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I. INTRODUCTION

Most studies of the CMB that use all the relevant physics
to first order in the cosmological perturbations, i.e. by
solving the first order Einstein-Boltzmann equations, limit
themselves to working exclusively in harmonic space, in
order to directly compute the power spectra, e.g. [1]. In real
space, we have the Sachs-Wolfe formula for CMB temper-
ature anisotropies, which was derived assuming instanta-
neous recombination [2]. Although there is an ad hoc way
to take the finite duration of recombination into account,
e.g. [3,4], the resulting formula is not exact, as it’s missing a
term, which has been known for some time (at least for
scalar modes) from harmonic space computations, e.g. the
seminal work of [5]. Studying maps of CMB fluctuations is
desirable when one is interested in looking for localized
features, which are not readily identifiable in power spectra.
In [6], the full real space temperature equation was used to
compute CMB temperature maps seeded by a network of
cosmic strings. Here, I will present the proof of this formula
as well as derive those for polarization.

II. THE BOLTZMANN EQUATION

Wewant to find real solutions to the first order Boltzmann
equation for the Stokes parameters I, Q and U, which,
following [7] we normalize in the following manner:0
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where ργ is the photon energy density and η is the conformal
time. The equations are then

∂ΔI

∂η þ n̂ · ∇ΔI þ 2n̂in̂j
∂hij
∂η ¼ _τð ~ΔI − ΔI þ 4n̂ · vbÞ;

∂ΔQ;U

∂η þ n̂ ·∇ΔQ;U ¼ _τð ~ΔQ;U − ΔQ;UÞ; ð2Þ

where n̂ is the direction of photon propagation, _τ is the
differential Thompson cross section, vb and hij are the

baryonvelocity andmetric perturbations in the synchronous
gauge and
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are the scattering terms. For the detailed form of the
scattering matrix M, the reader is referred to [7] or [4];
its derivation can be found in the classic monograph [8].
Going to Fourier space, the equations become

_ΔI þ ikμΔI þ 2_hijn̂in̂j ¼ _τð ~ΔI − ðΔI − 4n̂ · vbÞÞ;
_ΔQ;U þ ikμΔQ;U ¼ _τð ~ΔQ;U − ΔQ;UÞ; ð4Þ

where μ ¼ cos θ ¼ n̂ · k̂. These can then be formally
integrated to yield

ΔI ¼
Z

dηe−ikμðη0−ηÞe−τð_τð ~ΔI þ 4n̂ · vbÞ − 2_hijn̂in̂jÞ;

ΔQ;U ¼
Z

dηe−ikμðη0−ηÞe−τ _τ ~ΔQ;U: ð5Þ

To evaluate the scattering term, we split the ΔI;Q;U into
scalar, vector and tensor components, and factor out the
dependence on the azimuthal angle φ, which is defined with
respect to an arbitrary basis for the plane normal to k̂, ê1 and
ê2 that obey ê1 × ê2 ¼ k̂, such that ê1 · n̂ ¼ sin θ cosφ and
ê2 · n̂ ¼ sin θ sinφ:

ΔI ¼ ΔS
I − ið1 − μ2Þ12ðΔV1

I cosφþ ΔV2
I sinφÞ

þ ð1 − μ2ÞðΔTþ
I cos 2φþ ΔT×

I sin 2φÞ;
ΔQ ¼ ΔS

Q þ μð1 − μ2Þ12ðΔV1
Q cosφþ ΔV2

Q sinφÞ
þ ð1þ μ2ÞðΔTþ

Q cos 2φþ ΔT×
Q sin 2φÞ;

ΔU ¼ ð1 − μ2Þ12ð−ΔV1
U sinφþ ΔV2

U cosφÞ
þ 2μð−ΔTþ
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We then expand the components into Legendre polynomials
ΔðμÞ ¼ P

lð−iÞlð2lþ 1ÞΔlPlðμÞ. Performing the inte-
gral (3), we obtain

~ΔI ¼ ΔS
I0 −

1

4
ð3μ2 − 1ÞΠS

þ μð1 − μ2Þ12ðΠV1 cosφþ ΠV2 sinφÞ
− ð1 − μ2ÞðΠTþ cos 2φþ ΠT× sin 2φÞ;

~ΔQ ¼ 3

2
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þ ð1þ μ2ÞðΠTþ cos 2φþ ΠT× sin 2φÞ;
~ΔU ¼ ð1 − μ2Þ12ðΠV1 sinφ − ΠV2 cosφÞ

þ ð2μÞðΠTþ sin 2φ − ΠT× cos 2φÞ; ð7Þ

with the components ΠS;V;T defined as in Ref. [4]:
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By introducing the traceless tensor

Πij ¼
3
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þ ΠTþðê1iê2j þ ê2iê1jÞ þ ΠT×ðê1iê1j − ê2iê2jÞ; ð9Þ

which I call the polarization tensor [9], and the vectors

û ¼ −
k̂ − μn̂
sin θ

; v̂ ¼ k̂ × n̂
sin θ

; ð10Þ

which form an orthonormal basis for the polarization plane
(i.e. normal to n̂), such that û lies in the n̂ − k̂ plane, we can
simplify the equations for the scattering terms:
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1
CA: ð11Þ

Note that the triad n̂, û and v̂ corresponds to the standard
spherical coordinate unit vectors r̂, θ̂ and φ̂ with k̂ as the
z-axis. Having determined the form of the scattering terms,
we can now derive the real space formulas for the Stokes
parameters.

III. CMB TEMPERATURE AND POLARIZATION

From the intensity part of Eqs. (5) and (11), the CMB
temperature formula can immediately be obtained by
Fourier transforming back to real space and using ΔT=T ¼
ΔI=4 and δγ ¼ ΔI0:
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This equation for the temperature fluctuations is essentially
the Sachs-Wolfe formula modified to take into account the
finite duration of decoupling with an added polarization
term, 1

4
n̂in̂jΠij. Note that we have changed the sign of n̂, to

change the perspective from photon propagation direction
to line of sight.
For Q and U, it is not as simple as, unlike I, they are not

invariant under rotations; they are transformed as

Δ0
Q ¼ ΔQ cosð2ϑÞ þ ΔU sinð2ϑÞ;

Δ0
U ¼ −ΔQ sinð2ϑÞ þ ΔU cosð2ϑÞ; ð13Þ

when rotated by ϑ about n̂. Since at each point in Fourier
space, the coordinate system defined by θ and φ (or
equivalently û and v̂) has a different orientation, we need
to rotate by ξ about n̂ (see Fig. 1), in order for the
contribution from each Fourier mode to Q and U to have
the same orientation in the laboratory frame before being
integrated over. Using the laws of sines and cosines for
spherical triangles, we obtain the following relations for ξ:

FIG. 1. Angle definitions.
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sin ξ
sin θk

¼ sinðφk − φnÞ
sin θ

¼ sinφ
sin θn

;

cos θk ¼ μ cos θn þ sin θ sin θn cos ξ; ð14Þ

where θk and φk are the polar and azimuthal angles that
define k̂ in spherical coordinates in the laboratory frame
and, similarly, θn and φn are the polar and azimuthal
angles that define n̂. This allows us to write the equation
for ΔQ as

ΔQ ¼
Z

dηe−ikμðη0−ηÞe−τ _τΠijððûiûj − v̂iv̂jÞ cos 2ξ

þ ðûiv̂j þ v̂iûjÞ sin 2ξÞ; ð15Þ
with the equation for ΔU being the same except cos 2ξ is
replaced by − sin 2ξ and sin 2ξ by cos 2ξ. It follows from
above that the angle of rotation between the bases (û, v̂) and
(θ̂, φ̂), the latter defined in the usual way,

θ̂ ¼ ðcos θn cosφn; cos θn sinφn;− sin θnÞ;
φ̂ ¼ ð− sinφn; cosφn; 0Þ; ð16Þ

is ξ. This can also be verified by taking the dot products of
the two bases and using the equations (14). Explicitly, we
then have

û ¼ θ̂ cos ξ − φ̂ sin ξ;

v̂ ¼ θ̂ sin ξþ φ̂ cos ξ; ð17Þ
from which we obtain

θ̂iθ̂j − φ̂iφ̂j ¼ ðûiûj − v̂iv̂jÞ cos2ξþ ðûiv̂j þ v̂iûjÞ sin2ξ;
θ̂iφ̂j þ φ̂iθ̂j ¼ −ðûiûj − v̂iv̂jÞ sin2ξþ ðûiv̂j þ v̂iûjÞ cos2ξ;

ð18Þ
which in turn enables us to Fourier transform the equations
for ΔQ and ΔU:

ΔQðn̂Þ ¼
Z

dηe−τ _τΠijðθ̂iθ̂j − φ̂iφ̂jÞ;

ΔUðn̂Þ ¼
Z

dηe−τ _τΠijðθ̂iφ̂j þ φ̂iθ̂jÞ: ð19Þ

The above equations for the polarization along the line of
sight (19), together with the modified temperature equa-
tion (12) are the desired results. Of course, the equations do
not contain new physics, because, as mentioned earlier, it is
included in Einstein-Boltzmann solvers that directly com-
pute CMB power spectra such as CMBFAST [1] but, unlike
harmonic space formulas, their form gives us a clear view
of the phenomena producing CMB temperature anisotro-
pies and polarization along the line of sight. Given a 3D
Einstein-Boltzmann solver to evolve the cosmological
perturbations such as the Landriau-Shellard code [4], they
also allow us to compute CMB maps from the recombi-
nation epoch onwards, by ray tracing through the simu-
lation box. In particular, they can be used in the case where
they are seeded by cosmic strings [6,10], which allows one
to search for stringlike features in the CMB maps.

IV. CONCLUSION

I have derived real space formulas for the CMB temper-
ature anisotropies and polarization that contain all the
relevant physics to first order in the cosmological pertur-
bations. These are equivalent to the harmonic space
formulas found in the literature and furthermore, allow
the direct computation of maps of the CMB polarization
and temperature from the recombination epoch onwards
when the perturbations are evolved in three-dimensional
simulations. This allows one to study localized features in
the maps that are not identifiable in the power spectra.
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