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U(3) gauge theory on fuzzy extra dimensions
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In this article, we explore the low energy structure of a U(3) gauge theory over spaces with fuzzy
sphere(s) as extra dimensions. In particular, we determine the equivariant parametrization of the gauge
fields, which transform either invariantly or as vectors under the combined action of SU(2) rotations of the
fuzzy spheres and those U(3) gauge transformations generated by SU(2) C U(3) carrying the spin 1
irreducible representation of SU(2). The cases of a single fuzzy sphere S% and a particular direct sum of
concentric fuzzy spheres, 2™, covering the monopole bundle sectors with windings +1 are treated in full
and the low energy degrees of freedom for the gauge fields are obtained. Employing the parametrizations of
the fields in the former case, we determine a low energy action by tracing over the fuzzy sphere and show
that the emerging model is Abelian Higgs type with U(1) x U(1) gauge symmetry and possesses vortex
solutions on R2, which we discuss in some detail. Generalization of our formulation to the equivariant

parametrization of gauge fields in U(n) theories is also briefly addressed.
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I. INTRODUCTION

It is by now very well known that N = 4 supersymmetric
SU(N) Yang-Mills theories (SYM), deformed by the
addition of cubic [soft supersymmetry breaking (SSB)]
and mass terms in the scalar matter fields and relatedly
SU(N') gauge theories coupled to a triplet of scalars
carrying the adjoint representation of SU(N') as well as
pure Yang-Mills (YM) matrix models with cubic and
quadratic deformation terms develop fuzzy vacua; these
are generically described by direct sums of products of
fuzzy spheres S% x 8% (=@ S% x §%) or that of fuzzy
spheres S%(:=@ S%) [1-12]. Such fuzzy sphere vacua also
appear in Berenstein-Maldacena-Nastase (BMN) matrix
models, which were proposed some time ago to give a
nonperturbative description of the M-theory on maximally
supersymmetric pp-wave backgrounds [13,14].

For the SU(N) YM theory on Minkowski space M*
coupled to a triplet of adjoint scalar fields, the fuzzy sphere
S% vacuum was investigated in [5]. In this model, three
matrices describing the S% are the vacuum expectation
values (VEVs) of the scalar fields and the SU(2) symmetry
of $% is inherited from a global SU(2) gauge symmetry of
the YM model. Nonzero VEVs of the scalar fields also
imply that the SU(N) gauge symmetry is spontaneously
broken down to a U(n), where A, n, and the level £ of the
fuzzy sphere are related as A" = (2¢ + 1)n. Fluctuations
around this vacuum configuration are found to have the
structure of U(n) gauge fields over S%, which preliminarily
indicates that the emerging model after symmetry breaking
may be conjectured to be an effective gauge theory over
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M* x 2. A Kaluza-Klein (KK)-type mode expansion of
the gauge fields given in [5] places this interpretation on
firm grounds.

Equivariant parametrization (EP) of gauge fields in the
framework of these models endows us with a complemen-
tary viewpoint in developing the effective gauge theory
interpretation and understanding the low energy limit in this
and a range of other models, which we have been recently
investigating in [8—12]. This method, being akin to coset
space dimensional reduction techniques [15,16] (see also
[17] in this context), involves imposing proper symmetry
conditions on the fields of the model so that they transform
covariantly under the action of the symmetry group of
the extra dimensions up to the gauge transformations of the
emergent model. These conditions may be solved using the
representation theory of Lie groups and explicit EPs of all
the fields in the model can be obtained providing strong
evidence for the interpretation of such models as effective
gauge theories, since, subsequently, an effective low energy
action (LEA) may be obtained by integrating out (i.e.,
tracing over) the fuzzy extra dimensions. Models with
minimal non-Abelian gauge symmetry, a U(2) model for
the case of M x 8%, and a U(4) model for M x §% x S,
where M denotes a Riemannian or a Lorentzian manifold,
have been investigated in [8,10] and LEAs are obtained
when the extra dimensions do not have the direct sum
structure but are given by a single fuzzy sphere S% or
52 x S%, respectively. LEAs’ obtained in this manner leads
to Abelian Higgs-type models with vortex solutions for
M = RZ. Applications of equivariant dimensional reduction
method on higher dimensional YM theories are reported in
[18-24]. Other recent interesting articles within this general
setting that we do not want to pass without mentioning
include [25-31].
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The outlined developments call for further investigations
on the low energy structure around such fuzzy vacua in a
diverse class of models with larger gauge groups in order to
better assess the potential value of these models from a
phenomenological point of view. In this article, we take a
step forward and determine in full detail the equivariant
field modes of a U(3) gauge theory over M x S% and
obtain the corresponding LEA by tracing over S%. First, we
find that equivariant scalars may be constructed by taking
advantage of the dipole and quadrupole terms, which
appear in the branching of the adjoint representation of
SU(3) as 8 —» 5 @ 3 when the SU(2) subgroup is max-
imally embedded in SU(3). More concretely, we use these
considerations and other group theoretical inputs coming
from the equivariance conditions to construct the invariants
as “idempotents” involving intertwiners combining the
spin £ irreducible representation (IRR) of SU(2) generating
the rotations of S% and those U(3) gauge transformations
generated by SU(2) C U(3) carrying the spin 1 IRR of
SU(2). There is also another invariant proportional to the
N -dimensional identity matrix, which essentially appears
due to a U(l) subgroup of U(3)~SU(3)xU(1).
Equivariant vectors are built using these invariants and
the generators of S%. These developments are presented
in Sec. III, where we also show that the equivariance
conditions break the U(3) symmetry down to the Abelian
product group U(1) x U(1) x U(1). In Sec. IV, we obtain
the LEA, which, in addition to the three Abelian gauge fields
that naturally appear, contains two complex scalars each
coupling to only one of the gauge fields and three real scalars
interacting with the complex fields and with each other
through a quartic potential. In the £ — oco limit, we
determine the vacuum configuration of this quadric potential
and use it in Sec. V to determine vortex solutions to the LEA
on M = R? in two different limits governed together by #
and the coupling constant of the constraint term in the
potential, both of which are characterized by two winding
numbers. Scattered throughout Secs. III-V, we indicate how
the commutative limit of our results relates to the instanton
solutions in self-dual SU(3) Yang-Mills theory for cylin-
drically symmetric gauge fields of Bais and Weldon [32].
In particular, we point out the connection between the
Bogomolnyi-Prasad-Sommerfeld (BPS) vortices that we
obtain in a certain commutative limit in Sec. V and the
instanton solution in [32]. In Sec. VI, we briefly outline the
generalization of the EP of gauge fields to U(n) theories
over M x S2, and show that equivariant scalars are obtained
by employing the n — 1 multipole terms, which appear in the
branching of the adjoint representation of SU(n) under
SU(2), when the latter is maximally embedded in SU(n).

Section VII is devoted to the study of U(3)-equivariant
fields over M x S2I" where S2:= S2.(¢) @ S%(¢) @
S%(¢+1%) @ S3(£ — 1) was revealed in [11] via a certain
field redefinition of the triplet of scalars as a potentially
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interesting vacuum configuration for the SU(N) YM
theory. The reason of interest on this vacuum is twofold.
First, through its certain projections it gives us access to
fuzzy monopole bundles with winding numbers +1, in a
setting that is readily amenable to explicitly expressing the
equivariant field modes; and secondly it naturally identifies
with the bosonic part of the N = 2 fuzzy supersphere with
OSP(2,2) supersymmetry as discussed in [11]. Here, we
are able to express all the equivariant field modes character-
izing the low energy behavior of the effective U(3) theory
on M x S2" in terms of suitable idempotents and pro-
jection operators. From a geometrical point of view the
S2Int vacuum is akin to stacks of concentric fuzzy D-branes
carrying magnetic monopole fluxes, despite the fact that
not all the string theoretic aspects [33] may be reproduced
within the current framework [1]. Nevertheless, this view-
point allows us to think of the equivaraint gauge field
modes of the effective gauge theory as those living on the
world volume of these D-branes, which may prove to be
useful in an attempt to relate the effective gauge theory and
the string theoretic perspectives.

IL. U(n) GAUGE THEORY OVER M x §%

In order to orient the developments, we start with
briefly explaining how an SU(N) gauge theory on a d-
dimensional manifold M coupled to a triplet of adjoint
scalar fields spontaneously develops extra dimensions in
the form of a fuzzy sphere S% and how a U(n), (n < N),
gauge theory on M x S% emerges as a consequence [5].
We are interested in the model whose action may be
given as

1 .
5= [ avtoe(= s Flpe - (D0, (0,))
M g

1

—?Vl(‘b) _92V2(<I>), (2-1)
V(@) = Trn(F!,Fop),
Va(®) = Trar (R, P, + b1y)?). (2.2)

where y,(u =1,....d) are the coordinates on M. F,,
denotes the gauge connection associated to the su(N)
valued anti-Hermitian gauge fields A, = A,(y) on M.
®, = ®,(y)(a=1,2,3) are three anti-Hermitian N x A
matrices, whose entries are valued in M. Thus, they are
scalar fields transforming in the adjoint representation of

SU(N) as

d, > U®U,  UeSUWN), (2.3)

and the covariant derivative in the action (2.1) is given as
D,®, =0,®,+[A,. ®,]. Let us also note that in (2.1)

9.9,8,b are constants, 1,  stands for the A" x A/ unit
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matrix, and Try, = A/ ~'Tr indicates a normalized trace. In
the potential term V(®), F,;, is defined as
Fab = [(Dw q>b] - eabc(I)C' (24)
In addition to the SU(N') gauge symmetry (2.1) is also
invariant under a global SU(2) symmetry with respect to
which the scalar fields ®, form a triplet. Thus, at this stage,
the indices (a = 1,2, 3) pertain to this global symmetry. In
what follow, we will observe how their meaning shifts after
the emergence of the U(n) gauge theory over M x S2.

V,(®) is a constraint term, whose purpose, as we will see
below, is essentially to force the model to select the single
fuzzy sphere S% vacuum configuration, as opposed to a
vacuum given in terms of the direct sums of fuzzy spheres,
say, S2 =@ S%.

We may also note that M may be selected as a manifold
on which (2.1) is renormalizable. In particular, it may be
taken as the four-dimensional Minkowski space or R? as
we do in Sec. V.

It is obvious that the potential terms V(®) and V,(®)
are positive definite and the minimum of potentials can be
obtained by solving the equations
—3,P, = bl,.

Fab = [q)a’ (I)h] - €abcq)c =0, (25)

A well-known solution [5] to these equations is given by

taking b as the eigenvalue of the quadratic Casimir of an
IRR 7 of SU(2), and assuming that N factorizes as
N = (2¢ + 1)n. Then, up to the gauge transformations
(2.3) the matrices

(2.6)

where X%V are the anti-Hermitian generators of SU(2)

in the irreducible representation ¢ with the commutation
relation

[Xflzfﬂ) X(b2f+l)] _ e xe)

’ — Cabcic ’ (27)
satisfy (2.5).

Evidently, this vacuum configuration spontaneously
breaks the SU(N') symmetry down to the gauge group
U(n). In addition, we see that it may be interpreted as
the fuzzy sphere at level £ since the latter, at level 7, is the
algebra of (2 + 1) x (2¢ + 1) matrices generated by the
three Hermitian coordinate functions,

;X512f+1)’ (2.8)
(6 +1)

>
2
1

satisfying
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(2.9)

ik, = L.

Derivatives on S%(#) are given by the derivations on
the matrix algebra, which are simply implemented by the
adjoint action of su(2) on S%,
foadXP TV =xEV f], FeEMat(2£+1).  (2.10)

In the commutative limit £ — o0, X, converge to the

standard coordinates x, on R?, restricted to the unit sphere

x,x, = 1, and the derivations [XE,M+l

fields —iﬁa = eabcxbac.
Fluctuations A, = A,(y) about the vacuum (2.6) may be
studied by writing

), -] become the vector

D, =X, +A,, (2.11)

where the shorthand notation XEIMH) ® 1, = X, has been

introduced. A short calculation yields that

Fub = [XuvAh] - [vaAa] + [AaiAb] —eahCAc, (212)
which has the form of the curvature tensor for U(n) gauge
fields over S2. This suggests that the model emerging after
spontaneous symmetry breaking can be interpreted as a
U(n) gauge theory on M x S% with the gauge fields
Au(y) = (Au(y). Au(y)) € u(n) @ u(2¢ + 1) and the field
strength tensor Fyy = (Fyp. Fops Fap)s

F,=0A,-0A,+[A, A
F,=D,®,=0,®,+[A, &,
=0,A,—[X,. A ]+ [A, ALl

a»u

Fab = [(I)av <I)b] - eabcéc

= [Xo Ap] = [Xp, A + [As. Ap] — €apcAc. (2.13)
For notational clarity, it is useful to indicate that, after the
spontaneous breaking of the SU(N') gauge symmetry and
subsequent emergence of U(n) gauge theory on M x §%,
roman indices (a,b = 1,2, 3) label the components of the
coordinates of the fuzzy sphere and also naturally label the
components of vectorial and tensorial quantities over S2.
Thus, for instance, A,(y) are those components of the
gauge field Ay (y) over M x S%, transforming as compo-
nents of vectors under rotations of S% and remaining
invariant under the action of the symmetry group of the
manifold M. Also, after symmetry breaking, A,(y)
become those components of A, (y), remaining invariant
under rotations of S% and transforming as components of
vectors under the symmetry group of the manifold M as
can be observed from the considerations given above.
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It is a well-known fact that on the fuzzy sphere there are
three components of the gauge field A,, which can only be
disentangled from each other in the commutative limit. On
§?, there are only two degrees of freedom for the gauge
field A, and the standard treatment is to impose the
constraint x,A, = 0 to eliminate the normal component
of A,. Here the constraint term V, in (2.2) serves the
purpose of suppressing the normal component of A, by
giving it a large mass g/ (¢ + 1), as £ — o0, [5,8]. In the
discussion above we have worked with dimensionless ®,.
We can restore the dimensions by taking &, — y®, where
y has the mass dimensions [m]%?~!. Working with the
dimensionful ®,’s, we have the mass dimension of the
couplings g and § are [g] = [m]~¥/**? and [g] = [m]%/>2.
We also note that performing the scaling d, = /2¢gP, and
taking gg = 1, the part of the action without the constraint
term, V,(®), may be expressed as the L>-norm of F;y and
we may write

1
S—_

= 2.14
7 (2.14)

ddyTrn(Zerl)F}L\/[NFMN - g*V,(D).

A Kaluza-Klein mode expansion of the gauge fields over
the fuzzy extra dimension given in [5], and an inspection of
its low lying modes, supports the effective gauge theory
interpretation. A complementary approach in the context is
the equivariant parametrization technique which entails
imposing proper symmetry conditions on the fields of the
model so that they transform covariantly under the action of
the symmetry group of the extra dimensions up to gauge
transformations of the emergent model. As discussed in
the introduction, we now take up the task of examining the
U(3) model on M x S% by employing this method.

I1I. SU(2)-EQUIVARIANT GAUGE FIELDS
FOR U(3) GAUGE THEORY

Here, our initial aim is to construct the explicit form of
SU(2)-equivariant gauge fields in the U(3) theory. To be
somewhat more precise, we determine those field configu-
rations that are transforming as scalars and vectors under
rotations of S% up to U(3) gauge transformation. For this
purpose, we introduce the infinitesimal symmetry gener-
ators @, as

2641
a)a:XE, N

'®1; - Loz ® iZ,, (3.1)
where X, form the spin 1 irreducible representation of
SU(2) C SU(3): (X,);; = i€jq; and o, satisfy the condition

[@,, 0p] = €4pe@e. (3.2)
Clearly, the adjoint action adw,- = [@,, -] is composed of
infinitesimal rotations over S% combined with those infini-
tesimal SU(3) transformations, which are generated by X,,.
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The adjoint representation of SU(3) decomposes to SU(2)
IRR’s as

8553 (3.3)
In this branching, X, generate the 3 (spin 1) IRR of SU(2),

while the remaining five generators of SU(3) may be given
in the form of the quadrupole tensor,

1 2
Oup :E{Za»zh}_géah’ (3.4)
2
(Qab)ij = 64iOpj + 84jOpi — 5 0apdijs (3.5)

3

carrying the spin 2 (i.e., 5) IRR of SU(2). For each IRR of
SU(2) in the branching (3.3), we may expect to construct
one rotational invariant under adw, in addition to the
identity matrix 1(¢,)3 and we at once proceed to see
that this is indeed so.' These invariants may be simply
taken as X, X, and X, X, Q,;; however, we prefer to express
them as idempotent matrices, which turn out to be suitable
for the subsequent construction of the equivariant vectors,
as well as for clarity.

In order to find the SU(2)-equivariant gauge fields, we
impose the following symmetry constraints,

[wm Au] =0,

[wav Ab] = eabcAw (36)
which simply imply that, under the adjoint action of w,, A,
are rotational invariants and A, transform as vectors.
SU(2) IRR content of w, may be found by the following
tensor product,
fQl=(¢-1)drced(f+1), (3.7)

and therefore IRR decomposition of the adjoint action of
W, is

(-Derse+)](/-1)®ra (@ +1)

=307l ---, (3.8)
where the coefficients in bold denote the multiplicities of
respective IRRs in front of which they appear. From this
Clebsch-Gordan expansion, it can be seen that the set of
solutions for A, is three dimensional. We span this space
by the invariants Qy, Q,, as defined below and 154, )3, and
introduce the following explicit parametrization of A,,

'Generalization of this construction to all U (n) gauge theories
on M x S% is discussed in Sec. VL
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1 1
A= =54 ()01 + 547 ()0,

. 1 2
+1<a£><y>—a,£><y>
3

5 + b,,(y)>1, (3.9)

where a,(ll), a,, , b, are Hermitian U(1) gauge fields” on /\/l

and Q,, O, are anti-Hermitian idempotents given as (34,

0, = 20XZ £ F DX, + 1) = (£ + 1)@ + 11
b i(Z+1)2¢0+1) ’
0] =-0,. 07 = —130041),
2(iX,E, — O)(iX,Z, + 1) — €20 + 1)1
T it(20 +1) ’
0} =-0,. 03 = —130041). (3.10)

Thus, we see that U(3) gauge symmetry is broken down to
U(1) x U(1) x U(1). Under the gauge transformation
generated by U = e_ie (v )Qleéaz(}’)Qzei(%el (Y)—é92()‘)+%93(Y))1’

it is readily seen that A, — A, with a/’ = a4 + 9,6,
and b, = b, + 0,05; hence the rotational symmetry of A,
is preserved.

Equation (3.8) shows that the dimension of the set of
solutions for A, is 7 and its parametrization may be chosen
as follows:

Au= 20 0) X, O]+ 41 ()X, 01

3 (20) 4 DX, 0] 4 3 (1200) = Da[X, 0]

i 3(y)
+§2(f3+1/2)

i )
T35 1 1)

({ a» Ql} - lQZ[Xaﬂ QZ])

({Xw QZ} - lQl [Xa’ QI])

@y,

£+1/2 (3.11)

+1w@)

Let us digress for a moment and inspect (3.11) in some
detail. Observe that we have essentially used commutators
and anticommutators of Q; and Q, with X, to construct a
suitable basis for vectors fulfilling (3.6). As coefficients of
these vectors, we have introduced the real scalar fields
@1, P2, Q3. X1- 125 )3 and y on M. We see shortly that some
of these naturally combine to form complex scalars when
the model is dimensionally reduced over S%.

“The reason for this particular form of the coefficients of Q,
0, and 1 in (3.9) becomes clear as we proceed to perform the
dlmensmnal reduction over S% in the next section.

’In [34], these idempotents were introduced for the purpose of
constructing the spin 1 Dirac operator on the fuzzy sphere.
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e T X, .~ &4
In the commutative limit, Z — oo (4 = %,,%,%, = 1),
we have

(Zoka)? +
(Za)%a)z -

(Zaka) -1,
(Za-%a) -1,

10y =q1 =
Q) =¢q, = (3.12)
where g} = g3 = 1. Another idempotent may be given
as a linear combination of ¢, and ¢, and 13 as ¢; =
—(g, +¢5) — 15 [34]. Using (3.12), we find that the
commutative limit of A, in (3.11) takes the form

. +1
A~ _cvlz(y) Loa, _)méy) Loty _l(rpz(yz) )%an1
-1
l@(z(yz) )qzﬁ J %Z(y)%ql
o). v() .
+55 Ry + 5 R (3.13)

Imposing the constraint x,A, = 0 eliminates the radial
component of the gauge field. We see from (3.13) that this
condition is satisfied if and only if we set p; = y3 = w = 0.
The remaining terms of A, in (3.13) and the commutative
limit of A, [apart from a b,,-field due to the U(1) subgroup of
U(3), which decouples from the rest in the commutative
limit, or is eliminated by solving its equation of motion in
powers of 1, as we see later on in Sec. V] are in agreement
with the cylindrical symmetric ansatz for the SU(3) Yang-
Mills theory of Bais and Weldon [32].

IV. DIMENSIONAL REDUCTION OF THE
YANG-MILLS ACTION

In this section, we pursue the dimensional reduction of
our model over S%. We substitute our equivariant gauge
fields A, and A, into the action (2.1), and then by tracing
over the fuzzy sphere S%, we obtain the reduced action
on M. The following identities are very useful to simplify
the calculations,

[Xa’{Xaﬂ Ql}] =0, [Qi’{Xa’ Ql}] =0,
{Xa, [Xa: Qil} = {01, [Xa, Qil} =

where i = 1, 2 and the sum over only the repeated index

[IPS L}

a” is implied.
Borrowing the notation of [8],

(4.1)

1
S = / dly <£F + Lo+ Vi + gZV2>. (4.2)
M g
Now, we start to calculate each term in (4.2) separately. For

the field strength term, the curvature F,, can be expressed
in terms of the rotational invariants Q;, Q, and 1 as

f/u/ Q] + f/u/ Q2+ ( = 3f’w +h/4u>1’

(4.3)
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where we have introduced The covariant derivative term D, ®, is calculated to be
fq,) =0 a£]> - 6,,a(]>, f(?,) =0 a,(,z) - Gya(z), 1 1
g g ! g g . Du¢a:§(D (pl)[Xa9Ql]+§(DMl)[XmQ2]
hy,, = 90,b, — 0,b,. (4.4) | |
= Xas D X,
Then, £ takes the form 2( u(PZ)Ql[ a Ql] ( Mz)Qz[ Qz]
i 0,3 .
1 - +_”7 Xa’Q _lQ Xan
Lp = 4 TN(FLVF”U> 4({_‘_1/2) ({ l} 2[ 2])
i 8”)(3 .
1/ ¢+1 ) T ({Xa4, @2} —i01[X,. 01])
v [ % £+1/2
g(zﬂ AL 4 s 1 e+
1 1 1 ) 575 (O @ (4.6)
L ;n/ yny 26 +1/2
+ fﬂl/f 16hﬂyh +6(2l/ﬂ+])fﬂl/h ( / )
+ e flh > (45)  where Dypi=0,0;+¢;ial g; and D=0,z +cjiai 7.
6(2f +1) After tracing, the gradient term L; reads
|
Lg= Tr((DﬂQa)TDMQZ) (4.7)
202 + 3) 220 -1)(2+1)
_ D 2 D 2 D 2 D 2
6 + 1564 + 4¢3 — 9% + 2 2+E+2 2£(€ +1)
0,03)* + (0.3)*) + ———n 2o —— 20,00
31y ) Q) e Ow)” =3y OO
2 (2¢% - 5¢-9) 223 +11£% +7¢ - 2)

00,3 — 0ux30,p. (4.8)

3(2041)° 324 +1)°

We note that ¢,¢, and y,, y, naturally combine to two complex scalar fields ¢ := @; + i@y, ¥ =y + iy, with
D,p=(0,+ ia,(,l))(p and D,y = (9, + ia,(f));(, which we make use of in the next section.
In order to calculate the potential term V1, it is useful to work with the dual of the curvature F,,. We find

1

Eeachab = Ay + Moo + Mslr? + Ay(@3 + 23) + Asos + Noxs + Mgays + Asosw + Moy

+ Ao(@1 + 9201) X0 O1] + A1 (11 + 1202) X Qo] + Aoy + A3y, (4.9)

where A;,i = 1,..., 11 are the 3(2£ + 1) x 3(2¢ + 1)-dimensional matrices that are listed in the appendix. Using (4.9), the
potential term V| may be determined as

Vi= TrN(FZbFuh) =a; — g — asly|* — @} — asy3 — asws + agxs — agpixs — a3y — aoxsy + anyt + Bilel?
= BaloPx* + Bslo|* @3 + Balo*x3 = Bslol*os + BslwPxs — B1lo*psxs + Bslo|*esw — Bolo| v
+ BuololPw? + rilxl* = ralePod + vale|*3 + valrlPos — vslelPrs + velx Poses — ralxPosw
— sl Py + volx[Pw? — 81 (0% + x4 + 693x3) — 6:(93 + 33x3) — 53(x3 + 3x3003)
— 84(03r3 + 1393) — 85(D3y + 3wsx3w) — 36 (3w + 3303w + 51(0dy + 1)
+ 58((P§W2 +Z§W2) — 833y — S10@3w* — S11 a3t — S1@axaw’ — S1303y°
= S1y3w’ = S1sy° — Sieyt, (4.10)

where all the /-dependent constants a, f3, y, § are given in the appendix.
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In the £ — oo limit we find

2 2
Vi@ = g(\(ﬂl2 + 53— 1) g(l)(|2 —x3— 1)
2 v, 4 s 4 n,
+3 (\col =) +3loles + 5 s
1 1 1
2 2 2
6(P3 6)(3+2’//
1
—§(¢3X3 + @3y + x3w). (4.11)
The potential V,(®) = Try(F', F,,) is positive definite,

although the rhs of (4.10) and (4.11) is not manifestly so.
For the limiting case (4.11) we have determined that
minima occur at the following configurations,

i) pf? = k=1,  @3=x3=w=0, (412)
i) =0, [P=0, g3=1,
n=-1, w=0, (4.13)
i) (g ==, WP=0, p3=0
\/Q? bl b
3 1
—_— S—— 4.14
X3 5 W 5 (4.14)
1 3
iv) o[> =0, P=—, =3,
) ol x| 7 93 =5
1

For the computation of the last term in (4.2), we first
obtain the expression
D,P,+2(+1) =R+ RyiQ + R3i 05, (4.16)
where R, R,, and Rj are listed in the appendix. Then, the
potential term V, is determined to be

2(2¢-3)
Vo(®P)= |RZ+R:2+R?2——" "2RR
2() (1+ 2+ 3 3(2{_‘_1) 14v2
2(2¢45) 2
———2R/R;——R,R; . 4.17
320+1) 323> (4.17)
In the large Z limit we find
1
Vo (P)| oo = 592(<R1 — Ry —R3)*+ (=R, + R, — R3)?

+ (=R =Ry + R3)?)| /oo

1
= gngz((—w +o3+x13)° + (W -3+ 13)°

+ W+ o3 —23)°) (4.18)
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In the next section we first consider the scaling limit g — 0,
¢ — oo, with gZ kept finite but small. Then, among the
minima of the potential V;(®) listed above, only (4.12)
minimizes (4.18) as can easily be observed.

V. VORTICES

In this section, we inspect the structure of the reduced
action (4.2) on M = R? and show that it has static vortex-
type solutions. We are interested in exploring these in two
different limits, namely, (i) £ — o0, g — 0 with gZ remain-
ing finite but small and (ii) g — oo with £ being large but
finite. These limits are physically well motivated since in
the absence of any canonical choices for the parameter g,
they give the two extremes for handling the constraint
term V,(®).

A. Case (i)
In this case the reduced action becomes
= / d’y (18 5 (il PO+ Sl O 4 ) FO)
h,, h* -+
16g2 e
1
+ 1 ((0,03)* +

(|Du(ﬂ|2 +[Durl?)

(83)* + (O9)?)

1
~5 (0,930,003 + 0,030,y + 0, 130,¥)

1
+?Vl(¢>)|f_,oo>. (5.1)

We observe that the gauge field b, decouples from the rest
of the action, and does not play any role in the rest of this
subsection. Thus we essentially have an Abelian Higgs-
type model with U(1) x U(1) gauge symmetry. The
vacuum configuration is given by (4.12) and has the
structure of 72 = §' x S, with z,(T?) = Z @ Z, indicat-
ing that the vortex solutions constructed below are char-
acterized by two winding numbers, say (N, M).

To search for vortex solutions, it is possible to work with
the usual rotationally symmetric ansatz [35], which in our
case may be written out as

o) =a? =0, ap=a)) (. af=ag ().
p=¢(ne™N y=mn(r)e™,  p3=p(r),
x=o(r), w=r1(r), (52)

where the Cartesian coordinates (y,, y,) are replaced by the
polar variables (r,0). With this ansatz the action reads
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SzZﬂ/dr(#(

r

6

PHYSICAL REVIEW D 94, 036003 (2016)

1,1 2 21
dg Ay

17,21
)

2r 2
+a +a9a9)+?(éj’2+n’2)+

2
§(N+aé)2é'2+§(M+az)2”2+£(p12+0/2+712)

4r 3 1
(p’6’+p’r’+6’r’)+3—§2((1—C2—172)+§(p2+62+12)—p+6—Z(p6+pr+ar)+Z_,’4+i74—C2112

+ 3 +p) +n2(o—2—a)))

(5.3)
where primes are denoting the derivatives with respect to r.
Euler-Lagrange equations for the fields are
11 él/ 1 12 2 2 2 2
== (2 (N +a)) +?(—1 +20 =>4+ p° +p) | =0,
i ! e 2 2_#24 2
n +7— ﬁ(M—i—ag) +?(—1 +2* =4 0°—0) |n=0,
al/ 1 a2/
ay = 2y -6 (N + a)? =0,
a2/ 1 al’
@y =~ 3 =5, — 6 (M g =0,
p d+7 o'+ 2p 8 2 8
P Ty Tttt pter =0
o p+7 p+7 20 8 2 8
T T T s TR gt Tapr e =0
7 ,0/+0/ p//JrG// 2 2
/! _ — _ N =0. 5.4
+r 3r 3 7 3§2(p+6) (5.4)

We do not know any analytic solutions to these coupled
nonlinear differential equations. However, we can construct
the solution profiles for small and large r. For r — 0, series
solutions give

E=LorV+O(rN ), p=nor +O(M72),
aé.za(()l)r2 +0(r*), agza(()z)r2 +0(r*)

p=po+0(r?). o6=09+0(r). 1=7+0(r*). (5.5)

) (2
where £y, 179, a(() >, aé ), Po, 00, Tp are constants.

8¢ 2
1" _° _ — —
"+ 7 (468 —p —26n) =0,
1y da” 25 2 25 1
oa'" ———+4g°6a” — 8g~da’ =0,
r
o1 4 8 4
pPlt+—=—=5p—50+=56-=5m=0,
r 7 7 7 7
7 2 4 4 4 4
7+ ——S1-5p-—=0—5M+==60=0.
r 7 F 7 7 7

For large r, we first note that the asymptotic behavior
of fields is enforced by the requirement of the finiteness of
the action for the vortex-type solutions. We have {(r) —
Lin(r) = 1,a)(r) = N,a3(r) > M,p(r) - 0,6(r) = 0,
7(r) = 0 as r - oo, where the integers N and M are the
winding numbers of the vortex configuration. In order to
obtain the profiles for large £, we can consider the small
fluctuations about these limiting values and write
(=1-66n=1-6na),=—-N+da',a} =—-M + éa°.
Assuming that (@)2 and (5—;’5)2 are subleading compared to
o, om, p, 0,7, the Euler-Lagrange equations (5.4) become

/

s 2
s’ + 21— Z (46n + 6 —280) =0

)

S 2/
s — 29" | 4g2sa" — 8g26a> = 0,
r

6/

6” _"__
r

10 4 8 4
—=0—5p—5M+=60 =0,
777 7

(5.6)
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We can solve these coupled linear differential equations in
terms of the modified Bessel functions K, and find

() con(D) - )
() n () ()
() o) s )
2o () -on () s ()
o) ()

2
)

(5.7)

where A;,i = 1...,5 and C}, j = 1, 2 are constants, which
can only be determined numerically. It is easy to see that

. 5(12) 2 5“621 2 .
our assumption that (=2)* and (=%)* are subleading to

8.8, p, o, 7 can be fulfilled if we take 4g > /2/5. A well-
known fact is that the field strength and scalars are,
respectively, responsible for the repulsive and attractive
character of forces between vortices [35]. We find from
(5.7) that the field strengths B':=fl,=1fl,=10,a} and
B> =1 =172 =19 a3 are propomonal to ocmem?

5
while the scalar fields 6¢, 67, p, o and 7 decay like ﬁ 7T

NG

5= and

asymptotically. Thus these vortices attract for gg >

1 1
S:/Jzy(@< Zf 4f2)fﬂuf

1 1
320 20 MQﬂJ

PHYSICAL REVIEW D 94, 036003 (2016)

particularly for the case gg = 1 needed for the standard

Yang-Mills (2.14), and they repel in the parameter interval
@ < gg < ‘/75 From the asymptotic profiles of the fields,

we cannot immediately conclude the presence of BPS

solutions at the point gg = f 2 of the parameter space, where
there appears to be a change between attractive and
repulsive nature of forces between vortices. In fact, we
do not find any BPS equations from (5.1) at this point of the
parameter space, while as we see in the next subsection,
gg = 1is acritical point at which BPS vortices are found as
£ — o0 and g — oo.

B. Case (ii)

Taking the limit ¢ — oo is equivalent to enforcing the
constraint &, P, + £(¢ + 1) = 0. It can be easily seen from
(4.16) that this constraint can only be fulfilled by setting
R, =0, R, =0, and R; = 0. Using these three conditions,
we can solve @3, y3 and y in terms of |@| and |y| in powers
of %. Substituting back into the action should then give us a
reduced action with only two complex scalars ¢ and y. To
leading nonvanishing order in powers of 1, we find that

1 1
—(1—=1y]? — 1,
S1- 1)+ 0(5)
3 20 + 1 1
=——(1-|p? - 1= |y/? ol—=),
@3 42,”2( |(P|) 472 ( |)(|)+ <Lp3>

1 2f+1(L-WPy+0<%O.(5&

1=
Substituting from (5.8) for (p;, x3, ¥, expanding the
¢-dependent coefficients to order -, the action (4.2) takes
the form

L-lop) +

V=5

X3 =
f2>

1 ! 1
18g2 4

—2) Fu O

2 1
+3 (1= 572 ) (0,07 + 1D + 3 (DI + B2 + 0,l0PO, )

7B\ Ta2) 3\ T T
3 (14 55 5 et ol + et >))
3 20 207 3

where we wrote

2 /1
h;w: 3 <2_ﬁ>(fﬂv +fm/)

=2 )P =5 (1 2 oPlep + 5 (1= 55+ 372 o

(5.9)

(5.10)

which follows from the equation of motion of b, at the # order.
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For this case too, we make the rotationally symmetric vortex solution ansatz (5.2) and find the action to take the form

I I I 1o I I
Szzﬂ/dr(9 r(1+2f_4f2>a'19/aé/+9g2r <1 2 4f2> A Tr < ﬂ)ag’/“?

2)\2
_|_g (1 _L) (ré'/Z (N+ ) é'2 /2 + (Mtaﬁ) ’72> +6_;2(4§/2€2 +4I1/2112 _'_4(:/&1/’7)

3 202
4r 4r 1 4r 1 1 4r
(1= 2 )2 2,2

* 2(3 ( 4f2) 3 ( Z f2)c ( ¢ ﬂ)” 3 ( 452>C
(- I ) (5.11)

3 21/” 21,”2 20 207 377 ' '

I
Equations of motion for the fields ¢, 7, a}, a} follow after a For large r, it is easy to find the linearized equations

straightforward calculation and are given in the appendix. for the fluctuations about the vacuum values. We write as
Profiles of these fields around r = 0 are the same as in the  before { =1-6¢,n=1-n,a)=—N+da',a}=—M +5a>
previous case (5.5). and we obtain the equations

& 2/ 2 2 2 1
s+ % _Z (4- 2 —0
- §2< ‘ 52>C+92< +2ﬂ> ’
s 2 2 2 2
o+ 2 (442 0,
[ ff( T ﬂ)”“( 252>€

5a' 2 1 1
(Sal”—a—292<4—+ >5a +20 (2—{2>6a2:0,

r £
g 8a (2 .,
da* ———2g 4+?__f2 sa* +2g° 2——{2 da' =0. (5.12)
r

Solutions for these equations are given in terms of modified Bessel functions K,

a3 )T o) T

LR 1+--

£ 207 £ 202 ’
12 +3/¢ 4-3/¢7
S )

I 1 1
da' = F, (—1 —|—2—ﬁ> rK,(2V/3gr) + F2<1 —|—?) rK(2gr),
sa® = FirK,(2V/3gr) + ForK, (2gr), (5.13)

where E,, E,, F, F, are constants. Here, we can also define the parameter intervals for the attractive and repulsive behavior

\/4-3/8
2

of forces between the vortices. It is easy to see that for gg >

, the field strengths decay faster than the scalar fields, so

we have attractive vortices. On the other hand, for ¥ 4;3/ ~ < g9 < 7”_23”2
As £ — oo the action (5.9) at the critical point gg = 1 becomes

we have repulsive forces between the vortices.

2 2
/ Py 1z W + O + f ) + 3 (D + D) + 56 (o + s = 1)?
+ (P =5 =12 + (ol = k)?). (5.14)

In this case we may express the action in the form

036003-10



U(3) GAUGE THEORY ON FUZZY EXTRA DIMENSIONS

afz Bl 222 2 _ 2_12
/y182 +20Clol - 11 >>+18g2

(B'+ B> +2¢°(lo* + x| = 2))* + (Dmo

182

+2 Dy
3 X

where B! = f},.B* = 1, as we have noted previously.
The last two terms in (5.15) vanish as they can be expressed
as line integrals around a circle at infinity. Noting that the
fluxes of B! and B? are 2zN and 27xM, respectively, N, M
being the winding numbers of the vortex configuration,
we see that the action is bounded from below with
S >3x(N + M). This bound is saturated when the fields
satisfy the BPS equations,

D p+iDyp=0,
Dy y+iDyy =0,

B'+242(2|p|* -
B> +247(2[y|* -

P =1)=
wP=1)=

0.
0. (5.16)
These equations give a particular generalization of the BPS
equations for the Abelian Higgs model [35]. In fact, these
equation appear to be formally the same as the self-dual
instanton equations for the SU(3) Yang-Mills theory with
cylindrical symmetry studied by Bais and Weldon [32].
There is a clear distinction between the two however; the
latter are in the context of Yang-Mills theories over R* and
the cylindrically symmetric ansatz essentially dimension-
ally reduces that theory to an Abelian Higgs-type model
over H?, with the SU(3) instanton solutions being char-
acterized by a Pontryagin index, which is given as the sum
of the two winding numbers of the Abelian Higgs-type
model over H? with U(1) x U(1) gauge symmetry, while
our BPS equations are obtained for the U(1) x U(1)
Abelian Higgs-type model over R>.

VI. GENERALIZATION OF SU(2)-EQUIVARIANT
GAUGE FIELDS FOR U(n) GAUGE THEORY

Now, we briefly indicate how the results of Sec. III
generalize to U(n) gauge theories over M x S%. For this
purpose we write the symmetry generators @,,

2041)

= xP @1, - 10D @ Sk, (6.1)

where il; form the spin k irreducible representation of
SU(2) with n = 2k + 1. Thus, the SU(2) IRR content of
w, 1s

C@k=(£+k) & (£+k—1)

(6.2)

and the IRR content of the adjoint action of w, can be
found to be

(B* +2¢° (2l -

~— : 2 2 o
iD)(Dy + iDoy) + 5 (B! + B) = (9, (#D2)

PHYSICAL REVIEW D 94, 036003 (2016)

lo? = 1))?

iDyp) (D1 + iDyp)

—(Dx)). (5.15)

~0:(D19)) -5 (0, (7D2)

KD =(2k+1)0 (6k+1)1 . (63)

This decomposition means that under the adjoint action
of w,, there are (2k + 1) scalars and (6k + 1) vectors. It
indicates that with our symmetry constraints (3.6), the set
of solutions to A, should be (2k + 1) dimensional while the
set of the solutions to A, should be (6k + 1) dimensional. It
is possible to find the parametrization of A, by using the
following rotational invariants:

12041y (2k41)s X, (Z6X,)%,

(=kx,)3, (Zx, )2, (6.4)
We may recall that the adjoint representation of SU(n)
is n*> — 1 dimensional and decomposes under the SU(2)
IRRs as

n—1

n—1=@>» (2j+1).

Jj=1

(6.5)

This is a multipole expansion starting with the dipole term
and going up to the (n — 1)®-pole term. Thus, considering
that we may construct one rotational invariant per multipole
term, together with the identity we have n = 2k + 1 rota-
tional invariants as we have already inferred from (6.3). The
invariants listed in (6.4) may be expressed in terms of the
appropriate multipole tensors and can further be combined
into idempotents as given in (3.10) for the case of k = 1;
and the vectors can be obtained subsequently.

VII. EQUIVARIANT FIELD MODES OVER
OTHER VACUUM CONFIGURATIONS

It is possible to investigate the structure of equivariant
fields over other fuzzy vacuum configurations. One such
case of particular interest is the vacuum configuration

SH = S2.(£) © S2(¢) © 5% (zf%) Y <rf’—%> . (7.0)

studied in [11],* where it was also noted that the S2Mt
vacuum forms the bosonic part of the fuzzy supersphere

“Note that in this case the V,(®) term is omitted from the
action (2.1). Nevertheless, it is possible to impose it as a
constraint as discussed in [11].
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with OSP(2,2) supersymmetry [36-38]. There, the struc-
ture of this vacuum was revealed by performing the field
redefinition

O, =+, T,= —%\Iﬂiuqf, (7.2)
where
N2
v=( ) CeeMa). a=12 (73
2

is a doublet of the global SU(2) symmetry of the action
(2.1).In (7.2) and (7.3), ¢,, ¥, and I',, are all transforming
adjointly under SU(N) and 7, = 7, ® 1, with 7, being
the Pauli matrices. We note that ¢, (a = 1,2, 3) have 3N?
real degrees of freedom while W has 4N? real degrees of
freedom in total. However, what enters into the definition of
I", are the equivalence classes U ~ UV, U € SU(N), as it
can readily be observed that I', are invariant under the
left action UV of SU(N) on V. It is thus clear that
I,(a =1,2,3) have in total 4N*> — N> = 3N? degrees of
freedom as ¢,’s do and (7.2) is indeed a reparametrization
of the fields ®, [12].

Using (7.2), we see that up to gauge transformations
(2.3) the vacuum configuration is given as

b= (X @L®L) + (L ®TE® L), (74)
where T = —Zy 'z, are 4 x4 matrices and the two-

component spinor U0 = i is taken as

v= ()= ()

and where ba,bl, are two sets of fermionic annihilation-
creation operators that span the four-dimensional Hilbert
space with the basis vectors

(7.5)

|ny ng) = (B1)" (63)™210,0), oy =0,1. (7.6)
SU(2) IRR content of I'Y is
1
0p® 0, ® 3 (7.7)

where 0y, 0, stand for the two inequivalent singlets. These
two singlets are distinguished by the eigenvalues of the
number operator N = bZ,ba that take the values O and 2,
respectively. It is easy to see that the projections to the
singlet and doublet subspaces respectively may be found on
these representations as

PHYSICAL REVIEW D 94, 036003 (2016)
PO - 1 —N+2N1N2,

1
Poo :—E(N—Z)P(): ] —N+N1N2,
1 1 1
POZ—ENPOZN]Nz— 5 +§P%,

(7.8)

where N = Nl + N2,N1 = b-}l-blvN2 = b;bz
SU(2) IRR content of vacuum configuration (7.4) can be
derived from the Clebsch-Gordan decomposition as

o ().

(7.9)

1
f®<ooea02@§)zfeaf@<f+
¢ #0.

This indicates that the vacuum configuration (7.1) can be
interpreted as a direct sum of four concentric fuzzy spheres
as it has already been discussed in [11]. In that article low
energy structure of U(2) gauge theory over M x S2 was
investigated in detail. Here, our aim is to consider the U(3)
gauge theory over M x S2" and construct the SU(2)
equivariant gauge fields characterizing its low energy
behavior. In order to determine the latter, we choose the
SU(2) symmetry generators w, as

(2¢41)

w, = (X @1, @ 13) + (1o T @ 1)
— (L1 ® 1, ® i%,)
=X, +T9-i%,
=D,—iZ, 0w, €u2¢+1) @ u(4) @ u(3), (7.10)

and they satisfy (3.2). o, carries a direct sum of IRRs of
SU(2), which is given as

(core(rrr)o(r-y))e!

=2((/-1)®CD(£+1)) @2(<f+—

oo ()

Projections to the representations appearing in the rhs of
(7.11) are given in Table 1, where

i 1
0, = <Xal“a——l'[1>,
] 4

SU(2)-equivariant gauge fields can be obtained by impos-
ing the symmetry constraints in (3.6) and the additional
constraint

0} = -II,.

2

(7.12)

.
[a)w \Ij(l] = E (Ta)aﬁ\l]/f' (713)
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TABLE I. Projections to the representations appearing in the rhs of (7.11).

Projector Representation

Mo, =1yr41 @ P, ® 15 -Herd(@+1)

My, =15,11 @ P, ® 15 (- @r@d(+1)

M, =3 (iQ; +11y) C-De+h e+

M =3 (=i0; + 11 (c-D@(-ho(+)

Hy =M, +Tlp, =1pr41 @ Pp @ 15 (- @@ (Z+1))
=M+l =Lmehel 2A(2+)D(-))® (-3 ® (£ +3)

The dimensions of solution spaces for A,, A, and ¥, can be derived by the Clebsch-Gordan decomposition of the adjoint
action of w,. The relevant part of this decomposition is

2000 -1®2@(2+1)) ®2<<f+;) ® (f—;)) ® (f—i) ® (£+;>}®25220®40;@541@m.
(7.14)

This simply means that there are 22 rotational invariants and A, may be parametrized by these invariants. A suitable set may
be listed as the following projectors and idempotents (in the subspace they belong to),

HOO’ H02H+7 H—iSh iS2’ Q(l)o = HOOQI’ Q%O = HOO Q27
Q(l)2 = HOZQI’ Q(z)2 = H02Q29 Q1—9 Q%9 Q}i-’ %i-’ Q}Q——v Q3+7
Os11 = 8101, Os12 = 510», O = $01, Os2 = 5,0, O, Ox.» (7.15)
where
L= (2¢+1)(£+ DI_QII_ —ill_),
0! = iy 3y (22 + D+ DL —iT)
£(2¢ +1) (22 +1) i
= L TI_Q,I M_Q,I_ - I_,
Q- (Z+1)(2f-1) -0 '+f(2f—1)(2f+3) -l 26+ 1)2¢6-1)20+3)
. @e+1)(e+1) (2¢ +1)? 4B+ 42 - +1)
==~ 11 QI I, 0,1, —
Q4 £(2¢ +3) +& ++(2f—1)(25+3) +QIL oD +3) P
1
= (204 DILQ,II, —iIl,),
Q+ (f+1)(2f—1)( ( + ) +Q2 + l +)
Q) =T, QT — Il + 2i1,, Q2. =TIQ,I1, — il + 2L,
;0
Si=1ly ® 5 ® Ly, s,-:<0 2), i=1,2, (7.16)
0, 0,
and

1 4
Qr = -T2, —2i([,Z,)? - igné,

3
0 4(2¢+1) o 40262 +3¢) o ,(2f—1)(f+1)n ,3(2/—1)(f+1)n
= — —1 —1
B 62 1114 + 1 62+ 114 + 1 62+ 116 +1 662+ 117 + 1
AT+ 106 + 2 6
j Xy ‘i (e, X, T,X.)2,
e 11z o1 CareXalvZe H i o (CancXalh %)
£(2¢+1) (264 1)? AP+ 82+ 30 -2
/:—H H H H - )
Q (Z+1)(2¢-1) -0 _+(2f—1)(2f+3) -l Cr -2 13) T
20+ 1 260+ 1)(+ 1 , 1
Q" = ( ) I, QoIT, + ¢H+QIH+ -1 )H+- (7.17)

¢+ 1)(2¢ = 1)(2¢ +3) £(2¢ +3) 26+ 120 -1)(2¢ + 3
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Using Mathematica it is easy to verify that
(i8;)* = ~Tl,
(Q2,)°

(0,)° = -0,
(QSij)2 = —Tly,

(00,)* = -1,
07 = —IL.

_H17
2

PHYSICAL REVIEW D 94, 036003 (2016)

(04)
—I'[%,

_Hi’ (QLL—)Z = _H%’

0% Q?=-I_, Q2?=-M,. (7.18)

In Eq. (7.14), it is seen that under the adjoint action of w,, there are 54 objects that transform as vectors. Using the
rotational invariant in (7.15), we can construct these as follows:

[D.. Qp,).  05,[Du: Oy, )
(D4 Q5] 0, [Da Oy,
[D,, 0],  0OL[D,, 0],
[D,. QY.  QY[D,. 0],
Dy, Ol Ou[Dy, Qnl.
(D, QF, Or[D,. Orl,
(D4, Qs11l, 0o[Da, Os11l,
(D4, Qs12], O5[Da. Os1a)-
(D4, Qs21l, 0o[Da; Os21l,
(D4, Qs22], 05Dy, Qs2l,
(D, 0], Q%l [D,, 0],
DnQ2) 0D,
Hoowm pw,,

N w,II,w,,

{D.. 04, }-
{D,. 05, }-
{D.. 0L},
{D.. 0},
{Da. On}
{Da. OF}
{Du’ QSH}?
{Du’ QSlQ}v
{Da’ QSZ]}’
{Da’ QSZ2},
{D,.0}-}.
{Dy. 02},

Sla)a,Sz(l)a. (719)

Here Q) =11,0,, 03 = 11,0,, Q%1 =110, Q%2 = I,Q,, and no sum over repeated indices is implied. It is possible to

parametrize A, in terms of these 54 objects. For the 40 objects that transform as spinors under the adjoint action of w,, we

can, for instance, take

o, faQ—+. 04, P11, 05,81, o fa Q- 04, P11, 05,811,

06,0+ 05,0+ _p, 00, 1_p,05,, 11, 3,00, 11, 3,05,

0 _p.I,. 0% . p.I,,. 0\ _p, Q(l)zv 02, B, Q(z)z, S1BAL,, S1P I,

I_f4S,. 11, f4S5, Os11Pully, Qs Pall, Os12Pally, Os12hIL,

H_f.Q0s21. H_f,Qs2. I, f4Qs12 I, foQs22. 051180 Os126.0% .,

0 _p.0s1, 0% fuQs2- I, 4,0} I, 4, 02, Os115.0%. Os512$,07%.

04 $uQs21, 02,052, 0L BINy,, 02,11, (7.20)

Thus, we have determined all the equivariant low energy
degrees of freedom for the U(3) gauge theory over
M x S2It A few remarks are now in order. First, we
emphasize once again that, from a geometrical point of
view the vacuum S2™ may be interpreted as stacks of
concentric D2-branes with magnetic monopole fluxes and
due to this fact it is possible to think of the equivariant
gauge field modes that we have found as the modes of the
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gauge fields living on the world volume of these D-branes.
Let us also stress that the equivariant spinors given above
do not constitute independent degrees of freedom in the
U(3) effective gauge theory over M x S2". Their bilin-
ears, however, may be constructed to yield the equivariant
scalars and vectors. In other words, it is possible to use
these equivariant spinor modes to express the ‘“‘square
roots” of the equivariant gauge field modes.
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It is possible to explore the dimensional reduction of the
U(3) gauge theory over S or over its projections, such as
the monopole bundles S} = S%.(¢) @ S7(£ +4) with
winding numbers £1. In this latter case, it is easy to
observe that the reduced model yields two decoupled
Abelian Higgs-type models, each carrying U(1)®? as
found in Sec. IV and the vortex solutions determined in
Sec. V are valid within each sector. Dimensional reduction
over Sz is quite tedious calculationwise and is not
considered here.

VIII. CONCLUSIONS AND OUTLOOK

Let us briefly summarize and discuss the results of our
article, state our conclusions, and indicate some directions
that we aim to explore in the near future. As we mentioned
in the introduction, a large amount of investigations themed
on exploring several aspects of SSB and mass deformed
SU(N) N=4 SYM, as well as SU(N) YM theories
coupled to a triplet of adjoint matter fields, has recently
been accumulating mainly due to strong motivations
emanating from string theory and M-theory. An essential
common feature of the models under investigation is that
they possess a fuzzy sphere, the direct product of two fuzzy
spheres, or the direct sums of these fuzzy spaces as vacuum
configurations. Such fuzzy vacua appear via the sponta-
neous breaking of the SU(N') gauge symmetry of the
models down to a smaller gauge group, U(n) (n < N'), and
analysis of the fluctuations around these vacuum configu-
rations reveals that the latter have the structure of gauge
fields over either S% or 8% x S%. KK-type mode expansion
of the gauge fields or their equivariant parametrization
provide complementary approaches in understanding and
interpreting the emerging models after symmetry breaking
as effective gauge theories with fuzzy spaces as extra
dimensions.

In this paper, we have analyzed the low energy structure
of the U(3) gauge theory on M x S%. We have determined
the equivariant fields transforming invariantly and as
vectors under the combined adjoint action of SU(2)
rotations over the fuzzy sphere and those U(3) gauge
transformations generated by SU(2) C U(3) carrying the
spin 1 IRR of SU(2), when the SU(2) subgroup is
maximally embedded in SU(3). Our results reveal that
the dipole and quadrupole terms, which appear in the
branching of the adjoint representation of SU(3) as
8 —» 5@ 3 under SU(2) are the useful objects in con-
structing the equivariant scalars and this generalizes in
U(n) theories over M x S% to employing the n — 1 multi-
pole terms in the branching of the adjoint representation of
SU(n) under SU(2) as we have determined in Sec. VI
Results of Sec. IIl also indicate that the equivariance
conditions that we have imposed on the fields break the
U(3) gauge symmetry down U(1)x U(1)x U(1). In
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Sec. 1V, we determined the LEA emanating from the
equivariant parametrization of the fields and found that
it consists of two complex scalars, each coupling to one of
the gauge fields a},, (i = 1,2) only, and three real scalars
coupling to the complex fields and to each other through a
quartic potential. We have seen that in the £ — oo limit,
gauge field b, either decouples completely from the rest
of the LEA or it is eliminated by solving its equation of
motion in powers of ;. By determining the vacuum
structure of the effective potential for the scalars, we were
able to give two different vortex solutions for the LEA on
R2, both of which are characterized by two winding
numbers in each case. We have also made clear how the
commutative limit of our results relates to the instanton
solutions in self-dual SU(3) Yang-Mills theory for cylin-
drically symmetric gauge fields of Bais and Weldon [32]
and indicated the apparent connection between the BPS
vortices that we obtain in a certain commutative limit in
Sec. V and the instanton solution in [32]. In the penultimate
section of our article we have provided a complete analysis
of the U(3)-equivariant fields over M x S2I" and deter-
mined the equivariant field modes characterizing the low
energy behavior of the effective U(3) theory on M x S2Int
in terms of suitable idempotents and projection operators.
The reason for our interest in S2™" was explained pre-
viously; we only stress once again that S2'™ may be seen as
stacks of concentric fuzzy D-branes carrying magnetic
monopole fluxes from a stringy viewpoint, and conse-
quently equivaraint gauge field modes found in Sec. VII
may be interpreted as those living on the world volume of
these D-branes, and may potentially be useful in bridging
the effective gauge theory and the string theoretic
perspectives.

In our future work, we plan to apply the techniques used
in this article to explore the low energy structure of Z;
orbifold projected NV = 4 SYM theories in four dimensions
which are deformed by the addition of cubic SSB and mass
terms in the scalar fields [25]. These models are known to
have orbifold twisted fuzzy spheres as vacuum configura-
tions and we are initially interested in revealing the
physically interesting vacuum configurations made up of
direct sums of orbifold twisted fuzzy spheres, and sub-
sequently aim to analyze how effective gauge theories with
twisted fuzzy spheres as extra dimensions emerge by
determining the explicit parametrization of gauge fields
fulfilling certain well-motivated symmetry conditions. We
hope to report on the developments on these ideas
elsewhere.
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APPENDIX A: DETAILS OF THE DIMENSIONAL REDUCTION OVER S2
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