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Noise hunting is a critical requirement for realizing design sensitivity of a detector, and consequently,
noise origins and its features have been revealed partially. Among the noise sources to be hunted, sources of
nonlinearly correlated noise, such up-conversion noise, are hard to find and can limit the sensitivity of
gravitational wave searches with advanced detectors. We propose using a correlation analysis method
called maximal information coefficient (MIC) to find both nonlinear and linear correlations. We apply MIC
to the scattered light noise correlated between the seismic activity and the strain signal, which limited the
sensitivity of the Virgo detector during the first science run. The results show that MIC can find nonlinearly
correlated noise more efficiently than the Pearson correlation method. When the data is linearly correlated,
the efficiency of the Pearson method and MIC is comparable. On the other hand, when the data is known to
be nonlinearly correlated, MIC finds the correlation while the Pearson method fails completely.
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I. INTRODUCTION

In the past several decades, the first generation of
kilometer-scale laser interferometric gravitational wave
(GW) detectors, TAMA [1], GEO [2], LIGO [3], and
Virgo [4], have performed observation runs. Using the
observational data, searches of GWs from compact binary
coalescences with a neutron star and a black hole [5,6],
transient GWs from violent astrophysical phenomena such
as galactic supernovae [7], continuous GWs from rapid
rotated pulsars [8,9], stochastic GW backgrounds arisen by
cosmological or astrophysical sources [10,11] have been
performed.

At present, second generation GW detectors, such as
Advanced LIGO [3], Advanced Virgo [4], and KAGRA
[12], are upgrading to improve the sensitivity or are under
construction. The first detection of GW was finally
achieved by Advanced LIGO detectors and LSC + Virgo
data analysis [13]. In addition to improvements of these
detectors, the construction of LIGO-India is under consid-
eration in India [14].

While the sensitivity of GW detectors has been limited
by fundamental noises such as shot noise, radiation
pressure noise, and seismic noise, practically, an astro-
nomical sensitivity has been limited by unknown nonsta-

tionary noise sources such as instrumental artifacts and
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environmental disturbances. It is important for a claim of
confident detection of the GW to track as many
nonstationary noise origins as possible. In order to char-
acterize the observation data, thousands of physical
environmental monitors (PEM) are installed around the
GW detectors LIGO and Virgo. At GW detector sites,
the noise huntings with PEM channels have been per-
formed to reveal the nonstationary noise origin and its
feature. As a result, a number of noise sources have been
identified [15—18]. But several nonstationary noises remain
not understood.

Most nonstationary noise influences one or more chan-
nels. For example, an acoustic noise is generated by an
electronic fan around the detector or by an airplane passing
close to the detector. The acoustic noise affects the micro-
phone and the GW channel. In order to identify such a noise
origin, the correlation of the GW channel with one or more
auxiliary channels can be used. The data affected by the
nonstationary noise is either removed or tagged by a flag
that rejects the GW search result. This veto procedure
improved the efficiency of the GW search [15,19-22].

Up-conversion noise is one of the problematic nonsta-
tionary noise, which is generated by the up-conversion of
low frequency excitations into the GW-sensitive frequency
band with a linear as well as a nonlinear correlation [23,24].
A conventional correlation measure, such as the Pearson
correlation coefficient [25], is difficult to find the non-
linearly correlated noise, though it is important to identify

© 2016 American Physical Society


http://dx.doi.org/10.1103/PhysRevD.94.042004
http://dx.doi.org/10.1103/PhysRevD.94.042004
http://dx.doi.org/10.1103/PhysRevD.94.042004
http://dx.doi.org/10.1103/PhysRevD.94.042004

HIROTAKA YUZURIHARA et al.

the source of up-conversion noise since its mitigation
improves the sensitivity of the detector, reduces the false
alarm rate, and increases the confidence of the GW
detection.

In this paper, we present the first application of a
correlation analysis method for finding a nonlinearly
correlated noise between signals of PEM channels and
the GW strain signal. As an example of a nonlinearly
correlated noise, we briefly review a model of the up-
conversion noise which has limited the Virgo detector
before the second Virgo science run [24]. In this noise
model, the laser light is scattered by microseismic activity.
The GW channel affected by this backscattered noise is
nonlinearly coupled with the seismic noise.

In order to show the detection efficiencies of the
correlation analysis methods, we generate simulated data
where the seismic noise and the GW strain signal are
correlated following the up-conversion noise model.

The paper is organized as follows. In Sec. II, methods for
identifying a linear and a nonlinear correlation are briefly
described. Section III is a brief review of the up-conversion
noise model. Section IV describes the analyzed results and
the detection efficiency of the methods. Section V presents
a summary of this paper.

II. CORRELATION ANALYSIS

In standard operations of GW detectors, PEM channels
are used to monitor the environment of the detector and the
status of the interferometer. As introduced in Sec. I,
depending on the noise contamination path, an externally
induced noise typically produces a correlation between
multiple channels. In this section, we describe two methods
to find linear and nonlinear correlations between the signal
of PEM channels and the GW strain signal.

A. Pearson correlation coefficient

The Pearson correlation coefficient (for short, the
Pearson method) of a discrete data set (x;,y),..,
(xy,yy) is defined as [25]

2 (i = X) (i =)
\/Zz lxt_x \/Zz lyz )

p= ; (1)

where x=N"1>" x; and =N3>,y are the
means. The Pearson method measures a linearity between
the data. By contrast, if the data is correlated nonlinearly,
such as an X-shape or a sinusoidal shape shown in Fig. 2
of [26], the correlation coefficient is nearly zero. The
Pearson method is effective to find a linear relationship but
not to respond to a nonlinear relationship. In this paper,
“correlation” implicitly assumes a linear dependence.
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B. Maximal information coefficient

Recently, methods to find the correlations nonlinearly as
well as linearly were proposed [26-29]. In this study,
we focus on a maximal information coefficient (MIC)
method [26,30].

To calculate MIC, we introduce mutual information. The
mutual information I(s;¢) of two continuous variables s
and ¢, which are drawn from a joint probability distribution
p(s,t), is defined as

where p(s) and p(¢) are marginal probability density
functions of p(s, ).

Figure 1 shows an example of placement of the grids. In
order to calculate the mutual information of discrete data
(x1,¥1),--(xn,yy), rectangular grids are placed with R
intervals in the row direction and C intervals in the column
direction. All data fall somewhere in the grids.

The mutual information I(R,C) of discrete data
(x1,91)s --(xn, yy) is defined as

= -y r,c)lo 717(}”6)

r=1 c¢=1

where the joint probability mass function p(r,c) is
estimated by the ratio of b(r,c) to the number of all
samples N and b(r, ¢) is the number of data assigned in rth
and cth interval. The marginal probability density p(r) and
p(c) is defined as

c=C

c=1 c

FIG. 1. An example of placed rectangular grids. All discrete
data fall somewhere in the grids. The circles represent the discrete
data. The dotted lines represents the grids to separate the data.
The data are in the shaded regions. The mutual information of the
discrete data is calculated by the ratio of b(r, ¢) to the number of
all samples N.
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C

p(r) =Y plr.ec). (4)
ple) = p(r.oc). (5)

MIC of the discrete data (x;,y;), ..(xy, yy) is defined as
follows [26,30],
I(R.C)

max ——————— (6)

MIC(x,y) = :
(x.5) rC<B(N)log, (min{R, C})

where R > 2, C > 2, B(N) is a maximal number of cells
of the grids, and in this study, we estimate MIC with
B(N)=N% [26,30]. MIC is defined as the statistics
maximized under all the possible grids with RC < B(N)
because a calculated /(R, C) depends on the number of
cells of the grid.

By the definition of mutual information, I(R,C) €
[0,10g, (min{R, C})] for all R and C, so MIC(x,y) €
[0,1]. If the data are statistically independent,
MIC(x,y) - 0 as N — oo. On the other hand, if x and
y are dependent, MIC(x,y) — 1 as N — co.

III. APPLICATION OF OUR METHOD
TO UP-CONVERSION NOISE

In this section, we introduce a noise model of the up-
conversion noise [24]. Following this noise model, we
generate a set of the simulated up-conversion noise by
changing the magnitudes of the induced noise.

A. Correlated noise in the past observations

At the Virgo detector, optical benches are installed at the
laser input port, the laser output port, and behind end
mirrors, which transmit a tiny fraction of the laser to control
the detector. Because the resonance of the optical benches
is excited by seismic activity, the scattered light is modu-
lated by the motion of the optical components. This
scattered light then recombines with the main optical beam
and appears as a phase noise in the GW strain signal. This
phase noise ¢ (¢) can be expressed as [24]

Belt) = (39 + xc(0). )
where A is an optical wavelength, x is a static optical path
length, and x,.(¢) is a displacement of optical components
along the direction of the beam.

There is a correlation between the vibration of the optical
component on the bench xy(¢) and the strain signal s(¢)
because the phase noise is mixed in s(r) as [24],

S(l) - n(t) + nsc([)

= n(t) + Gsin {4771 (xo + xsc(t))] , (8)
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where n(t) is a fundamental noise of the interferometer, the
coupling factor G is a constant defined as G = T £ 1 v/f ..
T is the transmission factor of the cavity end mirrors, L is
the arm length of the interferometer, and f is a ratio of
the transmitted beams to the beams backscattered and
re-coupled to the optical field of Fabry-Perot.

The relationship between x. () and ng(f) can be
classified in terms of the magnitudes of bench displace-
ments. If the bench displacement is x,.(f) < = = 1077 [m],
the term in Eq. (8) is approximated as ny. (1) &« G x.(1),
and so, x.(7) and ny(7) are in a linear relationship. The
strain signal is not affected by the scattered light in this case
because the contribution of scattering light noise is neg-
ligible compared to the detector noise. If the magnitude of
the bench displacement is x,(¢) > 1077 [m], x(¢) and
n.(t) are nonlinear correlated and the up-conversion of the
scattered light noise occurs.

B. Generation of simulated up-conversion noise

We generate a set of simulated data containing the up-
conversion noise by changing the magnitudes of the
induced noise. A sampling frequency and a duration of
the simulation data are fy = 1024 [Hz] and T = 1.0 [s],
respectively, and so, the number of the data is N = 1024.

The bench displacement x.(#) contains the externally
induced noise and the bench displacement x(¢) as

salt) = Asin af exp (=) 4 x(0. 9

where A, is an amplitude (in meters) of the externally
induced noise, 7 is an attenuation factor, and f,, is a
resonant frequency of the optical bench. In this study, we
use 7=0.1 [sec] and f,, = 15 [Hz] to mimic the up-
conversion noise in the Virgo detector. Note that the
analysis methods applied in this study are available for
realizations with other parameters. We consider the case
where x. (1) is generated by the externally induced tran-
sient event. Note that MIC is even more efficient in the
case of a continuous seismic noise exciting scattered
light noise.

The time series of the bench displacement is calculated
by the inverse Fourier transform to the randomized
spectrum as

xus(1) = / 107 x f25(f)e¥df,  (10)

where g(f) is the complex number of which the real and
the imaginary part are randomized by Gaussian random
numbers, and we assume that the spectrum of the bench
displacement follows the power law [31].

Figure 2 shows the randomized spectra of noise
components, which are based on the noise budget of the
Virgo detector [32]. The time series of the fundamental
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FIG. 2. The spectrum of noise components of Virgo detector
[32] which is used to generate the simulated strain signal.

noise n(t) in Eq. (8) is calculated by the inverse Fourier
transform to the randomized spectrum as

n(r) = / R(f)erm iy, ()

where the coupling factor G = 5.0 x 1072° as a measured
typical value [24], and the optical wavelength
2 =1064 [nm]; (f) =12 |n;(f)|g(f), and the each
randomized spectrum |n;(f)|g(f) is shown in Figure 2.

We perform whitening of the strain signal using the
averaged spectrum S, (f). A whitened strain signal w(¢) is
calculated from s(¢) as
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w(r) = / S sy (12)
VS (f)

where 5(f) = [ s(t)e™>*/'dt, and here, we use S,(f) =

(00, (F)])2.

Figure 3 shows examples of the whitened spectrums of
the strain signal. The case of A, = 0 has no effect on the
up-conversion noise. As the amplitude increases from
A =1x10"1to A, =2 x 1073, the shape of the scatter-
ing shoulder appears in the whitened spectrums. The case
of A, =2x 1077 and A,, =4 x 107 correspond to the
situation where the up-conversion noise is stronger than a
stable operation. For this reason, we confirmed that the
procedure to generate a set of the simulated noise mimic the
up-conversion noise in the Virgo detector [24].

Figure 4 shows examples of the simulated data set x(¢)
and w(t). In the case of A, =0.0 and A, =1 x 107,
significant structures in the scatter plots are not observed. In
the case of A,, =4 x 107 and A,, = 2 x 1078, two main
components can be seen. The diagonal structure is the
effect of the up-conversion noise, and the vertical structure
is caused by the background distribution of x(z). The
scatter plots of A, =2 x 1077 and A,,, = 4 x 1077 show a
sinusoidal shape as expected in Eq. (8).

IV. RESULT OF APPLICATION
OF OUR METHOD

We simulate the detection of the nonlinearlity by using
the Pearson and MIC methods. The procedure of the
simulation is as follows: First, we generate a set of

Ap, =0.0 An=1x10° Ap=4x10°
102 T 102 P 102¢
10" 10" 1 10" 3
€ 100AM < 10% < 109
107E 101 E 101 E
102 o 102 — 102
8 16 32 64 128256512 8 16 32 64 128256512 8 16 32 64 128256512
f f f
Ap=2x108 An=2x107 Am=4x107
102 ‘ 102 / ‘ 102¢ ‘
101k E 10'F | E 101?’ \[r 7 E
_ _ \hy _f
g 100%\ = 100_/ Vf\ = 1005/
107L ! e 101E 107
102 102 2

1
8 16 32 64 128256512
f

FIG. 3.
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1
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f f

An example of the whitened spectra w(f) for various values of externally induced noise amplitude A,,,.
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FIG. 4. The scatter plots of the whitened strain signal w(r) versus the bench displacement x,(¢) for various values of the externally

induced noise amplitude A,,.

simulated data set x..(¢) and w(¢), following the method
described in Sec. III B. Second, we obtain transient events
by an excess-based method as follows: In this simulation,
we assume a simple excess power filter integrating over a
frequency domain. The aim of this study is not to find the
transient noise but the nonlinear correlation. If we use the
time-frequency power map and its clustering, we can
increase the detection efficiency of the transient noise.
Third, we analyze the triggered data using the correlation
analysis methods (MIC and Pearson). Finally, we estimated
the efficiency and false alarm probability to detect the
up-conversion noise by comparing the data without the
up-conversion noise (A, = 0).

We perform the Monte Carlo simulations 10,000 times
for each of the following values of the amplitude:
Ap=1x10"7, 4x107, 2x108, 2x1077, and
4 x 1077 The efficiency of each method is evaluated by
computing the ratio of the number of events above the
threshold to the total number of events. To estimate the
background, we generate the simulated data of the ampli-
tude A,, = 0, as shown in Figs. 3 and 4. The false alarm
probability (FAP) is evaluated as the ratio of the event
counts larger than the threshold to the number of the total
event counts.

Figure 5 shows a receiver operating characteristic (ROC)
curve for each method and each amplitude A,,,. Focusing on
the Pearson method, in the case of A, =1 x 1072, the

0.1 '
3 :
o
5] .
2 001 :
e :
w .
0.001 v
B — e —
10 103 102 10 10°
False Alarm Probability
MIC:A,=4 x 107 Pearson:A,=4 x 107 =« - .
MIC:A,=2 x 107 ——— Pearson:A,=2 x 107 = = - -
MIC:A,=2 x 108 —— Pearson:A,=2 x 108 = - - -
MIC:A,=4 x 10°° Pearson:A,=4 x 10
MIC:A,=1x 10 —— Pearson:A,=1x 10 - - - -
FIG. 5. This graph shows the ROC curve of the Pearson

correlation coefficient and MIC with the set of the simulated
noise 10,000 times by changing the amplitude of induced noise.
The false alarm probability is along the x-axis, and the efficiency
is along the y-axis. The amplitudes of the bench displacement are
chosen as A, =1x107°%, 4x 107, 2x 1078, 2x 1077, and
4x1077,
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efficiency of the Pearson method is 0.07 at FAP = 0.01
because the magnitude of the bench displacement is
comparable to the detector noise, and also, the data set
is not correlated (as seen in Fig. 4). In the case of A, =
4x 107 and A,, = 2 x 1078, the relationship of the data
approaches the linear correlation as the amplitude of the
bench displacement increases. As a result, the efficiency of
the Pearson method is improved from 0.07 to 0.96 at
FAP = 0.01. By contrast, in the case of A, = 2 x 1077 and
A, = 4 x 1077, the efficiency of the Pearson method is
decreased to 0.56 and less than 10~* at FAP = 0.01,
respectively, because the relationship of the data set is
changed from a linear to a sinusoidal as seen in Fig. 4. This
case corresponds to the situation where the up-conversion
noise limits the detector sensitivity.

Focusing on MIC, in the case of A, =1 X 1072, the
efficiency of MIC is 0.03 at FAP = 0.01. As the amplitude
of the bench displacement increases from A,, = 1 x 107™°
to A, =2x1077, the efficiency of MIC increases
monotonically from 0.03 to 0.97 at FAP = 0.01. In the
case of A, =4 x 1077, the efficiency of MIC is 0.96
at FAP = 0.01.

This result shows that MIC is suitable for finding a
nonlinear relationship.

V. SUMMARY

In the past operations of GW detectors, the correlated
noise between multiple channels participated in preventing
the achievement of design sensitivity. Noise investigations
with PEM channels have been performed to characterize

PHYSICAL REVIEW D 94, 042004 (2016)

correlated noise [15-18] and to find the noise contamina-
tion path in the case of linear or nonlinear correlations.

Focusing on the nonlinearly correlated noise, this paper
introduced the maximum information coefficient [26,30]
and showed that this method can be efficient in finding the
seismic nonlinear correlation with the GW strain signal.
Using simulated data based on Virgo noise of the first
science run [24,31-33], we compared the performance of
the Pearson method with the MIC method. The result
showed that when the data set is linearly correlated, the
efficiency of the Pearson method and MIC method is
comparable. By contrast, when the data set is nonlinearly
correlated as in the case of A, =4 X 1077, the MIC
efficiency is 0.96 for a false alarm rate of 0.01 in
10,000 trials, much above the Pearson method efficiency.
Although we treated the case of up-conversion noise caused
by the scattered light, in general, we can expect MIC to find
other families of nonlinearly correlated noises.
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