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An important observable signature of a detectable nontrivial spatial topology of the Universe is the
presence in the cosmic microwave background sky of pairs of matching circles with the same
distributions of temperature fluctuations—the so-called circles in the sky. Most of the recent attempts to
find these circles, including the ones undertaken by the Planck Collaboration, were restricted to
antipodal or nearly antipodal circles with radii λ ≥ 15°. In the most general search, pairs of circles with
deviation from antipodality angles 0° ≤ θ ≤ 169° and radii 10° ≤ λ ≤ 90° were investigated. No
statistically significant pairs of matching circles were found in the searches so far undertaken.
Assuming that the negative result of general search can be confirmed through analysis made with data
from Planck and future cosmic microwave background experiments, we examine the question as to
whether there are nearly flat universes with compact topology, satisfying Planck constraints on
cosmological parameters, that would give rise to circles in the sky whose observable parameters λ and θ
fall outside the parameter ranges covered by this general search. We derive the expressions for the
deviation from antipodality and for the radius of the circles associated to a pair of elements (γ, γ−1) of
the holonomy group Γ which define the spatial section of any positively curved universe with a
nontrivial compact topology. We show that there is a critical position that maximizes the deviation from
antipodality and prove that, no matter how nearly flat the Universe is, it can always have a nontrivial
spatial topology that gives rise to circles whose deviation from antipodality θ is larger than 169° and
whose radii of the circles λ are smaller than 10° for some observers’s positions. This makes it apparent
that slightly positively curved nearly flat universes with cosmological parameters within Planck bounds
can be endowed with a nontrivial spatial topology with values of the observable parameters λ and θ
outside the ranges covered by the searches for circles carried out so far with either WMAP or Planck
data. Thus, these circles-in-the-sky searches carried out so far are not sufficient to exclude the
possibility of a universe with a detectable nontrivial cosmic topology. We present concrete examples of
lens spaces universes whose associated circles have both, or at least one, value of the observable
parameters (λ, θ) outside the ranges covered by these searches. We also present a brief discussion of the
implications of our results in view of unavoidable practical limits of the circles-in-the-sky method.
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I. INTRODUCTION

Two fundamental problems regarding the Friedmann-
Lemaître-Robertson-Walker (FLRW) approach to cosmo-
logical modeling concern the spatial geometry and
topology. Regarding the geometry, recent high-precision
cosmic microwave background (CMB) data from Planck
have provided strong evidence that the universe is nearly
flat with jΩkj < 0.005 [1], which is consistent with
standard inflationary predictions that curvature should be
unobservably small today. Concerning the topology,
despite our present-day inability to predict it from a
fundamental theory, one should be able to probe it through
CMB observations (see, e.g., the reviews in [2]).

An observable signature of a detectable nontrivial spatial
topology is the presence in the CMB sky of pairs of
matching correlated circles with equal distributions (up to a
phase) of temperature fluctuations—patterns of hot and
cold spots that match around the so-called circles in the
sky [3].
Each such pair of circles on the CMB sphere can be

specified as a point in six-dimensional parameter space,
namely, the center of each circle of the pair (four param-
eters), the angular radius of both circles (one parameter),
and the relative phase between them (one parameter). Since
such a general search for pairs of circles is very costly in
computer time, most of recent searches, including the ones
undertaken by the Planck team [4,5], were restricted to
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back-to-back circle pairs1 [6–13] or nearly antipodal circles
[6]. No pairs of matching circles were found through these
searches. This negative result, along with the fact that in a
very nearly flat (jΩkj≲ 10−5) compact universe the
deviation from antipodality is small for most observers
[14,15], has been taken to be sufficient to exclude a
detectable nontrivial topology for most observers [15].
However, since the deviation from antipodality in compact
orientable exactly flat (jΩkj ¼ 0) universes can be larger
than 10 deg [16], if the Universe is in fact flat, then these
restricted searches for antipodal or nearly antipodal circles
would not be sufficient to rule out the possibility of a
nontrivial flat topology [16].
Although the six-dimensional parameter space can be

used to statistically extract potential matching circles from
CMB maps, it is not well adapted to study the relation
between observable parameters of the circles and the spatial
topology. In fact, while the circle radii and their relative
phases are observable parameters directly linked to the
topology, the positions of the circle centers depend on the
choice of the coordinates and are related to the topology
through the separation angle of circle centers Θ, or
equivalently its supplement θ, which gives the deviation
from antipodality. Thus, a more convenient set of param-
eters for studying the interrelations between matching
circles and the spatial topology includes these observable
parameters directly linked to the topology, namely, the
deviation from antipodiciy, θ; the relative phase angle, ϕ;
and the angular radii of the circles λ.
A more general search for circle pairs that are not back to

back has been carried out by Vaudrevange et al. [17] using
Wilkinson Microwave Anisotropy Probe (WMAP) 7-years
data [18]. No statistically significant pairs of matching
circles were found. They have employed the circles-in-the-
sky statistics to search for pairs of circles with radii 10° ≤
λ ≤ 90° and integer separation angles of the circle centers
11° ≤ Θ ≤ 180°, extending the existing lower bounds on
these parameters so as to encompass a wider range of
possible topologies. Thus, for example, the negative result
of this search, if confirmed, along with the maximal values
of the deviation from antipodality, θmax, associated to the
shortest geodesics in multiply connected orientable flat
manifolds [16], are sufficient to rule out the possibility of a
detectable nontrivial orientable flat cosmic topology whose
associated circle radii, λ, are greater than 10 deg.2

Assuming that the negative result of the general search of
Ref. [17] can be confirmed through a similar analysis made
with data from Planck and future CMB experiments, an
important remaining question that naturally arises here is

whether there still are nearly flat, but not exactly flat,
universes with compact topology that would give rise to
circles in the sky whose observable parameters λ and θ
would fall outside the parameter ranges covered by this
more general search.
Our primary objective in this paper is to address this

question by considering nearly flat universes whose spatial
sectionM is a slightly positively curved space (Ωk ≲ 0), the
cosmological parameters of which are within the bounds
determined by Planck data [1], and endowed with a
spherical orientable nontrivial topology. To this end, we
first derive the analytic expressions for the deviation from
antipodality and for the radius of the circles of any pair that
arises from a general pair of elements (γ, γ−1) of the
holonomy group Γ used to form any quotient multiply
connected spherical spaces S3=Γ. Second, for an arbitrary
pair (γ, γ−1) of holonomies, we derive an expression that
gives the observer’s position in which the deviation from
antipodality attains its maximum. Third, we then show that
no matter how nearly flat the Universe is it can always have
a nontrivial topology that gives rise to an observable pair of
matching circles whose deviation from antipodality θ is
larger than 169° (or Θ < 11°) and with radii λ smaller than
10° for some observers. Therefore with the observable
parameters (θ, λ) outside ranges covered by this general
search [17], making clear that the circles in the sky searches
already undertaken are not sufficient to exclude the pos-
sibility of a detectable nontrivial topology for the Universe.
Finally, by taking into account the recent bounds on the
cosmological parameters by the Planck Collaboration [1],
which constrain the distance to the last scattering surface
χLSS, we concretely show examples of a number of lens
spaces universes whose associated circles are such that the
value of at least one of the observable parameters (λ, θ), or
both, falls outside the range covered by the searches so far
undertaken. These examples make apparent that it is
possible to have a universe with a detectable nontrivial
cosmic topology that respects Planck constraints on the
cosmological parameters and have not been excluded by the
searches for circle in the sky carried out so far.
The structure of the paper is as follows. In Sec. II, we

give a brief account of the prerequisites necessary for the
following sections. In Sec. III, we derive the expression for
deviation from antipodality and for the radius of the circles
associated to a pair of elements (γ, γ−1) ∈ Γ used to form
the spatial sections of multiply connected universes S3=Γ.
In Sec. IV, we show that, no matter how small the value for
χLSS is (in unit of curvature radius), there are always
holonomies that give rise to observable circles in the sky for
which the maximal deviation from antipodality is detect-
able at some observers position, and it can be made as close
to π as we require. In Sec. V, we construct examples of
universes with lens-space spatial topology whose values of
cosmological parameters respect the bounds of Planck
Collaboration [1] and for which both or at least one of

1This refers to pair of circles whose centers are antipodal
points on the CMB sphere, which are also known as antipodal
circles in the sky.

2In line with the usage in the literature, by the topology of the
Universe, or simply cosmic topology, we mean the topology of its
spatial sections.
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the observable parameters of the circles (λ, θ) fall outside
the range covered by the searches so far undertaken. In
Sec. VI, we present our final remarks and conclusions
and also briefly discuss the implications of our results in
view of unavoidable practical limits of the circles-in-the-
sky method.

II. PRELIMINARIES

We begin by recalling the basic cosmological setting
of this work. In the context of general relativity, a
fundamental assumption in standard cosmological model-
ling is that, on large scales, the Universe is described by a
four-dimensional manifoldM ¼ R ×M endowed with the
spatially homogeneous and isotropic FLRW spacetime
metric

ds2 ¼ −c2dt2 þ a2ðtÞ½dχ2 þ f2ðχÞðdθ2 þ sin2θdϕ2Þ�;
ð1Þ

where t is the cosmic time, aðtÞ is the scale factor, and
fðχÞ ¼ ðχ; sin χ; sinh χÞ depending on the sign of the
constant spatial curvature k ¼ ð0; 1;−1Þ.
The sections M are often assumed to be the simply

connected three-dimensional manifolds: Euclidean E3,
spherical S3, or hyperbolic H3. However, they can also
be multiply connected quotient 3-manifolds, which are
quotient spaces M ¼ ~M=Γ, where the covering space ~M is
the corresponding simply connected constant curvature
covering manifolds E3, S3, or H3, and Γ is a discrete
and fixed point-free group of isometries of ~M called the
covering or holonomy group [19]. A generic element of the
group Γ is denoted by γ and called holonomy or simply
isometry.
Since we are concerned with nearly flat Universe whose

spatial section is a slightly positively curved space (Ωk ≲ 0)
allowed by Planck constraints on cosmological parameter
[1]), in the next sections, we consider that the spatial
section of the Universe can be modeled by any spherical
orientable manifold with a nontrivial topology of the
form M ¼ S3=Γ.
Regarding the dynamics of the Universe, we assume that

it is given by a ΛCDM model, the matter content of which
is described by dust with density ρm, plus a cosmological
constant Λ. The Friedmann equation can then be written in
the form

a2 ¼ kc2

H2ðΩ − 1Þ ; ð2Þ

where H ¼ _a=a is the Hubble parameter, Ω ¼ Ωm þΩΛ

with Ωm ¼ 8πGρm=3H2, ΩΛ ≡ 8πGρΛ=3H2 ¼ Λ=3H2,
and G is the Newton’s constant.
We recall that in the ΛCDM setting one has that for a

slightly positively curved nearly flat Universe the distance

to the last scattering surface χLSS in units of the curvature
radius is given by3

χLSS ¼
ffiffiffiffiffiffiffiffiffiffi
jΩk0j

p Z
1þzLSS

1

½x3Ωm0 þ x2Ωk0 þ ΩΛ0�−1=2dx;
ð3Þ

whereΩk ¼ 1 −Ω and the subscript 0 denotes evaluation at
present time. Now, taking into account the recent bounds on
the cosmological parameters by the Planck Collaboration
[1] from Eq. (3), one has χLSS ¼ 0.038. We will use this
value in the next sections to construct examples of nearly
flat positively curved Universes with detectable nontrivial
topology.
Another important ingredient we shall need in the

following sections is the formulation of the conditions
for detectability of cosmic topology. These conditions were
studied for classes of hyperbolic and spherical manifolds as
functions of the cosmological parameters in Refs. [20,21]
and extended to the case of generic manifolds in the
inflationary limit in Ref. [15] (see also Refs. [14]).4 For
this article, we only need to know that a way to study the
detectability in cosmic topology is through the lengths of its
closed geodesics as follows. The length of the closed
geodesic generated by γ ∈ Γ passing through a point u ∈
M is given by the distance between u and its image γu, i.e.,
by the distance function dðu; γuÞ in the covering space.
This allows the definition of the local injectivity radius
rinjðuÞ which is half the length of the smallest closed
geodesic passing through the point u. A necessary con-
dition for detectability of cosmic topology is then given by

rinjðuÞ < χLSS; ð4Þ

where χLSS is the comoving distance evaluated at zLSS. For
universes whose nontrivial topology are globally homo-
geneous, rinjðuÞ is position independent. However, for
universes with globally inhomogeneous topology, the
length of the smallest closed geodesic depends on the
position u. Therefore, to determine sufficient conditions for
detectability that hold for all observers, we have to use the
global (constant) injectivity radius rinj ≡ infu∈MrinjðuÞ,
which is the radius of the smallest sphere inscribable in M.
To perform the calculations of the next sections, we need

the form of the holonomy transformations γ as 4 × 4
matrices in SOð4Þ. We recall that the enumeration of all
finite subgroups Γ ∈ SOð4Þ can be made in terms of the
much simpler enumeration of finite subgroups of SOð3Þ

3Hereafter, we express distances in units of the curvature
radius a0 ¼ jkjH−1

0 jΩ0 − 1j−1=2 and measure angles in radians.
4The question of whether the detection of a nontrivial cosmic

topology can be used to set constraints on cosmological density
parameters has been studied for particular topologies in Refs. [22]
(see also the related Ref. [23]).
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(for a detailed account on this point, we refer the readers to
Ref. [24]). For the connection between SOð4Þ and SOð3Þ,
one uses quaternions, which are a generalization of the
familiar complex numbers with three imaginary unities i, j,
and k satisfying the noncommutative multiplication rule

i2 ¼ j2 ¼ k2 ¼ −1; ij ¼ −ji ¼ k; ð5Þ

jk ¼ −kj ¼ i; ki ¼ −ik ¼ j: ð6Þ

Given a quaternion q ¼ a1þ biþ cjþ dk with
ða; b; c; dÞ ∈ R4, one defines the conjugate quaternion
as q� ¼ a1 − bi − cj − dk and the norm of q by
jqj ¼ ffiffiffiffiffiffiffiffi

qq�p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 þ c2 þ d2

p
. Quaternions with

norm 1 are called unit quaternions. For a unit quaternion,
one has an inverse given by q−1 ¼ q�. Geometrically, the
set of all quaternions q ¼ a1þ biþ cjþ dk defines the
Euclidean space E4, while the 3-sphere S3 can be identified
with the multiplicative group of unit quaternions, i.e.,

S3 ¼ fq ∈ H=jqj ¼ 1g; ð7Þ
where H denotes the associative quaternion algebra over
the real numbers.

III. DEVIATION FROM ANTIPODALITY AND
RADII OF CIRCLES

In this section, we derive the analytic expressions for the
deviation from antipodality and for the radius of the circles
of any pair that arises from an arbitrary pair of elements (γ,
γ−1) of the holonomy group Γ used to form any quotient
multiply connected spherical spaces S3=Γ.

A. Deviation from antipodality

Without loss of generality, by a convenient choice of
basis, an arbitrary isometry γ ∈ Γ can be written in the
form [24]

γ ¼

2
6664
cos α 0 0 − sin α

0 cos β − sin β 0

0 sin β cos β 0

sin α 0 0 cos α

3
7775; ð8Þ

where α and β are parameters used to define a generic
isometry of S3. We recall that when the distance between a
point p ∈ S3 and its image γp ∈ S3 is independent of p the
isometry γ is called Clifford translation, which comes about
if, and only if, α ¼ β.
For detectable topologies, the action of each pair of

elements (γ, γ−1) of the group Γ may generate one pair of
matching circles in the CMB maps when the surface of last
scattering (LSS) intersects its two images under the action
of γ and γ−1. When γ is a Clifford translation, the pair

(γ, γ−1) gives rise to a pair of antipodal matching circles. As
we are interested in both back-to-back and nonantipodal
circles in nearly flat spherical universes with a nontrivial
topology, we will focus on the general case α ≠ β and also
discuss specific instances of Clifford translations. To
calculate the distance between an observer and its γ image,
we have to take into account the observer’s position.5

To have a qualitative understanding of the calculation
below, it is useful to bear in mind the following three points.
First, the distance between two points u and v in S3 is just
the angle μ between them as seen from the origin of E4, and
thus it is computed through the scalar product in E4 as
hu; vi ¼ cos μ. Second, the line of sight of an observer at
u ∈ S3 looking at v ∈ S3 is given by the tangent vector, at
u, to the geodesic joining these two points. Third, given
three points u, v1, and v2 in S3, the angular separation
between v1 and v2 seen by an observer at u is the angle
between the lines of sight of the observer at u looking at v1
and v2, and thus it is calculated through the scalar product
of the corresponding tangent vectors at u.
Now, let w1 and w2 be the centers of a pair of matched

circles. As measured by the observer, these centers are
given by their angular coordinates in the celestial (unit)
sphere S2, so observationally the angle between these two
points is calculated through their scalar product. However,
since theoretical calculations are done in the 3-sphere
modelled as the set of unit quaternions, in this approach,
w1 and w2 are lines of sight between the observer and its
images. So, they are represented as tangent vectors, at the
observer’s position, of the geodesics joining the observer
with each of its images.
In Appendix A, we present the detailed calculations

showing that these tangent vectors are given by

w1 ¼
1

sin μ
ðv1 − u cos μÞ andw2 ¼

1

sin μ
ðv2 − u cos μÞ;

ð9Þ

where we have denoted the distance dðu; γuÞ simply by μ,
for the sake of brevity. Equation (9) makes apparent that, to
have these tangent vectors, we need to calculate the
distance μ. To compute this distance, which is nothing
but 2rinjðuÞ, we first note that the holonomy γ given by
Eq. (8) consists of two independent rotations, namely, a
rotation of an angle α in the x1–x4 plane and a rotation of
an angle β in the x2–x3 plane. It follows that one can
always choose the coordinate axes in R4 such that the
observer is in the x1–x2 plane. In this way, to give the

5Although the calculations carried out in the following hold
for an arbitrary pair of holonomies (γ, γ−1), in dealing with
detectable matching circles, we focus on the holonomies γ’s that
generate the shortest closed geodesic passing through the
observer’s position u ∈ M. Thus, in these cases, we have
dðu; γuÞ ¼ 2rinjðuÞ.
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observer’s position, one needs only one parameter, which is
its distance to the axis x1. Denoting this distance by ρ, one
has that the observer is given by

u ¼ cos ρ1þ sin ρi: ð10Þ

The distance between the observer at u and its image
v1 ¼ γu is then given by

cos μ ¼ hu; γui
¼ cos αcos2ρþ cos βsin2ρ: ð11Þ

Clearly, the same expression holds for the distance between
u and its image v2 ¼ γ−1u. Now, since we are interested in
the deviation from antipodality, which is θ ¼ π − Θ, where
Θ is the angle between v1 and v2, a straightforward
calculation whose details are given in Appendix B yields

cos θ ¼ −hw1;w2i

¼ 1 −
2

sin2μ
ðcos α − cos μÞðcos μ − cos βÞ ð12Þ

for the deviation from antipodality of a pair of circles that
arises from an arbitrary pair of holonomies (γ, γ−1) of the
group Γ used to form any generic quotient multiply
connected spherical spaces S3=Γ.
It should be noted that the deviation from antipodality

depends on the position of the observer given by ρ, since
from Eq. (12) one clearly has that θ depends on μ (the
distance between the observer and its γ images), and from
Eq. (11), μ depends on ρ. Moreover, it follows from
Eq. (12) that the matched circles are antipodal (θ ¼ 0)
for μ ¼ α and μ ¼ β, i.e., when the observer is at any of the
two limiting positions ρ ¼ 0 or ρ ¼ π=2. For the observer’s
position in between these limiting values, the matching
correlated circles are not antipodal, and there are positions
for which maximal deviations of antipodality come about.
In Appendix C, we present detailed calculations, show-

ing that for an arbitrary pair of holonomies (γ, γ−1) the
critical value μ0 for which the deviation from antipodality
attains its maximum value is given by

cos μ0 ¼
1þ cosðαþ βÞ
cos αþ cos β

: ð13Þ

From this equation along with Eq. (12), we can derive the
expression of the maximal deviation from antipodality for
any given pair of holonomies, which is given by

θmax ¼ jβ − αj: ð14Þ

Finally, from Eqs. (11) and (13), one has that this
maximal deviation from antipodality is detectable by an
observer at a position ρ0 given by

cos2ρ0 ¼
sin β

sin αþ sin β
ð15Þ

whenever the injectivity radius rinj at ρ0 is less than the
distance to the LSS, i.e., whenever the necessary condition
for detectability of cosmic topology μ0 < 2χLSS is fulfilled
at ρ0.

B. Angular radius of circles

To derive the expression for the angular radius of a
generic matching circle in the sky that arises from an
arbitrary pair of holonomies (γ, γ−1), we begin by recalling
that χLSS denotes the comoving radius of the last scattering
sphere.
To have a sketch of the calculations given in details

below, let ½u; v1� be the geodesic segment joining the
observer and its image v1 ¼ γu, and let p be the middle
point of this segment. Thus, a point q in the matching circle
generated by the holonomy γ lies in the geodesic plane
orthogonal to ½u; v1� at p and is distant χLSS from u and v1.
Now, given the segments of geodesics ½u;p� and ½u;q�, one
can easily find the tangent vectors wp and wq to these
segments at the observer’s position u. The angular radius λ
of the matching circle is then given by the scalar product

cos λ ¼ hwp;wqi: ð16Þ

To effectively compute the angular radius of matched
circles, it is convenient to choose a suitable coordinate
system. In fact, without loss of generality, the calculation
can be carried out more easily by choosing a coordinate
system such that the observer’s position is u ¼ 1, and thus
its image is

v1 ¼ γu ¼ cos μ1þ sin μi: ð17Þ

The middle point of the geodesic segment ½u; v1� is then

p ¼ cos
μ

2
1þ sin

μ

2
i; ð18Þ

and a generic point of the circle associated to the holonomy
γ has the form

q ¼ tpþ yjþ zk; ð19Þ

where t, y, and z are real numbers subject to the conditions

jqj ¼ 1 and cos χLSS ¼ h1;qi: ð20Þ

The tangent vectors at u to the segments of geodesics ½u;p�
and ½u;q� are then given, respectively, by

wp ¼ 1

sin μ
2

�
p − cos

μ

2
1

�
; ð21Þ
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wq ¼
1

sin χLSS
ðq − cos χLSS1Þ: ð22Þ

Substituting Eqs. (21) and (22) into Eq. (16), a simple
calculation yields

cos λ ¼ tanðμ=2Þ
tan χLSS

; ð23Þ

for the angular radius of each matching circles generated by
a general pair of holonomies (γ, γ−1) of the group Γ used to
form any multiply connected spherical space S3=Γ.
Before proceeding to the next section, it is important to

note that both the deviation from antipodality and the radii
of the circles in the sky depend not only on the parameters α
and β that defines the holonomy γ but also on the position
of the observer determined by the parameter ρ through the
expression (11). This latter dependence, often neglected in
the literature, will be of the utmost importance in the
following sections.

IV. UPPER BOUND ON THE DEVIATION FROM
ANTIPODALITY

In this section, we show that for any observational
value of χLSS, no matter how small it is, there are always
holonomies that give rise to circles in the sky for which the
maximal deviation from antipodality θmax is detectable, and
this deviation can be made as close to π as we want.6

A general sketch of the proof is as follows. We begin by
defining parameters ϵ and δ by the relations

β þ α

2
¼ π

2
− ϵ and

β − α

2
¼ π

2
− δ ð24Þ

and rewriting Eqs. (13) and (15), respectively, as

cos μ0 ¼
sin ϵ
sin δ

and cos2ρ0 ¼
sinðδþ ϵÞ
2 sin δ cos ϵ

: ð25Þ

We clearly have α ¼ δ − ϵ and β ¼ π − ðδþ ϵÞ, so the
maximal deviation from antipodality given by Eq. (14)
reduces to

θmax ¼ π − 2δ; ð26Þ

which shows that a maximal deviation from antipodality
close to π requires a small value of δ. On the other hand, the
condition for detectability of cosmic topology at ρ0 along
with the near flatness of the universe is ensured, respec-
tively, by the inequalities μ0 < 2χLSS ≪ 1. Together with
the first equation (25), these inequalities require that δ ≈ ϵ,

which in turn leads to a very small value for α. Since δ has a
very small value, so does ϵ, and thus β is very close to π.
To implement this general reasoning, consider the

canonical generator of the lens space Lðp; qÞ, with p
prime, given by Eq. (8) with

α ¼ 2π

p
and β ¼ 2πq

p
: ð27Þ

Equations (24) and (27) yield

ϵ ¼
�
p − 2ðqþ 1Þ

p

�
π

2
and δ ¼

�
p − 2ðq − 1Þ

p

�
π

2
;

ð28Þ
and thus

ϵ

δ
¼ 1 −

4

p − 2ðq − 1Þ : ð29Þ

Given any positive δ0 ≪ 1, which defines a maximal
deviation from antipodality threshold θ0 ≡ π − 2δ0, we will
now show how to choose values for p and q such that
0 < ϵ < δ < δ0 and ϵ=δ is as close to 1 as we want
(ϵ=δ ≈ 1) in such way that

cos μ0 ¼
sin ϵ
sin δ

>
ϵ

δ
> cos 2χLSS: ð30Þ

Since this equation along with Eq. (26) imply that μ0 <
2χLSS and π > θmax > θ0, this amounts to saying that such
nearly flat spherical universes could have the topology of a
lens space with detectable maximal deviation from anti-
podality of matching circles as close to π as we require.
To insure that ϵ=δ > 0, from Eq. (29), one clearly has

that p − 2ðq − 1Þ > 4, and thus

p > 2qþ 2: ð31Þ
Hereafter, for each value of p, we shall refer to the values of
q > 1 satisfying this inequality as permissible values.7 The
least impermissible value of q is given by

q0 ¼
p − 1

2
; ð32Þ

since for n ¼ 1; 2; 3;…; q0 − 2, values of q given by

qn ¼ q0 − n ð33Þ

satisfy Eq. (31) and so are all permissible values. Since
qn > 1 for globally inhomogeneous spaces, from Eqs. (32)
and (33), it follows that p > 2nþ 3.

6Concrete examples of a nearly flat spherical multiply con-
nected universe that illustrate this point are given in Sec. V.

7Here, we do not allow q ¼ 1 since this corresponds to a
Clifford translation, which gives rise to pairs of antipodal circles,
i.e., θ ¼ 0°.
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Substituting Eqs. (32) and (33) into Eq. (28), one obtains

ϵn ¼
�
2n − 1

p

�
π

2
and δn ¼

�
2nþ 3

p

�
π

2
; ð34Þ

and thus

ϵn
δn

¼ 2n − 1

2nþ 3
: ð35Þ

Equation (35) shows that for a large enough value of n we
can have ϵn=δn ≈ 1, and the second equation (34) shows
that, additionally, for a large enough value p we can have
δn < δ0, as we wanted to show.
Finally, we note that in the construction of the concrete

examples of nearly flat multiply connected universes we
need a more precise estimate for the values of n in terms of
χLSS. To this end, from Eq. (35), one has that the second
inequality in Eq. (30), i.e., ϵn=δn > cos 2χLSS, holds if

n >
1þ 3 cos 2χLSS
2ð1 − cos 2χLSSÞ

: ð36Þ

V. CONCRETE EXAMPLES

As a first illustrative example, consider a nearly flat
universe with a lens-space spatial topology and whose
values of cosmological parameters respect the constraints
on the cosmological parameters determined by the Planck
Collaboration [1] so that the distance to the LSS in units of
the curvature radius is χLSS ¼ 0.038 [cf. Eq. (3)]. Let us
then look for a detectable holonomy that gives rise to
circles in the sky with detectable maximal deviation from
antipodality larger than 99π=100, which from Eq. (26)
gives δ < π=200. Besides, from Eq. (36), one has that
n ¼ 692 guarantees that ϵn=δn > cos 2χLSS. Equations (34)
in turn give

ϵ692 ¼
1383π

2p
and δ692 ¼

1387π

2p
: ð37Þ

Thus, to assure that δ692 < π=200, one has p > 138 700.
Since we are looking for p prime (this is not strictly
necessary), we take the next prime greater than this
value, i.e., p ¼ 138 727, and obtain from Eq. (32) the
least impermissible value of q0 ¼ 69 363, and thus
q692 ¼ 68 671. In brief, this shows that in a nearly flat
universe with χLSS ¼ 0.038 a maximal deviation from
antipodality larger than 99π=100 is detectable through
the circles associated with the pair of holonomies (γ,
γ−1) defined by Eq. (27), i.e., given by the canonical
generator of the lens space Lð138727; 68671Þ. In fact, in
this case, one has

θmax ¼ π − 2δ692 ≈ 0.990002π >
99π

100
: ð38Þ

In the following, we again take into account the Planck
constraints on the cosmological density parameters [1] that
permit χLSS ¼ 0.038 and present concrete examples (with
smaller values for p) of nearly flat universes with lens-
space spatial topology that give rise to detectable circles in
the sky in which either values of the observable parameters
λ (radius of circles) or θ (deviation from antipodality), or
even both values, fall outside the ranges covered by the
searches so far undertaken [6–13,17].
In Table I, we collect together examples of nearly flat

lens-space universes with χLSS ¼ 0.038 for which both
parameters; the maximal deviation of antipodality, θmax;
and the radius of the matching circles, λ, fall outside the
range covered by the most general search for circles [17].
For full details about the calculations for the construction of
Table I, we refer the readers to Appendix D.
Although in all universes of Table I both the radii of the

circles, λ, and the deviation from antipodality, θ, fall outside
the ranges covered by the searches carried out so far, clearly
we only need one of these parameters to fall outside those
ranges to have nearly flat universes with a nontrivial lens-
space topology which has not been ruled out by the
searches so far undertaken with either WMAP or Planck
data [6–13,17]. In Table II, we collect examples of nearly
flat universes (with χLSS ¼ 0.038) endowed with lens-
space spatial topology with detectable maximal deviation
from antipodality θmax ≳ 90°, so within the range covered
by the most general search [17]. Nevertheless, since the

TABLE I. Globally inhomogeneous lens spaces Lðp; qÞ spatial
topology of nearly flat universes with χLSS ¼ 0.038, for which
both the maximal deviation of antipodality, θmax, and the radius of
the matching circles, λ, fall outside the range covered in the
searches carried out with either WMAP or Planck data [6–13,17].
As explained in Appendix D, q⊥ is the least value of q for which
θmax > 170°, and μ0 is the critical value of the distance of the
observer and its images for which the deviation from antipodality
attains its maximum. The observer’s position is given by ρ0,
which from Eq. (11) depends on μ0 for any given holonomy pair
(γ, γ−1). In these universes, θmax ≈ 170° for the observer at ρ0
[cf. Eq. (25)].

Lðp; q⊥Þ μ0 λ

(24 907, 11 763) 0.075978 1.4°
(24 943, 11 780) 0.075923 2.6°
(24 967, 11 791) 0.075868 3.4°
(25 013, 11 813) 0.075814 4.0°
(25 057, 11 834) 0.075759 4.6°
(25 087, 11 848) 0.075705 5.1°
(25 111, 11 859) 0.075650 5.5°
(25 147, 11 876) 0.075596 5.9°
(25 183, 11 893) 0.075542 6.3°
(25 219, 11 910) 0.075488 6.7°
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radii are λ < 10°, so outside the range covered by these
searches, and therefore these universes are not excluded by
all searches so far undertaken. In Appendix D, we give the
full details of de calculations made for the construction of
this table.
Given that globally homogenous spaces give rise to

antipodal circles (θ ¼ 0°), an important remaining question
that naturally arises here is whether there are nearly flat
(with χLSS ¼ 0.038) globally homogeneous lens-space
universes that give rise to circles in the sky with radii
smaller than 10°, i.e., outside the range covered by the most
general search so far undertaken [17]. In the remainder of
this section, we shall examine this question.
We begin by recalling that in globally homogeneous lens

spaces Lðp; qÞ one has q ¼ 1 and that the injectivity radii
2rinjðuÞ≡ μ ¼ dðu; γuÞ for these spaces are constants and
given by μ ¼ 2π=p [20]. Hence, Eq. (23) reduces to

cos λ ¼
tan π

p

tan χLSS
: ð39Þ

Thus, in order to have a pair of matched circles with radius
smaller than a certain value λ0 (say), one must have

p <
π

arctanðcos λ0 tan χLSSÞ
; ð40Þ

which along with the condition for detectability of the
topology, μ < 2χLSS, leads to

p >
π

χLSS
: ð41Þ

For λ0 ¼ 10° and χLSS ¼ 0.038, one obtains

82.7 < p < 83.95: ð42Þ
Therefore, χLSS ¼ 0.038 allows for only one nearly flat
globally homogeneous lens-space universe that has not
been ruled out by the searches so far undertaken, namely,
Lð83; 1Þ. This lens-space universe would give rise to
antipodal circles with a radius smaller than 10°.
The extent to which the examples of this section depend

upon the uncertainties in the determination of the cosmo-
logical parameters, which give rise to uncertainties on the
determination of χLSS, is an important point to be inves-
tigated but is beyond the scope of the present article.

VI. CONCLUDING REMARKS

The existence in the CMB anisotropy maps of correlated
pairs of circles with the same distribution of temperature
fluctuations (up to a phase), the so-called circles in the sky,
is a key prediction for universes with a detectable nontrivial
cosmic topology. Detecting such circles, and measuring the
relative position of their centers, angular radii, and relative
phase, would allow us to possibly determine the topology
of the spatial section of the Universe.
Most of the recent searches, including the ones under-

taken by the Planck Collaboration, were restricted to circles
whose centers are antipodal points on the CMB sphere or
nearly antipodal circles. In the most general search [17], the
circles in the sky statistics was employed to search for pairs
of circles with radii 10° ≤ λ ≤ 90° and integer deviation
from antipodality angles 0° ≤ θ ≤ 169°.
In this work, we have addressed the question as to

whether there are still nearly flat slightly positively curved
universes (Ωk ≲ 0) that respect Planck constraints on the
cosmological parameters [1] and have compact spatial
topology that would give rise to circles in CMB sphere
whose observable parameters λ (radius) and θ (deviation
from antipodality) fall outside the parameter ranges covered
by this general search.
To answer this question, we have derived the analytic

expressions for the deviation from antipodality and for the
radius of the circles that arise from a pair of elements
(γ, γ−1) of the holonomy group Γ which is used to define
the spatial section of any positively curved universe with a
nontrivial compact topology. Since the deviation from
antipodality depends upon the observer’s position ρ, we
have derived the expression for the critical position ρ0 that
maximizes the deviation from antipodality in a universe
with a generic S3=Γ spatial topology. We then have shown
that, no matter how nearly flat the Universe is, it can always
have a nontrivial topology whose deviation from antipo-
dality θ of the associated pair of matching circles is larger
than 169° and whose radii λ are smaller than 10° for some
observers’s positions. This important result makes apparent
that slightly positively curved nearly flat universes can

TABLE II. Globally inhomogeneous lens spaces Lðp; qÞ spa-
tial topology of nearly flat universes with χLSS ¼ 0.038, for
which only the radii of the matching circles, λ, fall outside the
range covered in the searches so far undertaken. As explained in
Appendix D, q⊥ is the least value of q for which θmax > 90°, and
μ0 is the critical value for which the deviation from antipodality
attains its maximum. The observer’s position is given by ρ0
[cf. Eq. (25)], which from Eq. (11) depends on μ0 for any given
holonomy pair (γ, γ−1). In these universes, θmax ≳ 90° for the
observer at ρ0. Note that the values of the parameters p and q are
considerably smaller than those in Table I.

Lðp; q⊥Þ μ0 λ

(2 203, 552) 0.075625 5.7°
(2 207, 553) 0.075556 6.2°
(2 213, 555) 0.075507 6.5°
(2 221, 557) 0.075370 7.4°
(2 237, 561) 0.075100 8.8°
(2 239, 561) 0.075013 9.3°
(2 243, 562) 0.074946 9.6°
(2 251, 565) 0.074917 9.7°
(2 267, 572) 0.074961 9.5°
(2 269, 572) 0.074876 9.9°
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always be endowed with a nontrivial spatial topology that
gives rise to circles with two observable parameters
associated to the topology, λ and θ, outside the range
covered in the searches carried out so far with either
WMAP and Planck data [6–13,17]. This makes clear that
the circles-in-the-sky searches already undertaken are not
sufficient to exclude the possibility of a universe with a
detectable nontrivial cosmic topology, and that respects
Planck constraints on the cosmological parameters.
By taking into account the recent constraints on the

cosmological parameters by the Planck Collaboration [1],
we have also exhibited concrete examples of lens-space
universes whose associated circles have both, or at least one
value, of the observable parameters λ and θ outside the
ranges covered by the searches so far undertaken. The
existence of such concrete examples with very small radii
of the circles, which are statistically difficult or even
impossible to detect, has been conjectured in the
recent Ref. [25].
Although only the limited range for deviation from

antipodality 0° ≤ θ ≤ 169° has been explored until now,
the future searches for circles can in principle cover the
whole range of values 0° ≤ θ ≲ 180°. However, regarding
the radii of the circles, two facts should be taken into
account. First, the peak amplitude in the circles statistic,
Smax, decreases with the radius of the circles due primarily
to the Doppler term, which is increasingly anticorrelated for
circles with radius smaller than 45° [6]. Second, the
intersection of the peaks of the circle statistics with the
false detection threshold line defines the smallest circle
radius that one could expect to detect. Since the false
positive line is higher for circles with smaller radius, in
practice there is a minimum value for the radius of the
circles we could expect to detect. The smaller value
achieved in the search so far is around λ≃ 10° with an
estimated value λ≃ 5° for future searches using polarized
CMB maps [13]. The first five entries in Table I are
examples of nearly flat universes, respecting Planck con-
straints on the cosmological parameters, that give rise to
matching circles with radii smaller than this minimum
estimated value. For these lens-space universes, the
unavoidable practical limits for small radii of the circles-
in-sky method, due to the combination of the falling of the
peaks amplitude with the increasing of the false detection
threshold, are reached. Thus, the spatial topology of these
universes cannot be unveiled through the circle-in-the-sky
method.
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APPENDIX A: TANGENT VECTORS

In this Appendix, we compute the tangent vector at a
point u on the 3-sphere S3 of the geodesic joining u and
another point v at a distance μ.
Let u and p be two points in the 3-sphere S3 such that the

distance between them is π=2. As shown in Ref. [26] (see
Theorem 2.1.5), the geodesic line from u to p is

nðsÞ ¼ u cos sþ p sin s: ðA1Þ
Since

hn;ui ¼ cos s;

the geodesic is parametrized by the arc length s.
Let v be the point in this geodesic line located between u

and p and at a distance μ from u; then, we have

v ¼ u cos μþ p sin μ: ðA2Þ
We can use this expression to write the geodesic in terms of
u and v; in fact, we have

p ¼ 1

sin μ
ðv − u cos μÞ: ðA3Þ

Substituting this expression into Eq. (A1), we obtain

nðsÞ ¼ 1

sin μ
½u sinðμ − sÞ þ v sin s�: ðA4Þ

Taking the derivative at s ¼ 0, one gets the tangent
vector pointing from u to v,

w ¼ 1

sin μ
ðv − u cos μÞ: ðA5Þ

APPENDIX B: DEVIATION FROM
ANTIPODALITY θ

In this Appendix, we present details of the calculations
of the deviation from antipodality θ given by Eq. (12).
Direct use of Eq. (9) and the fact that

hu; v1i ¼ hu; v2i ¼ cos μ ðB1Þ
immediately yield

hw1;w2i ¼
1

sin2μ
ðhv1; v2i − cos2μÞ: ðB2Þ

Now, since v1 ¼ γu and v2 ¼ γ−1u, the very definition of
isometry implies that hv2; v1i ¼ hu; γ2ui, and thus Eqs. (8)
and (10) imply that
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hv1; v2i ¼ cos 2αcos2ρþ cos 2βsin2ρ: ðB3Þ

Moreover, from Eq. (11), it easily follows that

cos α − cos β ¼ cos μ − cos β
cos2ρ

¼ cos α − cos μ
sin2ρ

; ðB4Þ

from which we obtain

cos2ρ ¼ cos μ − cos β
cos α − cos β

and sin2ρ ¼ cos α − cos μ
cos α − cos β

:

ðB5Þ

Substituting these relations into Eq. (B3), one easily
obtains

hv1; v2i ¼ 2ðcos αþ cos βÞ cos μ − ð2 cos α cos β þ 1Þ;
ðB6Þ

which upon substitution into (B2) yields immedi-
ately Eq. (12).

APPENDIX C: CRITICAL DISTANCE μ0

In this Appendix, we present details of the calculations
of Eq. (13) that gives the critical distance μ0 which
maximize the deviation from antipodality.
Making the substitutions

A ¼ cos α; B ¼ cos β and x ¼ cos μ ðC1Þ

into Eq. (12), it follows that, to minimize cos θ, i.e.,
maximize θ, one has to maximize the function

fðxÞ ¼ ðx − AÞðx − BÞ
x2 − 1

: ðC2Þ

Since α and β are never supplementary angles, i.e., they
never sum up π, we in fact have Aþ B ≠ 0.
Taking the first derivative f0ðxÞ and equating the

numerator to zero, one obtains

x2 − 2lxþ 1 ¼ 0; ðC3Þ

where

l ¼ ABþ 1

Aþ B
: ðC4Þ

Equation (C3) has real roots only if l2 ≥ 1, which holds
since −1 < A < 1 and −1 < B < 1. In fact, suppose first
that Aþ B > 0, since ð1 − AÞð1 − BÞ > 0, then l > 1. On
the other hand, suppose that Aþ B < 0, since
ð1þ AÞð1þ BÞ > 0, then l < −1. In either case, the
condition l2 ≥ 1 is fulfilled.

Moreover, since x ≤ 1, the solution to Eq. (C3) we are
looking for is

x0 ¼ l −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − 1

p
; ðC5Þ

so, using back the substitutions (C1) and (C4), one gets

cos μ0 ¼
cos α cos β þ 1

cos αþ cos β
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
cos α cos β þ 1

cos αþ cos β

�
2

− 1

s
:

ðC6Þ

To simplify this expression, observe that

ðcos α cos β þ 1Þ2 − ðcos αþ cos βÞ2 ¼ sin2αsin2β; ðC7Þ

which, substituted into Eq. (C6), yields immedi-
ately Eq. (13).

APPENDIX D: CONSTRUCTION OF EXAMPLES

In this Appendix, we give full details of the calculations
involved in the construction of concrete examples pre-
sented in Sec. V.
From Eq. (25) and δ − ϵ ¼ α ¼ 2π

p , we obtain

sin
2π

p
¼

�
cos

2π

p
− cos μ0

�
tan δ: ðD1Þ

To look for models with maximal deviation from anti-
podality, θmax ¼ π − 2δ, larger than a threshold θ0, it is
enough to require

δ <
π − θ0

2
¼ δ0; ðD2Þ

and thus tan δ < tan δ0. Recall now that, in order to have
observable matched circles, we need cos μ0 > cos 2χLSS;
thus, using the fact that cos 2πp < 1, together with the

approximation sin 2π
p ≈ 2π

p , since p ≫ 1, one obtains the
inequality

p >
2π

ð1 − cos 2χLSSÞ tan δ0
: ðD3Þ

Taking the threshold θ0 ¼ 170°, i.e., δ0 ¼ π
36

in radians,
for χLSS ¼ 0.038, one obtains the lower bound p > 24879.
However, since we are restricting our analysis to prime
values for p, this implies that p ≥ 24889. This lower bound
is very tight, since numerical calculations show that
actually p ≥ 24907, as shown in Tables I and III, which
show examples of lens spaces with relatively small values
of the parameter p whose canonical generators have
detectable maximal deviations from antipodality larger
than θ0 ¼ 170°. Let us explain how these tables were built.
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We note that Tables II and IV are similarly constructed but
correspond to a threshold θ0 ¼ 90°, i.e., δ0 ¼ π=4 radians.
Let us explain how these tables were constructed by
referring to Tables I and III.
To estimate efficiently the values for the parameter q in

Tables I and III, we recall the fact that all permissible values
for q are given by qn ¼ q0 − n, for n ¼ 1; 2; 3;…; q0 − 2,
where q0 ¼ p−1

2
. Using Eqs. (34) and (D2), for a maximal

deviation from antipodality θmax > θ0, one needs

n <
1

2

��
1 −

θ0
π

�
p − 3

�
: ðD4Þ

For the threshold θ0 ¼ 170°, one obtains

n <
1

2

�
p
18

− 3

�
; ðD5Þ

which implies

qn >
17p
36

þ 1: ðD6Þ

The second column in Table III is calculated using this
inequality.

Recalling that θmax ¼ π − 2δ and using Eq. (28), one
obtains a simple expression to compute the maximal
deviation from antipodality in terms of the parameters p
and q of the lens space,

θmax ¼
2ðq − 1Þπ

p
: ðD7Þ

Note that for each value of p there is a least value of q for
which inequality (D6) holds; let q⊥ be this least value.
From Eq. (D7), one can see that for q > q⊥ the maximal
deviation of antipodality is θmax > θ⊥max > θ0. For q < q⊥,
the maximal deviation from antipodality is θmax <
θ0 < θ⊥max. The precise value of θmax is, however, very
insensitive to the parameters p and q; in fact, a direct
calculation shows that the maximal deviation from anti-
podality for the spaces shown in Table III ranges between
θmax ¼ 170.005° and θmax ¼ 170.033°.
On the other hand, using Eqs. (25) and (28) to write

cos μ0 in terms of the parameters p and q, it is straightfor-
ward to check that the distance μ0 is an increasing function
of q. So, let q⊤ be the largest value of q for which
μ0 < 2χLSS, i.e., for which the generator of Lðp; qÞ has
detectable maximal deviation of antipodality. For q > q⊤,
one has μ0 > 2χLSS so that the maximal deviation from
antipodality is not detectable. For q < q⊤, the maximal

TABLE III. Globally inhomogeneous lens spaces Lðp; qÞ, with
p prime, spatial topology of nearly flat universes with
χLSS ¼ 0.038, for which both the maximal deviation of anti-
podality, θmax, and the radius of the matching circles, λ, fall
outside the range covered in the searches carried out so far. For
each value of p, we display all the lens spaces Lðp; qÞ with the
parameter q in the interval ½q⊥; q⊤�, where q⊥ is the least value of
q for which θmax > 170° and q⊤ is the largest value of q for which
μ0 < χLSS. In these universes, θmax ≈ 170° for the observer at ρ0
[cf. Eq. (25)].

p q μ0 λ

24 907 11 763 0.075978 1.4°
24 917 11 768 0.075978 1.4°
24 919 11 769 0.075978 1.4°
24 923 11 771 0.075978 1.4°
24 943 11 780 0.075923 2.6°

11 781 0.075979 1.4°
24 953 11 785 0.075923 2.6°

11 786 0.075979 1.4°
24 967 11 791 0.075868 3.4°

11 792 0.075923 2.6°
11 793 0.075979 1.4°

24 971 11 793 0.075868 3.4°
11 794 0.075924 2.6°
11 795 0.075979 1.4°

24 977 11 796 0.075868 3.4°
11 797 0.075924 2.6°
11 798 0.075979 1.4°

TABLE IV. Globally inhomogeneous lens spaces Lðp; qÞ, with
p prime, spatial topology of nearly flat universes with
χLSS ¼ 0.038, for which the radii of the matching circles, λ, fall
outside the range covered in the searches so far undertaken with
either WMAP or Planck data. For each value of p, we display all
the lens spaces Lðp; qÞ with the parameter q in the interval
½q⊥; q⊤�, where q⊥ is the least value of q for which θmax > 90°
and q⊤ is the largest value of q for which μ0 < χLSS. In these
universes, θmax ≳ 90° for the observer at ρ0. Note that the values
of the parameters p and q are considerably smaller than those in
Table III and that the lengths of the intervals ½q⊥; q⊤� are
correspondingly larger.

p q μ0 λ

2 203 552 0.075625 5.7°
553 0.075733 4.8°
554 0.075841 3.7°
555 0.075949 2.1°

2 207 553 0.075556 6.2°
554 0.075664 5.4°
555 0.075771 4.4°
556 0.075879 3.2°
557 0.075987 2.1°

2 213 555 0.075507 6.5°
556 0.075614 5.8°
557 0.075721 4.9°
558 0.075829 3.9°
559 0.075937 2.3°
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deviation from antipodality is detectable; however,
θmax < θ⊤max.
We observe numerically that the size of the interval

½q⊥; q⊤� increases as p increases. As one can see in
Table III, for values of p from 24907 to 24923, one has
q⊥ ¼ q⊤, so there is only one lens space with detectable
maximal deviation from antipodality larger than
θ0 ¼ 170°. For p ¼ 24943 and p ¼ 24953, it holds that
q⊤ ¼ q⊥ þ 1, so for each of these values of p, there are
only two lens spaces with detectable maximal deviation

from antipodality larger than θ0 ¼ 170°. For the five
primes between (and including) p ¼ 24967 and
p ¼ 24989, it holds that q⊤ ¼ q⊥ þ 2, so there are three
such spaces; in Table III, we show only those corre-
sponding to the first three values of p. Note that,
according to our analysis, larger values of q correspond
to smaller values of λ. In Table I, we show the lens
spaces Lðp; q⊥Þ corresponding to the first values of p for
which the size of the interval ½q⊥; q⊤� increases in
one unit.
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