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We investigate if the hemispherical asymmetry in the CMB is produced from “asymmetric” excited
initial conditions. We show that in the limit where the deviations from the Bunch-Davies vacuum are large
and the scale of new physics is maximally separated from the inflationary Hubble parameter, the primordial
power spectrum is modulated only by position-dependent dipole and quadrupole terms. Requiring
the dipole contribution in the power spectrum to account for the observed power asymmetry,
A ¼ 0.07� 0.022, we show that the amount of quadrupole terms is roughly equal to A2. The mean
local bispectrum, which gets enhanced for the excited initial state, is within the 1σ bound of Planck 2015
results for a large field model, fNL ≃ 4.17, but is reachable by future CMB experiments. The amplitude of
the local non-Gaussianity modulates around this mean value, depending on the angle that the correlated
patches on the 2d CMB surface make with the preferred direction. The amount of variation is minimized
for the configuration in which the short and long wavelength modes are around the preferred pole and

j~k3j ≈ j~kl≈10j ≪ j~k1j ≈ j~k2j ≈ j~kl≈2500j with fmin
NL ≈ 3.64. The maximum occurs when these modes are at the

antipode of the preferred pole, fmax
NL ≈ 4.81. The difference of non-Gaussianity between these two

configurations is as large as ≃1.17, which can be used to distinguish this scenario from other scenarios
that try to explain the observed hemispherical asymmetry.

DOI: 10.1103/PhysRevD.94.043009

I. INTRODUCTION

Inflation, despite successfully explaining the general
pattern of observed cosmic microwave background radia-
tion (CMB) [1], fails to explain a few anomalies at large
scales. Some of these anomalies, which were previously
observed in the WMAP data [2], persist even in the latest
Planck data, even though their statistical significances
might not be substantial [3]. Such anomalies in general
break the statistical isotropy of the CMB and can be
modeled phenomenologically as

ΔTðx̂Þ ¼ ΔT isoðx̂Þð1þMðx̂ÞÞ; ð1Þ

where T iso is the isotropic part of the temperature fluctua-
tions, where x̂ is where you look in the sky. In particular,
there seems to be hemispherical asymmetry consistent with
the existence of a dipolar modulation term, Mðx̂Þ ¼ Ax̂ · n̂
in the Planck data with amplitude A ≈ 6–7% on scales
2 ≤ l ≤ 64 [1,3,4]. As stated before, x̂ is where you look in
the sky and n̂ is the preferred direction. The asymmetry
seems to fade away at smaller scales, especially for l ≥ 600
[5,6]. The asymmetry is more than twice as large as the
expected asymmetry due to cosmic variance, A ≈ 2.9%.
Similar asymmetry can arise from a dipolar term in the
primordial power spectrum [7] or from a phenomenological
x-dependent modulation of the primordial spectrum [8]:

PS ¼ Pisoð1þ 2Aðx̂ · n̂ÞÞ: ð2Þ

Various proposals have been offered to explain this
asymmetry. Some considered the effect of long wavelength
superhorizon modes on the subhorizon power spectrum
[8,9] through the Grishchuk-Zel’dovich effect [10], which
requires non-negligible local non-Gaussianity to correlate
the long and short wavelength modes. Noncommutative
physics at the Planck scale [7], isocurvature perturbation
[11], non-Gaussianity [12,13], domain walls [14], and
running of the scalar spectral index [15] have also been
suggested as mechanisms explaining the observed asym-
metry in the power spectra. In principle, higher order
multipoles can also contribute to (1) and (2).
The main goal of this paper is to design a scenario in

which the observed dipole asymmetry is realized, assuming
that the initial condition for fluctuations has a small
anisotropic position-dependent asymmetric part.1 Such
an asymmetric contribution in the initial conditions could
be the effect of a preinflationary patch, which was probably
highly inhomogeneous and anisotropic, or the effect of
parity violating terms in the fundamental theory higher
than the energy scale of inflation, which was also position
dependent within the inflationary patch. The quantum
vacuum state of the Universe is thus not assumed initially

1By “asymmetric,” we mean that the initial condition for the
scalar perturbations is not invariant under the transformation
x → −x within the horizon patch (by horizon patch we mean the
patch that becomes the size of the current observable Universe
after inflation and subsequent stages of cosmological evolution).
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to be aligned with the Bunch-Davies vacuum, which is the
standard choice. In Ref. [16] non-Bunch-Davies vacuum
was also considered as a possible reason for the power
asymmetry, but their mechanism, which was based on the
coupling of modes in an isotropic vacuum, was different.
Fixing the amount of the asymmetry from the observed

hemispherical asymmetry, we also predict a non-negligible
quadrupole contribution to the primordial power spectrum,

PS ¼ Pisoð1þ 2Aðx̂ · n̂Þ þ Bðx̂ · n̂Þ2Þ; ð3Þ

with B within the interval2

0.0025 ≤ B≃ A2 ≤ 0.008: ð4Þ

In our scenario, higher order multipole contributions to
the primordial power spectrum will not only be suppressed
by higher powers of A, which is small, but also by negative
powers of Nk ≫ 1, where Nk is the number of quanta
in the initial excited state which is related to the second
Bogoliubov coefficient βk through the relation Nk ≡ jβkj2.
As shown in [18], one can start from excited initial states
with large occupation number, Nk ≫ 1, without violating
the bounds on backreaction.
The structure of the paper is as follows. First we review

the formalism of excited initial conditions, showing how
dipole and quadrupole terms could be generated from
asymmetric excited initial conditions. As expected, the
local configuration is enhanced for such excited initial
states with an amplitude that is within the 1σ bound of
Planck data. However, in addition, one finds an angular-
dependent modulation that depends on the direction that
each mode is located at and the angle that it makes with the
preferred direction. The amplitude of modulation is mini-
mized for the local configuration around the preferred pole,
in which the short wavelength modes are the smallest ones
that could be probed by Planck, l ≈ 2500, and the longest
one corresponds to l ≈ 10, at which the cosmological
variance is small. For the same local configuration, which
is at the antipode pole, the local non-Gaussianity reaches its
maximum. We conclude the paper in Sec. IV.

II. ASYMMETRIC EXCITED INITIAL STATES

As is quite well known, the predictions of inflationary
models for the CMB spectrum depends on the initial state of
the quantum perturbations aswell as the specific details of the
model. The standard lore is that these perturbations embark
upon the Bunch-Davis (BD) vacuum [19], which is the
minimum energy states, when they pop out of vacuum inside
the horizon of an inflationary background. However, various

effects of physics at energy scales higher than that of inflation
[20] ormultifield effects [21] can excite these fluctuations to a
state other than the Bunch-Davies vacuum. In a previous
work, we showed how by assuming initial conditions other
than the Bunch-Davies vacuum, one can decrease the tensor/
scalar ratio in high energy scale chaoticmodels likem2ϕ2 [18]
and make it compatible with the latest Planck data [1,22]. We
also showed how one can induce a large amount of running in
the scalar spectral index or blue tensor spectral index using
scale-dependent initial conditions [23]. It is shown that
excited initial states can induce larger μ-type distortions in
comparison with the Bunch-Davies vacuum [24].
The equation of motion for the gauge-invariant scalar

perturbations, the Mukhanov-Sasaki variable uðτ; yÞ [25],

u ¼ −z
�
a0

a
δϕ

ϕ0 þΨ

�
; z≡ aϕ0

H
; H≡ a0

a
; ð5Þ

is

u00k þ
�
k2 −

z00

z

�
uk ¼ 0: ð6Þ

Prime denotes a derivative with respect to the conformal
time τ and ukðτÞ is the Fourier mode of uðτ; yÞ. For a
quasi–de Sitter background

aðτÞ≃ −
1

Hτ
; ð7Þ

where H is the Hubble constant. The most generic solution
to (6) with (7) is

ukðηÞ≃
ffiffiffiffiffiffiffiffi
πjτjp
2

½αkHð1Þ
3=2ðkjτjÞ þ βkH

ð2Þ
3=2ðkjτjÞ�; ð8Þ

where Hð1Þ
3=2 and H

ð2Þ
3=2 are, respectively, Hankel functions of

the first and second kind. The terms proportional to α�k and
β�k, respectively, behave like the positive and negative
frequency modes in the infinite past. These Bogoliubov
coefficients satisfy the Wronskian constraint,

jαkj2 − jβkj2 ¼ 1: ð9Þ
The standard BD vacuum is obtained when αk ¼ 1 and
βk ¼ 0.
For a generic initial state, the energy and pressure

density carried by the fluctuations are of the same order,
δpnon−BD ∼ δρnon−BD, and should remain subdominant
with respect to the total energy of the inflaton. Also their
variations with time should not hinder the slow-roll
inflation. Noting that δρnon−BD0 ∼ δpnon−BD

0 ∼Hδρnon−BD
in the leading slow-roll approximation, this requirement is
satisfied if

δρnon−BD ≪ ϵρ0; δpnon−BD
0 ≪ Hηϵρ0; ð10Þ

where ϵ and η are defined as

2In models of anisotropic inflation [17], generally a quadru-
pole term, ðk̂ · n̂Þ2, appears in momentum space, which is
different from the quadrupole term in position space that we
predict here.
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ϵ≡ 1 −
H0

H2
≪ 1; η≡ ϵ −

ϵ0

2Hϵ
≪ 1: ð11Þ

The strongest of the above two constraints may be written
in terms of βk as

Z
∞

H

d3k
ð2πÞ3 kjβkj

2 ≪ ϵηH2M2
pl: ð12Þ

We will assume that all scales of interest are uniformly
excited to an initial state with the second Bogoliubov
coefficient, which is anisotropic in position space within
the initial inflating patch,

βk ¼ β0ðx̂Þ; ð13Þ
once their physical momenta become smaller than the scale
of new physics, M [26]. Inevitably, modes that remain
above this hypersurface momentum do not get excited
and therefore the left-hand side of the integral (12)
remains finite.3 The choice (13), does not lead to extra
k-dependence in the power spectra and does not change
the spectral index at the observable scales. As mentioned,
we also assume that the second Bogoliubov coefficient
can depend on the position direction through the parameter
β0ðx̂Þ. Having
δρnon−BD ∼ jβ0ðx̂Þj2M4; δpnon−BD

0=H ∼ jβ0ðx̂Þj2M4; ð14Þ
one obtains the following upper bound on jβ0ðx̂Þj,

jβ0ðx̂Þj≲ ffiffiffiffiffi
ϵη

p HMPl

M2
∼ ϵ

HMPl

M2
: ð15Þ

As it was discussed in [18] and will be reviewed briefly
below, jβ0ðx̂Þj is not necessarily very small. Larger values
of jβ0ðx̂Þj are compensated with a smaller Hubble param-
eter, H, for a given model to match the normalization of
density perturbations with the data.
The scalar power spectrum defined as

PS ¼
k3

2π2

���� ukz
����
2

k=H→0

ð16Þ

turns out to be

PS ¼ PBDγS; ð17Þ

where

PBD ¼ 1

8π2ϵ

�
H
Mpl

�
2

; γS ¼ jαSk − βSk j2k¼H: ð18Þ

To study this power spectrum more closely, we note that
the energy and the power spectra (and also the bispectrum)
expressions only depend on relative phases of α, β. Hence,
they may be parametrized as

αSk ¼ cosh χSeiφS ; βSk ¼ sinh χSe−iφS : ð19Þ

With this parametrization, χS ≃ sinh−1β0ðx̂Þ, e−2χS ≤
γS ≤ e2χS . As shown in [18], in the regime where the
deviation from the Bunch-Davies vacuum is large, χS ≫ 1,
in order to have maximal separation between the scale of
new physics,M, and the inflationary Hubble parameter, H,
one is confined to φS ≃ π=2. For m2ϕ2, for large
χS ≫ 1, M ≃ 21H.
Let us now assume that the horizon patch or the

asymmetric effect of new physics at an energy scale higher
than the energy scale of inflation is anisotropic and in
particular it singles out one direction such that the param-
eter β0ðx̂Þ in the initial state Bogoliubov coefficient
involves an asymmetric term too. We parametrize this
asymmetric effect at the new physics hypersurface with ε
as follows4:

β0ðx̂Þ ¼ sinh χSð1þ εx̂:n̂ÞeiφS ; ð20Þ

where ε≲ 1. We may interchangeably use cosψ x̂ for x̂ · n̂
in the rest of the analysis. From the Wronskian constraint

3There is a qualitatively different situation in which at time τ0,
the modes with physical momentum smaller than M get pumped
to an excited state, whereas the larger ones remain in their
vacuum. These two pictures, even though they are qualitatively
different, lead to the same result quantitatively. For the latter to be
relevant for the CMB scales, one would expect that inflation did
not last longer than what is needed to solve the problems of big
bang cosmology.

4In this paper, we assume that the mechanism that excites the
fluctuations within the horizon patch is position dependent and has
picked up a small dipole-dependent correction in addition to the
usual monopole homogeneous term. This in particular is conceiv-
able if one assumes that the horizon patch was bigger than a
Hubble size and thus the mechanism responsible for the excitement
of the mode leads to different values in different parts of the
horizon patch. In the first approximation we assumed that the
second Bogoliubov coefficient has a small dipole correction in
addition to the uniform part. The anisotropic vacuum that we have
hypothesized in our article to justify the hemispherical asymmetry
would correspond to an anisotropic energy momentum tensor
“within” the horizon patch. This should be compared with the
situation described by Erickcek et al. [9], where a mode larger than
our current horizon creates this asymmetry. In that scenario, it is
not clear why a mono-wavelength superhorizon anisotropy in a
particular direction should be hypothesized to obtain the observed
hemispherical asymmetry. The observation of the hemispherical
asymmetry in the CMB in that scenario provides information about
the distribution of the energy-momentum tensor at the scales
beyond our horizon. Another variant of this scenario includes all
superhorizon modes, in which non-Gaussianity on scales larger
than the scale of our Universe is considered [12], and tackles the
fine-tuning issue better. As we will see, what our computations
show is that if the energy-momentum tensor of the inflaton is
anisotropic “within the horizon patch” in the beginning of inflation,
no matter how long the subsequent inflation lasts, the resulting
power spectrum is anisotropic.
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(9), one can easily obtain the norm of the first Bogoliubov
coefficient too. Following the parametrization of [18] the
first Bogoliubov coefficient takes the form

α�k ¼ ½1þ sinh χSð1þ ε cosψ x̂Þ2�1=2e−iφS : ð21Þ

One can easily obtain the factor γS through the relation
(18). Expanding γS as a function of ε, one obtains

γS ¼ γ0 þ ε cosψ x̂γ1 þ ε2cos2ψ x̂γ2 þ…

¼ cosh2χS − cos2φS sinh2χS

þ ε cosψ x̂½2 tanh χSðsinh2χS − cos2φS cosh2χSÞ�
þ ε2cos2ψ x̂½2sinh2χS − cos2φSðcosh2χS þ 2Þtanh3χS�
þ…; ð22Þ

where γi’s are the level ith order coefficient in the ε
expansion of γS and the ellipses stand for the higher orders
of ε that are suppressed. The higher order terms are not only
suppressed by powers of ε, but also by powers of e−2χS ,
where χS ≫ 1, which make them completely negligible in
comparison with other terms. In this limit, the primordial
scalar power spectrum obtains dipole and quadrupole
directional dependence:

PS ¼ Pisoð1þ 2Aðx̂ · n̂Þ þ Bðx̂ · n̂Þ2Þ: ð23Þ

The parameters A and B are, respectively, defined as

A≡ εγ1
2γ0

; ð24Þ

B≡ ε2γ2
γ0

: ð25Þ

In the large χS limit, χS ≫ 1, A and B can be expanded as

A ¼ ½1 − 2e−2χS þ 2e−4χSð1 − cotφ2
SÞ þ…�ε; ð26Þ

B ¼ ½1 − 2e−2χS − 2e−4χSð1 − cotφ2
SÞ þ…�ε2; ð27Þ

where ellipses contain terms that are higher order in
expð−2χSÞ, which may have dependence on φS too. It is
interesting that no dependence on φS appears in the
leading (and even next-to-leading) order of these param-
eters when χS ≫ 1. This is the limit that we will focus on
in the rest of our analysis. As shown in [18], in this limit
maximum separation between the scale of new physics
and the inflationary Hubble parameter, which is required
to utilize the effective field theory, could be obtained.
Also in this limit, it turns out that effectively φS ≃ π

2
.

In this limit,

B ≈ A2: ð28Þ

One should note that with decreasing χS, the parameters A
and B decrease too. Also the relation between these two
parameters, Eq. (28), will not hold any more.
The Planck data indicate A ¼ 0.072� 0.022 on large

angular scales with the best fit for the anisotropy direction
to be ðl; bÞ ¼ ð227;−27Þ. This observational constraint
determines ε≃ 0.07� 0.022 and the n̂ direction to be the
unit vector along the anisotropy direction. For smaller
values of χS, the factor γ1=γ0 < 2, and thus one has to
increase the required amount of ε to account for the
observed hemispherical asymmetry. The minimum value
for ε, giving rise to the observed hemispherical asymmetry,
is hence ≃0.07. We conclude that

ε≳ 0.07� 0.022: ð29Þ
In order to induce the asymmetric effect on a finite
range of scales, one has to assume that ε is scale
dependent. This in particular can be realized assuming
that the asymmetric effects become more effective when
the inflaton passes through the scales that left the horizon
at very large scales. For example, one could assume that
the interaction between the inflaton and the term that
induces the asymmetry in the Lagrangian is proportional
to jϕ − ϕ0jn, where ϕ0 is the value of the inflaton when the
scales corresponding to our horizon scale left the horizon.
As the inflaton moves away from ϕ0, creating asymmetric
excited quanta becomes more expensive and the effect
fades away at smaller scales.
The existence of a quadrupole term, Bðx̂ · n̂Þ2 with

B≃ A2, besides the dipole term, is one of the predictions
of the model. With the observed value of A, the coefficient
of the quadrupole term turns out to be quite small,
0.0025 ≤ B ≤ 0.008. Such would not be discernible from
the systematics and noise from the current CMB data.
Higher order multipole coefficients are also present in the
primordial spectrum, but suppressed by the corresponding
power of ϵ. This is a typical feature also among various
previously proposed power asymmetry-generating mecha-
nisms, that the predicted couplings of the CMB angular
modes fall off with their multipole separation. However,
for example, in the non-Gaussianity-generated cases of
Ref. [12], the suppression seems to be a square root rather
than the linear ϵl=2, less sharp than in our case. Higher
multipoles can thus be used as a cross-check to distinguish
between different explanations for the origin of the dipole
asymmetry.
In the next sectionwewill investigate another signature of

themodel in the bispectrum, whichmight be easier to detect.

III. BISPECTRUM

Let us calculate the three-point function for the above
direction-dependent excited states to see how they modify
the bispectrum. One can calculate the Wightman function
for the solution, ukðτÞ,
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G>
k ðτ; τ0Þ≡H2

_ϕ2

ukðτÞ
aðτÞ

u�kðτ0Þ
aðτ0Þ : ð30Þ

The three-point function could be derived from the
Wightman function through the following integral [27]:

hζ~k1ζ~k2ζ~k3i ¼ −ið2πÞ3δ3
�X

~ki

��
_ϕ

H

�4

M−2
P H

Z
0

τ0

dτ

×
1

k23
ðaðτÞ∂τG>

k1
ð0; τÞÞðaðτÞ∂τG>

k2
ð0; τÞÞ

× ðaðτÞ∂τG>
k3
ð0; τÞÞ þ permutationsþ c:c:;

ð31Þ
where τ0 is the moment at which the physical momentum
becomes equal to the physical cutoff, τ0 ≡ M

Hk. The
Wightman function in the integrand is

∂τG>
k ð0; τÞÞ ¼

H3

2 _ϕ2k

2ðαk − βkÞð−α�keikτ þ β�ke
−ikτÞ

aðτÞ : ð32Þ

The bispectrum takes the form

hζ~k1ζ~k2ζ~k3i ¼ ð2πÞ3δ3
�X3

i¼1

~ki

�
2H6ðPi>jk

2
i k

2
jÞ

_ϕ2M2
P

Q
3
i¼1ð2k3i Þ

×

�
A
1 − cosðktτ0Þ

kt
þ B

sinðktτ0Þ
kt

þ
X3
j¼1

Cj
1 − cosð~kjτ0Þ

~kj
þ
X3
j¼1

Dj
sinð~kjτ0Þ

~kj

�
;

ð33Þ

where kt ¼ k1 þ k2 þ k3 and ~kj ¼ kt − 2kj. Terms propor-
tional to Cj and Dj are, respectively, the ones that can lead
to enhancement in the local configuration, k1 ≃ k2 ≫ k3
[28], or the flattened (folded) configuration, k1 þ k2 ≃ k3
[29]. The coefficients A;B;C;j and Dj are as follows:

A ¼
Y

ðαki − βkiÞ
�Y

α�ki þ
Y

β�ki

�
þ c:c:

B ¼ i
Y

ðαki − βkiÞ
�
−
Y

α�ki þ
Y

β�ki

�
þ c:c:

Cj ¼ −
Y

ðαki − βkiÞ
�β�kj
α�kj

Y
α�ki þ

α�kj
β�kj

Y
β�ki

�
þ c:c:

Dj ¼ i
Y

ðαki − βkiÞ
�β�kj
α�kj

Y
α�ki −

α�kj
β�kj

Y
β�ki

�
þ c:c:

ð34Þ
The enhancement of the flattened configuration is how-

ever lost in slow-roll inflation after the projection of the
bispectrum shape on the two-dimensional CMB surface

[30]. Also, for the large deviations from the Bunch-Davies
vacuum, where χS ≫ 1 and ϕ≃ π=2, the enhancement
factor is exactly equal to zero. Thus we focus on the local
configuration enhancement. Noting that k1 ≃ k2 ≫ k3,
the enhancement for the local configuration three-point
function, one obtains

hζ~k1ζ~k2ζ~k3i≃ −16ð2πÞ3δ3
�X3

i¼1

~ki

�

×
H8ϵ

_ϕ2Q3
i¼1ð2k3i Þ

P
i>j

k2i k
2
j

k3
C; ð35Þ

where

C¼Re

�Y3
i¼1

ðαki −βkiÞ
�Y

i¼1

α�ki

�
β�k1
α�k1

þβ�k2
α�k2

�

þ
Y
i¼1

β�ki

�
α�k1
β�k1

þα�k2
β�k2

���

¼Re

�Y3
i¼1

ðαki −βkiÞðα�k3 þβ�k3Þðα�k2β�~k1 þα�k1β
�
k2
Þ
�
: ð36Þ

One can calculate the fNL parameter using the definition

fNL ≡ −
5

6

δhζk1ζk2ζk3iP
i>jhζkiζkiihζkjζkji

ð37Þ

to be

fNL ≃ −
20ϵ

3

k1
k3

C
γSðk3ÞðγSðk1Þ þ γSðk2ÞÞ

: ð38Þ

Expanding the δfNL in terms of ε up to second order,

fNL ≃ fð0ÞNL þ fð1ÞNLεþ fð2ÞNLε
2; ð39Þ

in the limit that χS ≫ 1 and thus φS ≃ π=2, we have

fð0ÞNL ≃ 5ϵ

3

k1
k3

; ð40Þ

fð1ÞNL ≃ 5ϵ

3

k1
k3

½cosðψ x̂1Þ þ cosðψ x̂2Þ − 2 cosðψ x̂3Þ�; ð41Þ

fð2ÞNL ¼ −
5ϵ

6

k1
k3

½cosðψ x̂1Þ2 þ cosðψ x̂2Þ2 − 6 cosðψ x̂3Þ2

−4 cosðψ x̂1Þ cosðψ x̂2Þ þ 4 cosðψ x̂1Þ cosðψ x̂3Þ
þ 4 cosðψ x̂2Þ cosðψ x̂3Þ�: ð42Þ

Hence the amplitude of the bispectrum depends on the
angles that the three position vectors make with the
preferred direction; please see Fig. 1.
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The first term, fð0ÞNL, which gives the dominant contri-
bution to the bispectrum, is independent of the these angles
though. For an inflationary model with ϵ ≈ 0.01,

fð0ÞNL ≃ 4.17; ð43Þ

where we have taken the largest scale at which the cosmic
variance is negligible to correspond to lmin ≃ 10 and the
smallest one to be the largest l probed by the Planck
experiment, lmax ≃ 2500.5 This is within the 2σ allowed
region of local non-Gaussianity from the Planck 2015
experiment [31]. At higher orders, the excited asymmetric
initial conditions induce directional dependence to the
bispectrum at the first order correction. It is easy to verify
that if x̂1 ¼ x̂2 ¼ x̂3 and asymmetry is scale independent,
the directional dependence vanishes at both first and second
order in ε. That is, if the chosen momenta are all at the same
corner of the sky, there is no modulation on top of the mean
value (43). On the other hand if the three modes are at
different corners of the CMB sky, even if the asymmetry is
scale independent, one will see modulation on top of the
mean non-Gaussianity value (43). The maximum of the
modulation occurs when the short wavelength modes, k1
and k2, are at the preferred pole, cosðψ x̂1Þ ¼ cosðψ x̂2Þ ¼ 1

and the long wavelength mode is at its antipode. For
ε ¼ 0.07, the maximum non-Gaussianity obtained at the
scales is

fmax
NL ≃ fð0ÞNLð1þ 4εþ 10ε2Þ ≈ 5.54: ð44Þ

On the other hand, the minimum shift from the
Bunch-Davies value result, corresponding to the minimum
value for non-Gaussianity, would occur when the short
wavelength modes are at the antipode pole and the long
wavelength mode is at the preferred pole. For this
configuration

fmin
NL ≃ fð0ÞNLð1 − 4εþ 10ε2Þ ≈ 3.20: ð45Þ

Since the hemispherical asymmetry parameter is scale
dependent and fades away at l≳ 600, one should recon-
sider the above result. In fact the first order correction to the
mean value of non-Gaussianity, which is the dominant
modulation term, could be written as

Δfð1ÞNL ¼ 5ϵ

3

k1
k3

½εðk1Þ cosðψ x̂1Þ þ εðk2Þ cosðψ x̂2Þ

− 2εðk3Þ cosðψ x̂3Þ�: ð46Þ

Maximum modification from the mean value (43) occurs
for the configuration where k1 ≃ k2 is the wave number
corresponding to l ≈ 2500 and k3 corresponds to l ¼ 10. In
this case, εðk1Þ ¼ εðk2Þ ¼ 0 and εðk3Þ ¼ ε. Now if the
large wavelength mode, k3, is around the preferred pole,
cosðψ x̂3Þ ¼ 1, we will have a decrement from the mean
value of non-Gaussianity

n
x1

x2

x3

k1

k2

k3

k1

k2

k3

x1

1

kk2

x4

FIG. 1. The amplitude of non-Gaussianity depends on which
corner of the sky the mode is located in. In a scale-dependent
asymmetry, it also depends on whether the asymmetric effects are
effective at the scale of interest.

n

x1 x2 x3 n

nnnn
k1

k2

k3

| k3 |<<| k1 | | k2 | | kl=2500 |

| k3 | | kl=10 |

FIG. 2. The amplitude of local non-Gaussianity reaches its
minimum departure from the mean value of non-Gaussianity,
when the considered modes are around the preferred pole of the

sky and j~k3j ≈ j~kl≈10j ≪ j~k1j ≈ j~k2j ≈ j~kl≈2500j. This is because
for εðk1Þ ¼ εðk2Þ ¼ 0 and εðk3Þ ¼ ε ≠ 0.

nk1

k2

k3

n

x1 x2 x3 n

| k3 |<<| k1 | | k2 | | kl=2500 |

| k3 | | kl=10 |

FIG. 3. The amplitude of local non-Gaussianity reaches its
maximum departure from the mean value of non-Gaussianity,
when the considered modes are around the antipode of the

preferred pole and j~k3j ≈ j~kl≈10j ≪ j~k1j ≈ j~k2j ≈ j~kl≈2500j.
5There is a minor correction to the value of fNL as quoted in

[18] due to a missing factor of ≈10 in the previous analysis.
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fmin
NL ≃ fð0ÞNLð1 − 2εþ 3ε2Þ ≈ 3.64: ð47Þ

It does not matter in which corner of the sky the k1 and k2
modes are located. We can assume that they are centered
around the preferred pole too.

On the other hand, if ~k3 is around the antipode of the
preferred pole, there will be an enhancement in the mean
value of local non-Gaussianity:

fmax
NL ≃ fð0ÞNLð1þ 2εþ 3ε2Þ ≈ 4.81: ð48Þ

The difference between these two values of non-
Gaussianity at two poles, δfNL ≈ 1.17, can be used to
distinguish this scenario from the competing proposals that
try to explain the observed hemispherical asymmetry.
The configurations resulting in minimal and maximal
non-Gaussianities are illustrated in Figs. 2 and 3.
We recall that non-Gaussianity can increase the proba-

bility of a power asymmetry. The impact of higher order
non-Gaussianity has also been considered [12,13]. A high
gNL, even if it occurs in an isotropic vacuum, could induce
anisotropic “power asymmetry” on the fNL. It is an open
question at the moment whether a gNL, while staying within
the observational bounds, could induce anisotropies in the
fNL at the order we are predicting.

IV. CONCLUSION

Hemispherical asymmetry is one of the persistent
forms of isotropy violation that has been observed in both
WMAP and Planck data. The hemispherical asymmetry
observed is scale dependent and vanishes for l≳ 600.
In this paper we suggested a scenario that accounts for
the observed hemispherical asymmetry using asymmetric

initial conditions. We noticed that there are infinite higher
multipole corrections to the power spectrum. In the limit
where the scale of new physics is maximally separated from
the Hubble parameter, only the dipole and quadrupole
terms survive. Requiring that the amount of asymmetry be
as large as the observed value, we obtained a small but
finite amplitude of quadrupole correction to the power
spectrum. This is one way to distinguish this scenario from
other scenarios that try to explain the origin of hemispheri-
cal asymmetry. We showed that the model exhibits unique
signatures in the bispectrum. Due to the excited initial
states, the local configuration gets enhanced around a mean
value which for a large field inflationary model, ϵ ≈ 0.01,
turns out to be around 4.17. There will be modulations on
top of this mean value that are dependent upon the angle
that the patches containing the mode make with the
preferred direction. The amount of variation is minimized
for the configuration in which the short and long
wavelength modes are around the preferred pole and

j~k3j ≈ j~kl≈10j ≪ j~k1j ≈ j~k2j ≈ j~kl≈2500j with fmax
NL ≈ 4.81.

The maximum occurs when these modes are at the antipode
of the preferred pole, fmin

NL ≈ 3.64. The difference of
non-Gaussianity between these two configurations is as
large as ≃1.17, which would be a definite indication of
the model.
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