
Equivalence of quantum field theories related by the θ-exact
Seiberg-Witten map

Carmelo P. Martin,1,* Josip Trampetić,2,3,†,‡ and Jiangyang You4,§
1Departamento de Física Teórica I, Facultad de Ciencias Físicas,

Universidad Complutense de Madrid, 28040-Madrid, Spain
2Institute Rudjer Bošković, Division of Experimental Physics, Bijenička 54, 10000 Zagreb, Croatia

3Max-Planck-Institut für Physik, (Werner-Heisenberg-Institut), Föhringer Ring 6,
D-80805 München, Germany

4Institute Rudjer Bošković, Division of Theoretical Physics, Bijenička 54 10000 Zagreb, Croatia
(Received 14 June 2016; published 17 August 2016)

The equivalence of the noncommutative U(N) quantum field theories related by the θ-exact Seiberg-
Witten maps is, in this paper, proven to all orders in the perturbation theory with respect to the coupling
constant. We show that this holds for super Yang-Mills theories with N ¼ 0, 1, 2, 4 supersymmetry.
A direct check of this equivalence relation is performed by computing the one-loop quantum corrections to
the quadratic part of the effective action in the noncommutative U(1) gauge theory with N ¼ 0, 1, 2, 4
supersymmetry.
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Classical noncommutative (NC) field theories admit an
equivalent representation in terms of ordinary fields for-
mulated by employing the Seiberg-Witten (SW) map [1].
However, we still do not know whether this equivalence
holds at the quantum level, i.e., whether the quantum theory
defined in terms of the NC fields is the same as the quantum
theory defined in terms of commutative fields and obtained
from the NC action by using the θ-exact SW map [1]. In
this communication, we prove that the θ-exact Seiberg-
Witten map establishes an equivalence relation between
perturbative—in the coupling constant—quantum field
theories defined with respect to the noncommutative and
commutative fields, by showing that the corresponding on-
shell DeWitt effective actions [2–5] can be SW-mapped one
to another. We also give an explicit check of our verdict in
the (supersymmetric) NC U(1) gauge theory.
The on-shell DeWitt effective action [5] with respect to

the noncommutative or hatted fields, Γ̂DeW½B̂μ�, is given by
the following path integral formulation,

e
i
ℏΓ̂DeW½B̂μ� ¼

Z
dQ̂a

μdĈ
ad ˆ̄CadF̂a

· e
i
ℏSNCYM½B̂μþℏ

1
2Q̂μ�þiSgf ½B̂μ;Q̂μ;F̂;

ˆ̄C;Ĉ�; ð1Þ

where SNCYM ¼ − 1
4g2

R
trF̂μνF̂

μν is the usual NC U⋆ðNÞ
Yang-Mills (YM) action, while Sgf is the gauge-fixing
action which can be expressed in the Becchi-Rouet-Stora-
Tyutin (BRST) quantization language as

Sgf ½B̂μ; Q̂μ; F̂;
ˆ̄C; Ĉ� ¼ δ̂BRSXgf ½B̂μ; Q̂μ; F̂;

ˆ̄C; Ĉ�; ð2Þ

where Xgf ½B̂μ; Q̂μ; F̂;
ˆ̄C; Ĉ� is an arbitrary gauge-fixing

functional. The noncommutative U⋆ðNÞ BRS transforma-
tions δ̂BRSÂμ ¼ D̂μĈ and δ̂BRSĈ ¼ −iĈ⋆Ĉ induce the
following BRS transformations after background-field
splitting Âμ → B̂μ þ ℏ

1
2Q̂μ,

δ̂BRSB̂μ ¼ 0; δ̂BRSQ̂μ ¼ ℏ−1
2D̂μ½B̂μ þ ℏ

1
2Q̂μ�Ĉ;

δ̂BRSĈ ¼ −iĈ⋆Ĉ; δ̂BRS
ˆ̄C ¼ ℏ−1

2F̂; δ̂BRSF̂ ¼ 0:

ð3Þ

The θ-exact SW map of the NC fields in terms of
commutative and ordinary fields in the U(N) gauge theory,

Âμ ¼ Âμ½Aμ; θ�; Ĉ ¼ Ĉ½Aμ; C; θ�; ð4Þ

are solutions to the following equations:

δ̂BRSÂμ ¼ δBRSÂμ½Aμ; θ�; δ̂BRSĈ ¼ δBRSĈ½Aμ; C; θ�:
ð5Þ

They can be expressed θ-exactly as a formal power series of
the field operators [6,7],

Âμ½Aμ; θ�ðxÞ ¼ AμðxÞ þ
X∞
n¼2

AðnÞ
μ ðxÞ; ð6Þ

Ĉ½Aμ; C; θ�ðxÞ ¼ CðxÞ þ
X∞
n¼1

CðnÞðxÞ; ð7Þ
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where

AðnÞ
μ ðxÞ ¼

Z Yn
i¼1

d4pi

ð2πÞ4 e
ið
P

n
i¼1

piÞx

·AðnÞ
μ ½ða1; μ1; p1Þ;……; ðan; μn; pnÞ; θ�

· ~Aa1
μ1ðp1Þ…… ~Aan

μnðpnÞ; ð8Þ

CðnÞðxÞ ¼
Z Yn

i¼1

d4pi

ð2πÞ4 e
iðpþ

P
n
i¼1

piÞx

· CðnÞ½ða1; μ1; p1Þ;……; ðan; μn; pnÞ; ða; pÞ; θ�
· ~Aa1

μ1ðp1Þ…… ~Aan
μnðpnÞCaðpÞ: ð9Þ

The quantitiesAðnÞ
μ and CðnÞ are totally symmetric under the

permutations with respect to the set of the parameter-triples
fðai; μi; piÞji ¼ 1;…; ng, which have the property—of key
importance—that only the momenta which are not con-
tracted with θμν build up polynomials, which never occur in
the denominator [6,7].
Introducing the ordinary background-field splitting,

Aμ ¼ Bμ þ ℏ
1
2Qμ; ð10Þ

and the corresponding BRS transformations,

δBRSBμ ¼ 0; δBRSQμ ¼ ℏ−1
2Dμ½Bμ þ ℏ

1
2Qμ�C; ð11Þ

where Bμ is the commutative background field and Qμ the
commutative quantum fluctuation, for the SW map (4) we
find the background-field splitting,

Âμ½Bμ þ ℏ
1
2Qμ; θ� ¼ Âμ½Bμ; θ� þ ℏ

1
2Q̂μ½Bμ;Qμ;ℏ; θ�

¼ B̂μ½Bμ; θ� þ ℏ
1
2Q̂μ½Bμ;Qμ;ℏ; θ�

Ĉ½Bμ þ ℏ
1
2Qμ; C; θ� ¼ Ĉ½Bμ; C; θ� þ ℏ

1
2Ĉð1Þ½Bμ;Qμ; C;ℏ; θ�;

ð12Þ

which ensures that the ordinary BRS transformations (11)
induce the NC BRS transformations (3).
Now the on-shell DeWitt action with respect to the

ordinary fields, ΓDeW½Bμ�, is given by the path integral

e
i
ℏΓDeW½Bμ� ¼

Z
dQa

μdCad ˆ̄CadF̂a

· e
i
ℏSNCYM½Bμþℏ

1
2Qμ�þiSgf ½Bμ;Qμ;F̂;

ˆ̄C;C�; ð13Þ

in which we change variables, Ca → Ĉa and Qa → Q̂a, so
that it transforms into the new path integral,

e
i
ℏΓDeW½Bμ� ¼

Z
dQ̂a

μdĈ
ad ˆ̄CadF̂aJ−11 ½B;Q�J2½B;Q�

· e
i
ℏSNCYM½B̂μþℏ

1
2Q̂μ�þiSgf ½B̂μ;Q̂μ;F̂;

ˆ̄C;Ĉ�; ð14Þ

containing the Jacobian determinants J1½Ba;Qa� and
J2½Ba;Qa� which are defined as follows:

J1½Ba;Qa� ¼ det
δQ̂a

μðxÞ
δQb

νðyÞ
¼ expTr ln

�
δQ̂a

μðxÞ
δQb

νðyÞ
�
;

J2½Ba;Qa� ¼ det
δĈaðxÞ
δCbðyÞ ¼ exp Tr ln

�
δĈaðxÞ
δCbðyÞ

�
: ð15Þ

Under the assumption that both of the above Jacobians
are equal to one, we can prove that the right-hand side
of (14) equals the right-hand side of (1), so that

ΓDeW½Bμ� ¼ Γ̂DeW½B̂μ½Bμ��: ð16Þ

Note that the above result is valid on-shell, i.e. when
B̂μ½Bμ� satisfies the NC YM equations of motions,

D̂μ½B̂μ½Bμ��F̂μν½B̂μ½Bμ�� ¼ 0; ð17Þ

and the reason is the on-shell uniqueness of the DeWitt
effective action [3,8].
Using the SW map expansion (8) and the background-

field splitting (12) one can show that

δQ̂a
μðxÞ

δQb
νðyÞ

¼ 1

ℏ
1
2

δÂa
μðxÞ

δQb
νðyÞ

¼ δabδ
ν
μδðx − yÞ þ

X∞
n¼2

Z Yn
i¼1

d4pi

ð2πÞ4

· eið
P

n−1
i¼1

piÞxeipnðx−yÞMðnÞaν
bμ

× ðp1; p2;…:pn−1;pn; θÞ; ð18Þ

where

MðnÞaν
bμ ðp1; p2;…:pn−1;pn; θÞ

¼ ntr½TaAðnÞ
μ ½ða1; μ1; p1Þ;…; ðan−1; μn−1; pn−1Þ;

× ðb; ν; pnÞ; θ�� ~Aa1
μ1ðp1Þ… ~Aan−1

μn−1ðpn−1Þ: ð19Þ

Note that ~Aai
μiðpiÞ ¼ ~Bai

μiðpiÞ þ ℏ
1
2 ~Qai

μiðpiÞ for all i.
Let li, i ¼ 1;…; mþ 1 be given by

l1 ¼
Xn1−1
i1¼1

p1;i1 ;………; lmþ1 ¼
Xnmþ1

imþ1¼1

pmþ1;imþ1
;

then, by taking into account (18) and carrying out a lengthy
straightforward computation, one gets
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ln J1½B;Q� ¼ Tr ln

�
δQ̂a

μðxÞ
δQb

νðyÞ
�

¼
X∞
n¼2

Z Yn−1
i¼1

d4pi

ð2πÞ4 δ
�Xn−1

i¼1

pi

�

·
Z

d4q
ð2πÞ4M

ðnÞaμ
aμ ðp1; p2;…:; pn−1; q; θÞ þ

X∞
m¼1

ð−1Þm
mþ 1

·
X∞
n1¼2

� � �
X∞

nmþ1¼2

Z Yn1−1
i1¼1

d4p1;i1

ð2πÞ4 � � �
Z Ynmþ1−1

imþ1¼1

d4pmþ1;imþ1

ð2πÞ4

· δ

�Xmþ1

i¼1

li

�Z
d4q
ð2πÞ4

�
Mðn1Þaμ1

a1μ ðp1;1; p1;2;…:; p1;n1−1; q; θÞ

·Mðn2Þa1μ2
a2μ1 ðp2;1; p2;2;…:; p2;n2−1; q − l2; θÞ

� � � � � � � � �

·Mðnmþ1Þamμ
aμm

�
pmþ1;1; pmþ1;2;…:; pmþ1;nmþ1−1;q −

Xmþ1

i¼2

li; θ

��
: ð20Þ

Hence, in view of the above equations (19) and (20), to
compute ln J1½B;Q�, one has to work out the following
dimensionally regularized type of integrals over the internal
momenta qμ:

V ¼
Z

dDq
ð2πÞD

�
tr½TaAðn1Þ

μ ½ðb1;1; ν1;1; p1;1Þ;……;

ðb1;n1−1; ν1;n1−1; p1;n1−1Þ;
ða1; μ1; qÞ; θ�� � � � � � � � � �

· tr

�
TamAðnmþ1Þ

μm

�
ðbmþ1;1; νmþ1;1; pmþ1;1Þ;…:;

ðbmþ1;nmþ1−1; νmþ1;nmþ1−1; pmþ1;nmþ1−1Þ;�
a; μ; q −

Xmþ1

i¼2

li

�
; θ

���
: ð21Þ

However, the previous integral in (21) is a linear combi-
nation of integrals of the type

I ¼
Z

dDq
ð2πÞDQðqÞIðqθki; kiθkjÞ; ð22Þ

where QðqÞ ¼ qρ1qρ2qρ3 � � �, qθki ¼ qμθμνkiν, and
kiθkj ¼ kiμθμνkjν. Indices i and j run over all relevant
(external) momenta other than q. It is important to stress
that QðqÞ is a monomial on qρ and that the functional I, as
indicated in the integrand of the integral (22), is a function
of the variables qθki and kiθkj only, and, hence, as shown
in details in [9], one concludes that

I ¼ 0 → V ¼ 0; ð23Þ
under dimensional regularization [10]. By substituting
V ¼ 0 in (20), we obtain that in dimensional regularization,
the following result holds,

ln J1½B;Q� ¼ 0; ð24Þ

proving that indeed J1½B;Q� ¼ 1.
It is straightforward to see that identical arguments apply

to J2½B;Q� as well; thus, the Seiberg-Witten map equiv-
alence between quantum theories defined in terms of
noncommutative fields and in terms of ordinary fields
indeed holds up to all orders in the perturbation theory.
Now, since the θ-exact Seiberg-Witten map for matter

fields—see [6,7]—have expressions analogous to that of
the ghost field, it is clear that the Jacobian of the trans-
formation from ordinary matter fields to noncommutative
matter fields is also trivial in dimensional regularization.
Hence, the conclusion that we have reached above, when
no matter fields are included, remains valid when the latter
are included: the on-shell De Witt action of the theory
defined in terms of noncommutative fields is the same as
the on-shell DeWitt action of the ordinary theory obtained
by using the θ-exact Seiberg-Witten map.
We have checked the equivalence established above by

computing the one-loop quantum correction to the quad-
ratic part of the effective action of the U(1) NCGFT in the
NC background-field gauge prior to and after the Seiberg-
Witten map. In this specific case, the general equivalence
reduces to a simple relation:

Γ̂μνðpÞ ¼ ΓμνðpÞjon−shell: ð25Þ

The standard procedure for computing the DeWitt
effective action of the U⋆ð1Þ gauge theory perturbatively
in the background-field formalism [3,4] evaluates 1-PI
diagrams with all background-field external legs and all

integrand field (Q̂μ,
ˆ̄C, Ĉ, F̂) internal lines using the

following action:
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Ŝloop ¼ SBFG þ SNCYM½B̂μ þ Q̂μ� − SNCYM½B̂μ�

−
Z �

δ

δB̂μ

SNCYM½B̂μ�
�
· Q̂μ: ð26Þ

We choose the θ-exact SWmap from Ŝloop → Sloop and then
use the resulting action,

Sloop ¼ SBFG½Bμ; Qμ;
ˆ̄C;C; F̂�

þ SNCYM½B̂μ½Bμ� þ Q̂μ½Qμ; Bμ�� − SNCYM½B̂μ½Bμ��

−
Z �

δ

δB̂μ

SNCYM½B̂μ�
�
½Bμ� · Q̂μ½Bμ; Qμ�; ð27Þ

for the one-loop computation of the effective action with
respect to the ordinary fields. This choice can be shown to
be equivalent to the subtraction of commutative equations
of motion δ

δBμ
SNCYM½B̂μ½Bμ�� ¼ 0 on shell as long as the

Seiberg-Witten map is invertible.
In the follow-on computation, by using the extended

version of the dimensional regularization scheme [11], we
find that the one-loop 1-PI two-point functions from (26)
and (27) are actually exactly the same, i.e.,1

Γ̂μνðpÞ ¼ ΓμνðpÞ; ð28Þ

which verifies the equivalence relation (16).
As a consequence of (28), an important point is that,

once we turn on supersymmetry [11], both the IR and UV
cancellation results,

Γμν
totaljIR ¼ g2

π2
ð2 − 2nf þ nsÞ

ðθpÞμðθpÞν
ðθpÞ4 ; ð29Þ

Γμν
BFGtotaljUV ¼ g2

48π2
ð22 − 4nf − nsÞ

· ðgμνp2 − pμpνÞ
�
2

ϵ
þ lnðμ2ðθpÞ2Þ

�
; ð30Þ

found prior to the Seiberg-Witten map now hold precisely
after the Seiberg-Witten map.
A summary of our communication is as follows:
The perturbative quantum field theories derived from the

classical action in terms of the noncommutative or the
ordinary commutative fields via the Seiberg-Witten map are
equivalent to each other, again via the Seiberg-Witten map.
This is because each order of the perturbative expansion of
the Jacobian determinant associated with the Seiberg-
Witten map changing variable contains a single functional
trace which can be converted into a single loop integral that
vanishes in the dimensional regularization. Therefore, the

defining path integral for the on-shell DeWitt effective
action becomes identical after changing the path integral
variables. From this viewpoint, at least in the perturbative
regime, the overwhelming nonlocality which spreads all
over the θ-exact Seiberg-Witten map expansion, together
with all higher-order interactions induced by the Seiberg-
Witten map, can actually both be minimized to the same
level as in the much simpler theory without the Seiberg-
Witten map.
We have checked the general equivalence relation in the

one-loop corrections to the quadratic part of both DeWitt
effective actions. We find that the equivalence relation
manifests itself as an equality between the effective actions
when we perform a subtraction of the noncommutative
equations of motions. Since the equations of motions with
respect to ordinary and noncommutative fields are equiv-
alent as long as the Seiberg-Witten map is invertible, we
conclude that the equivalence relation indeed holds
on-shell.
The “fingerprint” quantum properties of the supersym-

metric noncommutative U(1) gauge theories [12–20],
namely the cancellation of quadratic IR divergence in
the photon 1PI two-point function by SUSY and the
cancellation of the UV plus log-IR divergences in the
photon 1PI two-point function in the background field
gauge by N ¼ 4 SUSY, which is only valid when quan-
tization is performed with respect to the noncommutative
fields before, are now also obtainable from the quantization
with respect to the ordinary fields.
A few final words on the scope and limits of our

results: We require the preexistence of a self-consistent
NCGFTwhich closes on the UðNÞ Lie algebra without the
Seiberg-Witten map, which admits a sound perturbative
quantization by itself and, more importantly, an invertible
Seiberg-Witten map. There exists, for example, deformed
SU(N) gauge theories [21] possessing a noncommuatative
theory which closes on the enveloping algebra of the SU(N)
algebra only. In that case, the equivalence relation cannot
be applied since we lack an intrinsic formulation of the
quantum theory in terms of noncommutative fields.
However, the results presented in this paper indicate that
their current definition in terms of ordinary fields by using
the Seiberg-Witten map is a sensible one, provided one
uses the θ-exact Seiberg-Witten map.
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