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The renormalizable coloron model, which has previously been shown in the literature to be consistent
with a wide array of theoretical and precision electroweak constraints, includes a pair of spinless bosons
(one scalar, one pseudoscalar). We show that either of them, or both together if they are degenerate, could
be responsible for the diphoton resonance signal for which both CMS and ATLAS have seen evidence.
Because either of these bosons would be produced and decay through loops of spectator fermions, the
absence of signals in dijet, tt̄, and electroweak boson pair channels is not a surprise.
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I. INTRODUCTION

The LHC has seen an indication of a diphoton resonance
at 750 GeV in the CMS [1–3] and ATLAS [4–6] experi-
ments. Many potential classes of new physics explanations
have been catalogued in Refs. [7,8], and a large number of
papers have suggested additional possibilities. It has turned
out to be challenging to create models that are consistent
with the properties of the resonance, do not violate
constraints established by previous experiments, and do
not include unreasonably large numbers of new particles.
This article proposes a new explanation for the resonance
that has the virtue of being part of a model that is already
established to be consistent with other existing constraints
on new electroweak physics.
A challenge in proposing new states to explain the

diphoton signal is they must be readily enough produced
to agree with the observed cross section while evading
constraints imposed by the lack of observed signals in dijet,
WW, ZZ channels at 750 GeV. Following the prescription
used in [9], for a narrow resonance R, the resonance
production cross section times diphoton branching ratio
needed to explain the signal at the 13 TeV LHC is estimated
to be1

σðpp → R → γγÞ ¼ 6.26� 3.32 fb: ð1Þ

In what follows, we will consider regions of parameter
space that produce 13 TeV signal cross sections of
between 3 and 9.4 fb−1. At the same time, exclusions
on a 750 GeV resonance R decaying to other standard
model (SM) particles are determined by using the

following set of values taken from 8 TeV LHC exper-
imental analyses [11–15]:

σðpp → R → ZγÞ < 8.2 fb;

σðpp → R → WþW−Þ < 37 fb;

σðpp → R → ZZÞ < 19 fb;

σðpp → R → ggÞ < 2200 fb;

σðpp → R → tt̄Þ < 700 fb:

We will show in this article that the observed diphoton
resonance could be dnue to scalar and pseudoscalar states
in the renormalizable coloron model [16], a model that has
been previously studied in the literature [17–19] and is
already known to be consistent with electroweak precision
constraints and theoretical constraints [20–22]. More spe-
cifically, either the scalar or the pseudoscalar state in the
model could be responsible for the diphoton signal—or the
two states could be degenerate and jointly responsible.
The model contains an extended color gauge group, and

the new scalar and pseudoscalar arise as part of the sector
that spontaneously breaks the extended group down to
standard QCD. In consequence, the new scalars do not
couple directly to quarks, and their mixing with the Higgs
(which could induce a small indirect coupling to quarks)
must be nearly zero to comport with precision electroweak
data. Rather, the new scalars couple to spectator quarks that
help cancel gauge anomalies in the theory. Gluon pairs
coupled to loops of these spectators allow for s-channel
production of the scalars at LHC; photon pairs likewise
coupled to spectator loops allow for decay. Because
production and decay are all occurring through loop-level
processes, the dijet, WW, ZZ, and Zγ rates can be small
enough to be consistent with the LHC constraints.
One last key element arises because the extended color

sector yields an octet of massive coloron bosons that would
be visible at LHC. The most recent limits on colorons have
been set by CMS, which finds that the coloron mass must
exceed 5.1 TeV [23–25]. Because the scalars are part of the
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1A more recent estimate, including initial data from the 13 TeV

run, yields a somewhat lower value for the estimated cross
section, with a central value of 4.8–5.5 fb−1 [10]. These revised
cross section estimates are within the range considered here.
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color symmetry-breaking sector, their vacuum expectation
value (vs) is linked to the mass of the coloron [20]; hence,
the new limit on the coloron mass means that vs must be at
least 1.7 TeV.2

Putting all of this information together, we find that the
renormalizable coloron model is consistent with all of the
data if one adds a few weak-singlet spectators to comple-
ment the weak-doublet spectators in the original model.
The presence of the additional spectators enables the new
scalar and/or pseudoscalar to be visible as a diphoton
resonance without producing dijet, WW, or ZZ events that
would contravene the LHC bounds. Moreover, the addition
of weak-singlet scalars leaves the model still in agreement
with precision electroweak constraints and has only a small
impact on the details of how the other theoretical con-
straints (e.g., triviality) are satisfied.3

In the rest of this article, we lay out the details of how the
diphoton resonance appears in the renormalizable coloron
model, what model components are necessary to ensure
compliance with all phenomenological constraints, and
what open questions should be studied if the resonance
is confirmed by additional LHC data. In Sec. II, we briefly
review the elements of the renormalizable coloron model.
Section III presents our calculations related to the diphoton
signal observed at LHC. Section IV presents a discussion
and summarizes our conclusions.

II. ELEMENTS OF THE MODEL

A. Bosonic sector

The renormalizable coloron model is based on an
extended SUð3Þ1c × SUð3Þ2c gauge symmetry, where color
SUð3ÞC is identified with the diagonal subgroup of the
larger group. The extended group is broken down via the
expectation value of a ð3; 3̄Þ scalar, Φ, which may be
decomposed into gauge eigenstates of QCD as follows:

Φ ¼ 1ffiffiffi
6

p ðvs þ s0 þ iAÞI3×3 þ ðGa
H þ iGa

GÞta

ðta ≡ λa=2Þ: ð2Þ

Here the ta are the generators of SUð3Þ, vs is the magnitude
of the vacuum expectation value breaking the extended
color symmetry, s0 and A are singlet scalar and pseudo-
scalar fields, and Ga

H and Ga
G are color-octet scalar and

pseudoscalar fields. The Ga
G fields are absorbed by the

massive color octet vector fields, the colorons, after
symmetry breaking; the Ga

H remain as physical states of
the theory, and their phenomenology has been studied in
[16,18]. The s0 (after mixing with the Higgs field, as
described below) and the A fields are candidate states for a
diphoton resonance at 750 GeV.
The model also includes a color-singlet weak-doublet

Higgs field (ϕ), whose neutral component develops a
vacuum expectation value vh=

ffiffiffi
2

p
(with vh ≈ 246 GeV)

and is responsible for electroweak symmetry breaking. The
scalar component of the Higgs field that remains in the
spectrum after electroweak symmetry breaking (h0) mixes
with the s0 scalar via a mixing angle χ to form mass
eigenstate scalars

s ¼ sin χh0 þ cos χs0; ð3Þ

h ¼ cos χh0 − sin χs0: ð4Þ

An analysis of the model’s full scalar potential phenom-
enology is given in [20–22]; one key result is that the value
of sin χ is constrained to be very small (≲0.1).
The coloron mass in this model is given by

M2
C ¼ v2s

6
ðg2s1 þ g2s2Þ; ð5Þ

where gs1;2 are the coupling constants of the two SUð3Þ
gauge groups. The couplings gs1;2 cannot be too large if the
theory is to remain perturbative. Following [27], therefore,
we require that the large-Nc corrected loop-counting factor
be less than one,

Ncg2s1;2
16π2

≤ 1: ð6Þ

Using Eq. (5) for Nc ¼ 3, we then find immediately that

MC ≲ 3.0 · vs; ð7Þ

and hence, from the experimental lower bound of 5.1 TeV
on the coloron mass reported by CMS [23], we deduce that
vs ≳ 1.7 TeV. This will have a significant impact on the
model’s phenomenology. For the purposes of illustration, in
the rest of the paper we choose vs ¼ 2 TeV. As wewill see,
one could always choose larger values of vs as well.

4

2As explained below, in what follows we will use vs ¼ 2 TeV
for illustration. Larger values are also allowed, though the
fermion content of the theory must be adjusted accordingly to
accommodate the observed diphoton signal.

3A previous paper in the literature [26] suggested coloron
decay to diphotonþ jet might be the source of the LHC diphoton
signal. That work did not include any contribution from scalar or
pseudoscalar states which are the focus of the present work.
Moreover it assumed a coloron mass of 2 TeV, which is now well
below the LHC’s exclusion limit of 5.1 TeV.

4Values of vs smaller than 2 TeV will result, via Eq. (5) and the
experimental lower bound of 5.1 TeV on the coloron mass, in
large values of gs1;2 which can result in the scalar sector’s having
a Landau pole at very low energy scales. See discussion in
Appendix C.

CHIVUKULA, FARZINNIA, MOHAN, and SIMMONS PHYSICAL REVIEW D 94, 035018 (2016)

035018-2



B. Fermion sector

As described in [22], it is possible for the various
chiralities and flavors of the standard quarks to be assigned
charges under SUð3Þ1c × SUð3Þ2c in a range of ways,
allowing for flavor-dependent and potentially chiral cou-
plings to the colorons [17,28–30]. The model can also
contain fermions beyond those identified with ordinary
quarks. In particular, if the strong couplings of the ordinary
fermions are taken to be chiral, additional spectator
fermions will be required to cancel SUð3Þ1c × SUð3Þ2c
anomalies. While arbitrary generation-changing flavor-
dependent coloron couplings are strongly constrained by
limits on flavor-changing neutral currents [31], next-to-
minimal flavor violation can successfully be implemented
in a renormalizable coloron model so as to reproduce the
observed fermion masses and mixings [31]. In what
follows, therefore, we will assume that any flavor-
dependent couplings are (at least to a good approximation)
generation preserving, and that the subsequent coloron
couplings are therefore flavor diagonal. Furthermore, for
simplicity of presentation, we will assume that both right-
handed quarks of a given generation (e.g., tR and bR) have
the same color properties. This last assumption can easily
be relaxed in the analysis below, but unnecessarily com-
plicates the discussion of the phenomenology at hand.
Even with the constraints described above, there are still

several possibilities for assigning the color charges of the
ordinary quarks. For instance, if all three generations of the
ordinary quarks are chirally charged under the extended
color gauge group [e.g., with all left-handed quarks charged
under SUð3Þ1c and all right-handed quarks charged under
SUð3Þ2c], then three corresponding spectator fermion
generations (carrying opposite chiral charges with respect
to the quarks) are required to cancel the induced anomalies.
On the other hand, if the chiral charge assignment of the
third quark generation is opposite to those of the first two
generations, only one additional spectator fermion gener-
ation (one uplike and one downlike spectator) is necessary.
When all ordinary quarks are vectorially charged under the
extended color interactions, no anomalies are induced and
no spectator fermions are needed. In the simplest cases we
would generally expect there to be between zero and
three chiral doublets of spectator fermions to cancel the
anomalies of the extended color group.
In what follows we will consider a slight generalization

of these possibilities. We will consider spectators charged
as follows under SUð3Þ1c × SUð3Þ2c × SUð2ÞL ×Uð1ÞY :

(i) NQ weak doublets QL;R, with the QL transforming
as a ð3; 1; 2Þ1=6 and the QR as a ð1; 3; 2Þ1=6.

(ii) nq weak singlet pairs, qL;R, with the qR trans-
forming as ð3; 1; 1Þ2=3;−1=3 and qL transforming
as ð1; 3; 1Þ2=3;−1=3.

With these assignments, the effective or net number of
spectator doublets whose chiral charges under SUð3Þ1c ×
SUð3Þ2c help cancel the SUð3Þ anomalies of the ordinary

generations is NQ − nq. We therefore expect 0 ≤ NQ −
nq ≤ 3. Moreover, the following Yukawa couplings give
masses proportional to vs to the spectator fermions:

−
ffiffiffi
6

p
MQ

vs
Q̄k

LΦQ
k
R −

ffiffiffi
6

p
Mq

vs
q̄lLΦ

†qlR þ H:c:; ð8Þ

where k and l index the NQ and nq families of spectators
and, for convenience, we have taken each kind of spectator
to be mass degenerate.5

III. THE DIPHOTON SIGNAL AT LHC

We will now demonstrate that the scalar s or pseudo-
scalar A boson of the renormalizable coloron model could
give rise to a 750 GeV diphoton resonance consistent with
the signal reported from early high-energy LHC data [1,4].
Following the procedure in [20,21], we construct an
effective Lagrangian coupling the scalar and pseudoscalar
bosons to the gauge bosons (having integrated out the
heavy color degrees of freedom) and the ordinary fermions.
We then use this effective Lagrangian to compute the
relevant production cross sections and branching ratios. We
outline the relevant computations in Appendixes A and B;
details may be found in [20,21].
In the renormalizable coloron model, the width of the

750 GeV resonance, be it scalar or pseudoscalar, must be
small.6 Hence it is possible to evaluate the total production
cross section in the narrow width approximation,

σs;Aðgg → s;A → γγÞ ¼ 16π2 ·N ·
Γs;A

ms
· BRðs;A → γγÞ

· BRðs;A → ggÞ ·
�
dLgg

dŝ

�
ŝ¼m2

s

:

ð9Þ

Here N is a ratio of spin and color counting factors which,
for a color-singlet scalar produced via gluon fusion is

N ¼ NSs

NSgNSg

·
Cs

CgCg
¼ 1

4
·
1

64
; ð10Þ

where Ni and Ci, respectively, count the number of spin
and color states for the initial-state partons (denominator)
and the resonance (numerator).

5We have also neglected additional Yukawa couplings of the
form Q̄k

Lϕq
l
R þ H:c:, where ϕ is the Higgs field, which lead to

weak-scale mixing among the various spectator fermions. Since
we know that vs ≫ vh, these couplings lead to small effects
which are irrelevant to the analysis given below.

6For the scalar, we expect sin χ ∼ 0 in order to be consistent
with phenomenological constraints [20–22] so that both scalar
and pseudoscalar decays are dominated by loop induced proc-
esses and the total width must therefore be small.
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Within the cross-section formula, Lgg is the gluon lumi-
nosity function, whichwe evaluate using the CTEQ6L1 parton
distribution function [32] at both 8 and 13 TeV. In order to
better match our theory predictions to the experimental
results, we determine the next-to-next-to-leading order
(NNLO)K-factor using the SuSHi program [33] in the infinite
quark mass limit. We use the CT14NNLO parton distribution
function set [34] and set the renormalization and factoriza-
tion scales to be μR ¼ μF ¼ 750 GeV.We find theK-factor
to be K13 TeV

NNLO=LO ∼ 2.9 and K8 TeV
NNLO=LO ∼ 3.2, and we apply

this to our tree-level cross-section results to make the
comparison with data more meaningful.
For both the s andA states in the renormalizable coloron

model (when sin χ ≈ 0), the branching ratio to gg dominates
so long as all of the other scalars, colorons, and spectator
fermions are heavy. In fact, BRðs;A → ggÞ ≈ 1 so that the
expression for the cross section in Eq. (9) is proportional to
Γs;A · BRðs;A → γγÞ ≈ Γðs;A → γγÞ. Furthermore, as
shown inAppendixesA andB, the partialwidth to diphotons
is dominated by the contribution from loops of the spectator
quarks Q and q. The resonant diphoton production rate is,
therefore, proportional to the square of the total number of
spectator fermions ðNQ þ nqÞ2 and inversely proportional to
v2s . Thus, as we illustrate below, for a given value of vs some
minimum number of spectatorsNQ þ nq will be required to
make the predicted signal match the data.7

In Fig. 1 we illustrate the region of parameter space in the
renormalizable coloron model that can accommodate the
observed diphoton signal if this signal arises solely from
the scalar s boson. These plots are for the parameter
values MQ;q ≫ 750 GeV, mA ¼ mGH

¼ 1 TeV, and vs ¼
2 TeV—though their appearance depends only weakly on
MQ;q, mA, and mGH

so long as these particles are heavy
enough to prevent s from decaying to pairs of them. For
vs ¼ 2 TeV and sin χ ¼ 0, the decay width to diphotons is
sufficiently large to reproduce the resonance diphoton cross
section of Eq. (1) provided that the spectators are suffi-
ciently numerous ð9≲ NQ þ nq ≲ 14Þ; the corresponding
region is indicated in the left plot by the green (diagonally
hatched) region. For larger values of vs, the required value

FIG. 1. The heavy black rim (left panel) encloses the region of the NQ vs nq plane for which the renormalizable coloron model’s scalar
boson s is consistent with the 750 GeV diphoton signal and other constraints. The region shown in green (diagonally hatched) matches
the 1-σ resonance diphoton cross section of Eq. (1). Also shown are the regions excluded by s → WW searches depicted with
crosshatching [12], by s → ZZ searches depicted in blue (dark gray) [13] and by dijet searches depicted in red (lighter gray) [14]. The
regions with translucent gray overlays correspond to values of ðNQ; nqÞ that are not theoretically preferred (see text for details). Left: Plot
in the ðNQ; nqÞ plane for the values sin χ ¼ 0, mA ¼ mGH

¼ 1 TeV, and vs ¼ 2 TeV. Depending on the spectator fermions included,
this region is sensitive to the RGE constraints discussed in Appendix C. Right: Plot in the ðsin χ; vsÞ plane for parameter values
mA ¼ mGH

¼ 1 TeV, and ðNQ; nqÞ ¼ ð6; 5Þ.

FIG. 2. Scalar boson (s) decay width and branching ratios as a
function of sin χ, for the parameter values mA ¼ mGH

¼ 1 TeV
and ðNQ; nqÞ ¼ ð6; 5Þ.

7The corresponding decay to WW and ZZ arise through a
similar loop process, but in this case only the weak-doublet
spectator fermions contribute significantly—and hence this am-
plitude (exactly for WW, and only approximately for ZZ) is
proportional to NQ.
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of NQ þ nq rises proportionally. As noted in Appendix C,
the upper third of the allowed area may be excluded by the
need to avoid a Landau pole in the renormalization group
equation (RGE) running of the weak SUð2Þ gauge
coupling.
Also plotted are the constraints arising from the non-

observation of a WW [12], ZZ [13], and dijet resonance
[14] of the same mass. Evidently, the most difficult
constraint to satisfy in this model when sin χ ¼ 0 is simply
of having a sufficiently large diphoton signal. If one
increased the value of vs and increased NQ þ nq propor-
tionally so as to keep the signal strength in the diphoton
channel constant, the minimum number of spectator quarks
required to violate the dijet [Eq. (A13)] or diboson [e.g.,
Eq. (A21)] bounds would also rise, leaving the model
consistent with the data.
If the Higgs mixing angle sin χ is not zero, two separate

effects start to suppress the branching ratio to diphotons,
making it difficult to sustain a large enough signal. First,
the decays to WW and ZZ become significant and start to
cut into the available parameter space. Second, there is a
destructive interference in the diphoton loop amplitude
between the contributions of spectator fermions and W
bosons running in the loop; Fig. 2 illustrates that as sin χ
grows, the WW and ZZ widths grow while the diphoton
width falls. The right-hand panel of Fig. 1 demonstrates
that, to be consistent with the putative signal, the s0 − h0
mixing must therefore be very small, with j sin χj≲ 0.01.
Note that, as for any model in which a scalar’s gaining a
vacuum expectation value is the origin of the diphoton
signal, a small mixing angle is not the natural consequence
of any symmetry, and it only occurs for a narrow range of
parameters in the scalar potential.
The left-hand panel of Fig. 3 shows the region of

parameter space in the renormalizable coloron model that
can accommodate the dipoton signal via a 750 GeV

pseudoscalar A boson. Here there is no sin χ dependence,
and we find that the diphoton signal can be accommodated
with fewer spectator fermions, 5≲ NQ þ nq ≲ 8 for
vs ¼ 2 TeV.8 As with the scalar, if vs is increased, the
total number of spectator fermions must be increased
proportionally, but the constraints from nonobservation
of dijet and diboson decays do not become harder to
satisfy. As noted in Appendix C, the extent of the allowed
region should be unaffected by the need to avoid a Landau
pole in the RGE running of the gauge couplings.
Finally, in the right-hand panel of Fig. 3 we consider the

case in which the scalar and pseudoscalar are roughly
degenerate (to within experimental resolution),9 and both
have masses of 750 GeV. Here we see that 4≲NQþnq≲7
can accommodate the signal when vs ∼ 2 TeV. For larger
values of vs, proportionally larger values ofNQ þ nq would
be able to explain the diphoton signal without generating
dijet or diphoton rates in excess of the bounds. Here too, as
shown in Appendix C, the extent of the allowed region
should be unaffected by the need to avoid a Landau pole in
the RGE running of the gauge couplings.
In the quasidegenerate case, it is interesting to note that

the pseudoscalar contribution to the diphoton rate is
predicted to be larger than that of the scalar contribution
to the signal. In fact, one could determine the relative sizes
of the scalar and pseudoscalar components of the signal

FIG. 3. The heavy black rim encloses the region of the NQ vs nq plane for which the renormalizable coloron model’s pseudoscalar
boson A alone (left panel) or a degenerate s, A pair (right panel) is consistent with the 750 GeV diphoton signal and other constraints.
Details are as in the caption for the left-hand panel of Fig. 1 (except that sin χ is irrelevant for the A boson). The allowed region in each
panel is unaffected by the RGE constraints in Appendix C.

8This is due to the fact that the coloron and other scalars, which
dominate the s → gg decay, do not contribute to A → gg decays.
In the case of the scalar, there is destructive interference between
the bosonic contributions and the spectator fermion loops, so
NQ þ nq is pushed toward larger values where the fermionic
contribution dominates.

9There is no symmetry that would enforce strict degeneracy
between the scalar and pseudoscalar resonances in this model.
For other examples of models of the diphoton signal involving
degenerate resonances see [35–37].
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through angular observables (e.g., in A; s → ZZ → 4l
decays) as a test of whether degenerate A and s were
contributing (in a manner analogous to the spin-parity
measurement of the Higgs boson [38,39]). In Fig. 4 we
show the ratio

Rs=A ¼ σðpp → s → ZZÞ
σðpp → A → ZZÞ ; ð11Þ

as a function of NQ for the three possible physical cases:
nq ¼ NQ, nq ¼ NQ − 1, and nq ¼ NQ − 3. Note that this
ratio is independent of the value of vs. The dip observed in
the ratio for NQ ∼ 4; 5 is due to a cancellation between the
fermion and boson (coloron and other scalar) loops that
causes the s → gg branching fraction (and hence the overall
scalar production cross section) to vanish. Experimental
determination of this ratio could help determine the value of
NQ and nq.

10

IV. DISCUSSION

We have shown that the scalar sector of the renormaliz-
able coloron model can be the source of the 750 GeV
resonance for which evidence has been observed at the
LHC. Either the scalar state s, the pseudoscalar state A, or
both (if degenerate) could play the role of the new diphoton

resonance, while remaining consistent with precision
electroweak physics and constraints from triviality and
unitarity.
If the 750 GeV resonance is verified by further analysis

and accumulation of more statistics, there are clear avenues
for verifying that the renormalizable coloron model is the
underlying new physics involved. The most straightforward
would be to look for direct evidence of the coloron
resonance in dijet invariant mass or dijet angular distribu-
tions; indeed, the LHC experiments routinely look for signs
of high-mass dijet resonances in each newly collected data
set (e.g., [23]). Alternatively, one could seek evidence
within the LHC data for a second new spinless state
(s or A) at a different mass or look for signs of the colored
scalars Ga

H as suggested in [16,18]. In addition, one could
study other decay modes of the 750 GeV resonance to
predict the expected number of spectator quarks or to
differentiate among the scalar, pseudoscalar, and degener-
ate cases discussed here. In the longer term, aspects of the
model that would warrant further study would include the
detailed impact of the weak-singlet spectator quarks upon
the theoretical constraints on the model and the precise
flavor structure of the quark sector in the presence of the
various spectators.
We look forward to seeing what the next run reveals.
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APPENDIX A: COUPLINGS AND DECAYS
OF THE SCALAR

In this appendix and the one that follows, we outline the
couplings and decay widths of the s and A bosons in the
renormalizable coloron model. We assume either the s or
the A has a mass of 750 GeV, so that it can be associated
with the diphoton resonance for which evidence has been
found at the LHC. We also assume that the 750 GeV boson
is the lightest new state in the spectrum, so it is kinemat-
ically forbidden to decay to non-SM particles (colorons,
extra scalars, or spectator fermions). The lightest boson,
then, can decay to pairs of ordinary gauge bosons or
standard model quarks. We summarize the couplings of the
s and A to these SM particles in terms of an effective
Lagrangian obtained by integrating out the heavy particles.
For spectator quarks, we will use the heavy quark mass
limit and neglect mass effects in the calculation of the decay
widths of s and A.
We will find that the branching ratios of the scalar

particle depend sensitively on the value of sin χ, as shown
in Fig. 2. As noted in the text, the diphoton branching ratio

FIG. 4. Ratio of the scalar to the pseudoscalar component of the
diphoton signal as a function of NQ, for quasidegenerate
mA ¼ ms ¼ 750 GeV. All three possible physical cases are
shown nq ¼ NQ (blue circles), nq ¼ NQ − 1 (red squares), and
nq ¼ NQ − 3 (black triangles).

10We have neglected interference effects between s and A
since the decay widths of both particles are very small and since,
due to the CP symmetry of the total cross section, there is no
contribution to the total cross section from the CP-odd interfer-
ence term.
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falls precipitously as sin χ grows from zero—both because
the branching ratio toWW and ZZ grows, as well as due to
destructive interference between fermion and W-boson
loops in the diphoton decay amplitude.

1. Couplings of the scalar s

The effective Lagrangian parametrizing decays of the
scalar s is given below:

Ls
eff ¼ csW1

2m2
W

vh
sWþ

μ W−μ þ csZ1
2m2

Z

vh
sZμZμ − csqSM

mqSM

vh
sqSMq̄SM − csl

ml

vh
sll̄

þ csg
αs

12πvh
sGa

μνGaμν þ csγ
α

6πvh
sAa

μνAaμν þ csZ2
α

6πvh
sZμνZμν þ csW2

α

6πvh
sWþ

μνW−μν

þ csAZ
α

6πvh
sAμνZμν þ cshshhþ csAsAAþ csGH

sGa
HG

a
H: ðA1Þ

HereW�
μ , Zμ, Ga

μ, and Aμ correspond to theW, Z, gluon, and photon fields, respectively, whereasW�μν, Zμν, Gaμν, and Aμν

correspond to their field strength tensors. The qSM ¼ ft; b; c; sg and the l ¼ fτ; μg are the SM quark and lepton fields,
respectively.11

Since the s0 state does not couple to SM fermions, the rate at which the scalar mass eigenstate s decays to SM quarks and
leptons is determined by the mixing angle (sin χ) between the Higgs (h0) and scalar (s0) gauge eigenstates. The same is also
true for tree level decays of s to a pair of massive electroweak bosons,

csW1 ¼ csZ1 ¼ csqSM ¼ csl ¼ sin χ: ðA2Þ
On the other hand, loop-induced decays of s to gauge bosons receive contributions from both non-SM and SM particles.

The magnitude of each of these contributions, again, depends on the mixing between h0 and s0 as parametrized by sin χ.
For the coupling of gluons to s we have the following

expressions [20]:

csg ¼ sin χĉSMg þ cos χĉsg;

ĉSMg ≡ 3

4
ðAfðτst Þ þ AfðτsbÞÞ≃ 0.4þ 1.1i;

ĉsg ≡ 3
vh
vs

�
3

4
AVðτsCÞ − 6

�
1þm2

s − 2
3
m2

A

2m2
GH

�
ASðτsGH

Þ þ ðNQ þ nqÞ
2

AfðτsQÞ
�
;

≃ 3
vh
vs

�
−
21

4
þ 1

4

�
1þm2

s − 2
3
m2

A

2m2
GH

�
þ 2ðNQ þ nqÞ

3

�
; ðA3Þ

assuming that all spectator quarks (Q and q) are degen-

erate.12 Here τsi ¼ m2
s

4m2
i
. The Af, AV , and AS correspond to

the fermionic, spin-1, and scalar loop form factors given
below [20,40]:

AfðτÞ ¼
2

τ2
ðτ þ ðτ − 1ÞfðτÞÞ;

ASðτÞ ¼
τ − fðτÞ
8τ2

;

AVðτÞ ¼ −
1

τ2
ð2τ2 þ 3τ þ 3ð2τ − 1ÞfðτÞÞ; ðA4Þ

with τi ≡ m2
h

4m2
i
and

fðτÞ≡
(
arcsin2

ffiffiffi
τ

p
for τ ≤ 1

− 1
4

h
log 1þ

ffiffiffiffiffiffiffiffiffi
1−τ−1

p

1−
ffiffiffiffiffiffiffiffiffi
1−τ−1

p − iπ
i
2

for τ > 1
: ðA5Þ

The asymptotic limits of the loop functions

lim
τ→0

AfðτÞ ¼
4

3
; lim

τ→0
AVðτÞ ¼ −7;

lim
τ→0

ASðτÞ ¼ −
1

24
; ðA6Þ

were used to determine the approximate expression in the
last line of Eq. (A3).

11We ignore contributions from the very light first-generation
fermions u, d, and e.

12This need not be the case, and the formulas may easily be
generalized to take this into account; in practice, however, if all
spectators are much heavier than 750 GeV, all spectators
contribute approximately equally.
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Similarly, the coupling of photons to s is given by

csγ ¼ sin χĉSMγ þ cos χĉsγ;

ĉSMγ ≡ 3

4

�
AVðτsWÞ þ

4

3
Afðτst Þ þ

1

3
AfðτsbÞ

�
≃ −0.5þ 0.07i;

ĉsγ ≡ 3

4

vh
vs

�
5ðNQ þ nqÞ

3
AfðτsQÞ

�

≃ vh
vs

5ðNQ þ nqÞ
3

; ðA7Þ

where, for simplicity, we have assumed that all spectator
quarks are degenerate. Note that, as described in the text,
the contributions from gauge bosons (proportional to sin χ)
and those from spectator fermions (proportional to cos χ)
interfere destructively.
The coupling of s to a photon plus a Z boson is

csAZ ≡ sin χĉSMAZ þ cos χĉsAZ;

ĉSMAZ ≃ 0.06þ 1.5i;

ĉsAZ ≡ vh
vs

·
nqðQuZu þQdZdÞ þ NQðQUZU þQDZDÞ

cWsW
:

ðA8Þ

Here Qi correspond to charges of spectators quarks,
whereas Zi ¼ I3i −Qis2W .
Finally, the loop-induced couplings of s toW and Z field

strengths are

csW2 ≡ vh
vs

NQNc

s2W
; ðA9Þ

csZ2 ≡ vh
vs

·
nqðZ2

u þ Z2
dÞ þ NQðZ2

U þ Z2
DÞ

c2Ws
2
W

: ðA10Þ

2. Decays of the scalar s

Now we will display the expressions for the decay
widths of the scalar mass eigenstate s.

a. Decays to fermions: s → f f̄

The decay width to SM fermions is given by

Γðs → ff̄Þ ¼ sin2χ
Nc

8v2hπ
msm2

fβ
3
f: ðA11Þ

Here βf ¼ ð1 − 4m2
f=m

2
sÞ1=2.

b. Decay to a pair of photons: s → γγ

The decay width to photons proceeds via loops of
spectator quarks, SM quarks, and W bosons, yielding

Γðs→ γγÞ¼ α2m3
s

256π3v2h

����cosχðnqþNQÞ
vh
vs

Nc ·
5

9
·
4

3

þ sinχ
X

f¼b;t
NcQ2

fAfðτsfÞþ sinχAVðτsWÞ
����2;

ðA12Þ

using the form factors defined above in Eq. (A4) and the
τ → 0 limit of AfðτÞ for the heavy spectator fermion
contribution. Note that for sin χ ¼ 0, the diphoton ampli-
tude is proportional to ðNQ þ nqÞ=vs, as discussed in
the text.

c. Decays to a pair of gluons: s → gg

Loop-induced decays of s to a pair of gluons proceed
through spectator quarks, colorons, color octet scalars, and
SM quarks, yielding

Γðs → ggÞ ¼ α2sm3
s

72π3v2h

���� sin χX
f¼b;t

3

4
AfðτsfÞ

þ 2 cos χ
vh
vs

ðnq þ NQÞ þ
9

4
cos χ

vh
vs

AVðτsCÞ

− 18 cos χ
vh
vs

�
1þm2

s − 2
3
m2

A

2m2
GH

�
ASðτsGH

Þ
����2:

ðA13Þ

Since the form factors converge quickly, we use the heavy
mass limit given in Eq. (A6).

d. Decay to a photon plus a Z-boson: s → Zγ

Similarly, loop-induced decays yield the Zγ partial width

Γðs → ZγÞ ¼ G2
μm2

Wαm
3
s

64π4

�
1 −

m2
Z

m2
s

�
3

×

����X
f¼b;t

sin χQfNc
2If3 − 4s2WQf

cW
Afðτ̄f; λ̄fÞ

þ sin χAWðτ̄W; λ̄WÞ

þ cos χ
2

9cW
ðNQð9 − 10s2WÞ − 10nqs2WÞ

����2:
ðA14Þ

The loop functions appearing in this expression are [40]

Afðτ̄f; λ̄fÞ ¼ I1ðτ̄f; λ̄fÞ− I2ðτ̄; λ̄Þ;

AWðτ̄W; λ̄WÞ ¼ cW

��
1þ 2

τ̄W

�
s2W
c2W

−
�
5þ 2

τ̄W

��
I1ðτ̄W; λ̄WÞ

þ 4cW

�
3−

s2W
c2W

�
I2ðτ̄W; λ̄WÞ; ðA15Þ
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with

I1ðτ̄; λ̄Þ≡ τ̄ λ̄

2ðτ̄ − λ̄Þ þ
τ̄2λ̄

2ðτ̄ − λ̄Þ2
× ðλ̄½fðτ̄Þ − fðλ̄Þ� þ 2½gðτ̄Þ − gðλ̄Þ�Þ;

I2ðτ̄; λ̄Þ≡ −
τ̄ λ̄

2ðτ̄ − λ̄Þ ½fðτ̄Þ − fðλ̄Þ�: ðA16Þ

Note that λ̄≡ 4m2=m2
Z and τ̄≡ 4m2=m2

h, and the functions
f and g are defined by

fðτ̄Þ≡
8<
:

arcsin2
ffiffiffiffiffiffiffi
1=τ̄

p
τ̄ ≥ 1

− 1
4

h
log 1þ ffiffiffiffiffiffi

1−τ̄
p

1−
ffiffiffiffiffiffi
1−τ̄

p − iπ
i
2

τ̄ < 1
; ðA17Þ

gðτ̄Þ≡
8<
:

ffiffiffiffiffiffiffiffiffiffi
τ̄ − 1

p
arcsin

ffiffiffiffiffiffiffi
1=τ̄

p
τ̄ ≥ 1

1
2

ffiffiffiffiffiffiffiffiffiffi
1 − τ̄

p h
log 1þ ffiffiffiffiffiffi

1−τ̄
p

1−
ffiffiffiffiffiffi
1−τ̄

p − iπ
i

τ̄ < 1
: ðA18Þ

For the term involving spectator quarks (and proportional
to cos χ) we have used the asymptotic limit

lim
τ̄;λ̄→∞

Afðτ̄; λ̄Þ ¼
1

3
: ðA19Þ

e. Decay to a pair of massive gauge bosons: s → VV

The decays of s to pairs of massive electroweak bosons
can proceed both at tree level, largely due to longitudinally
polarized particles (for sin χ ≠ 0), or through loop-level
processes mainly due to transversely polarized particles.
The total decay width to ZZ is

Γðs → ZZÞ ¼ sin2χ
m3

s

32v2hπ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x

p
ð1 − 4xþ 12x2Þ

þ cos2χ
m3

sα
2

144c4Ws
4
Wπ

3v2s
N2

cðNQðZ2
D þ Z2

UÞ þ nqðZ2
d þ Z2

uÞÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x

p
ð1 − 4xþ 6x2Þ

þ sin χ cos χ
vh
vs

Ncmsα
2

8πc4Ws
4
W
ðNQðZ2

D þ Z2
UÞ þ nqðZ2

d þ Z2
uÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x

p
ð1 − 2xÞ; ðA20Þ

where x ¼ m2
Z=m

2
s and Zi ¼ I3i −Qis2W .

Similarly, the partial width to WW is given by

Γðs → WþW−Þ ¼ sin2χ
2m3

s

32v2hπ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x

p
ð1 − 4xþ 12x2Þ

þ cos2χ
m3

sα
2

288s4Wπ
3v2s

N2
cN2

Q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x

p
ð1 − 4xþ 6x2Þ

þ sin χ cos χ
vh
vs

NcmsNQα
2

8πs4W

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x

p
ð1 − 2xÞ; ðA21Þ

where x ¼ m2
W=m

2
s .

f. Decays s → hh

Finally, the scalar coupling coefficients derived in [20] yield

csh ¼ −
sin χ cos χ
2vhvs

�
vh

�
m2

A

3
þ 2m2

h þm2
s

�
sin χ þ vsð2m2

h þm2
sÞ cos χ

�
;

csA ¼ −
m2

A þm2
s

2vs
cos χ;

csGH
¼ −

m2
s þ 2m2

GH
− 2

3
m2

A

2vs
cos χ: ðA22Þ

The associated decay widths for i ¼ h;A; Ga
H are

Γðs → iiÞ ¼ ðcsi Þ2
8πms

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
i

m2
s

s
; ðA23Þ
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with csi ¼ csh, c
s
A, c

s
GH

, respectively. For the range of parameters examined here, only the hh amplitude is relevant to our
analyses.

APPENDIX B: COUPLINGS AND DECAYS OF PSEUDOSCALAR A

The effect of integrating out a heavy fermion loop upon pseudoscalar decays can be estimated by adding a
contribution related to the Adler-Bell-Jackiw anomaly [41,42]. The effective Lagrangian parametrizing decays of the
pseudoscalar is shown below:

LA
eff ¼

ðNQ þ nqÞαs
4πvs

AGa
μνGaμν þ ½nqðQ2

u þQ2
dÞ þ NQðQ2

U þQ2
DÞ�

Ncα

4πvs
AAa

μν
~Aaμν

þ ½nqðZ2
u þ Z2

dÞ þ NQðZ2
U þ Z2

DÞ�
Ncα

4πs2Wc
2
Wvs

AZμν
~Zμν

þ ½nqðQuZu þQdZdÞ þ NQðQUZU þQDZDÞ�
Ncα

4πsWcWvs
AZμν

~Aμν

þ NQNcα

4πs2Wvs
AWþ

μν
~W−μν: ðB1Þ

Here the Qi correspond to electric charges of spectators quarks, while the Zi ¼ I3i −Qis2W are the couplings to the
Z-boson.
Using the effective Lagrangian, we then find the decay widths

ΓðA → γγÞ ¼ ½nqðQ2
u þQ2

dÞ þ NQðQ2
D þQ2

UÞ�2
m3

AN
2
cα

2

64π3v2s
; ðB2Þ

ΓðA → ggÞ ¼ ½2ðnq þ NQÞ�2
m3

Aα
2
s

32π3v2s
; ðB3Þ

ΓðA → ZγÞ ¼ ½nqðQuZu þQdZdÞ þ NQðQDZD þQUZUÞ�2
�
1 −

m2
Z

m2
A

�3
2 m3

AN
2
cα

2

128s2Wc
2
Wπ

3v2s
; ðB4Þ

ΓðA → ZZÞ ¼ ½nqðZ2
u þ Z2

dÞ þ NQðZ2
D þ Z2

UÞ�2
�
1 − 4

m2
Z

m2
A

�3
2 m3

AN
2
cα

2

64s4Wc
4
Wπ

3v2s
; ðB5Þ

ΓðA → WWÞ ¼ 2
N2

Qm
3
AN

2
cα

2

256s4Wπ
3v2s

�
1 −

m2
W

m2
A

�3
2

: ðB6Þ

APPENDIX C: RENORMALIZATION GROUP EVOLUTION OF COUPLINGS

In this appendix, we write down the RGE equations of the gauge couplings of the model and discuss their evolution. The
renormalization group equations are given by the following expressions:

ð4πÞ2βg ¼ −g3
�
þ 19

6
− 2NQ

�
;

ð4πÞ2βg0 ¼ þg03
�
þ 41

6
þ 2

9
NQ þ 20

9
nq

�
;

ð4πÞ2βgs1 ¼ −g3s1

��
9 ðfor Nq ≠ 0Þ
7 ðfor Nq ¼ 0Þ −

2

3
NQ −

2

3
nq −

1

2

�
;

ð4πÞ2βgs2 ¼ −g3s2

��
9 ðfor Nq ≠ 0Þ
11 ðfor Nq ¼ 0Þ −

2

3
NQ −

2

3
nq −

1

2

�
: ðC1Þ
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ð4πÞ2βyt ¼ yt

��−4ðg2s1 þ g2s2Þ ðfor Nq ≠ 0Þ
−8g2s1 ðfor Nq ¼ 0Þ −

9

4
g2 −

17

12
g02 þ 9

2
y2t

�
;

ð4πÞ2βYQ
¼ YQ

�
−4ðg2s1 þ g2s2Þ −

9

2
g2 −

1

6
g02 þ ð3þ 2NQÞY2

Q þ nqðy2qu þ y2qdÞ
�
;

ð4πÞ2βyqu ¼ yqu

�
−4ðg2s1 þ g2s2Þ −

8

3
g02 þ ð3þ nqÞy2qu þ nqy2qd þ 2NQY2

Q

�
;

ð4πÞ2βyqd ¼ yqd

�
−4ðg2s1 þ g2s2Þ −

2

3
g02 þ ð3þ nqÞy2qd þ nqy2qu þ 2NQY2

Q

�
: ðC2Þ

ð4πÞ2βλh ¼ þ4λ2h þ 54λ2m þ 3λh½4y2t − 3g2 − g02� − 9

4
½16y4t − 2g4 − ðg2 þ g02Þ2�;

ð4πÞ2βλm ¼ λm

�
þ4λm þ 2λh þ

20

3
λ0s þ

16

3
κs þ

3

2
½4y2t − 3g2 − g02�

þ 4

�
NQY2

Q þ nq
2
ðy2qu þ y2qdÞ − 2ðg2s1 þ g2s2Þ

��
;

ð4πÞ2βλ0s ¼ þ 26

3
λ0s2 þ 12λ2m þ 32

3
κ2s þ

32

3
λ0sκs þ 8λ0s

�
NQY2

Q þ nq
2
ðy2qu þ y2qdÞ − 2ðg2s1 þ g2s2Þ

�

− 8

�
NQY4

Q þ nq
2
ðy4qu þ y4qdÞ − ðg2s1 þ g2s2Þ2

�
;

ð4πÞ2βκs ¼ þ8κ2s þ 4κsλ
0
s þ 8κs

�
NQY2

Q þ nq
2
ðy2qu þ y2qdÞ − 2ðg2s1 þ g2s2Þ

�

− 4

�
2NQY4

Q þ nqðy4qu þ y4qdÞ −
5

8
ðg4s1 þ g4s2Þ þ g2s1g

2
s2

�
: ðC3Þ

In order for our model to explain the observed diphoton
signal, both nq and NQ must be greater than zero. We
therefore only consider the running of the couplings for the
cases where NQ ≠ 0 and nQ ≠ 0. Furthermore, we recall
that there are three possibilities depending on the number of
chiral generations, Nq ≡ NQ − nq ¼ f0; 1; 3g. We assume
the SM quark charge assignments are as given in Ref. [22],
namely either all vectorially charged under SUð3Þ1c
(Nq ¼ 0) or all three generations chirally charged under
SUð3Þ1c × SUð3Þ2c (Nq ≠ 0).
Since this is a theory of fundamental scalar particles, we

expect that the couplings (in particular the scalar self-
couplings) will have a Landau pole at high energies. The
theory must therefore be considered a low-energy effective
theory valid only below the energy scale of the Landau pole,
above which a more fundamental high-energy theory must
be found. In order for our phenomenological investigation of
the low-energy theory to be valid, we require that the scalar
low-energy theory not have a Landau pole at energies below
10 TeV. This requirement results in constraints on the
parameters—in particular, on the value of the scalar vacuum
expectation value vs.

The strongest constraints on the validity of the
effective theory arise from the running of the scalar
self-coupling λ0s. The most dangerous term in βλ0s comes
from the coloron gauge contributions and is proportional
to ðg2s1 þ g2s2Þ2. As noted below Eq. (6), the experimental
coloron mass bound of 5.1 TeV results in a value of
vs > 1.7 TeV—however, a value of vs this low results in
a Landau pole for λ0s below 10 TeV. For our choice of
vs ¼ 2 TeV, there are no Landau poles up to a scale of
10 TeV, for the entire region of parameter space for the
pseudoscalar and degenerate case (see Fig. 3). However,
for the scalar case, we find that we require NQ þ nq <
10 in order to avoid Landau poles below a scale
of 10 TeV.
For any fixed coloron mass, this situation can quite easily

be mitigated. Choosing a larger vs (and larger values of
NQ þ nq to accommodate the diphoton signal) can easily
push the Landau pole, and hence the validity of this
effective theory, to much higher scales, and all three
cases—scalar, pseudoscalar, and degenerate—can still
explain the diphoton excess.
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