounds on the comoving
wave number is logarithmically weak owing to the expo-
nential dependence of the PDF on δr and hence on A2

for δr ≃ δr;th.
Let us compare these PBH bounds with other bounds.

We begin by rederiving the formula for the energy density
of gravitational waves ρGW on subhorizon scales. Noting

FIG. 3. The PDF of ~δr ≡ ðδr − hδriÞ=A2 for a million realiza-
tions of fhrðkiÞg (see Appendix C for the details). The curve is
the approximate PDF of ~δr given by (C29).

FIG. 2. The dependence of σðη ¼ k−11 ; R ¼ k−11 Þ on k1, with
A ¼ 1 and kp ¼ 1.

7Strictly speaking this effect may be taken into account in the
background Friedmann equations (3.4) and (3.5), but A2 is
mostly less than 0.1 from Fig. 4, so the fractional correction to the
upper bounds would be ∼0.1 at most, while a rigorous treatment
of this effect would greatly complicate analysis. Hence we
neglect this effect.

8In these papers the initial conditions of numerical simulations
were given in terms of curvature profiles in the limit of the
vanishing ratio of the Hubble radius to the radius of perturbed
regions. In the present work scalar perturbations are sourced by
tensor perturbations, and hence strictly speaking the formation
conditions obtained there may not be directly applied. A more
precise treatment would require dedicated numerical simulations,
which is beyond the scope of this work. The energy density of
PGWs is expected to promote gravitational collapse, in light of
previous works on direct collapse of nonlinear gravitational
waves, mentioned in the footnote 3 of the Introduction. This
effect is not taken into account in the present paper, and therefore
in this sense our upper bounds would be conservative.
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that ρGW ¼ −hS1i=4πGa2 from (3.8), where the brackets
here imply temporal and spatial average (see e.g. [70] for
more details), let us rewrite hS1=a2i in the following. By
integration by parts and using (3.7),



S1
a2

�
¼



1

a2

�
−
1

4
h0ijh

ij0 −
3

2
Hhijhij

0 þ 1

4
hijhij

00
��

¼


−
1

4
_hij _h

ij −
5_a
4a

hij _h
ij þ 1

4
hijḧ

ij

�

≃ −
1

2
h _hij _hiji; ð4:10Þ

hence,9

ρGW ¼
h _hij _hiji
8πG

: ð4:11Þ

Assuming the delta-function-type power spectrum (3.47),

ρGW ¼
A2h _Dðη; kpÞ2i

2πG

¼ A2

2πGa2


�
cos kη
η

−
sin kη
kη2

�
2
�

∼
A2

4πGa2η2
: ð4:12Þ

Defining ρcrit ≡ ρrad þ ρGW ≃ 3H2=8πG, the following
relation is obtained, used shortly:

ρGW
ρcrit
¼ 2

3
A2: ð4:13Þ

The existence of gravitational waves is often effectively
represented by the number of relativistic fermions’ degrees
of freedom as follows. First, the total energy density of
radiation without gravitational waves nor dark radiation is
written as

ρradðTÞ ¼
π2

30
g�T4; ð4:14Þ

where g� is the effective number of degrees of freedom
of relativistic species and at the epoch of BBN it is given
by [3,71]

g� ¼ 2þ 7

8
f4þ 2Nνg; ð4:15Þ

where Nν is the effective number of degrees of freedom
of neutrinos, Nν ¼ 3.046.10 This is obtained by counting
the degrees of freedom of photons, electrons, positrons, and
neutrinos. At the photon decoupling, electrons and posi-
trons should not be included. The presence of PGWs (or
possibly of dark radiation) is represented by ΔNeff, as a
correction to Nν above. In the following we use ΔNGW as
the contribution of PGWs and relate it to the primordial
tensor power spectrum. When PGWs are present, the total
energy density becomes (noting (4.6))

ρtot ¼ ρradðTÞð1þ hδriÞ þ ρGW; ð4:16Þ

which can be written, with the redefinition of the temper-
ature T → Tð1þ hδri=4Þ, as

ρtot ¼ ρradðTÞ þ ρGW: ð4:17Þ

After the horizon crossing of PGWs, ρGW ∝ a−4, while,
denoting by gSðTÞ the effective degrees of freedom
of relativistic species in terms of entropy at temperature
T, the photon temperature evolves according to
gSðTÞT3a3 ¼ const (i.e. constant entropy), and therefore
ρrad ∝ g�T4 ∼ 1=a4g1=3S (see e.g. [71]). Then, defining
ΩGW≡ ρGW=ρcrit ≃ ρGW=ρrad,

ΩGWðTÞ ¼
�

gSðTÞ
gSðT inÞ

�
1=3

ΩGWðT inÞ; ð4:18Þ

where T in¼ T inðkpÞ is the temperature of radiation when
PGWs with comoving wave number kp reenter the horizon,

FIG. 4. Upper bounds on A2 as a function of kp using PBHs
and other methods, also shown in [12].

9If we define tensor perturbations without the factor 2 in front
of hij in (3.3), then we arrive at, instead of (4.11), the formula
often used in the literature: ρGW ¼ h _hij _hiji=32πG.

10The slight deviation from Nν ¼ 3 arises from the slight
heating of neutrinos due to the relic interactions between e� and
neutrinos at the epoch of e� annihilations, which took place only
shortly after the neutrino decoupling [8].
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and T < T in.
11 At the epoch of BBN, the contribution of

PGWs is represented by ΔNGW as follows;

ρradðTÞ þ ρGWðTÞ ¼
π2

30

�
2þ 7

8
f4þ 2ðNstaþΔNGWÞg

�
T4;

ð4:20Þ

which leads to

ρGWðTÞ¼ρradðTÞ×
7

8
×2×ΔNGWðTÞ

��
2þ7

8
ð4þ2NstaÞ

	

≒
7

43
ρradΔNGWðTÞ: ð4:21Þ

Since

ΩGWðT inÞ≃ 2

3
A2 ð4:22Þ

from (4.13), ΔNGWðTÞ can be written as

ΔNGWðTÞ ¼
43

7
ΩGWðTÞ ¼

86

21
A2

�
gSðTÞ
gSðT inÞ

�
1=3

: ð4:23Þ

An upper bound on ΔNeff , ΔNeff <ΔNupper, is usually
translated into an upper bound on ΔNGW, ΔNGW<
ΔNupper. As is also mentioned in the Introduction, in doing
sowe assume that any physical mechanisms, both known and
unknown, increaseNeff , but at least there are examples where
Neff decreases [9–11]. With this in mind, the requirement
ΔNGW < ΔNupper is translated into an upper bound on A2

from (4.23) as follows:

A2 ≲ 21

86

�
gSðT inÞ
gSðTÞ

�
1=3

ΔNupper; ð4:24Þ

with gSðTÞ ¼ gBBN ¼ 10.75.

On the other hand, at the photon decoupling,

ρradðTÞ þ ρGWðTÞ

¼ π2

30

�
2þ 2 ×

7

8

�
4

11

�
4=3
ðNν þ ΔNGWÞ

	
; ð4:25Þ

which yields

ΩGWðTÞ ¼
2 × 7

8
ð 4
11
Þ4=3

2þ 2 × 7
8
ð 4
11
Þ4=3Nν

ΔNGW ≃ 0.13ΔNGW:

ð4:26Þ

So in this case we find

A2 < 0.13 ×
3

2
× ΔNupper

�
gSðT inÞ
gSðTÞ

�
1=3

; ð4:27Þ

with gSðTÞ ¼ gS0 ¼ 3.91. These constraints depend on
gSðT inÞ, which one may regard as a drawback of these
methods since it is uncertain especially at high temper-
atures. It is also potentially affected by some entropy
production mechanisms [72]. On the other hand, the
PBH constrains do not depend on gS nor other entropy
productions much.
In order not to spoil the successful standard BBN,

we follow [72] and set ΔNupper ¼ 1.65 as a 95% C.L.
upper limit, which is applicable for the scales smaller
than the comoving horizon at BBN, namely,
6.5 × 104 Mpc−1 ≲ k.
As for CMB constraints, in [4] the use of homo-

geneous initial conditions of PGWs’ energy density
is advocated for those generated, for instance, by
quantum fluctuations during inflation. In this case
we use the 95% upper limit of ΔNupper ¼ 0.18 from
[73].12 For adiabatic initial conditions of PGWs we
refer to

Neff¼3.52þ0.48−0.45 ð95%;PlanckþWPþhighLþH0þBAOÞ
ð4:28Þ

of [1] to set ΔNupper ¼ 1.00 [5].
The current energy density of PGWs, ΩGW;0, is also

constrained by LIGO and Virgo, most severely in the
band 41.5–169.25 Hz as ΩGW;0 ≲ 5.6 × 10−6 ×
logð169.25=41.5Þ≃ 8 × 10−6 [74]. Since ΩGW;0 ∼
ð4=100Þ1=32A2=3zeq ∼ 7.6 × 10−5A2 (zeq ∼ 3000 is the
redshift at the matter-radiation equality, and the factor

11In [72] the following convenient fitting function is shown:

gSðT inðkÞÞ ¼ gS0

�
Aþ tanh ½−2.5log10k=2πf1�

Aþ 1

	

×

�
Bþ tanh ½−2.0log10k=2πf2�

Bþ 1

	
; ð4:19Þ

where A ¼ ð−1 − gBBN=gS0Þ=ð−1þ gBBN=gS0Þ, B ¼
ð−1 − gmax=gBBNÞ=ð−1þ gmax=gBBNÞ, gS0 ¼ 3.91, gBBN ¼
10.75, f1 ¼ 2.5 × 10−12 Hz and f2 ¼ 6.0 × 10−9 Hz. As for
gmax following [72] we assume the sum of the Standard Model
particles, gmax ¼ 106.75. Note that k=2πf1¼k=ð1.6×10−3 pc−1Þ
and k=2πf2 ¼ k=ð3.9 pc−1Þ.

12One would obtain somewhat tighter constraints than those in
[73] for homogeneous initial conditions of PGWs’ energy
density, by repeating the analysis of [73] using more recent data.

TOMOHIRO NAKAMA and TERUAKI SUYAMA PHYSICAL REVIEW D 94, 043507 (2016)

043507-10



z−1eq reflects ΩGW ∝ ð1þ zÞ=ð1þ zeqÞ during the matter-
dominated era), we obtain A2 ≲ 0.1.13

Pulsar timing arrays (PTAs) have also been used
to constrain PGWs. Following [72] we use the most
stringent upper bound around f ¼ 5.72 × 10−9 Hz
(∼4 × 106 Mpc−1), ΩGW;0∼ð4=11Þ1=32A2=3zeq≲2×10−8,
which leads to A2 ≲ 1.3 × 10−4.
Ground-based detectors or PTA experiments constrain

PGWs on a relatively limited frequency range, while
cosmological methods such as PBHs probe PGWs on a
wide range of frequencies, and this is another advantage of
our new limits (see Fig. 4).
These upper bounds as a function of kp are shown in

Fig. 4 along with the upper bound from PBHs. One may not
regard some of weak constraints there as meaningful,
because they correspond to (almost) nonlinear tensor
perturbations.
As shown in Fig. 5, the upper bounds from PBHs can

also be expressed in terms of ΔNGW using (4.23), and also
in terms of the current energy density parameter of PGWs,
ΩGW;0, using

ΩGW;0 ¼
2A2

3zeq

�
gS0

gSðT inÞ
�

1=3
; ð4:29Þ

which follows from (4.18) and (4.22). Note that if future
experiments reveal the presence of ΔNeff , then PGWs

provide a possible explanation, as well as dark radiation.
However, if the value of ΔNeff is large, say 0.5, exceeding
the limits shown in Fig. 5, then we may exclude PGWs as a
candidate thanks to our PBH bounds.14 This shows an
example of how our new limits can provide useful
cosmological information.

V. CONCLUSION

A novel method using PBH formation to probe primor-
dial gravitational waves is discussed. If the amplitude of
tensor perturbations initially on superhorizon scales is very
large, substantial scalar perturbations are generated from
tensor perturbations. If these induced scalar perturbations
are too large, PBHs are overproduced, exceeding existing
upper limits on their abundance.
To constrain tensor modes by PBHs formed by gravi-

tational collapse of radiation overdensities, we have calcu-
lated the PDF of the radiation density perturbations, which
is in general highly non-Gaussian since they are sourced by
tensor perturbations. Assuming primordial tensor pertur-
bations are Gaussian, an approximate analytic formula of
the PDF was derived, which coincides well with the PDF
obtained by a Monte Carlo simulation.
Using this PDF we have constrained a delta-function-

type power spectrum of primordial tensor perturbations.
Our findings are summarized in Fig. 4.
PBH constraints are applicable from comoving scales of

∼Mpc all the way down to those of ∼0.1 m if we assume
the number of e-folds during inflation is sixty. The
exclusion of an overproduction of smallest PBHs
(MPBH ≲ 105 g) depends on the assumption that stable
Planck mass relics are left over at the end of Hawking
evaporation, which behave as cold dark matter (see [24,76]
and references therein). The range of comoving scales
corresponding toMPBH ≲ 105 g is roughly≲50 m, namely,
the upper bounds from PBHs in this range are based on this
assumption. If Planck mass relics are not left over, to what
extent an overproduction of PBHs lighter than 105 g is
cosmologically problematic is uncertain. Such an over-
production of smallest PBHs may lead to an early matter-
dominated era, during which PBH binaries are formed and
emit gravitational waves, or larger PBHs may form due to
merger taking place after the collapse of perturbations of
PBHs’ density, thereby leaving observable traces [77].
Therefore, in principle, one may still exclude such an
overproduction of smallest PBHs even without the left over
of Planck mass relics to fully validate our upper bounds on
smallest scales, though we do not discuss it in detail here.
We have used a perturbative expansion based on small

perturbations, and therefore one may be worried about the
validity of the PDF, shown in Fig. 3, close to the threshold

FIG. 5. Upper bounds from PBHs on ΩGW;0 or equivalently
ΔNGW;0 as a function of kp.

13Though not included in our analysis, they also obtained
weaker upper bounds on a few frequency ranges other than the
one around ∼100 Hz. Also, strictly speaking in [74] some power-
low spectrum of gravitational waves is assumed in each band, and
so their results may not be directly translated into constraints on a
narrow peak in the power spectrum we consider. Indeed in [75] an
optimal analysis method is discussed to search for a sharp
emission line of gravitational waves, which can increase the
signal-to-noise ratio by up to a factor of seven. Namely, our
comparison here may be crude, but it is sufficient for our
purposes. The same applies to the comparison with PTA.

14There may be a loophole, however. Logically, if PGWs
follow a tremendously non-Gaussian PDF, it may be possible to
realize large ΔNGW without overproducing PBHs.
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of δth ≃ 0.4 we adopted, since this value indicates that
further nonlinearities may affect. Very naively, next-order
corrections would appear in the fundamental equations
which are suppressed by ∼OðhijÞ ∼

ffiffiffiffiffiffiffi
0.4
p

∼ 0.6, and this
implies that the upper bounds can be affected by ∼60%.
Certainly this estimation is very naive and a more careful
estimation would be merited. If additional nonlinearities
enhance induced scalar perturbations, then our upper
bounds would be conservative. To see how further non-
linearities affect our limits, one may write down the next-
order correction terms, and then the behaviors of these
terms would provide insight. A gradient expansion
approach may also be helpful (see e.g. [78] and references
therein), which is another perturbative scheme based on the
smallness of the ratio of spatial derivatives to time
derivatives for perturbations on superhorizon scales. It is
valid only on superhorizon scales, but nonlinear perturba-
tions can be treated, relevant to PBH formation. If one
compares the amplitude of induced perturbations obtained
by a gradient expansion approach and that we have
obtained, one would gain insight into how nonlinearities
might affect. However, this approach is not perfect either,
since it does not allow us to evolve perturbations up to the
moment of their horizon reenty, necessary to calculate the
probability of PBH formation. Refining our results further
would be a formidable task. The present formulation would
be acceptable, providing moderately precise and potentially
conservative bounds, for our purpose here to propose a
novel method to constrain primordial tensor perturbations
on small scales from PBHs with detailed calculations for
the first time. Let us emphasize that, though upper bounds
on scalar perturbations from PBHs have long been known,
probably since [79], we have newly found upper bounds
from PBHs on tensor perturbations as well.
We have also assumed Gaussianity of primordial tensor

perturbations, but PBH constraints on tensor perturbations
naturally depend on their statistical properties, determining
those of induced density perturbations, just as PBH con-
straints on scalar perturbations depend on the statistical
properties of scalar perturbations [80]. If high-σ realiza-
tions of tensor perturbations are suppressed (enhanced) in
comparison to a Gaussian case, PBH constraints on tensor
perturbations are tighter (weaker).
We have restricted attention to PBH formation as a result

of direct collapse of radiation density perturbations induced
by tensor perturbations, but they would also dissipate to
induce CMB spectral distortion, and hence constraints on
CMB spectral distortion can also be used to probe tensor
perturbations. Furthermore, tensor perturbations naturally
induce perturbations in the dark matter energy density as
well, and if they are sufficiently large, they result in a
substantial formation of what are sometimes called ultra-
compact minihalos, small dark matter halos formed well
before the standard structure formation, say z ∼ 1000. That
is, (potential) constraints on them can also be translated into

upper bounds on tensor perturbations, which will be
explored elsewhere [81].
Lastly, our analysis based on the delta-function spectrum

also has implications on constraining other types of tensor
power spectra. To see this let us consider the following blue
spectrum:

PhðkÞ ¼ rPζðkrefÞ
�

k
kref

�
nT

for k < kmax; ð5:1Þ

where Pζ is the dimensionless power spectrum of the
curvature perturbation, r is the tensor-to-scalar ratio, kref is
some reference wave number and nT > 0 is the tensor
spectral index. If nT is relatively large, say, the upper limit
0.45 obtained below, the amplitude of gravitational waves
is mostly determined by the modes with wave number close
to kmax, and as a result the above spectrum can roughly be
regarded as equivalent to a delta-function spectrum (3.47)
with kp ¼ kmax and

A2 ¼
Z

kmax

e−1kmax

rPζðkrefÞ
�

k
kref

�
nT dk

k
: ð5:2Þ

As an illustration, in the following we take r ¼ 0.01,
kref ¼ 0.01 Mpc−1, PðkrefÞ ¼ 2.2 × 10−9 and kmax ¼
1018 Mpc−1. Using A2 ≲ 0.02 at around 1018 Mpc−1 from
Fig. 4, we obtain nT ≲ 0.45 from the above.15 Here we have
neglected the modes with k < e−1kmax, but this probably
makes this limit on nT conservative, since contributions of
those modes also create density perturbations collapsing to
PBHs. Having said that, dedicated calculations for other
types of tensor power spectra would be merited.
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APPENDIX A: DERIVATION OF EVOLUTION
EQUATIONS FOR INDUCED SCALAR

PERTUBATIONS

In this appendix we derive the fundamental equations for
scalar perturbations induced by tensor perturbations. First
we derive the parts of the equations involving only scalar
perturbations, and then we derive the source terms, second
order in tensor perturbations. We have also checked the
expressions below by a Mathematica package, xPand [82].

1. Scalar perturbation

We use the formulation of [68], in which the metric is
decomposed as

gμν ¼ ḡμν þ δgμν; ðA1Þ

ḡ00 ¼ −1; ḡi0 ¼ ḡ0i ¼ 0; ḡij ¼ a2δij: ðA2Þ

The components of the perturbed Ricci tensor are expressed
in terms of δgμν as follows [68]16:

δRjk ¼ −
1

2
δg00;jk − ð2_a2 þ aäÞδg00δjk −

1

2
a _a _δg00δjk

þ 1

2a2
ðΔδgjk − δgik;ij − δgij;ik þ δgii;jkÞ

−
1

2
δ̈gjk þ

_a
2a
ð _δgjk − _δgiiδjkÞ

þ _a2

a2
ð−2δgjk þ δgiiδjkÞ þ

_a
a
δgi0;iδjk

þ 1

2
ð _δgk0;j þ _δgj0;kÞ þ

_a
2a
ðδgk0;j þ δgj0;kÞ; ðA5Þ

δR0j ¼ δRj0 ¼
_a
a
δg00;j þ

1

2a2
ðΔδgj0 − δgi0;jiÞ

−
�
ä
a
þ 2_a2

a2

�
δgj0 þ

1

2

∂
∂t

�
1

a2
ðδgkk;j − δgkj;kÞ

�
;

ðA6Þ

δR00 ¼
1

2a2
Δδg00 þ

3_a
2a

_δg00 −
1

a2
_δgi0;i

þ 1

2a2

�
δ̈gii −

2_a
a

_δgii þ 2

�
_a2

a2
−
ä
a

�
δgii

�
: ðA7Þ

The components of the Ricci tensor with mixed indices are
expressed in terms of those with doubly covariant indices as
follows:

δR0
0 ¼ −3

ä
a
δg00 − δR00; ðA8Þ

δR0
i ¼ −δR0i − a−2ð2_a2 þ aäÞδgi0; ðA9Þ

δRi
j ¼ a−2

�
2H2 þ ä

a

�
δgij þ

1

a2
δRij: ðA10Þ

Using these, the Ricci scalar can be calculated as

a2δR ¼ −3a _a _δg00 − 6ð _a2 þ aäÞδg00 − Δδg00 þ 2 _δgi0;i

þ 4Hδgi0;i − δ̈gij þ
2

3a2
Δδgii þ 2

�
H2 þ ä

a

�
δgii:

ðA11Þ

In our notation of (3.3),

δg00 ¼ −2Φ; δgi0 ¼ aB;i; δgii ¼ −6a2Ψ: ðA12Þ

The time-time component of the Einstein equations is

a2

2
G0

0 ¼ ΔΨ − 3HðΨ0 þH2ΦÞ −HΔB ¼ a2

2
8πGδρ;

ðA13Þ

which recovers the parts of (3.8) involving scalar pertur-
bations. The time-space component is

G0
i ¼ R0

i ¼ −δR0i − a−2ð2_a2 þ aäÞδgi0 ¼ 2 _Ψ;i þ 2HΦ;i:

ðA14Þ

So aG0
i =2 ¼ 0 partially recovers (3.9). The space-space

components are

δGi
j ¼ a−2

�
2H2 þ ä

a

�
δgij þ

1

a2
δRij −

1

2
δRδij; ðA15Þ

and this is written in the form δGi
j ¼ G1δij þ G2;ij, where

−
a2

2
G1 ¼ Ψ00 þHð2Ψþ ΦÞ0 þ ð2H0 þH2ÞΦ

þ 1

2
ΔðΦ −Ψþ B0 þ 2HBÞ; ðA16Þ

16In [68] the Ricci tensor is defined by

Rμν ≡ Γλ
μλ;ν − Γλ

μν;λ þ Γκ
μλΓλ

νκ − Γκ
μνΓλ

λκ: ðA3Þ

With this definition, the Einstein equations are written as

Rμν −
1

2
gμνR ¼ −8πGTμν: ðA4Þ

If we adopt another definition of the Ricci tensor, which is minus
that of (A3), then the sign of the right hand side of the above
Einstein equations should be flipped. We adopt the former
definition in this section following [68], but in the next section
we adopt the latter definition.

PRIMORDIAL BLACK …. II. DETAILED ANALYSIS PHYSICAL REVIEW D 94, 043507 (2016)

043507-13



a2G2 ¼ Φ −Ψþ B0 þ 2HB: ðA17Þ

Then, −a2G1=2 ¼ a28πGδp=2 partially recovers (3.10),
and a2G2;ij ¼ 0 partially recovers (3.11). Also, (3.21)
and (3.22) without the source term can be derived from
(5.1.49) and (5.1.48) of [68].17

2. Tensor perturbation

Let us consider the following metric

ds2 ¼ a2ðηÞ½−dη2 þ a2ðδij þ ~hijÞdxidxj�; ðA18Þ

where ~hij is two times hij in (3.3) and is introduced here for
simplicity. We decompose the metric (and other tensors
below) as gij ¼ ḡij þ δgij þ δ2gij, with ḡij ¼ a2δij,

δgij ¼ a2 ~hij, δ2gij ¼ 0. Then, ḡij ¼ a−2δij, δgij ¼ −a2 ~hij,
δ2gij ¼ ~hik ~hjk. The indices of ~hij are raised and lowered by
δij. The nonvanishing components of the Christoffel
symbol are

Γ̄0
00 ¼ H; Γ̄0

ij ¼ Hδij; δΓ0
ij ¼

1

2
ð ~h0ij þ 2H ~hijÞ;

ðA19Þ

Γ̄i
j0 ¼ Hδij; δΓi

j0 ¼
1

2
~hi
0
j ; δ2Γi

j0 ¼ −
1

2
~hik ~h0kj;

ðA20Þ

δΓi
jk ¼

1

2
ð ~hij;k þ ~hik;j − ~hjk;iÞ;

δ2Γi
jk ¼

1

2
~hilð ~hlj;k þ ~hlk;j − ~hjk;lÞ: ðA21Þ

The components of the Ricci tensor are

δ2R00 ¼
1

2
~hij ~h00ij þ

1

4
~hij
0 ~h0ij þ

1

2
H ~hij ~h0ij; ðA22Þ

δ2Ri0 ¼
1

4
~hjk

0 ~hjk;i þ
1

2
~hjk ~h0jk;i −

1

2
~hjk ~h0ij;k; ðA23Þ

R̄ij ¼ ðH0 þ 2H2Þδij; ðA24Þ

δRij ¼
1

2
~h00ij þH ~h0ij þ ðH0 þ 2H2Þ ~hij −

1

2
Δ ~hij; ðA25Þ

δ2Rij ¼ −
H
2
~hkl ~h0klδij −

1

2
~hk
0
i
~h0kj

þ 1

2
~hklð ~hij;kl − ~hik;jl − ~hjk;ilÞ þ

1

2
~hkl ~hkl;ij

þ 1

4
~hkl;i ~hkl;j þ

1

2
~hk;li

~hjk;l −
1

2
~hk;li

~hjl;k: ðA26Þ

The components of the Ricci tensor with mixed indices are
given by

δ2R0
0 ¼ −a−2δ2R00; δ2R0

i ¼ −a−2δ2R0i; ðA27Þ

δ2Ri
j ¼ δ2gikR̄kj þ δgikδRkj þ a−2δ2Rij: ðA28Þ

The Ricci scalar can be written as

δ2R ¼ −a−2δ2R00 þ a−2δ2Rii þ δgijδRij þ δ2gijR̄ij;

ðA29Þ

which leads to

a2δ2R ¼ − ~hij ~h00ij −
3

4
~hij
0 ~h00ij − 3H ~hij ~h00ij þ ~hijΔ ~hij

þ 3

4
~hij;k ~hij;k −

1

2
~hij;k ~hik;j: ðA30Þ

The components of the Einstein tensor are

−
a2

2
δ2G0

0 ¼ S1; ðA31Þ

δ2Gi
0 ¼ −δ2G0

i ¼ a−2δ2Ri0 ¼
2Si
a2

; ðA32Þ

a2δ2Gi
j ¼ a2ðδ2gikR̄kj þ δgikδRkj þ a−2δ2RijÞ
¼ 2S3δij þ 2Sij: ðA33Þ

Eqs. (A13) and (A31) recover (3.8) (see footnote 16). Also,
Eqs. (A14) and (A32) recover (3.9).18 Let us decompose Sij
as Sij ¼ S4δij þ S5;ij þ � � �, where � � � is to contain vector
and tensor parts, which are irrelevant here. From this, we
find ΔSii ¼ 3ΔS4 þ Δ2S5 and Sij;ij ¼ ΔS4 þ Δ2S5, which
lead to (3.15) and (3.16). Then we find (3.10) and (3.11)
from (A16), (A17) and (A33).
The second-order parts of the divergence of the energy

momentum tensor are

δ2Tμ
ν;μ ¼ δ2Γμ

μλT̄
λ
ν − δ2Γλ

μνT̄
μ
λ ; ðA34Þ

which is nonzero when ν ¼ 0:

17One can also confirm that, dropping the source terms
originating from tensor perturbations, Eqs. (3.8)–(3.11), (3.21)
and (3.22) reduce to Eqs. (A.98)–(A.103) of [69].

18The indices “0” indicate t in the previous subsection, while
those indicate the conformal time η in this subsection, and they
are related by Gt

i ¼ aGη
i .
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δ2Tμ
0;μ ¼ 2ðρþ pÞhijh0ij: ðA35Þ

The negative of this gives the source term of (3.21).

APPENDIX B: DERIVATION OF THE SOURCE
TERM IN FOURIER SPACE

In this appendix we derive (3.43) and (3.44). First, note
that the Fourier components of hijhij can be expressed as

ðhijhijÞðη; kÞ ¼
Z

d3k0

ð2πÞ3=2
X
rs

hrðk0Þhsðk − k0Þ

×Dðη; k0ÞEij
rsijðk; k0ÞDðη; jk − k0jÞ: ðB1Þ

Similarly, the source can be written as

Sðη; kÞ ¼
Z

d3k0

ð2πÞ3=2
X
rs

hrðk0Þhsðk − k0Þ

×Dðη; k0Þð� � �ÞDðη; jk − k0jÞ: ðB2Þ

In the following, let us consider the contribution of each
term in (3.26) to ð� � �Þ of the above expression. The
contribution of the term ∂jhik∂khij ¼ ∂j∂kðhikhijÞ in
(3.12) to ð� � �Þ, indicated after the arrow in the equation
below (the arrows elsewhere should be understood sim-
ilarly), is

∂jhik∂khij ¼ ∂j∂kðhikhijÞ → −k2Ers
1 : ðB3Þ

Similarly,

∂khij∂khij ¼ 1

2
∂k∂kðhijhijÞ − ðΔhijÞhij

→ −
1

2
k2Ers

2 þ k02Ers
2 : ðB4Þ

So the contribution of S1 is

S1 →

�
−
1

4
∂η
 ∂η þ ∂2

η −
3

8
k2 þ 3

4
k02

�
Ers
2 þ

k2

2
Ers
1 ;

ðB5Þ

where ∂η
 

is supposed to differentiate only Dðη; k0Þ of
Eq. (B2) in the left. Likewise, the contribution of S3 is

S3 →

�
3

4
∂η
 ∂η þ

3

8
k2 −

3

4
k02

�
Ers
2 −

k2

2
Ers
1 : ðB6Þ

To obtain the contribution of k̂ik̂jSij, let us rewrite Sij as
follows:

Sij ¼ −hik
0
h0jk þ ∂k∂lðhklhijÞ

− ∂lðhkl∂ihjkÞ − ði ↔ jÞ − ∂k∂lðhjlhikÞ

þ ∂lhjk∂lhik þ
1

2
∂i∂jðhklhklÞ −

1

2
∂ihkl∂jhkl: ðB7Þ

Then, the contribution is

Sijk̂
ik̂j → −∂η

 ∂ηEi
k
jkk̂

ik̂j − kkklEkl
ijk̂

ik̂j

þ 2klðki − k0iÞEkl
jkk̂

ik̂j þ kkklEjli
kk̂ik̂j

− k0lðkl − k0lÞEjki
kk̂ik̂j −

1

2
kikjk̂

ik̂jEkl
kl

þ 1

2
k0iðkj − k0jÞEkl

klk̂
ik̂j

¼ ð−∂η
 ∂η þ 2k2 − 3kk0μþ k02ÞErs

1

þ 1

2
ðk0μðk − k0μÞ − k2ÞErs

2 : ðB8Þ

The collection of all the contributions yields

S →

�
∂η
 ∂η −

1

2
ð3 − c2s Þk2 þ 3kk0μ − k02

	
Ers
1

þ
�
−
1

4
ð3þ c2s Þ∂η

 ∂η þ c2s∂2
η þ 2c2sH∂η þ

1

8
ð1 − 3c2s Þk2 −

1

2
k0μðk − k0μÞ þ 3

4
ð1þ c2s Þk02

	
Ers
2 ; ðB9Þ

from which (3.43) and (3.44) can be read off.

APPENDIX C: PDF OF INDUCED RADIATION DENSITY PERTUBATIONS

In this paper a delta-function-type tensor spectrum is assumed [see (3.47)], but since it cannot be treated in numerical
calculations adopting discretization in Fourier space, the power spectrum is instead approximated by the following top-hat
spectrum here

PhðkÞ ¼ A2ϵ−1


kp
h
1 −

ϵ

2

i
< k < kp

h
1þ ϵ

2

i�
; 0 ðotherwiseÞ: ðC1Þ
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In this appendix, we set A ¼ 1, and ϵ is chosen to be
sufficiently small, as presented shortly.
Let us decompose the Fourier components of hrðkÞ as

follows:

hrðkÞ ¼ arðkÞ þ ibrðkÞ; ðC2Þ

where ar and br are real Gaussian random variables
satisfying

aþð−kÞ ¼ aþðkÞ; bþð−kÞ ¼ −bþðkÞ;
a×ð−kÞ ¼ −a×ðkÞ; b×ð−kÞ ¼ b×ðkÞ ðC3Þ
to ensure the reality of hijðη; xÞ [note that e×ijð−kÞ ¼
−e×ijðkÞ as well as eþijð−kÞ ¼ eþijðkÞ following the
definitions of the polarization tensors we adopt]. We
consider a spherical shell in the Fourier space whose
radius is kp and whose thickness is ϵkp, as is depicted in
Fig. 6. Let us denote the grid points in this spherical
shell by ki, where i is a natural number. Each of these
grid points is associated with two complex numbers
hrðkiÞ¼arðkiÞþ ibrðkiÞ;ðr¼þ;×Þ (satisfying hþð−kiÞ¼
hþðkiÞ�;h×ð−kiÞ¼−h×ðkiÞ�), where the dispersion of
both ar and br is

σ2 ¼ π2

k3p
dk−3ϵ−1; ðC4Þ

with dk denoting the interval between two neighboring grid
points in the Fourier space. Then, from(3.48), δrðη; x ¼ 0; RÞ
for a specific realization of fhrðkiÞg is calculated by

δrðη; x ¼ 0; RÞ ¼ 1þ c2s
c2sH

ðdkÞ6
ð2πÞ3

�X
r;s

X
ki;kj∈S

Wðjki þ kjjRÞhrðkiÞhsðkjÞFrsðη; ki þ kj; kiÞ
	
; ðC5Þ

where S denotes the set comprised of the grid points inside the spherical shell. As mentioned in the main text, we set
η ¼ R ¼ ð0.7kpÞ−1. When one is interested in the power spectrum, (3.40) and (3.41) can be used due to isotropy, but in
simulations their components, including nonzero cross terms, for each combination of wave vectors have to be explicitly
calculated using

eþijðk̂Þ ¼

0
B@

1 0 0

0 −1 0

0 0 0

1
CAðjk̂3j ¼ 1Þ;

0
BBB@

k̂23−k̂
4
3−k̂

2
2ð1þk̂23Þ

−1þk̂23
k̂1k̂2ð1þk̂23Þ
−1þk̂23

k̂1k̂3

k̂1k̂2ð1þk̂23Þ
−1þk̂23

−1þk̂23þk̂22ð1þk̂23Þ
−1þk̂23

k̂2k̂3

k̂1k̂3 k̂2k̂3 −1þ k̂23

1
CCCAðjk̂3j ≠ 1Þ; ðC6Þ

e×ijðk̂Þ ¼ �

0
B@

0 1 0

1 0 0

0 0 0

1
CAðk̂3 ¼ �1Þ;

0
BBB@

− 2k̂1k̂2k̂3
−1þk̂23

− k̂3ð−1þ2k̂22þk̂23Þ
−1þk̂23

−k̂2

− k̂3ð−1þ2k̂22þk̂23Þ
−1þk̂23

2k̂1k̂2k̂3
−1þk̂23

k̂1

−k̂2 k̂1 0

1
CCCAðjk̂3j ≠ 1Þ: ðC7Þ

Using some of its symmetry properties, (C5) can be simplified as follows. Let us denote by S=2 the set of the grid points
inside the upper half of the spherical shell. More precisely, the set S=2 is made up of the grid points fkig in the spherical
shell with ðkiÞz > 0, those with ðkiÞz ¼ 0 and ðkiÞy > 0, and also those with ðkiÞz ¼ ðkiÞy ¼ 0 and ðkiÞx > 0. Then, the
inside of the brace of (C5) can be rewritten as

FIG. 6. An illustration of the spherical shell in the Fourier space
considered in this appendix.
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X
r;s

X
ki;kj∈S=2

½Wðjki þ kjjÞfhrðkiÞhsðkjÞFrsðη; ki þ kj; kiÞ þ hrð−kiÞhsð−kjÞFrsðη;−ki − kj;−kiÞg

þWðjki − kjjÞfhrð−kiÞhsðkjÞFrsðη;−ki þ kj;−kiÞ þ hrðkiÞhsð−kjÞFrsðη; ki − kj; kiÞg�
¼

X
r;s

X
ki;kj∈S=2

½Wðjki þ kjjÞfhrðkiÞhsðkjÞ þ hrðkiÞ�hsðkjÞ�gFrsðη; ki þ kj; kiÞ

þWðjki − kjjÞϵsfhrðkiÞ�hsðkjÞ þ hrðkiÞhsðkjÞ�gFrsðη; ki − kj; kiÞ�
¼

X
r;s

X
ki;kj∈S=2

½2Wðjki þ kjjÞfarðkiÞasðkjÞ − brðkiÞbsðkjÞgFrsðη; ki þ kj; kiÞ

þ 2ϵsWðjki − kjjÞfarðkiÞasðkjÞ þ brðkiÞbsðkjÞgFrsðη; ki − kj; kiÞ�; ðC8Þ

where we have used hrð−kiÞ ¼ ϵrhrðkiÞ�ðϵþ ¼ 1; ϵ× − 1Þ and Frsðη;−k;−k0Þ ¼ ϵrϵsFrsðη; k; k0Þ. This has explicitly
proven that δr is real, as it should. Let us label the grid points in S=2 by 1; 2;…; N, then introducing

at ¼ σ−1ðaþðk1Þ; aþðk2Þ;…; aþðkNÞ; a×ðk1Þ; a×ðk2Þ;…; a×ðkNÞÞ; ðC9Þ

bt ¼ σ−1ðbþðk1Þ; bþðk2Þ;…; bþðkNÞ; b×ðk1Þ; b×ðk2Þ;…; b×ðkNÞÞ; ðC10Þ

and using (C8) we can rewrite (C5) as

δrðη;x¼ 0;RÞ ¼ 1þ c2s
c2sH

dk3

8πϵk3p
fatMaaþ btMbbg; ðC11Þ

where

Ma ≡
�
Maþþ Maþ×
Ma

×þ Ma
××

�
; Mb ≡

�
Mbþþ Mbþ×
Mb

×þ Mb
××

�
;

ðC12Þ

ðMa
rsÞij ¼ ðM1

rsÞij þ ðM2
rsÞij; ðC13Þ

ðMb
rsÞij ¼ −ðM1

rsÞij þ ðM2
rsÞij; ðC14Þ

ðM1
rsÞij ¼ 2Wðjki þ kjjÞFrsðη; ki þ kj; kiÞ; ðC15Þ

ðM2
rsÞij ¼ 2ϵsWðjki − kjjÞFrsðη; ki − kj; kiÞ: ðC16Þ

Noting Frsðη; ki þ kj; kiÞ ¼ Fsrðη; kj þ ki; kjÞ and
ϵsFrsðη; ki − kj; kiÞ ¼ ϵrFsrðη; kj − ki; kjÞ, one can con-
firm that Ma and Mb are symmetric matrices. So by
diagonalizingMa andMb (C11) can be further rewritten as

δr ¼ a0
X2N
i¼1

aix2i ; ðC17Þ

where x1; x2; � � � are independent Gaussian random varia-
bles whose dispersion is unity and

0 < a0; 1 ¼ ja1j > ja2j > � � � > ja4N j: ðC18Þ

Its average and dispersion are

hδri ¼ a0
X2N
i¼1

ai; ðC19Þ

σ2 ¼ hδ2ri − hδri2

¼ a20

�X2N
i¼1

a2i hx4i i þ
X
i≠j

aiaj −
X2N
i¼1

a2i −
X
i≠j

aiaj

�

¼ 2a20
X2N
i¼1

a2i : ðC20Þ

These can also be calculated from Eqs. (4.6) and (4.7). For
η ¼ ð0.7kpÞ−1, hδri≃ −0.69 and σ ≃ 1.03, and these
values have also been obtained in the numerical compu-
tations [see (C22) below], which serves as a crosscheck. We
chose ϵ ¼ 0.05 and dk ¼ ϵkp. In this case,N turns out to be
2517, but interestingly more than 95% of δr is determined
by only the first 24 terms with the rest negligible, namely,

P
24
i¼1 jaijP
2N
i¼1 jaij

≃ 0.98: ðC21Þ

Consequently, in deriving the PDF of δr one can focus only
on them, safely neglecting the rest, which greatly simplifies
the analysis. We found

hδri≃ −0.69; σ≃ 1.0; a0 ≃ 0.30; a1–5 ≃−1.0;

a6–10 ≃ 0.46; a11–17 ≃ 0.11; a18–24 ≃−0.078:

ðC22Þ
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We have also calculated the coefficients for ϵ ¼ 0.1,
dk ¼ ϵkp and also for ϵ ¼ 0.1,dk ¼ 2ϵkp=3, and the results
coincided with the above well. Hence we can conclude that
the above choices of ϵ ¼ 0.05 and dk ¼ ϵkp are sufficiently
small to obtain reliable results.
We are in a position to discuss the PDF of δr using the

coefficients of (C22). First one can resort to a brute-force
method of a Monte Carlo simulation to obtain the PDF of
δr, by simply generating 24 random Gaussian variables
with dispersion unity, x1; x2;…; x24, and summing up the
square of them with the coefficients above. We have
generated fxig a million times to obtain the PDF of δr,
shown in Fig. 3. In this appendix A is set to unity, and so
what is shown there is the PDF of ~δr ≡ ðδr − hδriÞ=A2.
We adopt the Clopper-Pearson interval [83] to obtain the

95% confidence interval pL<p<pU of the probability p of
δr being realized in some interval ðδr � dδrÞ, when δr in that
range is realized k times in N trials, as follows. First, the
number of an event with probability p realized in N trials
follows a Binomial distribution: Pðk;pÞ¼NCkp

kð1−pÞN−k.
Let us introduce α¼1−C, C ¼ 0.95. From the meaning of
the confidence interval, the probability of the event being
realized less than k times when p ¼ pU is α=2:

Xk
i¼0

Pði;pUÞ ¼ Ið1 − pU;N − k; 1þ kÞ

¼ 1 − IðpU; 1þ k; N − kÞ ¼ α

2
; ðC23Þ

where Iðx; a; bÞ is the regularized beta function and the
relation Iðx; a; bÞ ¼ Ið1 − x; b; aÞ has been used. From this,

pU can be expressed by the inverse I−1 of the regularized
beta function as

pU ¼ I−1
�
1 −

α

2
; 1þ k; N − k

�
: ðC24Þ

Similarly, the probability of the event being realized more
than k times when p ¼ pL is α=2:

XN
i¼k

Pði;pLÞ ¼ 1 − Ið1 − pL; N − kþ 1; kÞ

¼ IðpL; k; N − kþ 1Þ ¼ α

2
; ðC25Þ

which leads to

pL ¼ I−1
�
α

2
; k; N − kþ 1

�
: ðC26Þ

The error bars in Fig. 3 are obtained from (C24) and (C26).
Finally let us discuss an approximate formula for the

PDF. Noting that the first ten terms of (C17) give dominant
contributions, we begin by deriving the PDF of Z ¼
−XþcY, where X and Y are both random variables follow-
ing the chi-squared distribution with n degrees of freedom
and c is a positive constant. The PDF of both X and Y is

P1ðn;XÞ ¼
ð1=2Þn=2
Γðn=2Þ X

n=2−1e−X=2: ðC27Þ

Then the PDF of Z is

P2ðn; c;ZÞ ¼ N1

Z
∞

0

dX
Z

∞

0

dYδðZ þ X − cYÞP1ðn;XÞP1ðn;YÞ

¼ N1ð1=2Þn
Γðn=2Þ2 e−

Z
2c

�
1

c

�n
2
−1 Z ∞

maxf0;−Zg
dXX

n
2
−1e−

X
2ðZ þ XÞn2−1e−X

2c

¼ N1ffiffiffiffiffiffiffiffiffiffi
2π2n
p

Γðn=2Þ c
1−n=2 exp

�
−
1 − c
4c

Z

��
cjZj
1þ c

�ðn−1Þ=2
Kðn−1Þ=2

�
1þ c
4c
jZj

�
; ðC28Þ

where N1 is a normalization factor and KmðxÞ is the
modified Bessel function of second kind. In deriving the
PDF of δr, one may simply replace the terms 11 ≤ i in
(C17) by their expectation values E ≡ 7a11 þ 7a18 since
they are relatively unimportant, and then finally

Pð~δrÞ≃ P2

�
5; a6;

~δr þ hδri=A2

a0
− E

�
: ðC29Þ

Interestingly, this approximates the PDF inferred from the
MonteCarlo simulationmentioned aboveoverall fairlywell,
as is shown in Fig. 3. In more detail, this formula slightly

deviates from the simulated points around ~δr ∼ 0, presum-
ably because the terms 11 ≤ i, simply replaced by their
expectationvalues to obtain the above approximate formula,
are relatively important there.On theother hand, this formula
is better for j~δrj≳ 2, which is probably because the prob-
ability of these relatively rare events ismostly determined by
the first ten terms,with the rest of the terms lying around their
expectation values. Since the probability of PBH formation
has to be extremely rare, what matters is only the tail of the
PDF, and thereforewe can safely use the above approximate
formula to calculate the PBHs’ abundance and place upper
bounds on tensor perturbations from their absence.
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