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Zeros in the magic neutrino mass matrix
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We study the phenomenological implications of the presence of two zeros in a magic neutrino mass
matrix. We find that only two such patterns of the neutrino mass matrix are experimentally acceptable. We
express all the neutrino observables as functions of one unknown phase ¢ and two known parameters
Am3,, r = Am3?,/Am3;. In particular, we find sin? 0,3 = (2/3)r/(1 + r). We also present a mass model
for the allowed textures based upon the group A4 using the type I+ II seesaw mechanism.
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I. INTRODUCTION

The observation of a nonzero reactor mixing angle
(013) [1] was an important landmark in neutrino physics
as it excluded the possibility of the y — 7z symmetry [2] as
an exact symmetry of the neutrino mass matrix. Before
this discovery, the tribimaximal (TBM) mixing [3] was
an important feature in the neutrino mass models as it
correctly predicted the solar mixing angle (0;,) and the
atmospheric mixing angle (6,3). TBM mixing was
thought to be a signature of some flavor symmetry in
the Lagrangian that expresses itself as a residual sym-
metry in the neutrino mass matrix. However, TBM
mixing is in itself a combination of the following two
symmetries:

(1) Magic symmetry. The sum of elements in any
row or column of the neutrino mass matrix is
identical [4].

(2) pu — t symmetry. The neutrino mass matrix remains
invariant after the interchange of the u — 7 indi-
ces [2].

The neutrino mass matrix with 4 — 7 symmetry implies

a vanishing value of 03 and a maximal value of 6,;.
Such a mass matrix has the bimaximal eigenvector
v = (0&—%%}T After the measurement of a relatively

large value of 3, the neutrino mass matrix cannot have
exact 4 — 7z symmetry. However, the neutrino mass matrix
can still have the magic symmetry. The corresponding
mixing pattern, called trimaximal (TM) mixing, has its
middle column identical to that of TBM mixing. The
other two columns are arbitrary within the unitarity
constraints.

TM mixing has been intensively studied in the literature
[5] and the corresponding magic mass matrix has been
realized in many neutrino mass models [6]. The main
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limitation of the magic symmetry is that it is not very
predictive. It predicts TM mixing that implies two sum
rules: one between the mixing angles 6y, and 63 and
another between the mixing angle 0,5 and the CP-violating
Dirac phase 6. To make the magic symmetry more
predictive, we can combine it with some additional con-
straint. The simplest constraint that could combine with
magic symmetry was the y — r symmetry. But, the obser-
vation of a nonvanishing 6,3 has already ruled out this
possibility. Another constraint can be the presence of zeros
[7-9] in the magic neutrino mass matrix. In this work, we
study this possibility.

In Sec. II, we highlight the salient features of the
TBM mixing pattern and review its relation with TM
mixing. We identify the phenomenologically allowed
textures of two zeros in the magic neutrino mass
matrix in Sec. III. Then, we study the phenomenology
of the viable textures in Sec. IV and construct a mass
model for them in Sec. V. Finally, we conclude
in Sec. VL

II. FROM TBM TO TM MIXING

The TBM mixing matrix is

V2 1
V3 V3
_ I i i
Uem=| % 5 ~ (1)
1 1 1
V6 V3 2

It is called the tribimaximal mixing matrix because the
corresponding neutrino mass matrix

Mrpm = UtgymM ding Utem (2)
has a trimaximal eigenvector u = (J=—=—=)" and a bimax-
imal eigenvector v = (0\‘/—15\/%)T Here,

© 2016 American Physical Society


http://dx.doi.org/10.1103/PhysRevD.94.036004
http://dx.doi.org/10.1103/PhysRevD.94.036004
http://dx.doi.org/10.1103/PhysRevD.94.036004
http://dx.doi.org/10.1103/PhysRevD.94.036004

RADHA RAMAN GAUTAM and SANJEEV KUMAR

my 0 0
Mdiag = 0 eZiamz 0 . (3)
0 0 e*Pms

where m;, m,, and m; are the three neutrino masses and «
and S are two Majorana phases. The TBM mass matrix
Mgy 1s invariant under the transformations G, and G, i.e.
G M1pnG, = Mgy and Gy MrpyG, = Mgy, where
G, =1-2uu” and G, =1-2v0v". The transformation
G, corresponds to the magic symmetry and the trans-
formation G, corresponds to the g —7 symmetry. A
diagonal charged lepton mass matrix will be invariant
under the transformation F = diag(1,w,®?), where
o = exp(%?). In this way, the combined symmetry group
generated by G,, G, and F is S, [10]. Such neutrino mass
models, where some of the generators of a symmetry group
are directly preserved in the lepton sector, are called direct
models. Another set of models, where the observed
symmetry in the lepton sector emerges accidentally, are
called indirect models. For a detailed discussion of this
classification, see Refs. [11,12].

Since the neutrino oscillation experiments have mea-
sured a nonzero 63, the neutrino mass matrix M, cannot be
invariant under the y —7 symmetry transformation G,.
However, M, can still be invariant under the magic
symmetry transformation G,. The magic symmetry is still
allowed experimentally. The mixing matrix corresponding
to the magic symmetry is called trimaximal mixing and is
given by

2 L 24
\ﬂ cos @ v \/; sin
U - cosf | esing 1 sing _ e cos6 | . 4
™ V6 + V2 V3 V6 V2 (4)
cosf _ esing 1 sinf | e~ cosd
V6 V2 V3 V6 V2

Since, the middle column of the TM mixing matrix is fixed
to its TBM value (), the mixing matrix still has two free
parameters (0 and ¢)) after the unitarity constraints are taken
into account. The corresponding neutrino mass matrix for
TM mixing is called the magic mass matrix and is given as

M magic — U:I“MM diag UJ;"M . (5 )

III. ZEROS OF THE MAGIC MASS MATRIX

In the basis where the charged lepton mass matrix is
diagonal, there are seven mass matrices with two zeros
[7,8] that are consistent with the current experimental data
[13]. They have been further classified in the three classes
which are depicted in Table I. When we combine the magic
symmetry and the texture zeros, not all of the seven textures
will be allowed.
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TABLE I. Seven allowed mass matrices with two zeros clas-
sified into three classes.

Type Constraining Equations
Al Mee:()v Me;t:O
A2 Mee:()s Me‘r:()
B, M,,=0, M, =0
BZ Mlﬂ = O’ MTT =

B; M, =0,M, =0
B4 Mer:()’ M”_O
C M, =0,M, =0

A most general magic mass matrix can be parametrized
as [4]

a b c
Mpagic = | b d at+c—d|. (6)
c a+c—d b—-c+d

We can obtain the constraining equations for the various
allowed textures of two zeros in the magic mass matrix by
substituting the respective constraints from Table I
into Eq. (6).

A. Class A

Magic neutrino mass matrices having textures A; and A,
can be expressed as

0 0 c
Mpyg=10 d c-d (7)
c ¢c—d —-c+d
and
0 b 0
A
Mmzagic =|b d —d ’ (8)
0 —-d b+d

respectively. The mass matrix for the magic A, texture can
be rewritten as

0 0 c
Mgllagic = 0 c-A A ’ (9)
c A —-A

where A = ¢ —d. This redefinition puts our representa-
tions of the textures A; and A, on equal footing. These
two magic zero textures are allowed experimentally for
normal hierarchy. Their phenomenology is studied in
the Sec. IV.
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B. Class B

The four magic mass matrices of class B are

a b 0
Mgllagic: b 0 a ’ (10)
0O a b
a 0 ¢
B’7
Mm“agic: 0 c , (11)
c a 0
a 0 c
B
m;gicz 0 0 atc |, (12)
c a-+c —C
and
a b 0
B
m;gicz b -b a+b . (13)
0 a+b 0

The magic mass matrices of type B; and B, are not allowed
as they predict m; = mj. The magic mass matrices of types
B; and B, are not allowed because these textures predict a
very large value for the ratio r = Am?,/Am3; when 05 is
small. We illustrate this tension between r and 6,5 for the
magic mass matrices of types B3 and B, in Sec. IV.

C. Class C
The magic mass matrix of class C is
a b b
MGsc=10 0 a+b|. (14)
b a+b 0

This mass matrix has ¢ —  symmetry and implies 63 = 0.
Hence, it is not allowed.

IV. PHENOMENOLOGICAL IMPLICATIONS

The phenomenology of the textures A; and A, is related:
one can obtain the predictions for A, by making the
transformations

b2

923—>§—6’23, b=n—-20 (15)

on the predictions of texture A,;. Hence, we study the
phenomenological implications for texture A; only.

The above transformation [Eq. (15)] also relates the
predictions for textures B; and B,. So, we show the
incompatibility of the magic mass matrix of type B3 with
the experimental data at the end of this section. Then,
Eq. (15) automatically implies that the magic mass matrix
of type B, is also inconsistent with the experimental data.
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A. Diagonalization of a magic mass matrix

Any magic mass matrix M can be diagonalized by a
trimaximal mixing matrix U = Uy given in Eq. (4) using
the relation

U'MU = Mdiagv (16)

where M g;,, is the diagonal mass matrix given by Eq. (3).
The mixing angles can be calculated from U using the
relations

» _ _|UnP > _

= and 52, = |U;5)%
ST2 11— U, st3 = |Us|

(17)

Substituting the elements of the TM mixing matrix into the
above equation, we get

|Uns?
2° 23 —W’

1
2 - - 18
27 3 D6in%g (18)

1 3sin 20
S%g__ 1_’_\/—sm .CZOSQ') ’ (19)
22 3 —2sin“ 6
and

s 2.,

Si = 3 sin 0. (20)

The CP-violating phase § can be calculated from the
Jarlskog rephasing invariant measure of CP violation [14]

J =Im(Uy, U, U3, Up) (21)
using the relation
J = 512823813C12€23¢13 8In 5. (22)

Substituting the elements of the TM mixing matrix into
Eq. (21), we obtain

1
J = ——=sin20cos ¢. 23
6\/3 ¢ (23)

From Egs. (22) and (23), we get

3 sin® 26 cot® ¢

CSCz(s:CSCZQb—m.

(24)

B. Analysis of class A,

We reconstruct the magic neutrino mass matrix using
Eq. (5), viz.,

M, = U*MdiagUT’ (25)
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where M, = M,,5ic and U = Urpy. To obtain the predic-
tions for the neutrino mass matrix of the type A; given by
Eq. (9), we have to solve the two complex equations
M, =0and M,, =0.

Solving the equation M, =0, we get

m;  sin2(a—f)

28 h 26
my  2sin2fcos” 6 (26)
and
my _ZSin.Zﬂ sin” 27)
m; sin 2a

Using these two equations, we evaluate m,/m5 and invert
the resulting relation to obtain

cot2a = cot 26 + L ese 2fcot26. (28)
s

We note that the presence of a zero in the (1, 1) entry in a
magic mass matrix, through Egs. (26) and (27), implies a
beautiful sum rule on neutrino masses:

sin2(a—p) 2sin2f  sin2a
m; ny my

0. (29)

The texture zero at the (1, 1) entry in a magic mass matrix
also gives a nice prediction for the ratio r = Am3,/Am3,.
From Eqgs. (26) and (27), we obtain

—sin?2(a — f) + 4 cos? O sin® 23
r= )
cot? @ sin? 2a — 4 cos? A sin® 23

(30)

Instead of solving the second equation M, , =0, we
solve the equivalent complex equation M, =M, by
equating the real and imaginary parts of the two sides. After
a little algebra, we obtain

my V/3sin2ftan @ + sin(28 — ¢)

= 31
m; sin ¢ (31)
and
3
tan 2 = — V3sing . (32
/3 cos 20 cos ¢ + sin 20
Using Eq. (31) to simplify Eq. (28), we obtain
cotdcsc ¢
cot2a = cotp + —————. 33
0 (33)

Equations (32) and (33) express the two Majorana
phases in terms of the two TM parameters (6 and ¢).
Substituting these two equations into Eq. (30), we obtain
the most important result of this work as

r = tan’ 0. (34)
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It is interesting that » comes out to be independent of the
phase ¢.

We also substitute Egs. (32) and (33) into the three mass
ratios given by Egs. (26), (31), and (27) to calculate the
three neutrino masses. Finally, we express @ in terms of r
everywhere using Eq. (34). Hence, we can express the three
neutrino masses in terms of the three parameters: Am3,, r,
and ¢. We obtain

14+3r+ 2\/§\/?cos¢
= /Am? , 35
m m12\/3 —3r—2+/3y/rcos¢ (35)

= 2+/Am3, ’ (36)
V3= 3r—2V3yFcos

and

[, |3+ r=2V3/rcos¢
"= Amlz\/3—3r—2\/§ﬁcos¢‘ (37)

Now, we can use the experimental data [13] for Am?, and
Am3;. Since, Am?}, = (7.50 £ 0.18) x 107 eV? and r =
(3.149 4 0.098) x 1072 [13], the three masses are essen-
tially functions of the phase ¢ (Fig. 1). We also depict the
sum of the three neutrino masses Y >_, m; as a function of
¢ in Fig. 2.

The three mixing angles, calculated from Egs. (18)—(20),
are

1+r
)
sin“ @, = , 38
1273 Ty ( )
1 \/§ﬁcos¢
02
Sin“@y; = -4+ —————, 39
37 r+3 (39)
and
107"
i 1072}
107 : : - - : - -
-150 -100 -50 0 50 100 150
]
FIG. 1. The three neutrino masses m; (dotted line), m, (dashed

line), and m; (solid line) in eV as functions of ¢ (in degrees).
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FIG. 2. The neutrino parameters Z?: LMy, O3, a, B, 6, and J cp as functions of ¢b. All phases and angles are in degrees. The dark (gray)

bands depict the 1o (30) allowed regions.

2r

in?0; =-———.
s 13 3(r+])

(40)

The two mixing angles 6, and 6,5 are functions of r only.
Substituting the value of r, we obtain 6, = 35.67° + 0.01°
and 63 = 8.20° £+ 0.12°. For comparison, the experimental
values are 6, = 33.48°+0.78° and 6,3 = 8.50° £+ 0.21°.
The predicted and experimental values of 8, become com-
patible at about 2.8¢ C.L. This discrepancy is, however, a
generic feature of TM mixing. One possible way to diffuse this
tension with the data is to consider charged lepton corrections.
We have presented our textures in a basis in which the charge

lepton mass matrix is diagonal and the effective neutrino mass
matrix is magic with two zeros. However, in amodel realization
of these textures, the charged lepton mass matrix can have
small off-diagonal terms that will give corrections to the
neutrino mixing angles. One can arrange these corrections
to bring 0, to its experimental value while keeping other two
angles within the allowed ranges.

The mixing angle 6,5 is a function of the phase ¢ after
substituting for . We depict the mixing angle 0,3 as a
function of the phase ¢ in Fig. 2.

We can calculate the three CP-violating phases from
Egs. (33), (32), and (24). We obtain
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csc

cotZa:cotqﬁ—l—\E—ﬁ, (41)
. V3(1 +r)sing
tan2ff = 2+ VA1 —r)cosd’ (42)
and
tan§ = i i_ :tan }. (43)

The Jarlskog invariant J, calculated from Eq. (23), is

. \/rsing . (44)

3v3(1 +7)

The three CP-violating phases (a, f, and 6) depend upon
the ratio r and the unknown phase ¢. Therefore, we can plot
a, B, 6, and J as functions of ¢ by just plugging in one
experimental number r (Fig. 2).

This high level of predictability makes these textures
good candidates for model building. It is rarely seen that a
neutrino mass model can predict the nine neutrino para-
meters using just two inputs from the experiments: Am7,
and Am3,;. We present an A,-based model for these two
textures in the next section.

C. Inconsistency of class B;

The magic mass matrix of type B3 has zeros in the (1, 2)
and (2, 2) entries. This implies the following two complex
equations:

M e _ 2(v/3e7 sin? 0 + \/3e'? cos? O + 2 sin 20)
m; (1- 362i¢) sin 20 + 2v/3¢' cos 20
(45)
and
M2 2ip _ V3 +3e' cot g (46)

ms V3 =3¢ coth

Using absolute squares of these ratios, we can calculate the
ratio r as

PHYSICAL REVIEW D 94, 036004 (2016)

0 10 20 30 40 50 60
613

FIG. 3. The ratio r= Am?},/Am3, as a function of 03
(degrees) for a magic mass matrix of type Bj.

11— |:'n_l; eZia 2 (4 )
V =—7——F7— . 7
(|Z_§e2l/}|) 1 _ 1

Using these expressions, we express r as a function of 6,3
(Fig. 3) by substituting the value of € in terms of 0,3 from
Eq. (20). We find that r has a minimum value r = 0 at the
point (0,3 = x/4, ¢ = x). We obtain the experimental
value of r only in a small interval around this point for
013 € [40°,50°. As 0,3 decreases, the minimum value of r
increases. It is clear that we cannot have both r and ;5 in
their experimentally allowed ranges simultaneously.
Hence, this texture is inconsistent with the experimen-
tal data.

V. THE A; MODEL

We present an A, model in the framework of the type
I+ II seesaw mechanism [15,16] to obtain the neutrino
mass matrices studied in this work. Apart from the three
left-handed lepton doublets D; and three right-handed
charged leptons I (where [ = e, u, and 7), we introduce six
SU(2), doublet Higgs fields y; and ¢;, (where i = 1,2 and
3) and a SU(2), triplet Higgs field A. We depict the
transformation properties of the fields present in our model
in Table II. In addition to A, symmetry, we also need a Z,
symmetry to prevent the coupling of the charged leptons
(neutrinos) with scalars ¢; (y;). These transformation
properties lead to the following Lagrangian for the leptons
that is invariant under A4 and Z,:

—L =y (Do, w1 +D,,w>+ DTL%)leRI +y2(D,, w1 + @*D, yr + WDfL%)yTRI,,
+y3(D,, w1+ wD,, w> + wZDrLW3>l”/"R]/ +y4(D., @1 + D,, 9, + D1L¢3)1UR1
—ya(D!,C7'D,, + @*D;,C'D,, + @D}, C™'D,,) vits Ay — mg(vgC~'vg) + Hec., (48)

where ¢ = i, p*.

We assume that the vacuum expectation values (VEVs) of the Higgs fields are (y), = v, (1,1, 1)”, which leads to the

charged lepton mass matrix
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TABLE II. Transformation properties of various fields:
DIL(DL’LvD;lLvDrL)T, lR(eR,ﬂR,TR)T, l/lR7 W(Wl?WZvW})T,
(@1, @2.93)", and A.
Fields D, Ig Uk W 0 A
Ay 3 1,1, 1" 1 3 3 /
Z, 1 1 -1 1 —1 1
N UW y2 UV/ y3 vy/
m = | yiv, yov, ya'v, |. (49)

Y1 vl// y2w21)l// y3wvl//

For the type I see saw contribution, we assume that ¢,
develop VEVs along the direction (¢), = v,(0,—1,1)".
Such a vacuum alignment has been obtained in Ref. [17]
for SU(2);, and Ay triplet scalars by allowing specific
terms in the scalar potential which break A, softly. This
choice of VEVs leads to the following Dirac neutrino mass
matrix:

mp = y40,(0,—1,1)7. (50)

We have only one right-handed neutrino with mass mp.

Using the type I seesaw mechanism, the effective neutrino

mass matrix is m! ~ mpmz'm?,

0O 0 O
m=c|l0O0 1 -1], (51)
0 -1 1

where ¢ = yjv;,/mg. When the SU(2), triplet Higgs
acquires a nonzero and small VEV, we get the following
type II seesaw contribution to the effective neutrino mass
matrix:

1 0 O
ml=A|l0 o 0|, (52)
0 0 w

where A = y,v,. The combined effective neutrino mass
matrix m, = m! + m!! from the type I + II seesaw mecha-
nism becomes

A 0 0
m,=| 0 c+aw’A —c . (53)
0 —c ¢+ wA

In the symmetry basis, the charged lepton mass
matrix m; is not diagonal. We make a transformation
to the basis where the charge lepton mass matrix is

PHYSICAL REVIEW D 94, 036004 (2016)

diagonal with the transformation M, = U};mlUR,
where

. 1 1 1
U, = 3 1 o o |, (54)
1 o o

and Uy is a unit matrix. In this basis where M, is
diagonal, the effective neutrino mass matrix becomes

0 0 c
M,=10 ¢c—A A |. (55)
c A -A

This is the mass matrix of type A; having magic
symmetry and two texture zeros.

A similar mechanism with a SU(2), triplet Higgs A
transforming as 1” instead of 1’ will give the neutrino mass
matrix

0 » 0
M,=|b —a a |. (56)
0 a b-a

This is the mass matrix of type A, having magic symmetry
and two texture zeros.

Our model requires six Higgs doublets, three of which
couple to charged leptons (Table II). In such multi-Higgs
models, the flavor-changing neutral currents can contribute
to charged lepton flavor-violating decays. However, an
explicit calculation is beyond the scope of the present work
due to the complexity of the Higgs sector of our model.
Nevertheless, there exist models in the literature (e.g.,
Ref. [18]) where the charged lepton Yukawa Lagrangian
(including the A, assignments of the charged lepton and
scalar fields) is similar to our model. The flavor-violating
decays of leptons for our model can be studied in a manner
similar to that in Ref. [18].

VI. CONCLUSIONS

We studied the phenomenological implications of two
texture zeros in the magic neutrino mass matrix. In the
absence of magic symmetry, there are seven allowed
patterns for the presence of two zeros in the neutrino mass
matrix. The additional constraint of magic symmetry
disallows five of these patterns. The two allowed patterns
are of the types A; and A,. The combination of magic
symmetry and texture zeros make these classes very
predictive. We can express all nine neutrino observables
(the three masses, the three mixing angles, and the three
CP-violating phases) as functions of ¢ by plugging in just
two experimental parameters (Am?, and Am3;). In par-
ticular, 8, and 6,5 do not even depend on the phase ¢ and
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can be expressed as functions of the ratio r = Am?,/Am3,

as sin® 0, = { and sin® 03 = % Finally, we have

derived these highly predictive mass matrices from a
neutrino mass model based upon the symmetry group Ay.
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APPENDIX: THE GROUP A,

A, is the group of even permutations of four objects
having 12 elements. Geometrically, it can be viewed as the
group of rotational symmetries of the tetrahedron. A4 has
four inequivalent irreducible representations (IRs) which
are three singlets 1, 1/, and 1”, and one triplet 3. The group
A, is generated by two generators S and T such that

§?=1T3=(ST)} =1. (A1)

The one-dimensional unitary IRs are
1S=1T7T=1, 1S=1T=o, 1"S=1T = o’
(A2)

PHYSICAL REVIEW D 94, 036004 (2016)

The three-dimensional unitary IR is

1 0 O 01 0
S=10 -1 0 |, T=1]10 0 1 (A3)
0 0 -1 1 00
The multiplication rules of the IRs are as follows:
1 ® 1 = 1//’ 1" ® 1" = 1/’ 1/ ® 1" = 1. (A4)
The product of two 3’s gives
33=1011"®3,d3,, (AS)

where s(a) denotes the symmetric (antisymmetric) product.
Let (x;, x5, x3) and (y;, y,, ¥3) denote the basis vectors of
two 3’s. Then the IRs obtained from their products are
(3® 3); = x1y1 + X292 + X33, (A6)
(B ®3)y = x1y1 + 03y, + @ x33, (A7)

(3®3)y = x1y + 0 x2y; + wx3y3, (A8)

(3 ® 3)3 = (x2y3 + X32, X3y + X1¥3, X1 Y2 + X2)1),
(A9)

B® 3)3a = (X3 = X3V, X3Y1 — X1 V3, X1 Y2 — X2)1)-
(A10)

[1] K. Abe et al. (T2K Collaboration) Phys. Rev. Lett. 107,
041801 (2011); P. Adamson et al. (MINOS Collaboration),
Phys. Rev. Lett. 107, 181802 (2011); Y. Abe et al. (Double
Chooz Collaboration), Phys. Rev. Lett. 108, 131801 (2012);
F.P. An et al. (Daya Bay Collaboration), Phys. Rev. Lett.
108, 171803 (2012); S.-B. Kim (for the RENO Collabora-
tion), Phys. Rev. Lett. 108, 191802 (2012).

[2] T. Fukuyama and H. Nishiura, arXiv:hep-ph/9702253; R. N.
Mohapatra and S. Nussinov, Phys. Rev. D 60, 013002
(1999); K.R. S. Balaji, W. Grimus, and T. Schwetz, Phys.
Lett. B 508, 301 (2001); C. S. Lam, Phys. Lett. B 507, 214
(2001); W. Grimus and L. Lavoura, J. High Energy Phys. 07
(2001) 045.

[3] P.F. Harrison, D. H. Perkins, and W. G. Scott, Phys. Lett. B
530, 167 (2002); Z.-z. Xing, Phys. Lett. B 533, 85 (2002);
P.F. Harrison and W.G. Scott, Phys. Lett. B 535, 163
(2002).

[4] C.S. Lam, Phys. Lett. B 640, 260 (2006); P. F. Harrison and
W. G. Scott, Phys. Lett. B 594, 324 (2004); R. Friedberg and
T.D. Lee, HEPNP 30, 591 (2006).

[5] J. D. Bjorken, P. F. Harrison, and W. G. Scott, Phys. Rev. D
74, 073012 (2006); X. G. He and A. Zee, Phys. Lett. B 645,
427 (2007); C. H. Albright and W. RodejohannEur. Phys. J.
C 62, 599 (2009); C.H. Albright, A. Dueck, and W.
RodejohannEur. Phys. J. C 70, 1099 (2010); X.G. He
and A. Zee, Phys. Rev. D 84, 053004 (2011); S. Kumar,
Phys. Rev. D 82, 013010 (2010); 88, 016009 (2013).

[6] N. Haba, A. Watanabe, and K. Yoshioka, Phys. Rev. Lett.
97, 041601 (2006); W. Grimus and L. Lavoura, J. High
Energy Phys. 09 (2008) 106; H. Ishimori, Y. Shimizu, M.
Tanimoto, and A. Watanabe, Phys. Rev. D 83, 033004
(2011); Y. Shimizu, M. Tanimoto, and A. Watanabe, Prog.
Theor. Phys. 126, 81 (2011); S. F. King and C. Luhn, J. High
Energy Phys. 09 (2011) 042; S. Dev, S. Gupta, and R.R.
Gautam, Phys. Lett. B 702, 28 (2011); S. Dev, R.R.
Gautam, and L. Singh, Phys. Lett. B 708, 284 (2012).

[7] P. H. Frampton, S. L. Glashow, and D. Marfatia, Phys. Lett.
B 536, 79 (2002).

[8] H. Fritzsch, Z.-z. Xing, and S. Zhou, J. High Energy Phys.
09 (2011) 083.

036004-8


http://dx.doi.org/10.1103/PhysRevLett.107.041801
http://dx.doi.org/10.1103/PhysRevLett.107.041801
http://dx.doi.org/10.1103/PhysRevLett.107.181802
http://dx.doi.org/10.1103/PhysRevLett.108.131801
http://dx.doi.org/10.1103/PhysRevLett.108.171803
http://dx.doi.org/10.1103/PhysRevLett.108.171803
http://dx.doi.org/10.1103/PhysRevLett.108.191802
http://arXiv.org/abs/hep-ph/9702253
http://dx.doi.org/10.1103/PhysRevD.60.013002
http://dx.doi.org/10.1103/PhysRevD.60.013002
http://dx.doi.org/10.1016/S0370-2693(01)00532-9
http://dx.doi.org/10.1016/S0370-2693(01)00532-9
http://dx.doi.org/10.1016/S0370-2693(01)00465-8
http://dx.doi.org/10.1016/S0370-2693(01)00465-8
http://dx.doi.org/10.1088/1126-6708/2001/07/045
http://dx.doi.org/10.1088/1126-6708/2001/07/045
http://dx.doi.org/10.1016/S0370-2693(02)01336-9
http://dx.doi.org/10.1016/S0370-2693(02)01336-9
http://dx.doi.org/10.1016/S0370-2693(02)01649-0
http://dx.doi.org/10.1016/S0370-2693(02)01753-7
http://dx.doi.org/10.1016/S0370-2693(02)01753-7
http://dx.doi.org/10.1016/j.physletb.2006.08.007
http://dx.doi.org/10.1016/j.physletb.2004.05.039
http://dx.doi.org/10.1103/PhysRevD.74.073012
http://dx.doi.org/10.1103/PhysRevD.74.073012
http://dx.doi.org/10.1016/j.physletb.2006.11.055
http://dx.doi.org/10.1016/j.physletb.2006.11.055
http://dx.doi.org/10.1140/epjc/s10052-009-1074-3
http://dx.doi.org/10.1140/epjc/s10052-009-1074-3
http://dx.doi.org/10.1140/epjc/s10052-010-1492-2
http://dx.doi.org/10.1103/PhysRevD.84.053004
http://dx.doi.org/10.1103/PhysRevD.82.013010
http://dx.doi.org/10.1103/PhysRevD.88.016009
http://dx.doi.org/10.1103/PhysRevLett.97.041601
http://dx.doi.org/10.1103/PhysRevLett.97.041601
http://dx.doi.org/10.1088/1126-6708/2008/09/106
http://dx.doi.org/10.1088/1126-6708/2008/09/106
http://dx.doi.org/10.1103/PhysRevD.83.033004
http://dx.doi.org/10.1103/PhysRevD.83.033004
http://dx.doi.org/10.1143/PTP.126.81
http://dx.doi.org/10.1143/PTP.126.81
http://dx.doi.org/10.1007/JHEP09(2011)042
http://dx.doi.org/10.1007/JHEP09(2011)042
http://dx.doi.org/10.1016/j.physletb.2011.06.055
http://dx.doi.org/10.1016/j.physletb.2012.01.051
http://dx.doi.org/10.1016/S0370-2693(02)01817-8
http://dx.doi.org/10.1016/S0370-2693(02)01817-8
http://dx.doi.org/10.1007/JHEP09(2011)083
http://dx.doi.org/10.1007/JHEP09(2011)083

ZEROS IN THE MAGIC NEUTRINO MASS MATRIX

(91

[10]
(1]

[12]

Z.-z. Xing, Phys. Lett. B 530, 159 (2002); B. R. Desai, D. P.
Roy, and Alexander R. Vaucher, Mod. Phys. Lett. A 18,
1355 (2003); A. Merle and W. Rodejohann, Phys. Rev. D
73, 073012 (2006); S. Dev, S. Kumar, S. Verma, and S.
Gupta, Nucl. Phys. B784, 103 (2007); Phys. Rev. D 76,
013002 (2007); G. Ahuja, S. Kumar, M. Randhawa, M.
Gupta, and S. Dev, Phys. Rev. D 76, 013006 (2007); S.
Kumar, Phys. Rev. D 84, 077301 (2011); S. Dev, S. Kumar,
and S. Verma, Phys. Rev. D 79, 033011 (2009); P. O. Lud],
S. Morisi, and E. Peinado, Nucl. Phys. B857,411 (2012); D.
Meloni and G. Blankenburg, Nucl. Phys. B867, 749 (2013);
W. Grimus and P. O. Ludl, J. Phys. G 40, 055003 (2013); J.
Liao, D. Marfatia, and K. Whisnant, J. High Energy Phys.
09 (2014) 013; D. Meloni, A. Meroni, and E. Peinado, Phys.
Rev. D 89, 053009 (2014); S. Dev, R. R. Gautam, L. Singh,
and M. Gupta, Phys. Rev. D 90, 013021 (2014); G. Ahuja,
S. Sharma, P. Fakay, and M. Gupta, Mod. Phys. Lett. A 30,
1530025 (2015).

C.S. Lam, Phys. Rev. D 78, 073015 (2008); arXiv:
0907.2206.

W. Grimus, L. Lavoura, and P.O. Ludl, J. Phys. G 36,
115007 (2009).

S.F. King and C. Luhn, J. High Energy Phys. 10 (2009)
093.

[13]

[14]
[15]

[16]

[17]

(18]

036004-9

PHYSICAL REVIEW D 94, 036004 (2016)

M. C. Gonzalez-Garcia, M. Maltoni, and T. Schwetz, Nucl.
Phys. B908, 199 (2016).

C. Jarlskog, Phys. Rev. Lett. 55, 1039 (1985).

P. Minkowski, Phys. Lett. B 67, 421 (1977); T. Yanagida, in
Proceedings of the Workshop on the Unified Theory and the
Baryon Number in the Universe, edited by O. Sawada
and A. Sugamoto (KEK, Tsukuba, Japan, 1979), p. 95; M.
Gell-Mann, P. Ramond, and R. Slansky, in Complex Spinors
and Unified Theories in Supergravity, edited by P. Van
Nieuwenhuizen and D.Z. Freedman (North Holland,
Amsterdam, 1979), p. 315; R.N. Mohapatra and G.
Senjanovic, Phys. Rev. Lett. 44, 912 (1980).

W. Konetschny and W. Kummer, Phys. Lett. B 70, 433
(1977); T.P. Cheng and L.F. Li, Phys. Rev. D 22, 2860
(1980); J. Schechter and J. W.F. Valle, Phys. Rev. D 22,
2227 (1980); G. Lazarides, Q. Shafi, and C. Wetterich,
Nucl. Phys. B181, 287 (1981); R.N. Mohapatra and G.
Senjanovic, Phys. Rev. D 23, 165 (1981).

S. Gupta, A. S. Joshipura, and K. M. Patel, Phys. Rev. D 85,
031903 (2012); E. Ma, Phys. Rev. D 70, 031901 (2004);
E. Ma and D. Wegman, Phys. Rev. Lett. 107, 061803
(2011).

E. Ma and G. Rajasekaran, Phys. Rev. D 64, 113012
(2001).


http://dx.doi.org/10.1016/S0370-2693(02)01354-0
http://dx.doi.org/10.1142/S0217732303011071
http://dx.doi.org/10.1142/S0217732303011071
http://dx.doi.org/10.1103/PhysRevD.73.073012
http://dx.doi.org/10.1103/PhysRevD.73.073012
http://dx.doi.org/10.1016/j.nuclphysb.2007.06.030
http://dx.doi.org/10.1103/PhysRevD.76.013002
http://dx.doi.org/10.1103/PhysRevD.76.013002
http://dx.doi.org/10.1103/PhysRevD.76.013006
http://dx.doi.org/10.1103/PhysRevD.84.077301
http://dx.doi.org/10.1103/PhysRevD.79.033011
http://dx.doi.org/10.1016/j.nuclphysb.2011.12.017
http://dx.doi.org/10.1016/j.nuclphysb.2012.10.011
http://dx.doi.org/10.1088/0954-3899/40/5/055003
http://dx.doi.org/10.1007/JHEP09(2014)013
http://dx.doi.org/10.1007/JHEP09(2014)013
http://dx.doi.org/10.1103/PhysRevD.89.053009
http://dx.doi.org/10.1103/PhysRevD.89.053009
http://dx.doi.org/10.1103/PhysRevD.90.013021
http://dx.doi.org/10.1142/S0217732315300256
http://dx.doi.org/10.1142/S0217732315300256
http://dx.doi.org/10.1103/PhysRevD.78.073015
http://arXiv.org/abs/0907.2206
http://dx.doi.org/
http://dx.doi.org/10.1088/0954-3899/36/11/115007
http://dx.doi.org/10.1088/0954-3899/36/11/115007
http://dx.doi.org/10.1088/1126-6708/2009/10/093
http://dx.doi.org/10.1088/1126-6708/2009/10/093
http://dx.doi.org/10.1016/j.nuclphysb.2016.02.033
http://dx.doi.org/10.1016/j.nuclphysb.2016.02.033
http://dx.doi.org/10.1103/PhysRevLett.55.1039
http://dx.doi.org/10.1016/0370-2693(77)90435-X
http://dx.doi.org/10.1103/PhysRevLett.44.912
http://dx.doi.org/10.1016/0370-2693(77)90407-5
http://dx.doi.org/10.1016/0370-2693(77)90407-5
http://dx.doi.org/10.1103/PhysRevD.22.2860
http://dx.doi.org/10.1103/PhysRevD.22.2860
http://dx.doi.org/10.1103/PhysRevD.22.2227
http://dx.doi.org/10.1103/PhysRevD.22.2227
http://dx.doi.org/10.1016/0550-3213(81)90354-0
http://dx.doi.org/10.1103/PhysRevD.23.165
http://dx.doi.org/10.1103/PhysRevD.85.031903
http://dx.doi.org/10.1103/PhysRevD.85.031903
http://dx.doi.org/10.1103/PhysRevD.70.031901
http://dx.doi.org/10.1103/PhysRevLett.107.061803
http://dx.doi.org/10.1103/PhysRevLett.107.061803
http://dx.doi.org/10.1103/PhysRevD.64.113012
http://dx.doi.org/10.1103/PhysRevD.64.113012

