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We study the phenomenological implications of the presence of two zeros in a magic neutrino mass
matrix. We find that only two such patterns of the neutrino mass matrix are experimentally acceptable. We
express all the neutrino observables as functions of one unknown phase ϕ and two known parameters
Δm2

12, r ¼ Δm2
12=Δm2

23. In particular, we find sin2 θ13 ¼ ð2=3Þr=ð1þ rÞ. We also present a mass model
for the allowed textures based upon the group A4 using the type Iþ II seesaw mechanism.
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I. INTRODUCTION

The observation of a nonzero reactor mixing angle
(θ13) [1] was an important landmark in neutrino physics
as it excluded the possibility of the μ − τ symmetry [2] as
an exact symmetry of the neutrino mass matrix. Before
this discovery, the tribimaximal (TBM) mixing [3] was
an important feature in the neutrino mass models as it
correctly predicted the solar mixing angle (θ12) and the
atmospheric mixing angle (θ23). TBM mixing was
thought to be a signature of some flavor symmetry in
the Lagrangian that expresses itself as a residual sym-
metry in the neutrino mass matrix. However, TBM
mixing is in itself a combination of the following two
symmetries:
(1) Magic symmetry. The sum of elements in any

row or column of the neutrino mass matrix is
identical [4].

(2) μ − τ symmetry. The neutrino mass matrix remains
invariant after the interchange of the μ − τ indi-
ces [2].

The neutrino mass matrix with μ − τ symmetry implies
a vanishing value of θ13 and a maximal value of θ23.
Such a mass matrix has the bimaximal eigenvector
v ¼ ð0 −1ffiffi

2
p 1ffiffi

2
p ÞT . After the measurement of a relatively

large value of θ13, the neutrino mass matrix cannot have
exact μ − τ symmetry. However, the neutrino mass matrix
can still have the magic symmetry. The corresponding
mixing pattern, called trimaximal (TM) mixing, has its
middle column identical to that of TBM mixing. The
other two columns are arbitrary within the unitarity
constraints.
TM mixing has been intensively studied in the literature

[5] and the corresponding magic mass matrix has been
realized in many neutrino mass models [6]. The main

limitation of the magic symmetry is that it is not very
predictive. It predicts TM mixing that implies two sum
rules: one between the mixing angles θ12 and θ13 and
another between the mixing angle θ23 and the CP-violating
Dirac phase δ. To make the magic symmetry more
predictive, we can combine it with some additional con-
straint. The simplest constraint that could combine with
magic symmetry was the μ − τ symmetry. But, the obser-
vation of a nonvanishing θ13 has already ruled out this
possibility. Another constraint can be the presence of zeros
[7–9] in the magic neutrino mass matrix. In this work, we
study this possibility.
In Sec. II, we highlight the salient features of the

TBM mixing pattern and review its relation with TM
mixing. We identify the phenomenologically allowed
textures of two zeros in the magic neutrino mass
matrix in Sec. III. Then, we study the phenomenology
of the viable textures in Sec. IV and construct a mass
model for them in Sec. V. Finally, we conclude
in Sec. VI.

II. FROM TBM TO TM MIXING

The TBM mixing matrix is

UTBM ¼

0
BBB@

−
ffiffi
2

pffiffi
3

p 1ffiffi
3

p 0

1ffiffi
6

p 1ffiffi
3

p − 1ffiffi
2

p

1ffiffi
6

p 1ffiffi
3

p 1ffiffi
2

p

1
CCCA: ð1Þ

It is called the tribimaximal mixing matrix because the
corresponding neutrino mass matrix

MTBM ¼ U�
TBMMdiagU

†
TBM ð2Þ

has a trimaximal eigenvector u ¼ ð 1ffiffi
3

p 1ffiffi
3

p 1ffiffi
3

p ÞT and a bimax-
imal eigenvector v ¼ ð0 −1ffiffi

2
p 1ffiffi

2
p ÞT. Here,
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Mdiag ¼

0
B@

m1 0 0

0 e2iαm2 0

0 0 e2iβm3

1
CA; ð3Þ

where m1, m2, and m3 are the three neutrino masses and α
and β are two Majorana phases. The TBM mass matrix
MTBM is invariant under the transformationsGu andGv, i.e.
GT

uMTBMGu ¼ MTBM and GT
vMTBMGv ¼ MTBM, where

Gu ¼ 1 − 2uuT and Gv ¼ 1 − 2vvT . The transformation
Gu corresponds to the magic symmetry and the trans-
formation Gv corresponds to the μ − τ symmetry. A
diagonal charged lepton mass matrix will be invariant
under the transformation F ¼ diagð1;ω;ω2Þ, where
ω ¼ expð2πi

3
Þ. In this way, the combined symmetry group

generated by Gu, Gv, and F is S4 [10]. Such neutrino mass
models, where some of the generators of a symmetry group
are directly preserved in the lepton sector, are called direct
models. Another set of models, where the observed
symmetry in the lepton sector emerges accidentally, are
called indirect models. For a detailed discussion of this
classification, see Refs. [11,12].
Since the neutrino oscillation experiments have mea-

sured a nonzero θ13, the neutrino mass matrixMν cannot be
invariant under the μ − τ symmetry transformation Gv.
However, Mν can still be invariant under the magic
symmetry transformation Gu. The magic symmetry is still
allowed experimentally. The mixing matrix corresponding
to the magic symmetry is called trimaximal mixing and is
given by

UTM ¼

0
BBB@

ffiffi
2
3

q
cos θ 1ffiffi

3
p

ffiffi
2
3

q
sin θ

− cos θffiffi
6

p þ e−iϕ sin θffiffi
2

p 1ffiffi
3

p − sin θffiffi
6

p − e−iϕ cos θffiffi
2

p

− cos θffiffi
6

p − e−iϕ sin θffiffi
2

p 1ffiffi
3

p − sin θffiffi
6

p þ e−iϕ cos θffiffi
2

p

1
CCCA: ð4Þ

Since, the middle column of the TM mixing matrix is fixed
to its TBM value (u), the mixing matrix still has two free
parameters (θ and ϕ) after the unitarity constraints are taken
into account. The corresponding neutrino mass matrix for
TM mixing is called the magic mass matrix and is given as

Mmagic ¼ U�
TMMdiagU

†
TM: ð5Þ

III. ZEROS OF THE MAGIC MASS MATRIX

In the basis where the charged lepton mass matrix is
diagonal, there are seven mass matrices with two zeros
[7,8] that are consistent with the current experimental data
[13]. They have been further classified in the three classes
which are depicted in Table I. When we combine the magic
symmetry and the texture zeros, not all of the seven textures
will be allowed.

A most general magic mass matrix can be parametrized
as [4]

Mmagic ¼

0
B@

a b c

b d aþ c − d

c aþ c − d b − cþ d

1
CA: ð6Þ

We can obtain the constraining equations for the various
allowed textures of two zeros in the magic mass matrix by
substituting the respective constraints from Table I
into Eq. (6).

A. Class A

Magic neutrino mass matrices having textures A1 and A2

can be expressed as

MA1

magic ¼

0
B@

0 0 c

0 d c − d

c c − d −cþ d

1
CA ð7Þ

and

MA2

magic ¼

0
B@

0 b 0

b d −d
0 −d bþ d

1
CA; ð8Þ

respectively. The mass matrix for the magic A1 texture can
be rewritten as

MA1

magic ¼

0
B@

0 0 c

0 c − Δ Δ
c Δ −Δ

1
CA; ð9Þ

where Δ ¼ c − d. This redefinition puts our representa-
tions of the textures A1 and A2 on equal footing. These
two magic zero textures are allowed experimentally for
normal hierarchy. Their phenomenology is studied in
the Sec. IV.

TABLE I. Seven allowed mass matrices with two zeros clas-
sified into three classes.

Type Constraining Equations

A1 Mee ¼ 0, Meμ ¼ 0

A2 Mee ¼ 0, Meτ ¼ 0
B1 Meτ ¼ 0, Mμμ ¼ 0

B2 Meμ ¼ 0, Mττ ¼ 0

B3 Meμ ¼ 0, Mμμ ¼ 0

B4 Meτ ¼ 0, Mττ ¼ 0
C Mμμ ¼ 0, Mττ ¼ 0
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B. Class B

The four magic mass matrices of class B are

MB1

magic ¼

0
B@

a b 0

b 0 a

0 a b

1
CA; ð10Þ

MB2

magic ¼

0
B@

a 0 c

0 c a

c a 0

1
CA; ð11Þ

MB3

magic ¼

0
B@

a 0 c

0 0 aþ c

c aþ c −c

1
CA; ð12Þ

and

MB4

magic ¼

0
B@

a b 0

b −b aþ b

0 aþ b 0

1
CA: ð13Þ

The magic mass matrices of type B1 and B2 are not allowed
as they predictm1 ¼ m3. The magic mass matrices of types
B3 and B4 are not allowed because these textures predict a
very large value for the ratio r ¼ Δm2

12=Δm2
23 when θ13 is

small. We illustrate this tension between r and θ13 for the
magic mass matrices of types B3 and B4 in Sec. IV.

C. Class C

The magic mass matrix of class C is

MC
magic ¼

0
B@

a b b

b 0 aþ b

b aþ b 0

1
CA: ð14Þ

This mass matrix has μ − τ symmetry and implies θ13 ¼ 0.
Hence, it is not allowed.

IV. PHENOMENOLOGICAL IMPLICATIONS

The phenomenology of the textures A1 and A2 is related:
one can obtain the predictions for A2 by making the
transformations

θ23 →
π

2
− θ23; δ ¼ π − δ ð15Þ

on the predictions of texture A1. Hence, we study the
phenomenological implications for texture A1 only.
The above transformation [Eq. (15)] also relates the

predictions for textures B3 and B4. So, we show the
incompatibility of the magic mass matrix of type B3 with
the experimental data at the end of this section. Then,
Eq. (15) automatically implies that the magic mass matrix
of type B4 is also inconsistent with the experimental data.

A. Diagonalization of a magic mass matrix

Any magic mass matrix M can be diagonalized by a
trimaximal mixing matrix U ¼ UTM given in Eq. (4) using
the relation

UTMU ¼ Mdiag; ð16Þ

where Mdiag is the diagonal mass matrix given by Eq. (3).
The mixing angles can be calculated from U using the

relations

s212 ¼
jU12j2

1 − jU13j2
; s223 ¼

jU23j2
1 − jU13j2

; and s213 ¼ jU13j2:

ð17Þ

Substituting the elements of the TM mixing matrix into the
above equation, we get

s212 ¼
1

3 − 2sin2θ
; ð18Þ

s223 ¼
1

2

�
1þ

ffiffiffi
3

p
sin 2θ cosϕ

3 − 2 sin2 θ

�
; ð19Þ

and

s213 ¼
2

3
sin2 θ: ð20Þ

The CP-violating phase δ can be calculated from the
Jarlskog rephasing invariant measure of CP violation [14]

J ¼ ImðU11U�
12U

�
21U22Þ ð21Þ

using the relation

J ¼ s12s23s13c12c23c213 sin δ: ð22Þ

Substituting the elements of the TM mixing matrix into
Eq. (21), we obtain

J ¼ 1

6
ffiffiffi
3

p sin 2θ cosϕ: ð23Þ

From Eqs. (22) and (23), we get

csc2 δ ¼ csc2 ϕ −
3 sin2 2θ cot2 ϕ
ð3 − 2 sin2 θÞ2 : ð24Þ

B. Analysis of class A1

We reconstruct the magic neutrino mass matrix using
Eq. (5), viz.,

Mν ¼ U�MdiagU†; ð25Þ
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where Mν ¼ Mmagic and U ¼ UTM. To obtain the predic-
tions for the neutrino mass matrix of the type A1 given by
Eq. (9), we have to solve the two complex equations
Mν11 ¼ 0 and Mν12 ¼ 0.
Solving the equation Mν11 ¼ 0, we get

m1

m2

¼ sin 2ðα − βÞ
2 sin 2β cos2 θ

ð26Þ

and

m2

m3

¼ −
2 sin 2β sin2 θ

sin 2α
: ð27Þ

Using these two equations, we evaluate m1=m3 and invert
the resulting relation to obtain

cot 2α ¼ cot 2β þm1

m3

csc 2βcot2θ: ð28Þ

We note that the presence of a zero in the (1, 1) entry in a
magic mass matrix, through Eqs. (26) and (27), implies a
beautiful sum rule on neutrino masses:

sin 2ðα − βÞ
m1

−
2 sin 2β
m2

−
sin 2α
m3

¼ 0: ð29Þ

The texture zero at the (1, 1) entry in a magic mass matrix
also gives a nice prediction for the ratio r ¼ Δm2

12=Δm2
23.

From Eqs. (26) and (27), we obtain

r ¼ − sin2 2ðα − βÞ þ 4 cos2 θ sin2 2β
cot2 θ sin2 2α − 4 cos2 θ sin2 2β

: ð30Þ

Instead of solving the second equation Mν12 ¼ 0, we
solve the equivalent complex equation Mν11 ¼ Mν12 by
equating the real and imaginary parts of the two sides. After
a little algebra, we obtain

m1

m3

¼
ffiffiffi
3

p
sin 2β tan θ þ sinð2β − ϕÞ

sinϕ
ð31Þ

and

tan 2β ¼ −
ffiffiffi
3

p
sinϕffiffiffi

3
p

cos 2θ cosϕþ sin 2θ
: ð32Þ

Using Eq. (31) to simplify Eq. (28), we obtain

cot 2α ¼ cotϕþ cot θ cscϕffiffiffi
3

p : ð33Þ

Equations (32) and (33) express the two Majorana
phases in terms of the two TM parameters (θ and ϕ).
Substituting these two equations into Eq. (30), we obtain
the most important result of this work as

r ¼ tan2 θ: ð34Þ

It is interesting that r comes out to be independent of the
phase ϕ.
We also substitute Eqs. (32) and (33) into the three mass

ratios given by Eqs. (26), (31), and (27) to calculate the
three neutrino masses. Finally, we express θ in terms of r
everywhere using Eq. (34). Hence, we can express the three
neutrino masses in terms of the three parameters: Δm2

12, r,
and ϕ. We obtain

m1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
Δm2

12

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3rþ 2

ffiffiffi
3

p ffiffiffi
r

p
cosϕ

3 − 3r − 2
ffiffiffi
3

p ffiffiffi
r

p
cosϕ

s
; ð35Þ

m2 ¼
2

ffiffiffiffiffiffiffiffiffiffiffi
Δm2

12

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 3r − 2

ffiffiffi
3

p ffiffiffi
r

p
cosϕ

q ; ð36Þ

and

m3 ¼
ffiffiffiffiffiffiffiffiffiffiffi
Δm2

12

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ r − 2

ffiffiffi
3

p ffiffiffi
r

p
cosϕ

3 − 3r − 2
ffiffiffi
3

p ffiffiffi
r

p
cosϕ

s
: ð37Þ

Now, we can use the experimental data [13] for Δm2
12 and

Δm2
23. Since, Δm2

12 ¼ ð7.50� 0.18Þ × 10−5 eV2 and r ¼
ð3.149� 0.098Þ × 10−2 [13], the three masses are essen-
tially functions of the phase ϕ (Fig. 1). We also depict the
sum of the three neutrino masses

P
3
i¼1mi as a function of

ϕ in Fig. 2.
The three mixing angles, calculated from Eqs. (18)–(20),

are

sin2 θ12 ¼
1þ r
3þ r

; ð38Þ

sin2 θ23 ¼
1

2
þ

ffiffiffi
3

p ffiffiffi
r

p
cosϕ

rþ 3
; ð39Þ

and

FIG. 1. The three neutrino masses m1 (dotted line), m2 (dashed
line), and m3 (solid line) in eV as functions of ϕ (in degrees).
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sin2 θ13 ¼
2r

3ðrþ 1Þ : ð40Þ

The two mixing angles θ12 and θ13 are functions of r only.
Substituting the value of r, we obtain θ12 ¼ 35.67°� 0.01°
and θ13 ¼ 8.20°� 0.12°. For comparison, the experimental
values are θ12 ¼ 33.48°� 0.78° and θ13 ¼ 8.50°� 0.21°.
The predicted and experimental values of θ12 become com-
patible at about 2.8σ C.L. This discrepancy is, however, a
generic feature of TMmixing.One possibleway to diffuse this
tensionwith the data is to consider charged lepton corrections.
We have presented our textures in a basis in which the charge

leptonmass matrix is diagonal and the effective neutrinomass
matrix ismagicwith twozeros.However, inamodel realization
of these textures, the charged lepton mass matrix can have
small off-diagonal terms that will give corrections to the
neutrino mixing angles. One can arrange these corrections
to bring θ12 to its experimental value while keeping other two
angles within the allowed ranges.
The mixing angle θ23 is a function of the phase ϕ after

substituting for r. We depict the mixing angle θ23 as a
function of the phase ϕ in Fig. 2.
We can calculate the three CP-violating phases from

Eqs. (33), (32), and (24). We obtain

FIG. 2. The neutrino parameters
P

3
i¼1 mi, θ23, α, β, δ, and JCP as functions of ϕ. All phases and angles are in degrees. The dark (gray)

bands depict the 1σ (3σ) allowed regions.
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cot 2α ¼ cotϕþ cscϕffiffiffi
3

p ffiffiffi
r

p ; ð41Þ

tan 2β ¼ −
ffiffiffi
3

p ð1þ rÞ sinϕ
2

ffiffiffi
r

p þ ffiffiffi
3

p ð1 − rÞ cosϕ ; ð42Þ

and

tan δ ¼ 3þ r
3 − r

tanϕ: ð43Þ

The Jarlskog invariant J, calculated from Eq. (23), is

J ¼
ffiffiffi
r

p
sinϕ

3
ffiffiffi
3

p ð1þ rÞ : ð44Þ

The three CP-violating phases (α, β, and δ) depend upon
the ratio r and the unknown phase ϕ. Therefore, we can plot
α, β, δ, and J as functions of ϕ by just plugging in one
experimental number r (Fig. 2).
This high level of predictability makes these textures

good candidates for model building. It is rarely seen that a
neutrino mass model can predict the nine neutrino para-
meters using just two inputs from the experiments: Δm2

12

and Δm2
23. We present an A4-based model for these two

textures in the next section.

C. Inconsistency of class B3

The magic mass matrix of type B3 has zeros in the (1, 2)
and (2, 2) entries. This implies the following two complex
equations:

m1

m2

e2iα ¼ 2ð ffiffiffi
3

p
e−iϕ sin2 θ þ ffiffiffi

3
p

eiϕ cos2 θ þ 2 sin 2θÞ
ð1 − 3e2iϕÞ sin 2θ þ 2

ffiffiffi
3

p
eiϕ cos 2θ

ð45Þ
and

m2

m3

e2iβ ¼
ffiffiffi
3

p þ 3eiϕ cot θffiffiffi
3

p
− 3e−iϕ cot θ

: ð46Þ

Using absolute squares of these ratios, we can calculate the
ratio r as

r ¼
1 − j m1

m2
e2iαj2

ðj m2

m3
e2iβjÞ−1 − 1

: ð47Þ

Using these expressions, we express r as a function of θ13
(Fig. 3) by substituting the value of θ in terms of θ13 from
Eq. (20). We find that r has a minimum value r ¼ 0 at the
point (θ13 ¼ π=4, ϕ ¼ π). We obtain the experimental
value of r only in a small interval around this point for
θ13 ∈ ½40°; 50°�. As θ13 decreases, the minimum value of r
increases. It is clear that we cannot have both r and θ13 in
their experimentally allowed ranges simultaneously.
Hence, this texture is inconsistent with the experimen-
tal data.

V. THE A4 MODEL

We present an A4 model in the framework of the type
Iþ II seesaw mechanism [15,16] to obtain the neutrino
mass matrices studied in this work. Apart from the three
left-handed lepton doublets DlL and three right-handed
charged leptons lR (where l ¼ e, μ, and τ), we introduce six
SUð2ÞL doublet Higgs fields ψ i and φi, (where i ¼ 1, 2 and
3) and a SUð2ÞL triplet Higgs field Δ. We depict the
transformation properties of the fields present in our model
in Table II. In addition to A4 symmetry, we also need a Z2

symmetry to prevent the coupling of the charged leptons
(neutrinos) with scalars φi (ψ i). These transformation
properties lead to the following Lagrangian for the leptons
that is invariant under A4 and Z2:

−L ¼ y1ðD̄eLψ1 þ D̄μLψ2 þ D̄τLψ3Þ1eR1
þ y2ðD̄eLψ1 þ ω2D̄μLψ2 þ ωD̄τLψ3Þ10τR100

þ y3ðD̄eLψ1 þ ωD̄μLψ2 þ ω2D̄τLψ3Þ100μR10 þ y4ðD̄eL ~φ1 þ D̄μL ~φ2 þ D̄τL ~φ3Þ1νR1

− yΔðDT
eLC

−1DeL þ ω2DT
μLC

−1DμL þ ωDT
τLC

−1DτLÞ100 iτ2Δ10 −mRðνTRC−1νRÞ þ H:c:; ð48Þ

where ~φ ¼ iτ2φ�.
We assume that the vacuum expectation values (VEVs) of the Higgs fields are hψio ¼ vψ ð1; 1; 1ÞT , which leads to the

charged lepton mass matrix

FIG. 3. The ratio r ¼ Δm2
12=Δm2

23 as a function of θ13
(degrees) for a magic mass matrix of type B3.
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ml ¼

0
B@

y1vψ y2vψ y3vψ

y1vψ y2ωvψ y3ω2vψ

y1vψ y2ω2vψ y3ωvψ

1
CA: ð49Þ

For the type I see saw contribution, we assume that φi

develop VEVs along the direction hφio ¼ vφð0;−1; 1ÞT .
Such a vacuum alignment has been obtained in Ref. [17]
for SUð2ÞL and A4 triplet scalars by allowing specific
terms in the scalar potential which break A4 softly. This
choice of VEVs leads to the following Dirac neutrino mass
matrix:

mD ¼ y4vφð0;−1; 1ÞT: ð50Þ

We have only one right-handed neutrino with mass mR.
Using the type I seesaw mechanism, the effective neutrino
mass matrix is mI

ν ≈mDm−1
R mT

D,

mI
ν ¼ c

0
B@

0 0 0

0 1 −1
0 −1 1

1
CA; ð51Þ

where c ¼ y24v
2
ψ=mR. When the SUð2ÞL triplet Higgs

acquires a nonzero and small VEV, we get the following
type II seesaw contribution to the effective neutrino mass
matrix:

mII
ν ¼ Δ

0
B@

1 0 0

0 ω2 0

0 0 ω

1
CA; ð52Þ

where Δ ¼ yΔvΔ. The combined effective neutrino mass
matrix mν ¼ mI

ν þmII
ν from the type Iþ II seesaw mecha-

nism becomes

mν ¼

0
B@

Δ 0 0

0 cþ ω2Δ −c
0 −c cþ ωΔ

1
CA: ð53Þ

In the symmetry basis, the charged lepton mass
matrix ml is not diagonal. We make a transformation
to the basis where the charge lepton mass matrix is

diagonal with the transformation Ml ¼ U†
LmlUR,

where

UL ¼ 1

3

0
B@

1 1 1

1 ω ω2

1 ω2 ω

1
CA; ð54Þ

and UR is a unit matrix. In this basis where Ml is
diagonal, the effective neutrino mass matrix becomes

Mν ¼

0
B@

0 0 c

0 c − Δ Δ
c Δ −Δ

1
CA: ð55Þ

This is the mass matrix of type A1 having magic
symmetry and two texture zeros.
A similar mechanism with a SUð2ÞL triplet Higgs Δ

transforming as 100 instead of 10 will give the neutrino mass
matrix

Mν ¼

0
B@

0 b 0

b −a a

0 a b − a

1
CA: ð56Þ

This is the mass matrix of type A2 having magic symmetry
and two texture zeros.
Our model requires six Higgs doublets, three of which

couple to charged leptons (Table II). In such multi-Higgs
models, the flavor-changing neutral currents can contribute
to charged lepton flavor-violating decays. However, an
explicit calculation is beyond the scope of the present work
due to the complexity of the Higgs sector of our model.
Nevertheless, there exist models in the literature (e.g.,
Ref. [18]) where the charged lepton Yukawa Lagrangian
(including the A4 assignments of the charged lepton and
scalar fields) is similar to our model. The flavor-violating
decays of leptons for our model can be studied in a manner
similar to that in Ref. [18].

VI. CONCLUSIONS

We studied the phenomenological implications of two
texture zeros in the magic neutrino mass matrix. In the
absence of magic symmetry, there are seven allowed
patterns for the presence of two zeros in the neutrino mass
matrix. The additional constraint of magic symmetry
disallows five of these patterns. The two allowed patterns
are of the types A1 and A2. The combination of magic
symmetry and texture zeros make these classes very
predictive. We can express all nine neutrino observables
(the three masses, the three mixing angles, and the three
CP-violating phases) as functions of ϕ by plugging in just
two experimental parameters (Δm2

12 and Δm2
23). In par-

ticular, θ12 and θ13 do not even depend on the phase ϕ and

TABLE II. Transformation properties of various fields:
DlLðDeL ; DμL ; DτLÞT , lRðeR; μR; τRÞT , νlR , ψðψ1;ψ2;ψ3ÞT ,
φðφ1;φ2;φ3ÞT , and Δ.

Fields DlL lR νR ψ φ Δ

SUð2ÞL 2 1 1 2 2 3
A4 3 1, 10, 100 1 3 3 10
Z2 1 1 −1 1 −1 1
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can be expressed as functions of the ratio r ¼ Δm2
12=Δm2

23

as sin2 θ12 ¼ 1þr
3þr and sin2 θ13 ¼ 2r

3ðrþ1Þ. Finally, we have

derived these highly predictive mass matrices from a
neutrino mass model based upon the symmetry group A4.
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APPENDIX: THE GROUP A4

A4 is the group of even permutations of four objects
having 12 elements. Geometrically, it can be viewed as the
group of rotational symmetries of the tetrahedron. A4 has
four inequivalent irreducible representations (IRs) which
are three singlets 1, 10, and 100, and one triplet 3. The group
A4 is generated by two generators S and T such that

S2 ¼ T3 ¼ ðSTÞ3 ¼ 1: ðA1Þ
The one-dimensional unitary IRs are

1S ¼ 1 T ¼ 1; 10S ¼ 1 T ¼ ω; 100S ¼ 1 T ¼ ω2:

ðA2Þ

The three-dimensional unitary IR is

S ¼

0
B@

1 0 0

0 −1 0

0 0 −1

1
CA; T ¼

0
B@

0 1 0

0 0 1

1 0 0

1
CA: ðA3Þ

The multiplication rules of the IRs are as follows:

10 ⊗ 10 ¼ 100; 100 ⊗ 100 ¼ 10; 10 ⊗ 100 ¼ 1: ðA4Þ
The product of two 3’s gives

3 ⊗ 3 ¼ 1 ⊕ 10 ⊕ 100 ⊕ 3s ⊕ 3a; ðA5Þ
where sðaÞ denotes the symmetric (antisymmetric) product.
Let (x1, x2, x3) and (y1, y2, y3) denote the basis vectors of
two 3’s. Then the IRs obtained from their products are

ð3 ⊗ 3Þ1 ¼ x1y1 þ x2y2 þ x3y3; ðA6Þ

ð3 ⊗ 3Þ10 ¼ x1y1 þ ωx2y2 þ ω2x3y3; ðA7Þ

ð3 ⊗ 3Þ100 ¼ x1y1 þ ω2x2y2 þ ωx3y3; ðA8Þ

ð3 ⊗ 3Þ3s ¼ ðx2y3 þ x3y2; x3y1 þ x1y3; x1y2 þ x2y1Þ;
ðA9Þ

ð3 ⊗ 3Þ3a ¼ ðx2y3 − x3y2; x3y1 − x1y3; x1y2 − x2y1Þ:
ðA10Þ
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