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We study the Yukawa unification, in particular, the unification of the Yukawa coupling constants of b
and τ, in the framework of the supersymmetric (SUSY) model. We concentrate on the model in which the
SUSY breaking scalar masses are of the order of the gravitino mass while the gaugino masses originate
from the effect of anomaly mediation and hence are one-loop suppressed relative to the gravitino mass. We
perform an accurate calculation of the Yukawa coupling constants of b and τ at the grand unified theory
(GUT) scale, including relevant renormalization group effects and threshold corrections. In particular, we
study the renormalization group effects, taking into account the mass splittings among sfermions, gauginos,
and the standard model particles. We found that the Yukawa coupling constant of b at the GUT scale is
about 70% of that of τ if there is no hierarchy between the sfermion masses and the gravitino mass.
Our results suggest sizable threshold corrections to the Yukawa coupling constants at the GUT scale or
significant suppressions of the sfermion masses relative to the gravitino mass.
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I. INTRODUCTION

Supersymmetry (SUSY) provides attractive solutions to
problems that cannot be solved within the framework of the
standard model (SM). In particular, the unification of the
SM SUð3ÞC × SUð2ÞL ×Uð1ÞY gauge interactions, which
is the prediction of the grand unified theory (GUT), may
be realized if the mass scale of SUSY particles is of
Oð1–10Þ TeV, because three gauge coupling constants
meet at ∼1016 GeV using the renormalization group
equations (RGEs) of the minimal SUSY SM (MSSM)
above Q ∼Oð1–10Þ TeV (with Q being the renormaliza-
tion scale). In addition, the lightest SUSY particle (LSP), if
it is neutral, is a good candidate of the dark matter.
Although SUSY SM is theoretically well motivated,

there is no experimental evidence of the existence of SUSY
particles at around TeV. On the contrary, the LHC is
pushing up the possible mass scale of SUSY particles.
For example, in the simplified scenario, colored SUSY
particles below ∼1–1.5 TeV are excluded [1,2]. In addi-
tion, the observed Higgs mass of ∼125 GeV [3] suggests
that the mass scale of the stops is near 10 TeV or higher
(see, for example, [4]) to enhance the radiative correction
to the SM-like Higgs mass [5–9].1 Thus, it is important to
consider the possibility that some of the SUSY particles
(in particular, stops) are much heavier than the TeV scale.
One of the theoretically well-motivated scenarios with

heavy sfermions is so-called anomaly-mediation SUSY
breaking (AMSB) [10,11] or pure gravity mediation (PGM)
[12–14]. In such a scenario, sfermion masses are generated
by the effect of supergravity, including direct Kähler

interaction between the SM chiral multiplets and SUSY
breaking fields, while the gaugino masses arise from the
effect of anomaly-mediation. Then, the sfermion masses
can become Oð10Þ TeV while the gaugino masses are one-
loop suppressed relative to the sfermion masses. If all the
SUSY breaking fields in the hidden sector have gauge
quantum numbers for the hidden gauge group responsible
for the SUSY breaking, for example, such a framework
naturally shows up.
If we assume the AMSB/PGM scenario, we should

consider whether the motivations of SUSY, in particular,
the unification of the gauge groups and the LSP dark
matter, are still viable. For the latter, it has been pointed out
that the LSP can be dark matter if the LSP is a neutral wino
[10,15,16], which can be realized in a wide parameter
region of the AMSB/PGM scenario. In addition, if the
mass scale of the sfermions are of Oð10Þ TeV, the gauge
coupling constants of SUð3ÞC, SUð2ÞL, and Uð1ÞY still
meet at ∼1016 GeV, which may suggest the successful
GUT in the AMSB/PGM scenario.
As well as the gauge coupling unification, one important

prediction of GUT is the Yukawa coupling unification. In
particular, in a large class of models [including simple
GUTs based on the SUð5Þ gauge group], b and τ are
embedded into a single multiplet of the GUT gauge group,
resulting in the unification of the Yukawa coupling con-
stants of b and τ. Thus, it is important to check whether the
b-τ unification is viable in the AMSB/PGM scenario [17].
In particular, it is necessary to consider the implication
of the Higgs mass constraint to the b-τ unification. Before
the discovery of the Higgs boson, the b-τ unification
has already been studied for the case where the masses
of SUSY particles are fairly degenerate and are at the
electroweak to TeV scale [18–20]. Then, in such a case,
it has been shown that, for a successful b-τ unification,

1The stop masses of a few TeV can also explain the SM-like
Higgs mass of ∼125 GeV if the stop-stop-Higgs trilinear cou-
pling constant is sizable [6].
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relatively large threshold corrections to the Yukawa cou-
pling constant at the mass scale of SUSY particles are
suggested (assuming that the threshold correction at the
GUT scale is negligible).2 We quantitatively study the b-τ
unification with a hierarchical mass spectrum of the SUSY
particles, accurately calculating the Yukawa coupling con-
stants of b and τ at the GUT scale, taking into account the
mass splitting among SUSY particles.
In this paper, we study the Yukawa unification (in

particular, the b-τ unification) in SUSY SUð5Þ GUT in
the framework of the AMSB/PGM scenario. In such a
scenario, as we have mentioned, there are several important
mass scales, i.e., the mass scale of sfermions, that of
gauginos, and the weak scale; at these scales, the particle
content of the relevant effective theory changes. For an
accurate study of the b-τ unification, renormalization group
effects should be investigated, taking the proper effective
theory at each scale. In the past, b-τ unification was also
studied for the cases where the masses of SUSY particles
are of Oð10Þ TeV, but the effects of mass splitting among
SUSY particles were taken into account at the leading
logarithmic level [22,24,25,27]. Here, we solve the relevant
RGEs for each scale, include the threshold corrections, and
study b-τ unification in the framework of the AMSB/PGM
scenario.
The organization of this paper is as follows. In Sec. II, we

introduce the model we consider. In Sec. III, our numerical
results are shown. In particular, we calculate the GUT scale
values of the Yukawa coupling constants of b and τ, and
discuss how well they agree. Implications of our numerical
results are discussed in Sec. IV. The results are summarized
in Sec. V.

II. MODEL: BRIEF OVERVIEW

First, let us introduce the model we consider. We
consider the AMSB/PGM scenario in which scalars as
well as Higgsinos acquire masses from direct couplings to
the SUSY breaking fields while the gaugino masses
originate from the AMSB effect. Then, we consider three
effective theories from the weak scale to the GUT scale. We
call these effective theories SM, ~GSM, and MSSM. We
consider the case where the masses of the heavy Higgses
are of the order of the sfermion masses, and hence each
effective theory consists of the following particles3:

(i) SM for mt < Q < M ~G: SM particles,

(ii) ~GSM for M ~G < Q < MS: SM particles and
gauginos,

(iii) MSSM for MS < Q < MGUT: MSSM particles,
where MS is the mass scale of the sfermions, M ~G is the
mass scale of gauginos, and MGUT is the GUT scale which
is defined as the scale at which Uð1ÞY and SUð2ÞL gauge
coupling constants become equal.
In our study, the most important part of the super-

potential is denoted as4

W ¼ μHuHd þ ybHdqLbcR þ yτHdlLτcR þ ytHuqLtcR;

ð2:1Þ

where Hu and Hd are up- and down-type Higgses,
respectively, while qL, tcR, bcR, lL, and τcR are quarks
and leptons in third generation with ð3; 2; 1

6
Þ, ð3̄; 1;− 2

3
Þ,

ð3̄; 1; 1
3
Þ, ð1; 2;− 1

2
Þ, and (1, 1, 1) representations of

SUð3ÞC × SUð2ÞL ×Uð1ÞY gauge group, respectively. In
addition, the relevant part of the soft SUSY breaking terms
are given by

Lsoft ¼ −BμHuHd − AbHd ~qL ~b
c
R − AtHu ~qL~tcR −

1

2
M1

~B ~B

−
1

2
M2

~W ~W −
1

2
M3 ~g ~gþ…; ð2:2Þ

where ~B, ~W, and ~g are bino, wino, and gluino, respectively.
(The “tilde” is used for SUSY particles.)
Some of the Lagrangian parameters are related to each

other at the GUT scale. For the soft SUSY breaking
parameters, we neglect the threshold corrections at the
GUT scale. Then, in SUð5ÞGUT, we parametrize the scalar
masses at the GUT scale as

m2
~Q
ðMGUTÞ ¼ m2

~U
ðMGUTÞ ¼ m2

~E
ðMGUTÞ≡m2

10; ð2:3Þ

m2
~D
ðMGUTÞ ¼ m2

~L
ðMGUTÞ≡m2

5̄; ð2:4Þ

m2
Hu
ðMGUTÞ≡m2

H5; ð2:5Þ

m2
Hd
ðMGUTÞ≡m2

H5̄; ð2:6Þ

where m2
~Q
, m2

~U
, m2

~D
, m2

~L
, and m2

~E
are soft SUSY

breaking mass squared parameters of the sfermions in
ð3; 2; 1

6
Þ, ð3̄; 1;− 2

3
Þ, ð3̄; 1; 1

3
Þ, ð1; 2;− 1

2
Þ, and (1, 1, 1)

representations of the SM gauge groups, respectively,
while m2

Hu
and m2

Hd
are those of Hu and Hd, respec-

tively. (For the sfermion masses, we assume the flavor
universality at the GUT scale for simplicity.) In

2After the discovery of the Higgs boson, it has been discussed
whether the b-τ unification is successful in the so-called desert
scenario in which the MSSM consistent with the observed Higgs
mass of ∼125 GeV is valid up to the GUT scale. For early
attempts, see [21–30]. Many of the studies consider, however, the
cases where the mass scale of the SUSY particles are relatively
close to the weak scale.

3We assume that there is no new particle between MS and
MGUT that significantly affects the renormalization group
runnings of the MSSM parameters.

4For notational simplicity, we use the same notations for the
SM fields and the corresponding superfields. In addition, the
SUð3ÞC and SUð2ÞL indices are omitted.
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addition, the gaugino masses arise from the AMSB
effect and are given by [10,11]5

M1ðMGUTÞ ¼
11g21ðMGUTÞ

16π2
m3=2; ð2:7Þ

M2ðMGUTÞ ¼
g22ðMGUTÞ

16π2
m3=2; ð2:8Þ

M3ðMGUTÞ ¼ −
3g23ðMGUTÞ

16π2
m3=2; ð2:9Þ

where g1, g2, and g3 are gauge coupling constants of
Uð1ÞY , SUð2ÞL, and SUð3ÞC gauge groups, respectively,
and m3=2 is the gravitino mass that is taken to be a free
parameter in our analysis. (We use the convention in
which m3=2 is real and positive.) The trilinear scalar
couplings also obey the AMSB relation, and hence are
one-loop suppressed relative to m3=2.
At the mass scale ofQ ¼ MS, the Lagrangian parameters

as well as the fields in the MSSM are matched to those in
the ~GSM. The SM-like Higgs boson (which shows up at
Q < MS) is given by

HSM ¼ Hu sin β þH�
d cos β; ð2:10Þ

with tan β being the ratio of the vacuum expectation values
of Hu and Hd. The Higgs potential of the ~GSM (and of the
SM) is expressed as

VHiggs ¼ m2
HSM

H†
SMHSM þ λ

2
ðH†

SMHSMÞ2: ð2:11Þ

The boundary condition for the quartic coupling constant is
given by

λðMSÞ ¼
g21ðMSÞ þ g22ðMSÞ

4
cos22β þ δλ; ð2:12Þ

where δλ is the threshold correction due to the SUSY
particles (in particular, stops), which is taken into account
in our numerical calculation. In addition, the mass of
the pseudoscalar Higgs, which is embedded into the
heavy Higgs multiplet, Hheavy ¼ Hu cos β −H�

d sin β, is
given by

m2
A ¼ ½m2

Hu
þm2

Hd
þ 2μ2 −m2

HSM
�
Q¼MS

: ð2:13Þ

In our analysis, threshold corrections to the Yukawa
coupling constants play an important role. In particular, the
correction to the bottom Yukawa coupling may become
sizable, and it is studied by using the parameter Δb with
which the bottom Yukawa coupling constant for ~GSM is
given by

yð
~GSMÞ

b ðMSÞ ¼ ybðMSÞ cos βð1þ ΔbÞ: ð2:14Þ

The most important contributions to Δb, which are propor-
tional to tan β, come from the sbottom-gluino and stop-
chargino diagrams [31–33]; at the leading order of the
mass-insertion approximation, Δb is given by

Δb ≃
�
g23
6π2

M3Iðm2
~b1
; m2

~b2
;M2

3Þ þ
yt

16π2
AtIðm2

~t1
; m2

~t2
; μ2Þ

�

× μ tan β; ð2:15Þ

where m ~b1
and m~t1 (m ~b2

and m~t2) are masses of lighter
(heavier) stop and sbottom, respectively, and

Iða; b; cÞ ¼ −
ab lnða=bÞ þ bc lnðb=cÞ þ ca lnðc=aÞ

ða − bÞðb − cÞðc − aÞ :

ð2:16Þ

The unification of yb and yτ crucially depends on Δb.
Notice that, with large tan β, the sign ofΔb is determined by
signðμÞ. We also note here that, when tan β is not so large,
other contributions to Δb may become comparable to those
from the sbottom-gluino and stop-chargino loops.
For the calculation of the gaugino masses, we include the

threshold correction to the wino and bino masses from the
Higgs-Higgsino loop diagram [10],

δM1 ¼
g21ðMSÞ
16π2

L; δM2 ¼
g22ðMSÞ
16π2

L; ð2:17Þ

where

L≡ μ sin 2β
m2

A

μ2 −m2
A
ln

μ2

m2
A
: ð2:18Þ

Then, at Q ¼ M ~G, the Lagrangian parameters in the
~GSM are matched to those in the SM. In particular, we
include the threshold correction to the gauge coupling
constants from the loop effects of gauginos. The
Lagrangian parameters at the weak scale are related to
those at Q ¼ M ~G by using SM RGEs. Then, the SM-like
Higgs mass is evaluated as

m2
h ¼ 2λðmtÞv2 þ δm2

h; ð2:19Þ

5In the complete formula, the gaugino masses are proportional
to the vacuum expectation value of the compensator field in
supergravity. If the SUSY breaking field does not acquire a
vacuum expectation value as large as the Planck scale, however,
the vacuum expectation value of the compensator field agrees
with the gravitino mass. In the following, we assume that is the
case.
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where v≃ 174 GeV is the expectation value of the SM-like
Higgs boson and δm2

h is the threshold correction.

III. NUMERICAL RESULTS

Now, we perform the numerical calculation to study how
well the b-τ unification is realized in the AMSB/PGM
scenario. In addition to the SM parameters, the present
model contains seven new parameters, m2

10, m
2
5̄, m

2
H5, m

2
H5̄,

m3=2, μ, and Bμ, with which the Lagrangian parameters are
determined.
Importantly, some of the Lagrangian parameters are

determined by low-energy observables, while boundary
conditions for others are set at the GUT scale as we have
explained in the previous section. In our analysis, they are
determined as follows:

(i) The gauge and Yukawa coupling constants are
determined by using the data given in [3]. In
particular, we use the bottom quark mass of
mbðMSÞ ¼ 4.18 GeV, the top quark mass of
mt ¼ 173.21 GeV, and α3ðMZÞ ¼ 0.1185 (with
α3 ¼ g23=4π).

6 Gauge and Yukawa coupling con-
stants in the ~GSM and the MSSM are determined by
taking into account the renormalization group run-
nings as well as relevant threshold corrections.

(ii) The soft SUSY breaking scalar mass squared
parameters are fixed at the GUT scale. (See the
previous section.) Some of them, as well as μ and Bμ

parameters, are determined to fix the vacuum expect-
ation value of the SM-like Higgs boson v, tan β, and
the Higgs mass mh. (For our numerical analysis, we
use mh ¼ 125.09 GeV [3].)

With numerically solving RGEs, we determine sets of
Lagrangian parameters that are consistent with the low-
energy and GUT scale boundary conditions. Our numerical
calculation is based on the SOFTSUSY package [34], in
which three-loop RGEs for the effective theory below the
electoweak scale and two-loop RGEs above MS are
implemented. We have implemented the three-loop
RGEs for the SM and the ~GSM, because those models
are not included in the original SOFTSUSY package. (The
RGEs for the SM can be found in [35]. We have calculated
the RGEs for the ~GSM by taking into account the effects of
gauginos.) In addition, one-loop threshold corrections due
to the diagrams with SUSY particles in the loop are
included at relevant scales; those with only gauginos in
the loop are taken into account at Q ¼ M ~G, while others at
Q ¼ MS. In our numerical calculation, MS is taken to be
the geometric mean of the stop masses, while M ~G ¼ jM3j.
Following [35], we also included two-loop threshold

corrections to λ, m2
HSM

, g2, and g1 at Q ¼ mt, and two-
loop plus three-loop pure QCD corrections to yt and g3.
With the boundary conditions that we adopt, yb and yτ

are not guaranteed to be equal at the GUT scale, because
the Yukawa coupling constants are determined by using the
fermion masses. The difference between ybðMGUTÞ and
yτðMGUTÞ should be compensated by threshold corrections
at the GUT scale if b and τ are embedded into the same
multiplet of the unified gauge group; this is the case in
simple SUSY GUT models based on SUð5Þ [or other
unified gauge groups containing SUð5Þ]. To quantify the
b-τ unification, we define

Rbτ ¼
ybðMGUTÞ
yτðMGUTÞ

: ð3:1Þ

If the threshold correction at the GUT scale is negligible,
Rbτ should be close to unity. We calculate Rbτ as a function
of model parameters and study how it behaves.
First, we show examples of the renormalization group

runnings of the Yukawa coupling constants from the
electroweak scale to the GUT scale. In Fig. 1, we show
how the Yukawa coupling constants of b and τ depend
on the renormalization scale Q, taking tan β ¼ 3.95,
m3=2 ¼ 50 TeV, m10¼m5̄¼m3=2, mH5 ¼mH5̄¼ 0.8m3=2,
and μ > 0 (left). If the b-τ unification is studied by
directly matching the SM (after the electroweak symmetry
breaking) to the MSSM at Q ¼ mZ, some of the effects
of the renormalization-group runnings are not fully taken
into account. In addition, with such a procedure, the
effects of the wave function renormalization of the SM
Higgs boson on the running of the Yukawa coupling
constants of b and τ may be neglected. The renormalization
group runnings of the Yukawa coupling constants with
such an analysis are also shown in Fig. 1 to see the
difference. We can see that the difference between the
results of two analyses is sizable. With the present choice of
parameters, we found that Rbτ ∼ 0.7 with our analysis
which properly takes into account the mass splittings
among MSSM particles, while Rbτ ∼ 0.75with the analysis
taking MS ¼ M ~G ¼ mZ. In fact, we found that the differ-
ence becomes larger if we take a larger value of tan β. To
see this, we also show the renormalization group runnings,
taking tan β ¼ 40.0, m3=2 ¼ 250 TeV, m10 ¼ 12 TeV,
m5̄ ¼ 7 TeV, mH5 ¼ mH5̄ ¼ 2 TeV, and μ > 0 (right).
We can see a significant difference between the two results.
This is due to the fact that, with large tan β, the threshold
correction to yb at Q ¼ MS becomes large so that the GUT
scale value of the Yukawa coupling constants becomes
sensitive to what kind of RGEs are used between
mZ ≤ Q ≤ MS. The Rbτ parameter gives important infor-
mation about the GUT scale values of the Yukawa coupling
constants and the possible size of the threshold corrections
to the Yukawa coupling constants at the GUT scale. Thus,
an accurate calculation of Rbτ is important, for which, as we

6We varied mt and α3 within the 1-σ uncertainties and checked
that our conclusions are qualitatively unchanged. In particular,
the change of Rbτ given in Eq. (3.1) is at the level of a few
percent.

SO CHIGUSA and TAKEO MOROI PHYSICAL REVIEW D 94, 035016 (2016)

035016-4



have seen, the use of the proper effective theory at each
energy scale is needed.
To see how Rbτ depends on various model parameters,

we randomly choose ∼5 × 104 sample points from the
following parameter space:

(i) 1.1 ≤ tan β ≤ 60,
(ii) 40 TeV ≤ m3=2 ≤ 250 TeV,
(iii) 1 TeV ≤ mX ≤ 100 TeV (with X ¼ 5̄,H5, andH5̄),
(iv) μ > 0,

and calculate Rbτ.
7 In the AMSB/PGM scenario, the soft

SUSY breaking scalar mass squared parameters (i.e., m2
10,

m2
5̄, m

2
H5, and m2

H5̄ in the present setup) are expected to be
of Oðm2

3=2Þ. However, we also study the parameter regions
where scalar masses and m3=2 are hierarchical.

8 As we will
see in the following, the sign of the μ parameter is preferred
to be positive to make Rbτ close to 1. Thus, the scan is
performed only in the parameter space with μ > 0.
In Fig. 2, we show the distribution of the sample points

we studied on m10 vs tan β, m5̄ vs tan β, m3=2 vs tan β, and
m ~B=m ~W vsm~g=m ~W planes (withm ~B,m ~W , andm~g being the
on-shell masses of bino, wino, and gluino, respectively).

Here, we divide each plane into 120 × 100 grids. Then, if at
least one sample point falls into the grid, we put a dot on the
grid. The colors of the dots indicate the smallest value of
jRbτ − 1j we found: jRbτ − 1j < 0.1 (red dots), 0.1 <
jRbτ − 1j < 0.2 (green dots), and jRbτ − 1j > 0.2 (blue
dots). (Thus, the dots do not represent the sample points.)
From the plot on the m ~B=m ~W vs m~g=m ~W plane, we can

see that the wino becomes the lightest among the gauginos,
and hence the winolike neutralino becomes the LSP in the
parameter space we studied. We have imposed the follow-
ing experimental constraints on the gaugino masses from
the direct searches of gluino and long-lived wino9:

(i) m~g > 1.5 TeV [1,2],
(ii) m ~W > 270 GeV [44,45].

We show only the points consistent with the above
constraints. Notice that, in the present model, all the
sfermion masses are multi-TeV or larger so that the
experimental bounds on them are unimportant.
From the scatter plot on the m10 vs tan β plane, one can

see that m10 and tan β are strongly correlated. This is
because the lightest Higgs mass mh is mostly determined
by these two parameters. In the MSSM, the lightest Higgs
mass is predicted to be smaller than mZj cos 2βj at the tree
level, and a sizable radiative correction is necessary to push
the Higgs mass up to ∼125 GeV. In general, there are two
important sources of the radiative correction; one is the
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FIG. 1. The renormalization group runnings of the Yukawa coupling constants of b and τ, taking tan β ¼ 3.95, m3=2 ¼ 50 TeV,
m10 ¼ m5̄ ¼ m3=2, mH5 ¼ mH5̄ ¼ 0.8m3=2, and μ > 0 (left), and tan β ¼ 40.0, m3=2 ¼ 250 TeV, m10 ¼ 12 TeV, m5̄ ¼ 7 TeV,
mH5 ¼ mH5̄ ¼ 2 TeV, and μ > 0 (right). The solid lines are results with using the renormalization group analysis explained in
Sec. II, while the dotted lines are the case where the theory is directly matched to the MSSM atQ ¼ mZ (see the main text). The vertical
dotted lines are Q ¼ mZ,M ~G, andMS to guide the eyes. The “jumps” of the coupling constants at Q ¼ mZ,M ~G, andMS are due to the
threshold corrections. The solid lines for Q > MS and the dotted lines for Q > mZ show the MSSM Yukawa coupling constants
multiplied by cos β, while the solid lines for Q < MS show the Yukawa coupling constants in the SM or ~GSM.

7We have accumulated more sample points for m10, m5̄, mH5,
mH5̄ < 30 TeV than those with at least one scalar mass larger
than 30 TeV, because the sample points with small jRbτ − 1j,
which are of our interest, show up with relatively small scalar
masses. Thus, the density of the dots on the scatter plots has no
meaning.

8Our calculation becomes invalid when the scalar masses are
much smaller than the gaugino masses. For most of the sample
points we studied, we have checked that the scalar masses are
comparable to or larger than the gaugino masses. This is partly
because of the renormalization group effects due to gaugino
masses.

9If a winolike neutralino is the LSP, and also if it is the
dominant component of dark matter, there also exist cosmologi-
cal and astrophysical constraints, like those from big-bang
nucleothynthesis [36], γ-ray flux from Milky Way satellites
[37], and antiproton flux in the cosmic ray [38–43]. Such
constraints can, however, be avoided if the wino is not the
dominant component of dark matter.

BOTTOM-TAU UNIFICATION IN A SUPERSYMMETRIC … PHYSICAL REVIEW D 94, 035016 (2016)

035016-5



renormalization-group running of the quartic Higgs cou-
pling from MS to the weak scale, and the other is the
threshold correction at Q ¼ MS due to the stop-stop-Higgs
trilinear coupling constant. In the present model, the
trilinear coupling is one-loop suppressed so that the latter
effect is insignificant. Consequently, the Higgs mass is
mostly determined by the stop masses (which are deter-
mined by m10) and tan β; in particular, larger values of
the stop masses are required to realize mh ≃ 125 GeV as
tan β decreases. As a result, there are two regimes in
the parameter space. One is with m10 ≲ 25 TeV, resulting
in hierarchical masses ðm10=m3=2Þ2≲10−2 and large
tanβ≳10; in such a region, Rbτ can be close to the unity.
The other is with m10 ≳ 25 TeV, where m10 can be of the
same order of m3=2 and tan β becomes ∼Oð1Þ; in such a
region, Rbτ is suppressed to be ∼0.7.
In Fig. 3, we show the result of our random scan onm~g vs

Rbτ, tan β vs Rbτ, m10 vs Rbτ, m5̄ vs Rbτ, ðm10=m3=2Þ2 vs
Rbτ, and ðm5̄=m3=2Þ2 vs Rbτ planes. As Fig. 2, we divide the
planes into grids and put a dot on the grid if there is at
least one sample point falling into the grid. The colors of
the dots show the largest value of ðm10=m3=2Þ2 we found:
ðm10=m3=2Þ2 > 0.1 (red dots), 0.01 < ðm10=m3=2Þ2 < 0.1

(green dots), and ðm10=m3=2Þ2 < 0.01 (blue dots). We
notice here that, on the tan β vs Rbτ plane, the dots exist
only for tan β ≳ 3. This is because the scan is restricted to
the parameter region ofm10 < 100 TeV, and hence the stop
mass is at most ∼100 TeV. If a larger value of m10 is
considered, a smaller value of tan β is allowed.
From Fig. 3, it is suggested that, to make Rbτ close to 1,

(i) the scalar masses should be suppressed compared tom3=2,
(ii) tan β should be large, and (iii) μ > 0. This is because Rbτ
becomes ∼0.7 when the threshold correction Δb is negli-
gible. In particular, we found that the renormalization-group
effect between the weak scale and MS significantly sup-
presses yb, which makes Rbτ smaller. The conditions (i) and
(ii) are necessary to enhance Δb. In addition, the condition
(iii) is necessary to make Δb negative. However, the
condition (i) may conflict with the simple expectation from
the AMSB/PGM scenario which requires the soft SUSY
breaking scalar masses to be ofOðm3=2Þ [17]. The condition
(ii), combined with mh ≃ 125 GeV, suggests that m10∼
10 TeV, as can be seen in the plot on the m10 vs tan β plane
of Fig. 2. From the plot on them5 vs tan β plane, one can also
see that the sample points with small jRbτ − 1j concentrate
on the region with relatively small m5̄. This is because
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m2
Hu
ðMSÞ decreases for decreasing m5̄ due to the renorm-

alization group effect, and the small m2
Hu
ðMSÞ enhances μ2

determined by the electroweak symmetry breaking condi-
tion. Since Δb is proportional to μ, the small m5̄ is favored.
To see how Rbτ depends on the masses of SUSY

particles, we calculate Rbτ by taking m5̄ ¼ m10, and
mH5 ¼ mH5̄ ¼ 0.8m10.

10 Then, with tan β being fixed, only

one free parameter remains, which is chosen to be m3=2. In
Fig. 4, Rbτ is plotted as a function ofm3=2 for several values
of tan β. We also show the ratio of m10=m3=2 on each line.
Some of the lines end at the middle of the figure. This is
because, with m2

10 being positive, the Higgs mass of
∼125 GeV cannot be realized if the gravitino mass is
too large. For μ > 0, Rbτ becomes enhanced with larger
m3=2 or with larger tan β; such a choice of parameters
makes Δb negative and sizable, resulting in the suppression
of the bottom Yukawa coupling constant below MS. For
μ < 0, on the contrary, Rbτ becomes suppressed with larger
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10For the successful electroweak symmetry breaking with
m2

Hu
ðMSÞ < 0, m2

H5 is preferred to be smaller than sfermion
masses in the present scenario.
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m3=2 or larger tan β in the large tan β region (tan β ≳ 10)
since the sign of Δb is positive in this case. In the low tan β
region (tan β ≲ 10) with μ < 0, this is not the case since the
heavy Higgs contributions to Δb, whose sign is uncorre-
lated to the sign of μ, become comparable to the sbottom-
gluino and stop-chargino contributions. We note here that,
in Fig. 4, we consider the gravitino mass up to a few PeV,
with which the wino mass becomes ∼3 TeV. In such a
parameter region, the neutral wino is the LSP, and hence the
thermal relic density of the wino becomes comparable to
the dark matter density [16].
We can see that Rbτ ∼ 0.7 for both μ > 0 and μ < 0

when the scalar masses are of the same order of m3=2.
This fact indicates that, in the AMSB/PGM scenario, the
threshold correction at the GUT scale needs to be sizable
for successful Yukawa unification. To make this point
clearer, we calculate Rbτ for the case where all the scalar
masses are of the same order ofm3=2. In Fig. 5, we plot Rbτ

as a function of m3=2, taking m5̄ ¼ m10 ¼ m3=2, and
mH5 ¼ mH5̄ ¼ 0.8m3=2. In this case, masses of all the
sfermions, including stops, are required to be much heavier
than ∼10 TeV, and hence relatively small tan β is needed.
(See Fig. 2.) On each line, we show the value of tan β. We
can see that Rbτ ∼ 0.7with such a choice of parameters; this
is because Δb is suppressed due to the smallness of tan β.
So far, we have seen that a significant hierarchy between

the scalar masses and the gravitino mass is needed to make
Rbτ close to 1. If we require jRbτ − 1j < 0.1, for example,
m2

10 and m2
5̄ are required to be of Oð1Þ% of m2

3=2. Because
the supergravity effects are expected to make the SUSY
breaking mass squared parameters to be ofOðm2

3=2Þ, such a
choice of m2

10 and m2
5̄ require the tuning of the parameters

in the Kähler potential at the level of Oð1Þ%.
We would also like to comment on the effects of the

uncertainty in the Higgs mass. Although, experimentally,

the Higgs mass is determined with the accuracy of
0.21 GeV, it is expected that the theoretical calculation
of the Higgs mass has a larger uncertainty of a few GeV. To
see how our results change with the variation of the Higgs
mass, we calculate Rbτ using mh ¼ 123.09 GeV and
127.09 GeV, taking m5̄ ¼ m10, mH5 ¼ mH5̄ ¼ 0.8m10,
and μ > 0. The results are shown in Fig. 6. Comparing
with Fig. 4, we can see that, even if we vary the theoretical
prediction of the Higgs mass within the theoretical uncer-
tainty, Rbτ ∼ 0.7 when the gluino masses are much smaller
than the sfermion masses. Thus, our main results are
unchanged.
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and 2.4 (square).
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Before closing this section, we also study the difference
between ybðMGUTÞ and yτðMGUTÞ,

δy5̄ ≡ ybðMGUTÞ − yτðMGUTÞ: ð3:2Þ

To see how large δy5̄ is in the AMSB/PGM scenario, in
Fig. 7, we show the distribution of jδy5̄j as a result of our
scan. As one can see, jδy5̄j becomes smaller as tan β
decreases; this is due to the smallness of yb and yτ in
the region with relatively small tan β. The implication of
this will be discussed in the next section.

IV. IMPLICATIONS

Let us now discuss implications of our numerical results.
In particular, we consider how small jRbτ − 1j should be in
order for the successful b-τ unification. If ybðMGUTÞ ≠
yτðMGUTÞ, the difference is expected to be compensated by
corrections at the GUT scale. The possible size of the
corrections at the GUT scale is strongly model dependent.
Because of the mass splitting of the particles at the GUT

scale, Rbτ may deviate from 1. We expect that the threshold
correction due to such a mass splitting is estimated as

δyf ∼ βyf log
MGUT þ δMGUT

MGUT
; ð4:1Þ

with f ¼ b and τ, where βyf denotes the β function of yf,
and δMGUT is the typical size of the mass splitting of the
GUT-scale particles. As far as δMGUT ∼OðMGUTÞ, such an
effect results in jRbτ − 1j ofOð10−2Þ, because βyf is at most

of the order of yf=16π2, and hence Rbτ ∼ 0.7 is hardly
explained by this effect.
Another class of correction may come from the effective

operators containing the fields that are responsible for the
breaking of the GUT symmetry. Schematically, the super-
potential responsible for such a correction, which is
dimension-5 or higher, can be written as

WHigher Dim ¼ c
M�

ΣTF̄ H̄; ð4:2Þ

where M� is the mass scale of the mechanism generating
WHigher Dim, while c is determined by the coupling constants
in the model. Here, F̄ and T are superfields in 5̄ and 10
representations of SUð5Þ, which contain third generation
quarks and leptons, and H̄ is the superfield in 5̄ represen-
tation containing down-type Higgs. In addition, Σ is the
field responsible for the breaking of SUð5Þ → SUð3ÞC ×
SUð2ÞL ×Uð1ÞY ; hereafter, to make our points clearer, Σ is
assumed to be in the adjoint representation of SUð5Þ.
The superpotential of the form of Eq. (4.2) may arise

from an unknown nonperturbative dynamics at the cutoff
scale (like the Planck or string scale, identifying M� as a
cutoff scale), or by integrating out particles whose masses
are above the GUT scale. Here, let us consider a simple
example of the latter. We introduce the following super-
potential:

W0 ¼ M�F0F̄0 þ κΣF0F̄ þ y0̄5TF̄
0H̄ þ y5̄TF̄ H̄; ð4:3Þ

where F0 and F̄0 are new superfields in 5 and 5̄ represen-
tations, respectively; with M� ≳MGUT, the superpotential
of the form of Eq. (4.2) is obtained after integrating
out F0 and F̄0. We denote the vacuum expectation value
of Σ as hΣi ¼ diagð2σ; 2σ; 2σ;−3σ;−3σÞ, assuming that
σ ∼OðMGUTÞ. Then, with the superpotential given in
Eq. (4.3), bcR and lL are given by

bcR ¼ F̄3 cos θbcR þ F̄0
3 sin θbcR ; ð4:4Þ

lL ¼ F̄2 cos θlL þ F̄0
2 sin θlL ; ð4:5Þ

where F̄ð0Þ
3 and F̄ð0Þ

2 are the upper three and lower two
components of F̄ð0Þ, respectively, and

tan θbcR ¼ −
2κσ

M�
; tan θlL ¼ 3κσ

M�
: ð4:6Þ
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Then, the Yukawa coupling constants of b and τ at the GUT
scale are estimated as

ybðMGUTÞ ¼ y5̄ − 2ϵy0̄5 þOðϵ2Þ; ð4:7Þ

yτðMGUTÞ ¼ y5̄ þ 3ϵy0̄5 þOðϵ2Þ; ð4:8Þ

with

ϵ≡ κσ

M�
; ð4:9Þ

and hence

Rbτ ¼ 1 − 5ϵ
y0̄5
y5̄

þOðϵ2Þ: ð4:10Þ

In addition,

δy5̄ ≃ −5ϵy0̄5 þOðϵ2Þ: ð4:11Þ

Rbτ may significantly deviate from 1 in this setup. If
y0̄5 ∼ y5̄, jRbτ − 1j ∼Oð0.1Þ requires ϵ ∼Oð0.1Þ. In such a
case, the quarks and leptons, which are embedded into the
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same SUð5Þmultiplet in the simplest scenario, are given by
s different admixture of the fields at the GUT scale or
above. On the contrary, for y0̄5 ≫ y5̄, jRbτ − 1j ∼Oð0.1Þ is
possible even with ϵ ≪ Oð0.1Þ. In particular, when tan β is
not so large, yb and yτ are much smaller than 1, and hence
δy5̄ ≪ 1 (see Fig. 7). Then, the b-τ unification may be
realized with M� much larger than the GUT scale (like M�
as large as the Planck scale). In such a case, however, the
quarks and leptons have new Yukawa interactions much
stronger than those in the MSSM, which may introduce
new flavor and CP problems in the SUSY model. In
particular, it is unclear if the new field F0 selectively
couples to the third generation quarks and leptons. If the
coupling between F0 and first or second generation quarks
and leptons is as strong as that to third generation ones, the
hierarchy of the SM Yukawa coupling constants are easily
spoiled. We also note here that if nontrivial flavor mixings
or CP violations exist in such new couplings, they may
affect the SUSY breaking scalar mass squared parameters
via the renormalization group runnings [46]. Such an effect
may give sizable contributions to low energy flavor and CP
violating observables.

V. SUMMARY

We have studied the b-τ unification in the SUSY model
with the AMSB/PGM mass spectrum. In the model of our
interest, sfermions as well as Higgsinos acquire masses
from direct interactions with SUSY breaking fields while
gaugino masses are from the AMSB effect. Consequently,
the gaugino masses (as well as the SUSY breaking trilinear
scalar coupling constants) are one-loop suppressed com-
pared to the sfermion masses. For the accurate study of the

renormalization group effects on coupling constants, we
have considered three different effective theories, i.e., SM,
~GSM, and MSSM. We have used a numerical program in
which the two-loop RGEs in these effective theories, as
well as threshold corrections at the matching scales, are
implemented, and calculated the Yukawa coupling con-
stants at the GUT scale. To understand the viability of the
Yukawa unification in the AMSB/PGM scenario, we have
performed the parameter scan and calculated ybðMGUTÞ and
yτðMGUTÞ for about 5 × 104 sample points.
We have found that the naive mass spectrum of the

AMSB/PGM scenario, in which the sfermion masses are
of the order of the gravitino mass, predicts ybðMGUTÞ∼
0.7yτðMGUTÞ, which conflicts with the b-τ Yukawa uni-
fication in the simple setup. To solve this discrepancy,
one may consider sizable corrections at the GUT scale.
In such a case, a nontrivial flavor structure is suggested
at the GUT scale, which may affect low-energy flavor
and CP violating observables. Another resolution may
be to adopt suppressed sfermion masses compared to the
gravitino mass. As a result of our parameter scan, we
found sample points with jRbτ − 1j < 0.1, for example,
when the sfermion mass squared parameters, m2

10 and m2
5̄,

are of Oð1Þ% of m2
3=2. Because the expectation is that

m2
10 and m2

5̄ are of Oðm2
3=2Þ, this may suggest the Oð1Þ%

level tuning of the parameters in the Kähler potential to
suppress the scalar masses.
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