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We construct a generic model of Majorana fermionic dark matter (DM). Starting with two Weyl spinor
multiplets η1;2 ∼ ðI;∓YÞ coupled to the Standard Model Higgs, six additional Weyl spinor multiplets with
ðI � 1=2;�ðY � 1=2ÞÞ are needed in general. It has 13 parameters in total, five mass parameters and eight
Yukawa couplings. The DM sector of the minimal supersymmetric Standard Model is a special case of the
model with ðI; YÞ ¼ ð1=2; 1=2Þ. Therefore, this model can be viewed as an extension of the neutralino DM
sector. We consider three typical cases: the neutralinolike, the reduced, and the extended cases. For each
case, we survey the DM mass mχ in the range of (1,2500) GeV by random sampling from the model
parameter space and study the constraints from the observed DM relic density; the direct search of LUX,
XENON100, and PICO experiments; and the indirect search of Fermi-LAT data. We investigate the
interplay of these constraints and the differences among these cases. It is found that the direct detection of
spin-independent DM scattering off nuclei and the indirect detection of DM annihilation to the WþW−

channel will be more sensitive to the DM searches in the near future. The allowed mass for finding ~H-, ~B-,
~W-, and non-neutralino-like DM particles and the predictions on hσðχχ → ZZ; ZH; tt̄Þvi in the indirect
search are given.
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I. INTRODUCTION

It has been more than 80 years since the first evidence of
dark matter (DM) was observed by Fritz Zwicky [1]. So far,
all the astrophysical and cosmological observations of DM
evidence show that DM exists everywhere no matter
whether it is from the galactic scale [2–4], the scale of
galaxy clusters [5,6], or the cosmological scale [7,8]. Even
though DM makes up about 85% of the total mass in the
Universe [9,10], we still do not knowmuch about its nature.
A leading class of DM candidates is the so-called weakly
interacting massive particles (WIMPs) [11,12], which are
nonluminous and nonbaryonic cold DM (CDM) matter.
The WIMPs are assumed to have been created thermally
during the big bang and frozen out of thermal equilibrium
escaping the Boltzmann suppression in the early Universe.
The DM relic density is approximately related to the
velocity averaged DM annihilation cross section by a
simple relation [13],

Ωχh2 ≈
0.1 pb × c

hσvi : ð1Þ

On the other hand, the recent measured value of the CDM
relic density is [14]

Ωobs
χ h2 ¼ 0.1198� 0.0026: ð2Þ

It suggests the case of DM with mass in the range of
100 GeV to few TeV and an electroweak size interaction.
That is the so-called WIMP miracle.

The searches of DM particles in experiments have made
much progress in recent years. Several complementary
searching strategies have been continuously executed,
including the direct detection of DM-nucleus scattering
in underground laboratories, the indirect detection of DM
annihilation processes in astrophysical observation (see
Ref. [15] for a brief review), and the DM direct production
at colliders [16–18]. The null results of finding the DM
from LUX [19], XENON100 [20], PICO [21,22], and
Fermi-LAT [23] experiments put the related upper limits
on spin-independent (SI) [24,25], spin-dependent (SD)
[26,27], DM-nucleus scattering cross sections, and the
velocity averaged DM annihilation cross sections, respec-
tively. Except working on the well-known models such as
the minimal supersymmetric Standard Model (MSSM)
directly [13,28–30], analyzing in the model-independent
research with the effective operators of dark matter coupled
to Standard Model (SM) particles [31–33] is a way to
search the properties of DM due to the little-known nature
of DM. Some authors also constructed models in which the
DM couples to the SM particles via a mediator; see, for
example, Higgs portal models [34–38], two-Higgs-doublet
portal models [39,40], fermion portal models [41], the dark
Z0 portal [42], the left-right model [43,44], and so on.
In the DM-nucleus elastic scattering, the DM is highly

nonrelativistic. Basically, only the scalar-scalar (SS), vec-
tor-vector (VV), axial vector-axial vector (AA), and tensor-
tensor (TT) DM-quark interactions are nonvanishing [31].1

1We will return to this point and take a closer look in Sec. II C.
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In Ref. [45], one of the authors (C. K. C.) studied pure weak
eigenstate Dirac fermionic dark matter with renormalizable
interaction. It is well known that a Dirac fermionic DM
particle, without a special choice of quantum number,
usually gives an oversized SI DM-nucleus cross section
through VV interaction from the Z-exchange diagram. To
accommodate the bounds from direct searches, the quan-
tum number of DM is determined to be I3 ¼ Y ¼ 0. There
are only two possible cases: either the DM has non-
vanishing weak isospin (I ≠ 0) but with I3 ¼ Y ¼ 0 or it
is an isosinglet (I ¼ 0) with Y ¼ 0. In the first case, it is
possible to have a sizable χχ̄ → WþW− cross section,
which is comparable to the latest bounds from indirect
searches. There is no tree-level diagram in DM-nucleus
elastic scattering. It successfully evades the SI bounds, but
it pays the price of detectability in a direct search. In the
second case, to couple DM to the SM particles, a SM-
singlet vector mediator X is required from the renormaliz-
ability and the SM gauge quantum numbers. The allowed
parameter space and the consequences were studied. To
satisfy the latest bounds of direct searches and to reproduce
the DM relic density at the same time, resonant enhance-
ment via the X pole in the DM annihilation diagram is
needed. Thus, the masses of DM and the mediator are
related. It is arguable that the phenomenology of Dirac
fermionic DM is not very rich.
The Majorana DM can naturally evade the dangerous

Z-exchange diagram from the VV interaction and can have
rich phenomenology. Awell-known example is the lightest
neutralino in the MSSM [13,28]. In this work, we construct
a generic class of Majorana fermionic DM models having
an arbitrary weak isospin quantum number. As we shall see,
the MSSM DM sector is a special case in this model, and
therefore, this model can be viewed as an extension of the
neutralino DM sector. We consider three typical cases: the
neutralinolike, the reduced, and the extended cases. Note
that a somewhat related study to the reduced case has been
given in Ref. [46].
This paper is organized as follows. In Sec. II, we

construct a generic model of Majorana fermionic DM
and give the formulas for the DM annihilation to the
SM particles as well as DM-nucleus elastic scattering. We
give the results of the neutralinolike, the reduced, and the
extended cases in Sec. III. We discuss the coannihilation
and give the conclusions in Sec. IV. We present explicitly
the relevant Lagrangian of the WIMP mass term in
Appendix A. The four-component Majorana and Dirac
mass eigenstates for neutral and single charged WIMPs are
constructed, respectively, in Appendix B. We present the
Lagrangian of WIMPs interacting with the SM particles in
Appendix C, give the matrix elements of DM annihilation
to the SM particles in Appendix D, and show that the
Lagrangian is CP conserved in Appendix E. The formulas
used in DM-nucleus elastic scattering are derived in
Appendix F. The formulation and the corresponding

matrix elements for WIMP coannihilation are given in
Appendixes G and H, respectively.

II. FORMALISM

A. Generic model of Majorana fermionic dark matter

Starting with the SM, we add two Z2-odd, two-
component Weyl spinor multiplets η1;2 ∼ ð2I þ 1;∓YÞ
under SULð2Þ ×Uð1ÞY, and all SM particles are assigned
to be Z2 even. The introduction of the Z2 symmetry assures
the stability of DM. Without loss of generality, we take
Y ≥ 0. A mass term can be constructed as

−Lm ¼ μλijη
i
2η

j
1 þ μλ�ijη̄

i
2η̄

j
1; ð3Þ

with

λij ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2I þ 1

p hII; 00jIi; Iji ð4Þ

proportional to the Clebsch-Gordan coefficient and
i; j ¼ −I;…; I. This is actually a Dirac particle multiplet.
The reason is explained below. We define

ξi ≡ ηi2; η̄i ≡ λijη̄
j
1; ð5Þ

and the Dirac field with the ith component of isospin

ψ i ≡
�
ξi

η̄i

�
: ð6Þ

Note that the hypercharge of ψ is Y. Since under SU(2)
transformation we have

ξ0i ¼ Uijη
j
2 ¼ Uijξ

j;

η̄0i ¼ λikU�
klλ

−1
lj λjrη̄

r
1 ¼ Uijη̄

j; ð7Þ

where we have used the similarity transformation of the SU
(2) transformation matrix,2

λikU�
klλ

−1
lj ¼ Uij: ð8Þ

Hence, the transform of the (2I þ 1)-multiplet of Dirac
fields in ψ under SU(2) is

ψ 0i ¼ Uijψ
j; ð9Þ

and the above mass term is simply

−Lm ¼ μψ̄ψ : ð10Þ

2This can be seen from −ð~IÞ�ij ¼ ð−Þ−ið~IÞ−i;−jð−Þj ¼
½ð−ÞI−iδ−i;k�ð~IÞkl½ð−Þ−Iþjδl;−j� and λij ¼ ð−Þ−Iþiδi;−j, i.e.,
−ð~IÞ�ij ¼ λ−1ik ð~IÞklλlj.
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The component ψ−Y with neutral charge could be a dark
matter candidate. But in the I ≠ 0 and Y ≠ 0 case, ψ−Y will
induce a sizable SI-scattering cross section via Z-boson
exchange (∼10−39 cm2) [45], which is ruled out by the
present direct search data [19]. To clarify the situation, we
switch back to the η1;2 basis. By diagonalizing the mass
matrix, we find that there are two neutral Majorana
degenerate states χ1;2 ∝ ðη1 � η2Þ=

ffiffiffi
2

p
with mass

jμλY;−Y j ¼ μ. Both of them can be dark matter, since their
masses are degenerate. The dangerous Z-boson exchange
diagram is from the χ1 → χ2 vector current (the χi → χi
current can only be an axial one). The above situation can
be avoided if one lifts the mass degeneracy of χ1;2. To do so,
we enlarge the mass matrix. The Z2-odd WIMPs, η1;2, can
mix with additional Z2-odd WIMPs in the presence of the
Higgs field ϕ [with quantum number (2, 1=2)] and obtain a

new mass term after spontaneous symmetry breaking
(SSB). We consider all possible combinations of renorma-
lizable interactions with η1;2 coupled to the Higgs field,

ðiÞ ϕ × η1 × ½new�;
ðiiÞ ϕ × η2 × ½new�;
ðiiiÞ ~ϕ × η1 × ½new�;
ðivÞ ~ϕ × η2 × ½new�; ð11Þ

where ~ϕi ≡ ϵijϕ
�j with ϵij ¼ λij for I¼ 1=2 (i.e., ϵij ¼ −ϵji

and ϵ1=2;−1=2 ¼ 1). The allowed quantum numbers of these
new particles are given in Table. I.
The generic Lagrangian is given by

−Lm ¼
X5
p¼1

μpλ
p
ijη

i
2pη

j
2p−1 þ

X3
p¼2

ðg2p−1λpijk ~ϕiηj2η
k
2p−1 þ g2pλ

p
ijkϕ

iηj1η
k
2pÞ

þ
X5
p¼4

ðg2p−1λpijkϕiηj2η
k
2p−1 þ g2pλ

p
ijk

~ϕiηj1η
k
2pÞ þ H:c:; ð12Þ

with

λ1ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2I þ 1

p hII; 00jIi; Iji;

λ2ij ¼ λ4ij ¼
ffiffiffiffiffi
2I

p ��
I −

1

2

��
I −

1

2

�
; 00

����
�
I −

1

2

�
i;

�
I −

1

2

�
j

�
;

λ3ij ¼ λ5ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2I þ 2

p ��
I þ 1

2

��
I þ 1

2

�
; 00

����
�
I þ 1

2

�
i;
�
I þ 1

2

�
j
�
; ð13Þ

λ2ijk ¼ λ4ijk ¼ ϵir
ffiffiffiffiffi
2I

p �
I

�
I −

1

2

�
;
1

2
r

����Ij;
�
I −

1

2

�
k

�
;

λ3ijk ¼ λ5ijk ¼ ϵir
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2I þ 2

p �
I

�
I þ 1

2

�
;
1

2
r

����Ij;
�
I þ 1

2

�
k

�
: ð14Þ

Note that the imposed Z2 symmetry can protect the DM
against decays. Otherwise, DM can decay through, for
example, the lepton number violation term and become
unstable. Equation (12) can be used as a building block to
built other multiplets. In principle, one can replace η1;2 by
the induced fields in Eq. (11) and involve additional fields.
For simplicity, we do not do it here. In fact, a more
complicated case can be readily generated by using the
present case as a module.
These fields can be combined into Dirac fields with

definite isospin and hypercharge quantum numbers,

ψ i
ðpÞ ≡

� ξiðpÞ
η̄iðpÞ

�
ð15Þ

TABLE I. Summary of the eight types of additional multiplets
induced by the four general types of couplings involving the
Higgs field and η1;2.

[New] SUð2ÞðIηÞ UYð1Þ Type Couples with

η3 I − 1=2 −ðY − 1
2
Þ (iv) ~ϕ × η2, η4

η4 I − 1=2 Y − 1
2

(i) ϕ × η1, η3
η5 I þ 1=2 −ðY − 1

2
Þ (iv) ~ϕ × η2, η6

η6 I þ 1=2 Y − 1
2

(i) ϕ × η1, η5
η7 I − 1=2 −ðY þ 1

2
Þ (ii) ϕ × η2, η8

η8 I − 1=2 Y þ 1
2

(iii) ~ϕ × η1, η7
η9 I þ 1=2 −ðY þ 1

2
Þ (ii) ϕ × η2, η10

η10 I þ 1=2 Y þ 1
2

(iii) ~ϕ × η1, η9
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with

ξiðpÞ ≡ ηi2p; η̄iðpÞ ≡ λpijη̄
j
2p−1; ð16Þ

for p ¼ 1;…; 5. Consequently, we have

μpλ
p
ijη

j
2p−1η

i
2p ¼ μpη

i
ðpÞξ

i
ðpÞ ¼ μpψ̄

i
ðpÞRψ

i
ðpÞL; ð17Þ

for p ¼ 1;…; 5,

g2p−1λ
p
ijk

~ϕiηj2η
k
2p−1 ¼ g2p−1½λpijkðλpÞ−1kl � ~ϕiξjð1Þη

l
ðpÞ

¼ g2p−1½λpijkðλpÞ−1kl � ~ϕiψ̄ l
ðpÞRψ

j
ð1ÞL ð18Þ

and
g2pλ

p
ijkϕ

iηj1η
k
2p ¼ g2p½λpijkðλ1Þ−1jl �ϕiηlð1Þξ

k
ð2pÞ

¼ g2p½λpijkðλ1Þ−1jl �ϕiψ̄ l
ð1ÞRψ

k
ðpÞL; ð19Þ

for p ¼ 2;…; 5, giving

−Lm ¼
X5
p¼1

μpψ̄
i
ðpÞRψ

i
ðpÞL þ

X3
p¼2

fg2p−1½λpijkðλpÞ−1kl � ~ϕiψ̄ l
ðpÞRψ

j
ð1ÞL þ g2p½λpijkðλ1Þ−1jl �ϕiψ̄ l

ð1ÞRψ
k
ðpÞLg

þ
X5
p¼4

fg2p−1½λpijkðλpÞ−1kl �ϕiψ̄ l
ðpÞRψ

j
ð1ÞL þ g2p½λpijkðλ1Þ−1jl � ~ϕiψ̄ l

ð1ÞRψ
k
ðpÞLg þ H:c: ð20Þ

After SSB, the above Lagrangian will generate the mixing in these Dirac fields. We still do not have any Majorana particle.
The MSSM case can shed some light on this issue. In fact, the relevant MSSM multiplet corresponds to

I ¼ Y ¼ 1

2
; η1;2 ¼ ~H1;2; η3; η4 ∝ ~B; η5; η6 ∝ ~W; without η7;8;9;10: ð21Þ

The Majorana particles can only enter when Y ¼ 1=2, where the quantum numbers of η3ð5Þ and η4ð6Þ are identical, and to
have neutral particles, I can only be half-integers. Consequently, we have

Y ¼ 1

2
; I ¼ 2nþ 1

2
; η3 ¼ signðμ2Þð−1Þnη4; η5 ¼ signðμ3Þð−1Þnþ1η6; ð22Þ

and μ2;3 change to μ2;3=2, to which we will stick throughout this work. Note that the additional signs in the relations of η3;4
and η5;6 are designed to absorb the signs of the corresponding Majorana mass terms [μ2;3; see Eq. (24) below].
The Lagrangian for the neutral WIMP mass term is

−L0
m ¼ μ1λ

1
−1
2
;1
2

η
−1
2

2 η
1
2

1 þ
1

2
μ2λ

2
0;0η

0
4η

0
3 þ

1

2
μ3λ

3
0;0η

0
6η

0
5 þ μ4λ

4
−1;1η

−1
8 η17 þ μ5λ

5
−1;1η

−1
10 η

1
9

þ g3λ21
2
;−1

2
;0
h ~ϕ1

2iη−1
2

2 η03 þ g4λ2−1
2
;1
2
;0
hϕ−1

2iη1
2

1η
0
4 þ g5λ31

2
;−1

2
;0
h ~ϕ1

2iη−1
2

2 η05 þ g6λ3−1
2
;1
2
;0
hϕ−1

2iη1
2

1η
0
6

þ g7λ4−1
2
;−1

2
;1
hϕ−1

2iη−1
2

2 η17 þ g8λ41
2
;1
2
;−1h ~ϕ

1
2iη1

2

1η
−1
8 þ g9λ5−1

2
;−1

2
;1
hϕ−1

2iη−1
2

2 η19 þ g10λ51
2
;1
2
;−1h ~ϕ

1
2iη1

2

1η
−1
10 þ H:c: ð23Þ

It can be simplified as

−L0
m ¼ μ1ð−1Þnþ1η

−1
2

2 η
1
2

1 þ
1

2
μ2ð−1Þnη04η03 þ

1

2
μ3ð−1Þnþ1η06η

0
5 þ μ4ð−1Þnþ1η−18 η17 þ μ5ð−1Þnη−110 η19

þ g3ð−1Þnh ~ϕ
1
2iη−1

2

2 η03 þ g4ð−1Þnþ1hϕ−1
2iη1

2

1η
0
4 þ g5ð−1Þ1−nh ~ϕ

1
2iη−1

2

2 η05 þ g6ð−1Þ1−nhϕ−1
2iη1

2

1η
0
6

þ g7ð−1Þn
ffiffiffiffiffiffiffiffiffiffiffi
n

nþ 1

r
hϕ−1

2iη−1
2

2 η17 þ g8ð−1Þnþ1

ffiffiffiffiffiffiffiffiffiffiffi
n

nþ 1

r
h ~ϕ1

2iη1
2

1η
−1
8

þ g9ð−1Þ−n
ffiffiffiffiffiffiffiffiffiffiffi
nþ 2

nþ 1

r
hϕ−1

2iη−1
2

2 η19 þ g10ð−1Þ−n
ffiffiffiffiffiffiffiffiffiffiffi
nþ 2

nþ 1

r
h ~ϕ1

2iη1
2

1η
−1
10 þ H:c: ð24Þ

With the basis Ψ0T
i ¼ ðη1=21 ; η−1=22 ; η03; η

0
5; η

1
7; η

−1
8 ; η19; η

−1
10 Þ, the above Lagrangian after SSB can be written as

L0
m ¼ −

1

2
Ψ0TYΨ0 þ H:c:; ð25Þ
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where the corresponding mass matrix Y takes the form0
BBBBBBBBBBBBBBBBBBBBBBBBB@

0 ð−Þnþ1μ1 − g4vffiffi
2

p g6vffiffi
2

p 0
ð−1Þnþ1g8v

ffiffi
n

pffiffiffiffiffiffiffiffiffiffiffi
2ðnþ1Þ

p 0
ð−1Þng10v

ffiffiffiffiffiffiffi
nþ2

pffiffiffiffiffiffiffiffiffiffiffi
2ðnþ1Þ

p

ð−Þnþ1μ1 0
ð−1Þng3vffiffi

2
p ð−1Þnþ1g5vffiffi

2
p ð−1Þng7v

ffiffi
n

pffiffiffiffiffiffiffiffiffiffiffi
2ðnþ1Þ

p 0
ð−1Þng9v

ffiffiffiffiffiffiffi
nþ2

pffiffiffiffiffiffiffiffiffiffiffi
2ðnþ1Þ

p 0

− g4vffiffi
2

p ð−1Þng3vffiffi
2

p μ2 0 0 0 0 0

g6vffiffi
2

p ð−Þnþ1g5vffiffi
2

p 0 μ3 0 0 0 0

0
ð−1Þng7v

ffiffi
n

pffiffiffiffiffiffiffiffiffiffiffi
2ðnþ1Þ

p 0 0 0 ð−1Þnþ1μ4 0 0

ð−1Þnþ1g8v
ffiffi
n

pffiffiffiffiffiffiffiffiffiffiffi
2ðnþ1Þ

p 0 0 0 ð−1Þnþ1μ4 0 0 0

0
ð−1Þng9v

ffiffiffiffiffiffiffi
nþ2

pffiffiffiffiffiffiffiffiffiffiffi
2ðnþ1Þ

p 0 0 0 0 0 ð−1Þnμ5
ð−1Þng10v

ffiffiffiffiffiffiffi
nþ2

pffiffiffiffiffiffiffiffiffiffiffi
2ðnþ1Þ

p 0 0 0 0 0 ð−1Þnμ5 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

: ð26Þ

In parallel with the neutralino sector in the MSSM, we work the model with I ¼ Y ¼ 1=2, and the Lagrangian for the
neutralWIMPmass termmust bemodified as inAppendixA.Note that the sign convention of theClebsch-Gordan coefficient
is different from those usually used in quantum field theory. For example, we usually use π� ¼ ðπ1∓iπ2Þ=

ffiffiffi
2

p
, while the

Clebsch-Gordan convention is π� ¼ ∓ðπ1∓iπ2Þ=
ffiffiffi
2

p
. Comparing to the MSSM, we then have the correspondences

η1 ¼ ~H1; η2 ¼ ~H2; η3 ¼ −iλ0; η�;0
5 ¼ −ið∓λ�; λ3Þ;

g3v ¼
ffiffiffi
2

p
mZ cos β sin θW; g4v ¼

ffiffiffi
2

p
mZ sin β sin θW;

g5v ¼
ffiffiffi
2

p
mZ cos β cos θW; g6v ¼

ffiffiffi
2

p
mZ sin β cos θW;

μ4 ¼ μ5 ¼ 0; g7;8;9;10 ¼ 0; ð27Þ
where the additional sign in front of λþ is to absorb the sign from the Clebsch-Gordan sign convention.
When diagonalizing the mass matrix in Eq. (26) and producing non-negative mass eigenvalues, one sometimes needs to

absorb a negative sign resulting in purely imaginary matrix elements in the transition matrix. On the other hand, one should
note that all parameters in the Lagrangian are assumed to be real before transforming the gauge eigenstates to mass
eigenstates in this model. The whole Lagrangian in this model is then CP conserved. As noted after field redefinition, some
couplings become purely imaginary. However, the whole Lagrangian should still be CP conserved (see Appendix E).
The Lagrangian for a single charged WIMP mass term is

−L�
m ¼ μ1ð−1Þnðη

1
2

2η
−1
2

1 þ η
−3
2

2 η
3
2

1Þ þ
1

2
μ2ð−1Þnþ1ðη14η−13 þ η−14 η13Þ þ

1

2
μ3ð−1Þnðη16η−15 þ η−16 η15Þ

þ μ4ð−1Þnðη08η07 þ η−28 η27Þ þ μ5ð−1Þnþ1ðη010η09 þ η−210 η
2
9Þ þ g3ð−1Þnþ1

� ffiffiffiffiffiffiffiffiffiffiffi
n

nþ 1

r
h ~ϕ1

2iη1
2

2η
−1
3 þ

ffiffiffiffiffiffiffiffiffiffiffi
nþ 2

nþ 1

r
h ~ϕ1

2iη−3
2

2 η13

�

þ g4ð−1Þn
� ffiffiffiffiffiffiffiffiffiffiffi

nþ 2

nþ 1

r
hϕ−1

2iη3
2

1η
−1
4 þ

ffiffiffiffiffiffiffiffiffiffiffi
n

nþ 1

r
hϕ−1

2iη−1
2

1 η14

�
þ g5ð−1Þn

� ffiffiffiffiffiffiffiffiffiffiffi
nþ 2

nþ 1

r
h ~ϕ1

2iη1
2

2η
−1
5 þ

ffiffiffiffiffiffiffiffiffiffiffi
n

nþ 1

r
h ~ϕ1

2iη−3
2

2 η15

�

þ g6ð−1Þn
� ffiffiffiffiffiffiffiffiffiffiffi

n
nþ 1

r
hϕ−1

2iη−1
2

1 η16 þ
ffiffiffiffiffiffiffiffiffiffiffi
nþ 2

nþ 1

r
hϕ−1

2iη3
2

1η
−1
6

�
þ g7ð−1Þnþ1

�
hϕ−1

2iη1
2

2η
0
7 þ

ffiffiffiffiffiffiffiffiffiffiffi
n − 1

nþ 1

r
hϕ−1

2iη−3
2

2 η27

�

þ g8ð−1Þn
� ffiffiffiffiffiffiffiffiffiffiffi

n − 1

nþ 1

r
h ~ϕ1

2iη3
2

1η
−2
8 þ h ~ϕ1

2iη−1
2

1 η
0
8

�
þ g9ð−1Þn−1

�
hϕ−1

2iη1
2

2η
0
9 þ

ffiffiffiffiffiffiffiffiffiffiffi
nþ 3

nþ 1

r
hϕ−1

2iη−3
2

2 η29

�

þ g10ð−1Þn−1
� ffiffiffiffiffiffiffiffiffiffiffi

nþ 3

nþ 1

r
h ~ϕ1

2iη3
2

1η
−2
10 þ h ~ϕ1

2iη−1
2

1 η010

�
þ H:c: ð28Þ
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As mentioned previously, hijTþjji used in quantum field
theory is connected to Clebsch-Gordan coefficient
hm0jJþjmi used in quantum mechanics by a similarity
transformation V,

hIk;ijTþjIk;ji
¼
X
m;m0

hIk;ijV†jIk;m0ihIk;m0jVJþV†jIk;mihIk;mjVjIk;ji:

ð29Þ
When dealing with the single charged particles, the
similarity transformation only changes the sign of positive

charged particles with an integer isospin; namely, we only
need to do the transform

ηqkþ1
k → η0qkþ1

k ≡ Vηqkþ1
k ¼ ð−1Þmodð2Ik;2Þþ1ηqkþ1

k ; ð30Þ

where qk in ηqkþ1
k is defined as the the third component of

isospin corresponding to the neutral particle in the multiplet
ηk with isospin Ik. With the basis ΨþT

i ¼ ðη03=21 ; η01=22 ; η013 ;
η015 ; η

02
7 ; η

00
8 ; η

02
9 ; η

00
10Þ and Ψ−T

i ¼ ðη−1=21 ; η−3=22 ; η−13 ; η−15 ; η07;
η−28 ; η09; η

−2
10 Þ, the Lagrangian in Eq. (28) becomes

−L�
m ¼ μ1ð−1Þnðηþ2 η−1 þ η−2 η

þ
1 Þ þ

1

2
μ2ðη0þ3 η−3 þ η−3 η

0þ
3 Þ þ

1

2
μ3ðη0þ5 η−5 þ η−5 η

0þ
5 Þ

− μ4ð−1Þnðη0þ8 η−7 þ η−8 η
0þ
7 Þ − μ5ð−1Þnþ1ðη0þ10η−9 þ η−10η

0þ
9 Þ

þ g3ð−1Þnþ1

� ffiffiffiffiffiffiffiffiffiffiffi
n

nþ 1

r
h ~ϕ0iηþ2 η−3 −

ffiffiffiffiffiffiffiffiffiffiffi
nþ 2

nþ 1

r
h ~ϕ0iη−2 η0þ3

�
þ g4

� ffiffiffiffiffiffiffiffiffiffiffi
nþ 2

nþ 1

r
hϕ0iηþ1 η−3 þ

ffiffiffiffiffiffiffiffiffiffiffi
n

nþ 1

r
hϕ0iη−1 η0þ3

�

þ g5ð−1Þn
� ffiffiffiffiffiffiffiffiffiffiffi

nþ 2

nþ 1

r
h ~ϕ0iηþ2 η−5 −

ffiffiffiffiffiffiffiffiffiffiffi
n

nþ 1

r
h ~ϕ0iη−2 η0þ5

�
þ g6

�
−

ffiffiffiffiffiffiffiffiffiffiffi
n

nþ 1

r
hϕ0iηþ1 η−5 þ

ffiffiffiffiffiffiffiffiffiffiffi
nþ 2

nþ 1

r
hϕ0iη−1 η0þ5

�

þ g7ð−1Þnþ1

�
hϕ0iηþ2 η−7 −

ffiffiffiffiffiffiffiffiffiffiffi
n − 1

nþ 1

r
hϕ0iη−2 η0þ7

�
þ g8ð−1Þn

� ffiffiffiffiffiffiffiffiffiffiffi
n − 1

nþ 1

r
h ~ϕ0iηþ1 η−8 − h ~ϕ0iη−1 η0þ8

�

þ g9ð−1Þn−1
�
hϕ0iηþ2 η−9 −

ffiffiffiffiffiffiffiffiffiffiffi
nþ 3

nþ 1

r
hϕ0iη−2 η0þ9

�
þ g10ð−1Þn−1

� ffiffiffiffiffiffiffiffiffiffiffi
nþ 3

nþ 1

r
h ~ϕ0iηþ1 η−10 − h ~ϕ0iη−1 η0þ10

�
þ H:c: ð31Þ

After SSB, it can be written as a compact form as

L�
m ¼ −

1

2
ðΨþ;Ψ−Þ

�
0 XT

X 0

��
Ψþ

Ψ−

�
þ H:c:; ð32Þ

where X takes the form

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

0 ð−Þnμ1 −g4v
ffiffi
n

pffiffiffiffiffiffiffiffiffiffiffi
2ðnþ1Þ

p g6v
ffiffiffiffiffiffiffi
nþ2

pffiffiffiffiffiffiffiffiffiffiffi
2ðnþ1Þ

p 0
ð−1Þnþ1g8vffiffi

2
p 0

ð−1Þng10vffiffi
2

p

ð−Þnμ1 0
ð−Þng3v

ffiffiffiffiffiffiffi
nþ2

pffiffiffiffiffiffiffiffiffiffiffi
2ðnþ1Þ

p ð−Þnþ1g5v
ffiffi
n

pffiffiffiffiffiffiffiffiffiffiffi
2ðnþ1Þ

p ð−Þng7v
ffiffiffiffiffiffi
n−1

pffiffiffiffiffiffiffiffiffiffiffi
2ðnþ1Þ

p 0
ð−Þng9v

ffiffiffiffiffiffiffi
nþ3

pffiffiffiffiffiffiffiffiffiffiffi
2ðnþ1Þ

p 0

g4v
ffiffiffiffiffiffiffi
nþ2

pffiffiffiffiffiffiffiffiffiffiffi
2ðnþ1Þ

p ð−Þnþ1g3v
ffiffi
n

pffiffiffiffiffiffiffiffiffiffiffi
2ðnþ1Þ

p μ2 0 0 0 0 0

−g6v
ffiffi
n

pffiffiffiffiffiffiffiffiffiffiffi
2ðnþ1Þ

p ð−Þng5v
ffiffiffiffiffiffiffi
nþ2

pffiffiffiffiffiffiffiffiffiffiffi
2ðnþ1Þ

p 0 μ3 0 0 0 0

0
ð−1Þnþ1g7vffiffi

2
p 0 0 0 ð−Þnþ1μ4 0 0

ð−1Þng8v
ffiffiffiffiffiffi
n−1

pffiffiffiffiffiffiffiffiffiffiffi
2ðnþ1Þ

p 0 0 0 ð−Þnþ1μ4 0 0 0

0
ð−Þn−1g9vffiffi

2
p 0 0 0 0 0 ð−Þnþ1μ5

ð−Þn−1g10v
ffiffiffiffiffiffiffi
nþ3

pffiffiffiffiffiffiffiffiffiffiffi
2ðnþ1Þ

p 0 0 0 0 0 ð−Þnþ1μ5 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

: ð33Þ
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Comparing to the chargino sector in the MSSM with
ψþT
i ¼ ð−iλþ;ψ1

H2
Þ and ψ−T

j ¼ ð−iλ−;ψ2
H1
Þ, we have the

following correspondences:

η−1 ¼ ψ2
H1
; ηþ2 ¼ ψ1

H2
; η0þ5 ¼ −iλþ; η−5 ¼ −iλ−;

g5v ¼
ffiffiffi
2

p
mZ cos β cos θW; g6v ¼

ffiffiffi
2

p
mZ sin β cos θW;

μ4 ¼ μ5 ¼ 0; g7;8;9;10 ¼ 0. ð34Þ

Note that the Lagrangian for a single charged WIMP mass
term with I ¼ Y ¼ 1=2 also needs to be modified as in
Appendix A and the mass eigenstates of the neutral as well
as single charged particles in the four-component notation
are constructed in Appendix B.

B. Dark matter annihilation

The DM particles are thought to have been created
thermally during the big bang and frozen out of thermal
equilibrium in the early Universe with a relic density. The
evolution of DM abundance is described by the Boltzmann
equation,

dnχ
dt

þ 3Hnχ ¼ −hσannvMϕli½nχnχ̄ − neqχ n
eq
χ̄ �; ð35Þ

where H ≡ _a=a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π3g�ðTÞT4=ð45M2

PL

p
Þ is the Hubble

parameter, MPL is the Plank mass, and g� is the total
effective number of the relativistic degrees of freedom
[47,48]. nχðnχ̄Þ is the number density of DM particles, and
nχ̄ ¼ nχ for Majorana fermions (that is, χ ¼ χ̄) as in this
model. Equation (35) is measured in the cosmic comoving
frame [49], and hσannvMϕli is the thermal averaged
annihilation cross section times Mϕller velocity, which
is defined by vMϕl ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1 · p2Þ2 −m2

1m
2
2

p
=ðE1E2Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jv1 − v2j2 − jv1 × v2j2
p

with subscripts 1 and 2 labeling
the two initial DM particles and veloc-
ities vi ≡ pi=Eiði ¼ 1; 2Þ.3
The DM particles became nonrelativistic when they

froze out of thermal equilibrium in the early Universe.
In this nonrelativistic limit, σannðχχ → allÞv ¼
aþ bv2 þOðv4Þ, where v≡ vlab ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

χÞ
q

=ðs −
2m2

χÞ and the Mandelstam variable s ¼ 2m2
χð1þ

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2Þ

p
in the lab frame. The velocity averaged DM

annihilation cross section via Maxwell velocity distribution
can be calculated [45] to be hσannvi ¼ aþ 6b=xþ
Oð1=x2Þ with the freeze-out temperature parameter

x≡mχ=T. At the freeze-out temperature, the interaction
rate of DM particles is equal to the expansion rate of
Universe, namely, Γf ≡ neqχ hσannvi ¼ HðTfÞ. From this
freeze-out condition, xf can be solved numerically by
the equation [13,47]

xf ¼ ln

�
cðcþ 2Þ

ffiffiffiffiffi
45

8

r
gχmχMPLðaþ 6b=xfÞ
2π3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�ðmχ=xfÞ

p
x1=2f

	
; ð36Þ

where c is an order of unity parameter determined by
matching the late time and early time in the freeze-out
criterion. We take the usual value c ¼ 1=2 since the exact
value of c is not so significant to solve the numerical
solution for xf due to the logarithmic dependence in
Eq. (36). Following the standard procedure [47] to solve
Eq. (35), the relic CDM density ΩDM ≡ ρχ=ρcrit can be
approximately related to the velocity averaged annihilation
cross section hσannvi as

ΩDMh2 ≈ 1.04 × 109
GeV−1

MPL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�ðmχÞ

p
JðxfÞ

; ð37Þ

where

JðxfÞ≡
Z

∞

xf

hσannvi
x2

dx ¼ ax−1f þ 3bx−2f þOðx−3f Þ: ð38Þ

When doing the calculation of DM relic density, we need
to consider three exceptions [50]: coannihilation, forbidden
channel annihilation, and annihilation near the pole. In this
article, we focus on the model building and mainly consider
the annihilation processes. The leading effect on coanni-
hilation in this model will be discussed in Sec. IV. To solve
the last two exceptions, we do not take the Taylor series
expansion on v2 in the s channel, and for each annihilation
channel, we put a step function for the allowed threshold
energy in the thermal average cross section as follows:

hσannvi ¼
x3=2

2π

X
A;B

Z
∞

0

dvv2e−xv
2=4½σannðχχ → Aþ BÞv�θ

×

�
2m2

χ

�
1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p

�
− ðmA þmBÞ2

	
: ð39Þ

Instead of aþ 6b=xf, we replace it with the above thermal
averaged cross section with x ¼ xf in Eq. (36) and solve
the value of xf numerically. Then, we can get the DM relic
density by modifying JðxfÞ in Eq. (38) as follows:

3In general, the collision is not collinear in the comoving
frame. Hence, the Mϕller velocity is not equal to the relative
velocity vrel ≡ jv1 − v2j. Nevertheless, it has been shown [49]
that hσannvMϕli ¼ hσannvlabilab, where vlab ≡ jv1;lab − v2;labj is
calculated in the lab frame with one of two initial particles being
at rest.
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JðxfÞ≡
Z

∞

xf

hσannvi
x2

dx

¼
X
A;B

Z
∞

0

dv½σannðχχ → AþBÞv�½1− erfðv ffiffiffiffiffi
xf

p
=2Þ�

× θ

�
2m2

χ

�
1þ 1ffiffiffiffiffiffiffiffiffiffiffiffi

1− v2
p

�
− ðmA þmBÞ2

	
: ð40Þ

We will calculate the relic density in the early
Universe through the DM annihilation processes
ðχχ → WþW−; ZZ; ZH;HH; ff̄Þ. Figure 1 shows the cor-
responding Feynman diagrams. The corresponding
Lagrangian and the matrix elements are shown in
Appendixes C and D, respectively, and it is straightforward
to obtain hσannvi. Although the present DM relic density is
determined by the velocity averaged cross section hσannvi
of DM annihilation processes which ceased after the freeze-
out stage in the cosmological scale, the DM annihilation to
the SM particles would still occur today in regions of high
DM density and result in the indirect search for end
products as excesses relative to products from SM astro-
physical processes. The results on hσannvi can be readily
applied to the indirect search processes by using a typical
velocity v≃ 300 km=s (explained in Sec. III).
As we know that in the nonrelativistic limit, σannv can be

expressed as aþ bv2 þOðv4Þ, where a is the s-wave
contribution at zero relative velocity and bv2 contains both
the s- and p-waves contributions. σannv is dominated by the
s-wave term in indirect-detection calculations, while both
s- and p-wave terms become important when dealing with
the calculation of DM relic density.

It will be useful to recall some qualitative properties of
the DM annihilation amplitudes in the channels of
χχ → WþW−; ZZ, ZH, HH; ff̄ [13,51]. Fermi statistics
forces the two identical Majorana fermions with orbital
angular momentum L and total spin S to satisfy
ð−ÞS ¼ ð−ÞL. The total angular momentum of the s-wave
state is J ¼ 0, and the CP is given by CP ¼
ð−1ÞLþ1 ¼ −1, while the p-wave state has CP¼þ1 [see
Eqs. (E31) and (E33)].
The final-state WþW− can be produced via t-channel

exchange of a single charged WIMP and s-channel
exchange of a Higgs scalar or a Z boson (see Fig. 1).
The final-state ZZ can be produced via t-channel
exchange of a neutral WIMP and s-channel exchange
of a Higgs scalar (see Fig. 1). Note that in the
s-wave DM amplitude both gauge bosons in the final
state are transversely polarized and governed via the
t-channel exchange diagrams [13,51]. Also note that a
binolike DM pair does not contribute to the s-wave
amplitude [51].
The DM particles can annihilate into ZH via t-channel

exchange of a neutral WIMP and s-channel exchange of a Z
boson (see Fig. 1). The final-state ZH in a L ¼ 1
configuration can match the angular momentum and the
CP of the s-wave DM pair. Hence, the s-wave amplitude is
allowed in this channel [13,51].
The DM particles can annihilate into two Higgs bosons

via t-channel exchange of a neutral WIMP and s-channel
exchange of a scalar Higgs (see Fig. 1). The s-wave
scattering amplitude is vanishing since two scalars cannot
be in a state with J ¼ 0 and CP ¼ −1 [13,51].

FIG. 1. The annihilation processes ðχχ → WþW−; ZZ; ZH;HH; ff̄Þ.
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The final-state fermion-antifermion pair ff̄ can be
produced via the s-channel exchange of a Higgs scalar
or a Z boson (see Fig. 1). The Z exchange contributes to
both the s- and p-wave matrix elements with chiral
conserving interactions [51]. The final-state ff̄ has
CP ¼ ð−ÞSþ1. The s-wave DM pair requires the total spin
S ¼ 0 in the final state to conserve CP so that both the
fermion and antifermion should have the same helicity. The
Z-f-f̄ couplings imply the fermion and the antifermion in
opposite chirality and hence result in the helicity suppres-
sion of the s-wave amplitude. The Higgs scalar exchange
only contributes to p-wave matrix elements (since the CP
of Higgs boson is þ1) with a fermion mass factor.

Hence, the process χχ → ff̄ favors a heavy fermion
pair [13,51].

C. DM-nucleus elastic scattering cross section

To compare with the results of LUX, XENON100, and
PICO-60 experiments, we calculate the SI and SD cross
sections of DM scattering off 129;131Xe nuclei and the SD
cross section of DM scattering off CF3I nuclei. We shall
obtain

P̄ jMfij2 at q2 ¼ 0 first. In this model, the DM is
composed of Majorana fermions so that the DM vector
current matrix elements are vanishing. Hence, the
Lagrangian in this model is given by

L ¼ χ̄γμγ5χj
μ
Ah þ χ̄γμγ5χj

μ
Vh þ χ̄χsh þ χ̄γ5χs0h: ð41Þ

where

sh ¼ aqq̄q; s0h ¼ a0qq̄q: jμVh ¼ bqjμVq ¼ bqq̄γμq; jμAh ¼ dqjμAq ¼ dqq̄γγ5q; ð42Þ
and aq, a0q, bq, and dq are given in Appendix F. The corresponding scattering amplitude is

iMfi ¼ hχðp0
χ ; s0χÞ;N ðp0; s0ÞjiLð0Þjχðpχ ; sχÞ;N ðp; sÞi

¼ iκχ ūðp0
χ ; s0χÞγμγ5uðpχ ; sχÞhN ðp0; s0ÞjjμAh þ jμVhjN ðp; sÞi

þ iκχ ūðp0
χ ; s0χÞuðpχ ; sχÞhN ðp0; s0ÞjshjN ðp; sÞi

þ iκχ ūðp0
χ ; s0χÞγ5uðpχ ; sχÞhN ðp0; s0Þjs0hjN ðp; sÞi: ð43Þ

In the above, κχ ¼ 2 for the Majorana fermions in this model, and κχ ¼ 1 for the Dirac fermions.
It is useful to define

χXY ≡ 1

2Jχ þ 1

X
spins

hχðpχ ; sχÞjðχ̄χÞXjχðp0
χ ; s0χÞihχðp0

χ ; s0χÞjðχ̄χÞY jχðpχ ; sχÞi

WXY ≡ 1

2JN þ 1

X
spins

hN ðp0; s0ÞjOhXjN ðp0; s0ÞihN ðp0; s0ÞjOhY jN ðp; sÞi; ð44Þ

where X; Y ¼ A, V, S, P, and OhX is the corresponding operator. For example, we have

χAAμν ≡ 1

2

X
spins

hχðp0
χ ; s0χÞjχ̄γμγ5χð0Þjχðpχ ; sχÞihχðpχ ; sχÞjχ̄γνγ5χð0Þjχðp0

χ ; s0χÞi; ð45Þ

or explicitly

χAAμν ¼ ððpχ þ p0
χÞμðpχ þ p0

χÞν − gμν4m2
χ þ gμνq2 − qμqνÞκ2χ : ð46Þ

Similarly, for X; Y ¼ A, V, we have

WXY
μν ≡ 1

2JN þ 1

X
s;s0

hN ðp0; s0ÞjjXh;μð0ÞjN ðp; sÞihN ðp; sÞjjYh;νð0ÞjN ðp0; s0Þi; ð47Þ

WSS
μν ≡ 1

2JN þ 1

X
s;s0

hN ðp0; s0Þjshð0ÞjN ðp; sÞihN ðp; sÞjshð0ÞjN ðp0; s0Þi; ð48Þ

and so on.
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Note that q2 ¼ 0means q ¼ 0 in all frames (see Appendix F). It is simpler to work in the lab frame (the rest frame ofN ).
The matrix elements of scalar, vector, and axial-vector current operators with initial- and final-state nucleus at rest are
given by

hN ðmN ; s0Þjshð0ÞjN ðmN ; sÞi ¼ 2mN fsN δss0 ;

hN ðmN ; s0Þjs0hð0ÞjN ðmN ; sÞi ¼ 2mN f0sN δss0 ;

hN ðmN ; s0ÞjjVh;μð0ÞjN ðmN ; sÞi ¼ 2g0μmN δss0QVN ;

hN ðmN ; s0ÞjjμAhð0ÞjN ðmN ; sÞi ¼ 4gμi mNQAN hJN ; s0jð~SN ÞijJN ; si; ð49Þ
with

QVN ¼ Zð2bu þ bdÞ þ ðA − ZÞð2bd þ buÞ;
QAN ¼ dqðΔp

qλp þ Δn
qλnÞ;

fð
0Þ

sN ¼ að 0qÞðZfsp þ ðA − ZÞfsnÞ;

fspðnÞ ¼
X

q¼u;d;s

mpðnÞ
mq

fðpðnÞÞTq þ
X

q¼c;b;t

2

27

mpðnÞ
mq

�
1 −

X
q0¼u;d;s

fðpðnÞÞTq0

�
;

λp;n ¼
hSp;n;zieff

JN
: ð50Þ

The derivation of the above formulas are given in Appendix F. Using

χAA;μνðq ¼ 0Þ ¼ κ2χ4ðpμ
χpν

χ − gμνm2
χÞ; χSSðq ¼ 0Þ ¼ 4m2

χ ;

χAS;μ ¼ χAP;μ ¼ χSP ¼ 0; χPPðq ¼ 0Þ ¼ 0; ð51Þ
with pχ ¼ p0

χ ¼ ðEχ ; 0; 0; p3
χÞ,

ðp3
χÞ2 ¼

m2
χv2

1 − v2
; ð52Þ

in the nucleus rest frame and X
s;s0

hJN ; s0jð~SN ÞzjJN ; siδss0 ¼ 0;

X
s;s0

hJN ; sjð~SN ÞzjJN ; s0ihJN ; s0jð~SN ÞzjJN ; si ¼ 1

3
JN ðJN þ 1Þð2JN þ 1Þ;

X
s;s0

hJN ; sjð~SN ÞijJN ; s0ihJN ; s0jð~SN ÞijJN ; si ¼ JN ðJN þ 1Þð2JN þ 1Þ; ð53Þ

we obtain X̄
jMfij2 ¼ χAA;μνWAA

μν þ χAA;μνWVV
μν þ χSSWSS; ð54Þ

where

χAA;μνWAA
μν ¼ 64κ2χm2

Nm2
χ

�
1þ v2

3ð1 − v2Þ
�
Q2

AN JN ðJN þ 1Þ; ð55Þ

χAA;μνWVV
μν ¼ 16κ2χm2

Nm2
χ

v2

1 − v2
Q2

VN ; ð56Þ

χSSWSS ¼ 16κ2χm2
χm2

N f2N : ð57Þ
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Consequently, we haveX̄
jMfij2ðq2 ¼ 0Þ ¼ 16m2

Nm2
χκ

2
χ

��
4þ 4v2

3ð1 − v2Þ
�
Q2

AN JN ðJN þ 1Þ þ v2

1 − v2
Q2

VN þ f2sN

	
: ð58Þ

Several comments are in order:
(i) Note that there is no interference between various

interaction terms in iMfi.
(ii) In the nucleus rest frame and at q ¼ 0, the matrix

element of the space component of the vector current
is vanishing, while the one of the time component
of the axial-vector current is also vanishing;
see Eq. (F14).

(iii) It seems that the matrix elements of jAχμ and jVh;μ
are orthogonal and hence the decay amplitude from
the jAχμj

μ
Vh contribution, i.e., χAA;μνWAA

μν , is vanish-
ing. This is, however, untrue, since the rest frame of
χ is not the rest frame of N . Although the decay
amplitude, see Eq. (56), is indeed suppressed by v
[v ¼ Oð10−3Þ], it is enhanced by QVN , which

contains large factors such as Z and A. The con-
tribution from this term needs to be kept.

Usually, the direct search experiments report the cross
section normalized to the interaction with a single nucleon
(neutron/proton) since the target materials used in different
direct search experiments are not the same. The normali-
zation procedure is shown in Appendix F; we summarize
the formulas below. The differential cross section is given
by [see Eq. (F67)]

dσAi

djqj2 ¼
1

4μ2Ai
v2

ðσSI0 F2
SIðjqj2Þ þ σSD0;ppF

2
ppðjqj2Þ

þ σSD0;nnF
2
nnðjqj2Þ þ σSD0;pnF

2
pnðjqj2ÞÞ; ð59Þ

where

σSI0 ¼ μ2Ai

π
κ2χ

�
v2

1 − v2
Q2

VAi
þ f2sAi

	
;

σSD
0;ppðnnÞ ¼

μ2Ai

π
κ2χ

��
4þ 4v2

3ð1 − v2Þ
��X

dqΔpðnÞ
q

�
2

λ2pðnÞJAi
ðJAi

þ 1Þ
	
;

σSD0;pn ¼
μ2Ai

π
κ2χ

��
4þ 4v2

3ð1 − v2Þ
�
2

�X
dqdq

0Δp
qΔn

q0

�
λpλnJAi

ðJAi
þ 1Þ

	
: ð60Þ

Note that in the above formulas the form factors do not
depend on aq, a0q, bq, and dq in Eq. (41). It is better than
those usually used in the literature, where dqs are involved in
the form factors. The DM-nucleus scattering cross section is

σAi
¼

Z
djqj2 dσ

djqj2
¼ ðσSI0 rSI þ σSD0;pprpp þ σSD0;nnrnn þ σSD0;pnrpnÞ; ð61Þ

where

rj ≡
Z

4μ2Ai
v2

0

djqj2
4μ2Ai

v2
F2
jðjqjÞ; ð62Þ

with j ¼ SI; pp; nn; pn, and

F2
ppðnnÞðjqjÞ≡

S00ðjqjÞ þ S11ðjqjÞ � S01ðjqjÞ
S00ð0Þ þ S11ð0Þ � S01ð0Þ

;

F2
pnðjqjÞ≡ S00ðjqjÞ − S11ðjqjÞ

S00ð0Þ − S11ð0Þ
: ð63Þ

Finally, the spin-independent and spin-dependent scaled
cross sections are defined as

σZN ≡
P

iηiσAiP
jηjA

2
j

μ2Aj
μ2p

ð64Þ

and

σSDp;n ≡
�X

i

ηiσAi

��X
j
ηj
4μ2Aj

hSp;ni2effðJAj
þ 1Þ

3μ2p;nJAj

�−1

;

ð65Þ

respectively. In this way, the data obtained from different
experiments can be compared using σZN and σSDp;n.

4

III. RESULTS

In parallel with the DM sector of the MSSM [13,28], we
analyze the model with I ¼ 1=2 and Y ¼ 1=2. In this
model, there are 13 parameters in total, five mass

4The terminology of spin-(in)dependent cross section is some-
what misleading. There are, in fact, two different normalizations,
where both spin-dependent and spin-independent interactions are
involved in σSDp;n and σZN .
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parameters μiði ¼ 1–5Þ and eight Yukawa couplings
giði ¼ 3–10Þ, as shown in the mass matrices of neutral
as well as single charged WIMPs in Eqs. (A4) and (A8),
respectively. In principle, the 13 parameters can be reduced
to fewer parameters under different considerations. First of
all, let us see what is the minimal particle content which can
make up the DM. In this model, the Majorana fermion can
be generated purely by the singlet η3, namely, only the mass
parameter μ2 being nonzero. Because of its quantum
number ð2I;−ðY − 1=2ÞÞ ¼ ð1; 0Þ, it does not couple to
the SM gauge bosons. It also does not couple to the SM
Higgs boson since all Yakawa couplings are set to be zeros.
Hence, it is inert and impossible to be a WIMP, unless some
exotic Higgs boson is introduced [52]. Next, we consider
the Majorana fermion generated by the two doublets η1 and
η2, namely, only the parameter μ1 being nonzero. Because
of their quantum numbers ð2I þ 1;∓YÞ ¼ ð2;∓1=2Þ, they
couple to the SM gauge bosons but still do not couple to the
SM Higgs boson. As mentioned previously, they are two
degenerate Majorana states χ1;2 ∝ ðη1 � η2Þ=

ffiffiffi
2

p
with the

same mass μ1. It results in an oversized DM-nucleus
scattering cross section via Z-boson exchange from the
χ1ð2Þ → χ2ð1Þ vector current. Nevertheless, the problem can
be solved if one can lift the mass degeneracy of χ1;2. Hence,
the minimal particle content to make up the DM is to
combine these fermion doublets η1, η2 and the singlet η3.
To have an overall understanding of the model, we will

consider the following three typical cases: the neutralino-
like, the reduced, and the extended cases (see Table II). For
the neutralinolike case, only the parameters μ1–3 and g3–6
are nonzero, and the Majorana DM is generated by η1;2;3
and the triplet η5. It contains four neutral Majorana
fermions and two single charged fermions. Furthermore,
depending on whether the grand unified theory (GUT)
relation (μ2 ¼ 5

3
μ3 tan2 θW) [53] or the tan β relation (note

that g3v ¼ ffiffiffi
2

p
mZ cos β sin θW , g4v ¼ ffiffiffi

2
p

mZ sin β sin θW ,
g5v ¼ ffiffiffi

2
p

mZ cos β cos θW , and g6v ¼ ffiffiffi
2

p
mZ sin β cos θW)

is imposed or not, we classify the neutralinolike case into
four subcases: the neutralinolike I case with the GUT
relation and tan β ¼ 2, the neutralinolike II case with the
GUT relation and tan β ¼ 20, the neutralinolike III without
the GUT relation but with tan β ¼ 2, and the neutralinolike
IV case without the GUT and the tan β relations.
For the reduced case, only the parameters μ1, μ2, g3, and

g4 are free with the minimal particle content (i.e., η1;2;3). It

contains three neutral Majorana fermions and one single
charged fermion. For the extended case, all of the 13 model
parameters are free with the maximal particle content (i.e.,
all η fields), and it contains six neutral Majorana fermions
and four single charged fermions. In each case, we generate
10,000 random samples and survey the DM mass mχ in
the range of 1–2500 GeV by random sampling the mass
couplings μiði ¼ 1–5Þ linearly in the range of 0–8000 GeV
and the Yukawa coupling giði ¼ 3–10Þ linearly in the range
of 0–1 if these parameters are active.
For each sample, we numerically solve the mass eigen-

states and eigenvalues, find the freeze-out temperature
parameter xf [see Eq. (36)], and obtain the DM thermal
relic density Ωχh2 via the calculations of DM annihilation
processes χχ → WþW−; ZZ; ZH;HH; ff̄ to compare with
the observed relic density. We calculate the normalized SI
and SD elastic cross sections (σSIN , σ

SD
n , and σSDp ) of DM

scattering off 129;131Xe nuclei to compare with the results of
direct search experiments of LUX SI and XENON100 SD
elastic cross sections of DM scattering off 129;131Xe nuclei,
respectively. We also calculate σSDp for DM scattering off
CF3I nuclei to compare with the result of the PICO-60
experiment using CF3I as a material target.
In the calculation of σSIN , we adopt the exponential form

factor [13,24,25] for FSIðjqjÞ, and we use the data in

Ref. [54] for the nucleon parameters fðp;nÞTq in Eq. (50). In
calculation of σSDn;p, we adopt the structure factors
S00;01;11ðjqjÞ for the 129;131Xe nucleus in Ref. [55] and
19F and 127I (by Bonn A calculation) nuclei in Ref. [56] and
use the experimental data in Refs. [54,57] for the quark spin
component in a nucleon Δp;n

q . For 129;131Xe nuclei, we use
the nuclear total angular momentum J and the predicted
spin expectation values hSp;ni in the calculation by
Menendes et al. in Refs. [20,55] for hSp;n;zieff and the
isotope abundance of 129;131Xe in Refs. [20] for ηi. For 19F
and 127I nuclei, we use the nuclear total angular momentum
and the predicted spin expectation values in Refs. [58]. For
simplicity, we only consider the case in which the second-
lightest neutral particle χ2 is dynamically forbidden to be
produced from the χ1 þ 129Xe → χ2 þ 129Xe inelastic scat-
tering process.
For the indirect search, we calculate the present velocity

averaged cross section hσðχχ→WþW−;ZZ;ZH;HH;ff̄Þvi
to compare with the Fermi-LAT results which provide six

TABLE II. Summary of three typical cases.

Case A Case B Case C

Neutralinolike I Neutralinolike II Neutralinolike III Neutralinolike IV Reduced Extended

GUT GUT No GUT No GUT
tan β ¼ 2 tan β ¼ 20 tan β ¼ 2
η1–3;5 η1–3;5 η1–3;5 η1–3;5 η1–3 η1–3;5;7–10
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upper limits on hσðχχ → WþW−; bb̄; uū; τþτ−; μþμ−;
eþe−Þvi from a combined analysis of 15 dSphs in an
indirect search [23]. We know that the DM halo is
immersed in the Galaxy. The speed of the Sun moving
around the Galactic center is about 220 km=s at the local
distance r ≈ 8.5 kpc, and the Galactic circular rotation
speed is about 230 km=s at radii ≈100 kpc [13,59]. On
the other hand, the shortest and longest distances of these
15 dSphs from the Sun are ≈23 and 233 kpc, respectively
[23]. Hence, we will use a typical DM velocity v≃
300 km=s in the indirect-detection calculation.
Finally, we collect all allowed samples which satisfy all

these 11 constraints, namely, one from the observed value
of DM relic density; four from the direct detection of LUX,
XENON100, and PICO-60 experiments; and six from the
indirect detection of Fermi-LAT observations such that we
can find the lower bound of DMmass with different particle
attributes, the allowed range of the model parameters, and
the coupling strengths in this model.
Before showing our results, we first define the different

particle attributes, namely, Higgsino-, bino-, wino-, and
non-neutralino-like particles if the main ingredient (com-
position fraction) ≥60% of a sample is in the state of η1;2,
η3, η5, and η9;10 and is denoted by ~H-, ~B-, ~W-, and non-
neutralino-like ~X particles, respectively; otherwise, we call
it a mixed particle. Let us first show the sample structures
from six sample sets in Table III. We see that less than 1.3%
of the samples is the mixed particles which can be ignored
in each case. For the cases of neutralinolike I and II, the
population ratio of ~H-like to ~B-like particles is roughly
about 3 to 7. Because of the GUT relation, the ~W-like
particles do not appear in these two cases. For the cases of
neutralinolike III and IV, now without the GUT relation,
plenty of ~W-like particles come out. In these two cases, ~H-,
~B-, and ~W-like particles are roughly equally distributed. For
the reduced case, it is about 50=50 equally distributed for
~H- and ~B-like particles. For the extended case, it contains
about 5% non-neutralino-like ~X particles and is roughly
equally distributed for ~H-, ~B-, and ~W-like particles. In the
subsequent descriptions, we will use open circle, times,
triangle, filled square, and filled circle to denote the
Higgsino-, bino-, wino-, and non-neutralino-like and the
mixed particles, respectively. The contour plot of the DM

mass and composition in the μ1-μ3 plane for the neutralino-
like case I is shown in Fig. 2. Note that the contour plot of
the neutralino mass and composition in the MSSM [13] is
successfully reproduced in Fig 2. Hence, the fermion
multiplets η1, η2, η3, and η5 correspond to two doublets
of Higgsinos, a singlet of bino, and a triplet of winos in
the MSSM, respectively [recall Eq. (21)]. Nevertheless, the
model does not contain particles corresponding to the
sfermions and the second Higgs doublet in MSSM so that
there does not exist the annihilation channels into the extra
scalar states and scattering diagrams mediated by the extra
scalars. On the other hand, the model does contain more
Z2-odd fermion particles with multiplets η7, η8, η9, and η10.
Hence, this generic Majorana DM model is still quite
different from the MSSM.

A. Case A: Neutralinolike cases

Both the neutralinolike I and II cases contain seven
parameters, μ1–3; g3–6, which are subjected to the GUT and

FIG. 2. Contour plot of the DM mass and composition in the
μ1-μ3 plane for the neutralinolike I case. The broken curves are
contours of DM mass mχ , and the solid curves are contours of
gauginolike (η03 or η05) fraction. Here, the GUT relation
μ2 ¼ 5

3
μ3 tan2 θW has been used.

TABLE III. Particle attribute distribution of sample sets.

Case A Case B Case C

Percentage ð%Þ Neutralinolike I Neutralinolike II Neutralinolike III Neutralinolike IV Reduced Extended

Higgsino-like (∼η1;2) 29 28 33 31 50 29
Binolike (∼η3) 71 72 33 34 49 34
Winolike (∼η5) 0 0 33 34 0 31
Non-neutralino-like (∼η9;10) 0 0 0 0 0 5
mixed 0.4 0.3 0.6 1.2 0.8 1.3
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the tan β relations resulting in only two free parameters μ1
and μ2 (or μ3). The neutralinolike III case is only subjected
to the tan β relation resulting in three free parameters μ1–3.
Without the GUT and the tan β relations, all of these seven

parameters in the neutralinolike IV case are free. We first
emphasize on the description of the interplay among these
constraints with the case of neutralinolike I using Figs. 3–5
and then tell the differences among these neutralinolike

FIG. 3. Results for all samples with constraints in the case of neutralinolike I [open circle: Higgsino-like, times: binolike, filled circle:
mixed].
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cases in this subsection. The reduced case and the extended
case are discussed in the next two subsections. For
neutralinolike I case, we show the scatter plot of Ωχh2

vs mχ in Fig. 3(a). The horizontal line denotes the upper
limit using the upper 3σ value of the observed relic density
Ωχh2 ¼ 0.1198� 0.0026. The samples sitting above the
horizontal line are ruled out. We see that most of the ~B-like
particles are ruled out, while the ~H-like particles tending to
have smaller values in relic density withmχ > MW are safe.
The Ωobs

χ h2 constraint is the most stringent constraint since
about 74% of samples is ruled out by this constraint. The
results of DM-nucleon elastic scattering cross sections
compared to the LUX σSIN , the XENON100 σSDn;p, and the
PICO-60 σSDp constraints are shown in Figs. 3(b)–3(e),
respectively. Since the LUX constraint on σSI is the most
stringent one among these four constraints, we should
concentrate on Fig. 3(b). We find that the mixed and the ~H-
like particles tend to have larger values in the DM-nucleon
elastic scattering cross section, while the ~B-like particles
tend to have smaller values. The samples sitting below the
upper limit of the LUX SI-experiment [19] (solid curve)
and above the line of the neutrino background (dashed
curve) are allowed. We see that most of mixed particles,
part of the ~H-like particles, and a few of ~B-like particles are
ruled out by the LUX constraint so that about 96% of the
samples is safe. However, most ~B-like particles sitting
between these two lines [see Fig. 3(b)] have been ruled out
by the Ωobs

χ h2 constraint [see Fig. 3(a)], and hence only
23% of the samples survives. Furthermore, nearly 99% of
the survived samples is ~H-like. It shows that the DM relic

density and the direct search constraints are complementary
to each other.
To compare with the Fermi-LAT constraints, we show

the scatter plots of hσðχχ → WþW−; bb̄; uū; τþτ−; μþμ−Þvi
vs mχ in Figs. 3(f)–3(j), respectively. We do not show the
plot of hσðχχ → eþe−Þvi since it is highly helicity sup-
pressed as mentioned in Sec. II. B. The samples sitting
above the Fermi-LAT constraints are ruled out. For the
WþW− channel [see Fig. 3(f)], a ~B-like DM pair does not
contribute to the s-wave amplitude (also mentioned in
Sec. II. B) so that all values of hσannvi for the ~B-like
particles are less than those values for the ~H-like and the
mixed particles. We also see that part of the ~H-like and the
mixed particles are ruled out by this constraint so that about
94% of samples is safe under this constraint. However,
most ~B-like particles sitting below the limit are ruled out by
the Ωobs

χ h2 constraint, and hence only about 20% of the
samples survives. In Figs. 3(f)–3(j), we see that, in general,
the ~B-like particles tend to have smaller hσannvi, while the
~H-like and the mixed particles tend to have larger hσannvi.
Note that all the DM particles annihilating into ff̄ with the
final fermion mass less thanMW have the similar resonance
shapes with peaks at mχ ¼ mZ=2 and mH=2. For bb̄ and
τþτ− channels, only a few DM candidates are ruled out by
these two constraints, and for other channels, the con-
straints become less important when the final fermion
mass is less than mτ. Besides, we also give the scatter
plots of velocity averaged cross sections hσðχχ →
ZZ;HZ; tt̄; HHÞvi vs mχ in Fig. 4. Similar to the case
of theWþW− channel, the ~B-like particles do not contribute

FIG. 4. Scatter plots of hσZZ;ZH;tt̄;HHvi vs mχ in the case of neutralinolike I [open circle: Higgsino-like, times: binolike, filled circle:
mixed].
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to the s-wave amplitude in the ZZ channel (mentioned in
Sec. II. B) so that all the values of hσannvi for the ~B-like
particles are less than those values for the ~H-like particles in
the ZZ channel [see Fig. 4(a)]. In addition, the process

χχ → HH can only proceed from the p wave. It results in
the fact that almost all values of hσannvi in the HH channel
are less than those values in the ZZ, ZH, and tt̄ channels
[see Figs. 4(a)–(4d)]. Recall that the relic density is

FIG. 5. Results for allowed samples satisfying all constraints in the neutralinolike I case [open circle: Higgsino-like, times: binolike,
filled circle: mixed].
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proportional to the inverse of hσannvi, while hσannvi is
dominated by theWþW− channel formχ > MW and the bb̄
channel for mχ < MW. Therefore, the shape of the relic
density in Fig. 3(a) can be easily understood from Figs. 3(f)
and 3(g). The interplay of different observables are useful
and instructive.
In Fig. 5, we redraw Fig. 3 only with the allowed samples

which satisfy all the constraints. These plots are the
predictions of the neutralinolike I case. We will also redraw
the plots of Fig. 4 only with allowed samples later. We find
that the direct detection of the SI cross section from DM
scattering off nuclei and the indirect detection of the
velocity averaged cross section from DM annihilating to
WþW− are two more sensitive constraints as the allowed

regions touch the corresponding upper limits. It means that
they are more accessible for DM searches in the near future.
Now, it is interesting to see how these constraints shape the
allowed range of DM mass for a given particle attribute. In
the following discussion, we will ignore the outlier samples
with DM mass near the peaks, namely, mχ ≃MZ=2 and
MH=2 in Fig. 5. For the ~B-like particles, about 99% of them
is ruled out by the DM relic density constraint. The LUX
σSIN constraint is complementary to the relic density con-
straint such that only the ~B-like particles with mχ ≳
1411 GeV could be DM candidates [see Fig. 3(b)]. All
of the ~H-like particles with mass mχ ≲MW GeV are ruled
out by the DM relic density constraint, followed by the

FIG. 6. Results for all samples with constraints in the neutralinolike II case [open circle: Higgsino-like, times: binolike, filled circle:
mixed].

STUDY OF MAJORANA FERMIONIC DARK MATTER PHYSICAL REVIEW D 94, 035002 (2016)

035002-17



Fermi-LAT hðσðχχ → bb̄Þvi constraint around mχ ∼MW .
All the ~H-like particles with mχ > MW are not ruled out by
the observed relic density [see Fig. 3(a)], and all the ~H-like
particles with MW < mχ ≲ 456 GeV are ruled out by
Fermi-LAT hðσðχχ → WþW−Þvi constraint [see Fig. 3(f)],
while ~H-like particles with mχ ≳ 456 GeV are still subject
to the LUX σSIN constraint. Therefore, without considering
the outliers, the allowed mass regions for the ~B-like and the
~H-like particles in Fig. 5 can be understood.
After explaining the interplay among these constraints in

the case of neutralinolike I, now we turn to see the
differences among these neutralinolike cases. The results
of other three cases with all samples are shown in Figs. 6–8.
In these figures, we do not show the highly helicity

suppressed plots of hσuūvi, hσμþμ−vi, and hσeþe−vi. First
of all, the ~W-like particles do not appear in the cases of
neutralinolike I and II with different tan β values (see
Figs. 3 and 6). It is highly unlikely to generate the ~W-like
particles with the GUT relation.5 In contrast, without
the GUT relation, plenty of ~W-like particles can be
generated as in the cases of neutralinolike III and IV
(see Figs. 7 and 8). For the neutralinolike III case with a
fixed tan β, the ~W-like particles tend to have smaller values
in Ωχh2 and larger values in the cross section of DM
scattering off nuclei and in the velocity averaged cross

FIG. 7. Results for all samples with constraints in the case of neutralinolike III [open circle: Higgsino-like, times: binolike, triangle:
winolike, filled circle: mixed].

5It does not mean that the ~W component is vanishing, but it is
not the dominant composition of DM particles in these cases.
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section of DM annihilation to the SM particles than the
~B-like particles (see Fig. 7). For the neutralinolike IV case
without fixing tan β, only the ~W-like particles with
mχ ≳MW have smaller values in Ωχh2 and greater values
in hσWþW−vi than the ~B-like particles (see Fig. 8). It
originates from the fact that a ~B-like DM pair does not
contribute to the s-wave amplitude.
Among the neutralinolike cases, we see that either “a

higher tan β value” (neutralinolike II, Fig. 6) or “without the
GUT relation” (neutralinolike-III, IV, Figs. 7 and 8) gives a
wider spread in each scatter plot as comparing to Fig. 3.With
the DM relic constraint, 99%, 99%, 98%, and 60% of ~B-like
particles are ruled out in the neutralinolike I–IV cases,

respectively. After considering all constraints, less than
1% of ~B-like particles could be DM candidates for the cases
of neutralinolike I–III. However, for the neutralinolike IV
case, without the GUT and the tan β relations, it has the
widest spread in each scatter plot among the neutralinolike
cases so that up to 23% of ~B-like particles could be DM
candidates. A closer look reveals that in the latter case more
~B-like particles have lower values in DM relic density [see
Fig. 8(a)]. Therefore, more ~B-like particles are allowed in the
neutralinolike IV case. On the other hand, with the LUX σSIN
constraint, 79%, 67%, 61%, and 51% of ~H-like particles
survive in the neutralinolike I–IV cases, respectively [see
Figs. 3, 6, 7, and 8(a)]. It means that in the case of either a

FIG. 8. Results for all samples with constraints in the case of neutralinolike IV [open circle: Higgsino-like, times: binolike, triangle:
winolike, filled circle: mixed].
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higher tan β or without the GUT relation more ~H-like
particles spread toward larger values in σSIN ; namely, fewer
~H-like particles (relative to neutralinolike I) can be allowed.
After considering all constraints, 63%, 49%, 45%, and 46%
of ~H-like particles are allowed in the neutralinolike I–IV
cases, respectively. As for the mixed particles, it can be
ignored since less than 0.1%of samples is allowed as theDM
candidates in the neutralinolike cases.
The ~W-like particles can only appear in the cases

without the GUT relation (neutralinolike III and IV; see
Figs. 7 and 8). All the ~W-like particles with mχ < MW are
ruled out mainly by the DM relic density constraint [see
Figs. 7(a) and 8(a)], followed by the Fermi-LAT constraint
via the DM annihilation to the bb̄ channel around mχ–MW

[see Figs. 7(g) and 8(g)]. All the ~W-like particles with
mχ > MW are not ruled out by the observed relic density
[see Figs. 7(a) and 8(a)], and all the ~W-like particles with
MW < mχ ≲ 1 TeV are ruled out by the Fermi-LAT con-
straint via the DM annihilation to the WþW− channel [see
Figs. 7(f) and 8(f)]. The remaining ~W-like particles with
mχ ≳ 1 TeV are still subjected to the LUX, XENON100,
and PICO-60 constraints [see Figs. 7(b)–7(e) and
8(b)–8(e)]. It results in about 45% and 39% of ~W-like
particles being allowed to be DM candidates in the
neutralinolike III and IV cases, respectively, and the
allowed ~W-like particles are heavy (mχ ≳ 1 TeV).
In Figs. 9–11, we redraw Figs. 6–8 with the allowed

samples, respectively. As in the case of neutralinolike I, we

FIG. 9. Results for allowed samples satisfying all constraints in the neutralinolike II case [open circle: Higgsino-like, times: binolike,
filled circle: mixed].
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still see that the direct detection of σSIN and the indirect
detection of hσðχχ → WþW−Þvi will be more accessible
for DM searches in the near future. Hence, we focus on
these two and the relic density plots in these figures. Note
that in the following discussion we jump over the allowed
outlier samples.
We see that most of ~B-like particles are ruled out by the

Ωχh2 constraint [see Figs. 6(a), 7(a), and 8(a)], followed by
its complementary constraint of σSIN [see Figs. 6(b), 7(b),
and 8(b)]. With the GUT relation, the cases of neutralino-
like I (tan β ¼ 2) and neutralinolike II (tan β ¼ 20) have
similar results, where only the ~B-like particle with
mχ ≳ 1411, 1258 GeV could be DM candidates, respec-
tively (see Figs. 5 and 9). Without the GUT relation, the

mass of the allowed ~B-like particle can lower down with
mχ ≳ 341, 288 GeV in the cases of neutralinolike III and
IV, respectively (see Figs. 10 and 11). Less than 0.3%,
0.3%, and 0.9% of the ~B-like samples are allowed in the
cases of neutralinolike I, II, and III, respectively. Without
the GUT relation, the allowed ~B-like samples become
sparse in the neutralinolike III case. Note that the allowed
~B-like particles only attach to the LUX limit; in other
words, the LUX limit is an active constraint, and con-
sequently only the experiments of SI DM-nucleus scatter-
ing are accessible to the DM searches in the near future.
The ~H- and ~W-like particles with mχ ≲MW are

ruled out by the Ωχh2 constraint [see Figs. 6(a), 7(a),
and 8(a)], followed by the hσðχχ → bb̄Þvi constraint

FIG. 10. Results allowed samples satisfying all constraints in the neutralinolike III case [open circle: Higgsino-like, times: binolike,
triangle: winolike, filled circle: mixed].
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[see Figs. 6(g), 7(g), and 8(g)], while the ~H- and ~W-like
particleswithmχ ≳MW aremainly ruled out by the hσðχχ →
WþW−Þvi [see Figs. 6–8(f)] and the σSIN constraints [see
Figs. 6–8(b)]. We see that the allowed lower mass bound
of ~H-like DM candidates is about 455 GeV for all the
neutralinolike cases (see Figs. 9–11), namely, independent of
the GUTand the tan β relations for the ~H-like particles, while
the allowed lower mass bound of ~W-like DM candidates is
about 1100GeV,which is independent of the tan β relation in
the neutralinolike III and IV cases (see Figs. 10–11). On the
contrary to the ~B-like DM candidates, ~H- and ~W-like DM
candidates will be accessible in the direct search of σSIN as
well as the indirect search of hσðχχ → WþW−Þvi in the near
future. Therefore, without considering the outlier samples,

the allowed mass regions for ~H-like, ~B-like, and ~W-like in
Figs. 9–11 can be understood.On the other hand,we find that
the allowed ~H-like particles are highly pure, as 98%, 97%,
99%, and 99.9% of them are in the states of η1 or η2 with the
composition fraction greater than 90% in the cases of
neutralinolike I–IV respectively. However, only 39%, 5%,
55%, and 99% of the allowed ~B-like particles are in the state
of η3 with the composition fraction greater than 90% in the
cases of neutralinolike I–IV respectively. That is because
either the GUT relation or the tan β relation is imposed in the
cases of neutralinolike I–III. As for the allowed ~W-like
particles, 99.9% and 99.5%of them are in the state of η5 with
the composition fraction greater than 90% in neutralinolike
III–IV, respectively.

FIG. 11. Results for allowed samples satisfying all constraints in the neutralinolike IV case [open circle: Higgsino-like, times:
binolike, triangle: winolike, filled circle: mixed].
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B. Case B: Reduced case

For the reduced case, it contains a minimal particle
content η1;2;3 ( ~H- and ~B-like) with four free parameters μ1;2
and g3;4. Since η5 ( ~W-like) particles are absent, it is natural
that the ~W-like particles do not appear in this case. We show
the results in Fig. 12 with all samples. As in the neutralino-
like cases, we show that all values of hσWþW−vi for the ~B-
like particles should be less than those values for the ~H-like
and the mixed particles in Fig. 12(f), which is consistent
with the fact that a ~B-like DM pair does not contribute to
the s-wave scattering amplitude.
As in the neutralinolike cases, we do not show the highly

helicity suppressed plots of hσuūvi, hσμþμ−vi, and hσeþe−vi.
The reduced case contains more free parameters than the
cases of neutralinolike I, II, and III, so it can have a wider

spread in each scatter plot than the cases of neutralinolike I,
II, and III as the tan β relations are not imposed. Therefore,
although most ~B-like samples are ruled out by the Ωχh2

constraint, we can still have plenty of ~B-like particles being
allowed. As in the neutralinolike IV case, more ~B-like
particles have lower values in Ωχh2, and more ~H-like
particles have larger values in σSIN [see Figs. 12(a) and
12(b)]. Consequently, more ~B-like particles (relative to
neutralinolike I, II, and III) and fewer ~H-like particles
(relative to neutralinolike I) are allowed. We find that about
48% of the ~H-like particles and 23% of ~B-like particles
could be DM candidates.
We redraw Fig. 12 in Fig. 13 but with the allowed

samples only. As in the neutralinolike cases,
the direct detection of σSIN and the indirect detection of

FIG. 12. Results for all samples with constraints in the reduced case [open circle: Higgsino-like, times: binolike, filled circle: mixed].
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hσðχχ → WþW−Þvi will be more accessible for DM
searches in the near future. Similarly, the ~B-like particles
can be sensitively detected only through the experiments of
SI DM-nucleus scattering, while the ~H-like particles can be
sensitively detected through both the direct search in the SI
experiments of DM-nucleus scattering and the indirect
search in the observation of DM annihilation to theWþW−

channel in the near future. Comparing Figs. 5, 9–11,
and 13, we see that this case is closer to the neutralinolike
IV case, but without ~W-like particles. Despite the fact that
most of ~B-like particles are ruled out by the Ωχh2 con-
straint, and further by LUX σSI constraint, more allowed
~B-like particles can lower the allowed mass range of ~B-like

particles frommχ ≳ 1 TeV (as in the cases of neutralinolike
I and II without the GUT relation) to mχ ≥ 317 GeV. On

the other hand, the ~H-like particles withmχ ≲MW are ruled

out by the relic density and the Fermi-LAT hσðχχ → bb̄Þvi
constraints, while the ~H-like particles with mχ > MW are
subjected to the Fermi-LAT hσðχχ → WþW−Þvi and the
LUX σSIN constraints, so only the ~H-like particles with
mχ ≳ 454 GeV could be the DM candidates. We also find

that the allowed ~H- and ~B-like particles are highly pure, as
99.9% of both ~H- and ~B-like particles is in the states of η1;2
and η3, respectively, with their composition fractions
greater than 90%.

FIG. 13. Results for allowed samples satisfying all constraints in the reduced case [open circle: Higgsino-like, times: binolike, filled
circle: mixed].
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C. Case C: Extended case

For the extended case, it has a maximal particle content
with η1–3;5;7–10. In addition to the ~W-like particles (∼η5), the
non-neutralino-like ~X particles (∼η9;10)

6 also appear in this
case, and the latter contain about 5% of the samples. We
show the results in Fig. 14 with all samples. As in other
cases, we do not present the highly helicity suppressed
plots of hσuūvi, hσμþμ−vi, and hσeþe−vi, but we show that all
values of hσWþW−vi for the ~B-like particles should be less
than those values for the ~H-like and the mixed particles in
Fig. 14(f), which is consistent with the fact that a ~B-like

DM pair does not contribute to the s-wave scattering
amplitude. In this case, all model parameters, μ1–5 and
g3–6, are free (without the GUTand the tan β relations), so it
has the widest spread in each scatter plot among all cases.
Without the GUT and the tan β relations, more ~B-like
particles have lower values in Ωχh2, and more ~H-like
particles spread toward larger values in σSIN . Consequently,
more ~B-like particles (relative to neutralinolike I, II, and
III), and fewer ~H-like particles (relative to neutralinolike I)
are allowed. [see Figs. 14(a) and 14(b)]. We find that 43%
of ~H-like particles and up to 22% of ~B-like particles could
be DM candidates.
We redraw Fig. 14 in Fig. 15, but with the allowed

samples only. Similarly, we find that ~B-like DM candidates

FIG. 14. Results for all samples with constraints in the extended case [open circle: Higgsino-like, times: binolike, triangle: winolike,
filled square: non-neutralino-like, filled circle: mixed].

6Note that η7;8 do not have neutral particles, and hence they do
not contribute to the dark matter compositions.
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are accessible only in the SI experiments of DM-nucleus
scattering, while all other types of DM candidates can be
sensitively detected from both the direct search in the SI
experiments of DM-nucleus scattering and the indirect search
in the observation of DM annihilation to theWþW− channel
in the near future. Despite the fact that most of the ~B-like
particles are ruled out by the Ωχh2 constraint, and further by

LUX σSIN constraint, more allowed ~B-like DM candidates
can lower the allowed mass range of ~B-like particles from
mχ ≳ 1 TeV (as in the cases with the GUT relation) to
mχ ≳ 300 GeV. The ~H-like particles with mχ ≲MW are
ruled out by the relic density and the Fermi-LAT hσðχχ →
bb̄Þvi constraints, while the ~H-like particles withmχ > MW

are subjected to the Fermi-LAT hσðχχ→WþW−Þvi and the

LUX σSIN constraints, so only the ~H-like particles with
mχ ≳ 450 GeV could be the DM candidates. Similarly, the
~W-like particles and the non-neutralino-like ~X particles with
mχ ≲MW are ruled out by the relic density and the Fermi-

LAT hσðχχ → bb̄Þvi constraints, while the ~W-like particles
and the non-neutralino-like ~X particles with mχ > MW

are subjected to the Fermi-LAT hσðχχ → WþW−Þvi and
the LUX σSIN constraints, so only the ~W-like particles and the
non-neutralino-like ~X particles with mχ ≳ 1107, 738 GeV,
respectively, could be the DM candidates. We also find that
about 31%of ~W-like particles and 62%of non-neutralino-like
~X particles are allowed to be DM candidates. Furthermore,
we find that the allowed ~H-, ~B-, and ~W-like particles and the

FIG. 15. Results for allowed samples satisfying all constraints in the extended case [open circle: Higgsino-like, times: binolike,
triangle: winolike, filled square: non-neutralino-like, filled circle: mixed].
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non-neutralino-like ~X particles are highly pure, as 99.5%,
99.2%, 99.5%, and95%of themare in the states of η1;2, η3, η5,
and η9;10, respectively, with their composition fractions
greater than 90%.

D. Summary and predictions

In this subsection, we will summarize the previous
discussion and give some predictions. The allowed samples
must satisfy all the constraints simultaneously, namely, the
observed relic density Ωobs

χ h2 constraint (below þ3σ), the
LUX constraint on σSIN , the XENON100 constraints on σ

SD
n;p,

the PICO-60 constraint on σSDp , and the Fermi-LAT con-
straints on hσðχχ → WþW−; bb̄; uū; τþτ−; μþμ−; eþe−Þvi.
For all cases, we find that most of the ~B-like particles are
ruled out by the Ωχh2 constraint, and further by the LUX
σSIN constraint; the ~H-like particles with mχ ≲MW are ruled
out by the relic density and the Fermi-LAT hσðχχ → bb̄Þvi
constraints, while the ~H-like particles with mχ > MW are
subjected to the Fermi-LAT hσðχχ → WþW−Þvi and the
LUX σSIN constraints. For all cases, all values in hσWþW−vi
for the ~B-like particles are smaller than those values for the
~H-like particles due to the fact that a ~B-like DM pair does
not contribute to the s-wave scattering amplitude. Besides,
the process of χχ → ff̄ favors heavy fermions since the
s-wave contribution is helicity suppressed. We see that
the direct search of SI DM-nucleus elastic scattering and
the indirect search of DM annihilation to the WþW−

channel are more important. In other words, they will be
sensitive to the DM searches in the near future.
Without considering the outlier samples, we show the

allowed mass range of different particle attributes to detect
DM in direct as well as indirect searches in Table IV. The
upper values denote the lower mass bounds to detect DM in
the direct search of SI DM-nucleus scattering experiments,
and the lower intervals denote the mass interval suitable to
detect DM in the indirect search of the DM annihilation

process via the WþW− channel using the present limit and
the projected limit, which is taken to be 1 order of
magnitude lower than the present one. We see that the
DM mass should be greater than 450, 288, 1090, and
738 GeV to detect the ~H-, ~B-, and ~W-like DM particles and
the non-neutralino-like ~X DM particles, respectively. Note
that, unlike in the indirect case, we cannot infer the upper
mass bound to detect DM in the direct search in this
analysis. In other words, future direct searches can explore
a larger DM mass range than the indirect one.
The Fermi-LAT constraint on hσðχχ → WþW−Þvi is

more useful than other Fermi-LAT constraints with light
ff̄ in the final states. On the other hand, from the
discussion of the properties of DM annihilation processes
χχ → WþW−; ZZ; ZH;HH; ff̄ in Sec. II. B, we know that
only the process of χχ → HH has no s-wave contribution
and the process χχ → ff̄ favors heavy fermion pairs.
Hence, it is also important to study DM annihilation to
gauge boson and heavy quark processes. In Fig. 16, we
show our predictions on hσðχχ → ZZ; ZH; tt̄Þvi with the
allowed samples. Their values of hσvi can be as large as
10−26 cm3=s. It will be useful to search DM with these
processes.
In Table V, we summarize the distribution of the allowed

samples satisfying all constraints. The two values in
parentheses in the table show the percentages (with regard
to the whole sample) of a specified particle attribute before
and after being subjected to the constraints, respectively.
For example, in the first row “ ~H” and the first column
“Neutralinolike I case” of the table, we see that there is 29%
of the whole sample in the neutralinolike I case being
~H-like particles and only 18% of the whole sample being
allowed ~H-like particles. Among the ~H-like particles, only
63% of them survives under the constraints, and this
surviving rate is shown below the parentheses. From this
table, we see that fewer ~H-like particles are allowed
(relative to neutralinolike I) and fewer ~B-like particles

TABLE IV. Allowed mass ranges according to particle attributes to detect DM in the near future. The upper values denote the lower
mass bounds (in units of GeV) to detect DM in the direct search of SI DM-nucleus scattering experiments, and the lower intervals denote
the mass interval (in units of GeV) suitable for detecting DM in the indirect search of the DM annihilation process via the WþW−

channel between the present limit and the projected limit, which is taken to be 1 order of magnitude lower than the present one.

Case A Case B Case C

Neutralinolike I Neutralinolike II Neutralinolike III Neutralinolike IV Reduced Extended

~H-like 456 457 457 454 454 450
(456, 940) (457, 937) (457, 947) (454, 947) (454, 949) (450, 927)

~B-like 1411 1258 341 288 317 299
X X X X X X

~W-like X X 1120 1090 X 1107
X X (1120, 2500a) (1090, 2374) X (1107, 2080)

~X-like X X X X X 738
X X X X X (738, 1563)

aThis value is originated from the limitation of our numerical analysis.
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FIG. 16. Predictions of hσZZ;ZH;tt̄vi vs mχ for allowed DM candidates [open circle: Higgsino-like, times: binolike, triangle: winolike,
filled square: non-neutralino-like, filled circle: mixed].
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can survive in the cases with the tan β relation (neutralino-
like I–III). As mentioned before, it is due to the fact that a
higher tan β value or without the GUT relation can give us
wider spreads in the scatter plots. It results in the fact that

more ~H-like particles spread into the prohibited region in
the σSIN scatter plot. On the other hand, with the tan β
relation, fewer ~B-like particles can spread into the allowed
region in the Ωχh2 scatter plot.

TABLE V. Particle attribute distribution of the allowed DM candidates. The values in the first row ~H-like and the first column
Neutralinolike I of the table mean that 29% of the whole sample in neutralinolike I case is ~H-like and only 18% of the whole sample is
the allowed ~H-like particles, or equivalently, among the ~H-like particles, only 63% of them is allowed.

Case A Case B Case C

% Neutralinolike I Neutralinolike II Neutralinolike III Neutralinolike IV Reduced Extended

~H-like (29, 18) (28, 14) (33, 15) (31, 15) (50, 24) (29, 12)
63 49 45 46 48 43

~B-like (71, 0.2) (72, 0.2) (33, 0.3) (34, 8) (49, 11) (34, 7)
0.3 0.3 0.9 23 23 22

~W-like X X (33, 15) (34, 13) X (31, 10)
X X 45 39 X 31

~X-like X X X X X (5, 3)
X X X X X 62

TABLE VI. Allowed range for DM mass, model parameters, and effective couplings. The upper and lower intervals represent the
allowed range for samples satisfying all the constraints with Ωχh2 in the criteria C1 (≤ þ3σ) and C2 (within �3σ), respectively.

Case A Case B Case C

Neutralinolike I Neutralinolike II Neutralinolike III Neutralinolike IV Reduced Extended

mχ (51.1, 2495.1) (57.1, 2498.9) (58.9, 2498.3) (54.8, 2499.9) (57.8, 2498.8) (54.0, 2499.0)
(1116.6, 2496.7) (1018.2, 2471.4) (947.7, 2454.6) (332.6, 2464.6) (316.6, 2481.7) (299.0, 2383.5)

μ1 (52.3, 6933.9) (58.1, 3655.4) (62.7, 7982.6) (59.34, 7999.4) (58.56, 7997.0) (52.38, 7998.4)
(1118.2, 2499.3) (1019.1, 2473.8) (980.4, 5452.8) (901.6, 7896.2) (953,9, 7953.3) (1040.5, 7858.5)

μ2 (58.4, 3814.3) (0.214, 3823.5) (59.80, 7999.9) (56.99, 7999.4) (61.67, 7998.2) (56.7, 7996.9)
(1430.8, 3811.4) (2027.4, 3802.9) (1781.6, 7979.6) (339.5, 7970.8) (323.4, 7977.4) (305.4, 7134.6)

μ3 (122.2, 7978.8) (0.447, 7998.2) (5.328, 7999.5) (63.0, 7998.6) X (1.095, 7994.6)
(2993.0, 7972.8) (4240.9, 7955.1) (1816.7, 7977.2) (848.5, 7992.6) X (1305.3, 7951.2)

μ4 X X X X X (681.80, 7999.4)
X X X X X (681.80, 7633.5)

μ5 X X X X X (551.7, 7998.7)
X X X X X (551.7, 7771.8)

g3 0.111 0.012 0.111 (1.40e-4, 0.999) (2.86e-4, 0.999) (2.57e-4, 0.999)
0.111 0.012 0.111 (2.61e-2, 0.998) (5.20e-4, 0.976) (7.76e-3, 0.975)

g4 0.221 0.247 0.221 (1.90e-4, 0.999) (5.12e-4, 0.999) (3.00e-4, 0.999)
0.221 0.247 0.221 (5.20e-2, 0.994) (8.50e-3, 0.996) (8.38e-3, 0.988)

g5 0.207 0.023 0.207 (1.26e-3, 0.999) X (6.00e-4, 0.999)
0.207 0.023 0.207 (5.51e-3, 0.979) X (1.03e-2, 0.993)

g6 0.413 0.462 0.413 (1.37e-5, 0.999) X (1.46e-4, 0.999)
0.413 0.462 0.413 (1.31e-2, 0.994) X (1.91e-2, 0.995)

g7 X X X X X (6.47e-4, 0.999)
X X X X X (8.79e-3, 0.985)

g8 X X X X X (6.70e-4, 0.999)
X X X X X (6.70e-4, 0.998)

g9 X X X X X (1.02e-4, 0.999)
X X X X X (1.45e-2, 0.981)

g10 X X X X X (3.04e-5, 0.999)
X X X X X (1.98e-2, 0.994)

jaq=mqj (9.3e-10, 9.02e-8) (2.5e-10, 7.05e-8) (1.52e-9, 9.08e-8) (7.5e-10, 9.52e-8) (5.6e-10, 9.03e-8) (1.5e-11, 9.18e-8)
(6.15e-9, 6.96e-8) (3.69e-9, 1.28e-8) (2.40e-9, 6.86e-8) (4.87e-9, 6.95e-8) (6.6e-10, 9.31e-8) (1.5e-9, 7.28e-8)

jdqj (9.8e-11, 4.31e-8) (5.7e-10, 8.62e-8) (1.59e-10, 3.20e-8) (9.1e-12, 5.70e-8) (3.8e-13, 5.02e-8) (1.7e-12, 3.62e-7)
(1.38e-9, 1.57e-8) (3.04e-9, 7.66e-9) (2.17e-10, 1.26e-8) (2.05e-11, 2.46e-8) (3.4e-11, 3.19e-8) (2.9e-12, 3.52e-8)
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As shown in the table, in the neutralinolike III and IVand
the extended cases, we have plenty of ~W-like particles. The
~W-particles with mχ ≲MW are ruled out by the relic
density and the Fermi-LAT hσðχχ → bb̄Þvi constraints,
while the ~W-particles with mχ > MW are subjected to the
Fermi-LAT hσðχχ → WþW−Þvi constraint and the LUX
σSIN constraint. The fewer relations on model parameters
give a wider spread in the scatter plots of Ωχh2, σSIN , and
hσðχχ → WþW−Þ, resulting in lower surviving rates of ~W-
like DM candidates, namely, 45%, 39%, and 31% in the

neutralinolike III and IV and the extended cases, respec-
tively. As for the non-neutralino-like ~X particles, 62% of
them could be DM candidates.
Including the allowed outlier samples, we show the

allowed ranges of DM mass, mass parameters (μi),
Yukawa couplings (gi), and the effective couplings
(jaq=mqj and jdqj) used in the calculation of DM scattering
off 129;131Xe nuclei and CF3I nuclei in Table VI and the
allowed ranges for the coupling strengths used in the
calculation of DM annihilation processes in Table VII.
In Table VII, we have used the following definitions:

TABLE VII. Allowed range for the coupling strengths. The upper and lower intervals represent the allowed range for samples
satisfying all the constraints with Ωχh2 in the criteria C1 (≤ þ3σ) and C2 (within �3σ), respectively.

Case A Case B Case C

Neutralinolike I Neutralinolike II Neutralinolike III Neutralinolike IV Reduced Extended

jgLH
11 j (1.80e-3, 1.75e-1) (4.84e-4, 2.49e-1) (2.95e-3, 1.77e-1) (1.45e-3, 1.85e-1) (1.08e-3, 1.81e-1) (2.85e-5, 1.78e-1)

(1.20e-2, 1.35e-1) (7.17e-3, 2.49e-1) (4.66e-3, 1.33e-1) (9.46e-3, 1.35e-1) (1.33e-3, 1.81e-1) (2.94e-3, 1.42e-1)
jgLZ

11 j (4.39e-6, 1.93e-3) (2.57e-5, 3.87e-3) (7.12e-6, 1.43e-3) (4.07e-7, 2.56e-3) (1.71e-8, 2.25e-3) (7.81e-8, 1.62e-2)
(6.20e-5, 7.03e-4) (1.37e-4, 3.34e-4) (9.73e-6, 5.62e-4) (9.20e-7, 1.11e-3) (1.51e-6, 1.43e-3) (1.30e-7, 1.58e-3)

jgLW−
11 j (3.95e-3, 3.28e-1) (8.96e-4, 3.30e-1) (1.22e-3, 6.53e-1) (8.75e-6, 6.54e-1) (1.35e-3, 3.28e-1) (8.50e-7, 6.53e-1)

(1.42e-1, 3.27e-1) (3.26e-1, 3.27e-1) (3.02e-2, 3.27e-1) (5.06e-5, 3.27e-1) (5.88e-3, 3.27e-1) (4.03e-6, 3.26e-1)
jgRW−

11 j (4.00e-3, 3.27e-1) (1.07e-3, 3.27e-1) (1.68e-3, 6.53e-1) (2.04e-4, 6.54e-1) (4.87e-3, 3.28e-1) (1.72e-6, 6.54e-1)
(1.40e-1, 3.27e-1) (3.26e-1, 3, 27e-1) (3.05e-2, 3.32e-1) (2.45e-4, 3.38e-1) (4.34e-3, 3.27e-1) (1.72e-6, 3.29e-1)

jgLH
12 j (3.20e-3, 5.32e-2) (1.28e-6, 1.08e-1) (1.20e-3, 3.10e-1) (2.17e-5, 9.35e-1) (7.49e-7, 4.85e-1) (6.46e-7, 8.89e-1)

(3.32e-3, 5.32e-2) (5.49e-3, 1.43e-2) (2.65e-3, 5.43e-2) (4.99e-4, 6.38e-1) (6.10e-5, 4.08e-1) (1.42e-5, 6.62e-1)
jgLZ

12 j (8.67e-6, 1.85e-1) (4.79e-5, 1.85e-1) (6.36e-6, 1.85e-1) (5.36e-8, 1.85e-1) (2.20e-3, 1.85e-1) (4.66e-7, 3.71e-1)
(7.99e-2, 1.85e-1) (1.85e-1, 1.86e-1) (1.63e-5, 1.85e-1) (6.23e-6, 1.85e-1) (3.68e-3, 1.85e-1) (5.53e-7, 1.86e-1)

jgLW−
12 j (2.67e-3, 5.49e-2) (5.49e-3, 5.24e-2) (1.72e-4, 2.84e-1) (1.27e-4, 4.87e-1) X (5.47e-7, 3.80e-1)

(1.00e-2, 2.00e-2) (6.49e-3, 1.70e-2) (5.88e-3, 1.27e-1) (4.91e-4, 1.78e-1) X (1.07e-5, 7.41e-2)
jgRW−

12 j (1.29e-3, 1.61e-2) (3.20e-4, 1.54e-2) (1.00e-6, 9.15e-2) (1.27e-6, 1.63e-1) X (3.27e-7, 1.24e-1)
(2.72e-3, 5.63e-3) (8.50e-4, 3.78e-3) (2.71e-3, 4.07e-2) (2.87e-5, 5.58e-2) X (2.33e-5, 4.08e-2)

jgLH
13 j (1.65e-3, 1.66e-1) (1.46e-3, 1.30e-1) (3.65e-3, 3.10e-1) (4.55e-4, 9.59e-1) (2.26e-2, 9.81e-1) (1.61e-5, 9.62e-1)

(1.13e-1, 1.66e-1) (1.28e-1, 1.30e-1) (6.01e-2, 3.10e-1) (3.00e-2, 6.94e-1) (7.71e-2, 8.07e-1) (6.51e-4, 6.24e-1)
jgLZ

13 j (1.12e-6, 1.06e-2) (1.63e-5, 4.14e-3) (8.73e-6, 7.07e-2) (7.90e-7, 4.00e-2) (9.52e-8, 6.86e-3) (2.19e-7, 1.11e-1)
(4.08e-4, 6.10e-4) (9.45e-4, 1.60e-3) (2.02e-4, 2.51e-3) (5.62e-6, 1.64e-2) (6.84e-6, 5.36e-3) (1.18e-5, 2.85e-2)

jgLW−

13 j X X X X X (8.77e-8, 1.72e-1)
X X X X X (2.28e-5, 5.64e-2)

jgRW−

13 j X X X X X (5.66e-7, 6.79e-2)
X X X X X (2.46e-5, 2.32e-2)

jgLH
14 j (1.20e-1, 3.10e-1) (1.03e-1, 2.42e-1) (3.15e-5, 3.45e-1) (1.88e-5, 9.84e-1) X (5.15e-5, 9.84e-1)

(1.24e-1, 3.10e-1) (2.41e-1, 2.42e-1) (1.11e-1, 3.40e-1) (3.49e-4, 7.46e-1) X (3.39e-4, 7.25e-1)
jgLZ

14 j (2.39e-4, 3.05e-3) (5.74e-4, 5.01e-3) (3.70e-8, 1.44e-2) (2.05e-7, 5.46e-3) X (2.61e-10, 8.05e-2)
(3.72e-4, 6.72e-4) (1.10e-3, 1.78e-3) (2.74e-4, 1.18e-3) (5.59e-7, 4.34e-3) X (1.16e-6, 1.99e-2)

jgLW−
14 j X X X X X (2.79e-7, 1.66e-1)

X X X X X (8.19e-6, 2.31e-2)
jgRW−

14 j X X X X X (3.33e-7, 4.35e-2)
X X X X X (3.40e-6, 2.30e-2)

jgLH
15 j X X X X X (5.86e-5, 9.49e-1)

X X X X X (5.62e-4, 6.25e-1)
jgLZ

15 j X X X X X (3.24e-7, 2.63e-2)
X X X X X (1.20e-6, 1.46e-2)

jgLH
16 j X X X X X (2.97e-5, 9.84e-1)

X X X X X (1.91e-4, 8.18e-1)
jgLZ

16 j X X X X X (1.85e-8, 1.20e-2)
X X X X X (2.23e-6, 3.24e-3)
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gLH
1j ¼ OLH

1j , g
LZ
1j ¼ g

2 cos θW
OLZ

1j , and g
L;RW−

1j ¼ gffiffi
2

p OL;RW−

1j . The

allowed DM relic density should satisfy the condition
Ωχh2 ≤ 0.1198þ 3 × 0.0026. We consider two criterions:
C1, having a less stringent constraint of the relic densitywith
its value less than þ3σ, and C2, having a more stringent
constraint of the relic densitywith its valuewithin�3σ, from
the observedmeanvalue. In TablesVI andVII, the upper and
lower intervals represent the allowed range for samples
satisfying all the constraints with Ωχh2 falling into the
criteria C1 and C2, respectively.

IV. DISCUSSIONS AND CONCLUSIONS

A. Coannihilation

In addition to the annihilation, the coannihilation,
namely, the annihilation from the other WIMPs, may affect
the DM relic density in some parameter region. The
coannihilation becomes significantly important when the
WIMPs are nearly mass degenerate with DM [50]. In
this subsection, we preliminarily explore the variation on
the calculation of DM relic density when including the
coannihilation. To see the leading effect of coannihilation,
we consider two lightest neutral as well as two single
charged WIMPs annihilating to the SM fermions through
the s channel in the neutralinolike I case. The correspond-
ing Feynman diagrams and Lagrangian are shown in
Fig. 17 and Appendix C, respectively. The matrix elements
for coannihilation are shown in Appendix H. The

formulation for coannihilation is presented in
Appendix G. To simplify the calculation of coannihilation,
we have set the freeze-out temperature parameter xf ¼ 25.
Figures 18(a) and 18(b) show the scatter plots of relic

density without and with coannihilation, respectively. We
see that theΩh2 constraint affects the selection of the ~B-like
particles a little but the selection of the ~H-like particles a
lot. Most ~H-like particles with mass less thanMW ruled out
originally become allowed now, while part of the ~H-like
particles with mass greater than MW allowed originally
become ruled out now when including the leading effect of
coannihilation.
To see the variation of DM relic density, we overlap

Figs. 18(a) (in times) and 18(b) (in open circle) in
Fig. 19(a). We also show the variation of DM relic density
vs the mass fraction Δm2=mχ ≡ ðMin½mχ0

2
; mχ�

1;2
� −

mχ0
1
Þ=mχ0

1
in Fig. 19(b). Let Ωnew and Ω denote the relic

density with and without considering the coannihilation,
respectively. Apart from a few samples around the poles, we
find that Ωnew ≥ Ω with mχ ≳mW , while Ωnew ≤ Ω with
mχ ≲mW in Fig. 19(c). We also find that the smaller mass
fraction usually gives the greater value inΩnew=Ω as shown
in Fig. 19(d). We show the relic density vs DMmassmχ and
mass fraction Δm2=mχ with the allowed samples which
satisfy all constraints in Figs. 19(e) and 19(f), respectively,
and Figs. 19(g) and 19(h) for Ωnew=Ω. In Figs. 19(e)
and 19(f), the samples marked with open circle are allowed

FIG. 17. The coannihilation processes (χχ → SM fermions) through the s channel.

FIG. 18. Scatter plots of DM relic abundance before and after considering coannihilation in the neutralinolike I case [open circle:
Higgsino-like, times: binolike, filled circle: mixed].
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when including the coannihilation, and the samples marked
with times correspond to the samples marked with open
circle but only considering the annihilation.
In Figs. 20(a)–20(d), we only show the allowed samples

in which the allowed regions touch the experimental upper
limits, namely, in the plots of Ωχh2, σSI, hσWþW−vi and
hσbb̄vi vs DM mass mχ , respectively. By comparing with
the plots in Fig. 5, we see that the ~H-like particles with
10 GeV≲mχ ≲mW will now be detectable in the near
future through the direct search experiment of SI DM-
nucleus elastic scattering, while originally detectable
~H-like particles with mass 950≲mχ ≲ 1680 GeV in the

SI DM-nucleon scattering experiment will now not detect-
able when considering the leading effect of coannihilation.

B. Conclusions

In this work, we construct a generic model of Majorana
fermionic dark matter. Starting with two Weyl spinor
multiplets η1;2 ∼ ðI;∓YÞ coupled to the Standard Model
Higgs, six additional Weyl spinor multiplets with ðI �
1=2;�ðY � 1=2ÞÞ are needed in general. It has 13 param-
eters in total, five mass parameters and eight Yukawa
couplings. The DM sector of the minimal supersymmetric
Standard Model is a special case of the model with

FIG. 19. Leading effect of coannihilation on DM relic abundance at xf ¼ 25 in the neutralinolike I case.
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ðI; YÞ ¼ ð1=2; 1=2Þ. Therefore, this model can be viewed
as an extension of the neutralino DM sector. Nevertheless,
this model does not have sfermions and the second Higgs as
in the MSSM but have more Z2-odd fermions. We consider
three typical cases: the neutralinolike, the reduced, and the
extended cases. For the neutralinolike case, we study four
different scenarios (neutralinolike I–IV) according to
whether the GUT relation on mass parameters or the
tan β relation on the Yukawa couplings is imposed or
not. For the reduced case, it has the minimal particle
content, while the extended case has the maximal particle
content. For each case, we generate 10,000 samples from
the parameter space and survey the DM mass in the range
of (1,2500) GeV. For each sample, we calculate the DM
relic density Ωχh2, the SI and SD DM-nucleon elastic
scattering cross sections for direct searches, and the
velocity averaged cross section of DM annihilation proc-
esses hσðχχ → WþW−; ZZ; ZH;HH; ff̄Þvi for an indirect
search. We compare our results with 11 constraints from the
observed DM relic density; the direct search of LUX,
XENON100, and PICO-60 experiments; and the indirect
search of Fermi-LAT data, respectively. We investigate the
interplay of these three complementary searching strategies
and tell the differences among the cases. For each case,
we find the allowed DM candidates satisfying all the
constraints and obtain the lower mass bounds of finding the
~H-, ~B-, ~W-, and non-neutralino-like DM particles. We
discuss the properties of DM annihilation processes
χχ → WþW−; ZZ; ZH;HH; ff̄. We see that the processes
of ~B-like particles annihilating to WþW− and ZZ do not
have an s-wave contribution. The process χχ → ZH is

allowed to have an s-wave contribution, while the process
χχ → HH does not have an s-wave contribution. We also
see that the process of χχ → ff̄ has a helicity suppressed s-
wave contribution. We find that the ~H- and ~B-like particles
appear in all cases, and plenty of ~W-like particles can
appear in the neutralinolike III and IV cases with the GUT
relation relaxed and in the extended case. The non-MSSM-
like ~X particle can only appear in the extended case. We
find that most of ~B-like particles are ruled out by the Ωχh2

constraint and further by the LUX constraint; the ~H- and
~W-like particles and the non-neutralino-like ~X particles
with mχ ≲MW are ruled out by the Ωχh2 and the Fermi-

LAT hσðχχ → bb̄Þvi constraints, while the ~H- and ~W-like
particles and the non-neutralino-like ~X particles with mχ >
MW are constrained by the Fermi-LAT hσðχχ → WþW−Þvi
and the LUX σSI bounds. We note that in general the
allowed ~H- and ~W-like particles and the non-neutralino-
like ~X particles are highly pure with composition fraction
≥90%. It is also true for ~B-like particles in the cases
without GUT and tan β relations.
When we do not consider the coannihilation, we find the

lower mass bounds to detect DM in the SI DM-nucleus
scattering experiments and the suitable mass ranges to
detect DM in the DM annihilation to the WþW− channel
using the present limit and the projected limit (taken to be 1
order of magnitude lower than the present one). Apart from
the outlier samples, the masses for finding the ~H-, ~B-, and
~W-like DM particles and the non-neutralino-like ~X DM
particles are given. The ~H-like particles can be detected

FIG. 20. Results for allowed samples satisfying all constraints in the neutralinolike I case [open circle: Higgsino-like, times: binolike,
filled circle: mixed].
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with DM mass ≳450 GeV in all cases. The ~B-like particles
can be detected with mass ≳1258 GeV in the cases of
neutralinolike I and II. On the other hand, the lower mass
bound of ~B can be as low as to 341 GeV to detect them for
other cases. The ~W-like particles can be detected with DM
mass ≳1120 GeV in the neutralinolike III and IV and the
extended cases. Of course, the non-neutralino-like particles
~X can only be detected with DM mass ≳738 GeV in the
extended case. We also give the predictions on hσðχχ →
ZZ; ZH; tt̄Þvi in the indirect search. The most rewarding
way to find the DM particles in this model in the near future
will be from the direct search of SI DM-nucleus scattering
experiments and/or from the indirect search of DM anni-
hilation processes viaWþW−, ZZ, ZH, and tt̄ channels. We
also investigate the leading effect of coannihilation in the
neutralinolike I case. The change is that the ~H-like particles
with 10 GeV≲mχ ≲mW will also be detectable through
the direct search of the SI DM-nucleus scattering experi-
ment in the near future, while ~H-like particles with mass
950≲mχ ≲ 1680 GeVwill now become undetectable. The
study of the generic Majorana fermion DM model can be
further extended. The whole calculation of coannihilation is
worthy of being probed further. The nonperturbative
Sommerfeld effect also has not been implemented.
These studies will be presented elsewhere. This work
concentrates on ðI; YÞ ¼ ð1=2; 1=2Þ, but the formalism is
generic and can be used to study with arbitrary ðI; YÞ
quantum numbers.
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APPENDIX A: NEUTRAL AND CHARGED WIMP
MASSES WITH I =Y = 1=2

For I ¼ Y ¼ 1
2
, η7 and η8 are singlets with charge ∓1; in

other words, η17 and η−18 are absent. The Lagrangian for the
neutral WIMP mass term is modified as

−L0
m¼μ1λ

1
−1
2
;1
2

η
−1
2

2 η
1
2

1þ
1

2
μ2λ

2
0;0η

0
4η

0
3þ

1

2
μ3λ

3
0;0η

0
6η

0
5

þμ5λ
5
−1;1η

−1
10 η

1
9þg3λ21

2
;−1

2
;0
h ~ϕ1

2iη−1
2

2 η03þg4λ2−1
2
;1
2
;0
hϕ−1

2iη1
2

1η
0
4

þg5λ31
2
;−1

2
;0
h ~ϕ1

2iη−1
2

2 η05þg6λ3−1
2
;1
2
;0
hϕ−1

2iη1
2

1η
0
6

þg9λ5−1
2
;−1

2
;1
hϕ−1

2iη−1
2

2 η19þg10λ51
2
;1
2
;−1h ~ϕ

1
2iη1

2

1η
−1
10 þH:c:

ðA1Þ

It can be simplified as

−L0
m ¼ −μ1η

−1
2

2 η
1
2

1 þ
1

2
μ2η

0
4η

0
3 −

1

2
μ3η

0
6η

0
5 þ μ5η

−1
10 η

1
9

þ g3h ~ϕ
1
2iη−1

2

2 η03 − g4hϕ−1
2iη1

2

1η
0
4

− g5h ~ϕ
1
2iη−1

2

2 η05 − g6hϕ−1
2iη1

2

1η
0
6

þ g9
ffiffiffi
2

p
hϕ−1

2iη−1
2

2 η19 þ g10
ffiffiffi
2

p
h ~ϕ1

2iη1
2

1η
−1
10 þ H:c:

ðA2Þ

With the basis Ψ0T
i ¼ ðη1=21 ; η−1=22 ; η03; η

0
5; η

1
9; η

−1
10 Þ, Eq. (A2)

can be written as

L0
m ¼ −

1

2
Ψ0TYΨ0 þ H:c:; ðA3Þ

where the corresponding mass matrix Y takes the form

0
BBBBBBBBBB@

0 −μ1 − g4vffiffi
2

p g6vffiffi
2

p 0 g10v

−μ1 0 g3vffiffi
2

p −g5vffiffi
2

p g9v 0

− g4vffiffi
2

p g3vffiffi
2

p μ2 0 0 0

g6vffiffi
2

p −g5vffiffi
2

p 0 μ3 0 0

0 g9v 0 0 0 μ5

g10v 0 0 0 μ5 0

1
CCCCCCCCCCA
: ðA4Þ

For I ¼ Y ¼ 1
2
, the Lagrangian for the single charged

WIMP mass term is modified as

−L�
m ¼ μ1η

1
2

2η
−1
2

1 þ 1

2
μ3ðη16η−15 þ η−16 η15Þþμ4η

0
8η

0
7 −μ5η

0
10η

0
9

þ g5
ffiffiffi
2

p
h ~ϕ1

2iη1
2

2η
−1
5 þ g6

ffiffiffi
2

p
hϕ−1

2iη−1
2

1 η16 − g7hϕ−1
2iη−1

2

2 η07

þ g8h ~ϕ
1
2iη−1

2

1 η
0
8− g9hϕ−1

2iη1
2

2η
0
9− g10h ~ϕ

1
2iη−1

2

1 η010þH:c:

ðA5Þ

With the basis ΨþT
i ¼ ðη01=22 ; η015 ; η

00
8 ; η

00
10Þ and Ψ−T

i ¼
ðη−1=21 ; η−15 ; η07; η

0
9Þ, the above Lagrangian becomes

−L�
m ¼ μ1η

þ
2 η

−
1 þ

1

2
μ3ðη0þ5 η−5 þ η−5 η

0þ
5 Þ−μ4η

0þ
8 η−7 þμ5η

0þ
10η

−
9

þ g5
ffiffiffi
2

p
h ~ϕ0iηþ2 η−5 þ g6

ffiffiffi
2

p
hϕ0iη−1 η0þ5 − g7hϕ0iηþ2 η−7

− g8h ~ϕ0iη−1 η0þ8 − g9hϕ0iηþ2 η−9 þ g10h ~ϕ0iη−1 η0þ10 þH:c:

ðA6Þ

Hence, it can be written in the compact form as

L�
m ¼ −

1

2
ðΨþ;Ψ−Þ

�
0 XT

X 0

��
Ψþ

Ψ−

�
þ H:c:; ðA7Þ

where X takes the form
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0
BBBBB@

μ1 g6v
−g8vffiffi

2
p g10vffiffi

2
p

g5v μ3 0 0
−g7vffiffi

2
p 0 −μ4 0

−g9vffiffi
2

p 0 0 μ5

1
CCCCCA: ðA8Þ

APPENDIX B: MASS EIGENSTATES FOR THE
NEUTRAL AND CHARGED WIMPs

For the neutral WIMPs, their four-component represen-
tations are of the form

ψ0
k ¼

�
ηqkk
η̄qkk

�
: ðB1Þ

In the above, qk is defined as the third component of the
isospin of ηk as mentioned in the text. For I ¼ Y ¼ 1=2
with the basis Ψ0T

i ¼ ðη1=21 ; η−1=22 ; η03; η
0
5; η

1
9; η

−1
10 Þ, qi ¼

ð1=2;−1=2; 0; 0; 1;−1Þ. The four-component mass eigen-
states can be obtained by doing a transformation with a
unitary matrix N as

χ0i ≡
�
ζ0i

ζ̄0j

�
¼ ðNijPL þ N�

ijPRÞψ0
j ðB2Þ

so that M0
D ≡ N�YN† is a diagonal matrix with non-

negative entries mχ0k
. Hence, the mass term in Eq. (25)

becomes

L0
m ¼ −

1

2
Ψ0TYΨ0 þ H:c:

¼ −
1

2

X
k

mχ0k
χ̄0kχ

0
k: ðB3Þ

For the single charged WIMPs, their four-component
representations are of the form

ψþ
k ¼

�
η0k

qkþ1

η̄qk−1k

�
and ψ−

k ¼
�
ηqk−1k

η̄0qkþ1

k

�
: ðB4Þ

For I ¼ Y ¼ 1=2, with the basisΨþT
i ¼ ðη01=22 ; η015 ; η

00
8 ; η

00
10Þ,

qi ¼ ð−1=2; 0;−1;−1Þ and Ψ−T
i ¼ ðη−1=21 ; η−15 ; η07; η

0
9Þ,

qi ¼ ð1=2; 0; 1; 1Þ, the four-component mass eigenstates
can be obtained by doing the transformation with two
unitary matrices U and V as

χi ≡
�
ζþi
ζ̄−j

�
¼ ðVijPL þU�

ijPRÞψþ
j and

χci ¼
�
ζ−j

ζ̄þ

�
¼ ðUijPL þ V�

ijPRÞψ−
j ðB5Þ

so that M�
D ≡U�XV† is a diagonal matrix with non-

negative entries mχþk
. Hence, the mass term in Eq. (A7)

becomes

L�
m ¼ −

1

2
ðΨþ;Ψ−Þ

�
0 XT

X 0

��
Ψþ

Ψ−

�
þ H:c:

¼ −
X
k

mχþk
χ̄kχk: ðB6Þ

APPENDIX C: LAGRANGIAN FOR WIMPs
INTERACTING WITH SM PARTICLES

The Lagrangian for WIMPs interacting with the SM
gauge bosons in four-component notation can be derived
from the following gauge invariance terms with two-
component notation [28] using the generic Lagrangian in
Eq. (12) and Appendixes A and B:

−ðgTa
ijV

a
μ þ g0yiδijV 0

μÞψ̄ iσ̄μψ j: ðC1Þ

In the following, we just write down the results.
For I ¼ Y ¼ 1=2, the Lagrangian of the W-boson

interaction with the neutral and single charged WIMPs
can be written as

Lχ0χ∓W� ¼ −
gffiffiffi
2

p fW−
μ ½χ̄0i γμðOLW−

ij PL þORW−
ij PRÞχþj �

þWþ
μ ½χ̄þi γμðOLWþ

ij PL þO
RWþ
ij PRÞχ0j �g; ðC2Þ

where

(
OLW−

ij ¼ P
6
k¼1

P
4
l¼1ð−1Þmod ð2Ij;2Þþ1NikT

þ0T
ki V†

lj with O
LWþ
ij ¼ ðOLW− Þ†ij

ORW−
ij ¼ −

P
6
k¼1

P
4
l¼1N

�
ikT

0−
kj U

T
lj with O

RWþ
ij ¼ ðORW− Þ†ij;

ðC3Þ

and
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Tþ0T
kl ¼

0
BBBBBBBBBB@

0 0 0 0

1 0 0 0

0 0 0 0

0
ffiffiffi
2

p
0 0

0 0 0 0

0 0 0
ffiffiffi
2

p

1
CCCCCCCCCCA
; T0−

kl ¼

0
BBBBBBBBBB@

1 0 0 0

0 0 0 0

0 0 0 0

0
ffiffiffi
2

p
0 0

0 0 0 0

0 0 0
ffiffiffi
2

p

1
CCCCCCCCCCA
: ðC4Þ

The Lagrangian of the Z-boson interaction with the
neutral WIMPs is

Lχ0i χ
0
jZ

¼ g
2 cos θW

Zμχ̄
0
i γ

μðOLZ
ij PL þORZ

ij PRÞχ0j ; ðC5Þ

where

OLZ
ij ¼

X6
k¼1

qkNikN
†
kj with ORZ

ij ¼ −OLZ�
ij : ðC6Þ

On the other hand, OLZ
11 ¼ OLZ�

11 . Hence, the Lagrangian for
the stable dark matter annihilation via the Z boson can be
further simplified as

Lχ0
1
χ0
1
Z ¼ −

g
2 cos θW

OLZ
11Zμχ̄

0
1γ

μγ5χ01: ðC7Þ

The Lagrangian of the Higgs-boson interactions with the
neutral WIMPs is

Lχ0i χ
0
jH

0 ¼ −H0χ̄0i ðOLH
ij PL þORH

ij PRÞχ0j ; ðC8Þ

where

OLH
ij ¼ N�

ikfklN
†
lj with ORH

ij ¼ ðOLH
ij Þ�; ðC9Þ

and

fkl ¼

0
BBBBBBBBBBBB@

0 0 − g4ffiffi
2

p g6ffiffi
2

p 0 g10

0 0 g3ffiffi
2

p − g5ffiffi
2

p g9 0

− g4ffiffi
2

p g3ffiffi
2

p 0 0 0 0

g6ffiffi
2

p g5ffiffi
2

p 0 0 0 0

0 g9 0 0 0 0

g10 0 0 0 0 0

1
CCCCCCCCCCCCA
: ðC10Þ

For coannihilation, we need the Lagrangian of the
Z-boson interaction with the single charged WIMPs,

Lχ−i χ
þ
j Z

¼ g
cos θW

Zμχ̄
þ
i γ

μðOLþ
Z

ij PL þO
Rþ
Z

ij PRÞχþj
− eAμ ~̄χ

þ
i γ

μχþi ; ðC11Þ

where

O
Lþ
Z

ij ¼ −
1

2
Vi1V�

j1 − Vi2V�
j2 þ δijsin2θW;

O
Rþ
Z

ij ¼ −
1

2
U�

i1Uj1 −U�
i2Uj2 þ δijsin2θW: ðC12Þ

We also need the Lagrangian of the Higgs-boson inter-
action with the single charged WIMPs,

Lχ−i χ
þ
j H

0 ¼ H0χ̄þi ðOLþ
H

ij PL þO
Rþ
H

ij PRÞχþj ; ðC13Þ

where

O
Lþ
H

ij ¼ U�
ikh

L
klV

†
lj with O

Rþ
H

ij ¼ VikhRklU
T
lj ðC14Þ

and

hLlk ¼

0
BBBBB@

0 −g6
g8ffiffi
2

p − g10ffiffi
2

p

−g5 0 0 0
g7ffiffi
2

p 0 0 0

g9ffiffi
2

p 0 0 0

1
CCCCCA and

hRlk ¼ hLkl: ðC15Þ

APPENDIX D: MATRIX ELEMENTS FOR DARK
MATTER ANNIHILATION

1. χ 01χ
0
1 → WþW−

The dark matter can annihilate into WþW− via the
t-channel exchange of a single charged WIMP and the
s-channel exchange of a Z0 boson orH0 scalar correspond-
ing to the matrix element

Mðχ01χ01→WþW−Þ¼M1aþM1bþ2M2aþ2M3a; ðD1Þ

where
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M1a ¼ −i
X
k

g2

2

1

t −m2
χþk

½v̄ðp1ÞγμðOLW−

1k PL þORW−

1k PRÞðp3 − p1 þmχþk
Þ

× γνðOLWþ
k1 PL þORWþ

k1 PRÞuðp2Þϵ�μðp3Þϵ�νðp4Þ�;

M1b ¼ −i
X
k

g2

2

1

u −m2
χþk

½v̄ðp1ÞγνðOLWþ
k1 PL þO

RWþ
k1 PRÞðp4 − p1 þmχþk

Þ

× γμðOLW−

1k PL þORW−
1k PRÞuðp2Þϵ�μðp3Þϵ�νðp4Þ�;

M2a ¼ −i
g2

2
OLZ

11

1

s −M2
Z þ iMZΓZ

v̄ðp1Þγ5½ðp3 − p4Þðϵ�ðp3Þ · ϵ�ðp4ÞÞ

− ϵ�ðp4Þðp4 · ϵ�ðp3ÞÞ þ ϵ�ðp3Þðp3 · ϵ�ðp4ÞÞ�;

M3a ¼ −igMW
1

s −M2
H þ iMHΓH

v̄ðp1ÞðOLH
11 PL þORH

11 PRÞuðp2Þϵ�μðp3Þ · ϵ�νðp4Þ: ðD2Þ

2. χ 01χ
0
1 → H0H0

The dark matter can annihilate into H0H0 via the s-channel exchange of a H0 scalar and the t-channel exchange of a
neutral WIMP corresponding to the matrix element

Mðχ01χ01 → H0H0Þ ¼ 2M1a þM2a þM2b þM2c þM2d; ðD3Þ

where

M1a ¼ −ig
3m2

H

2MW

1

s −m2
H þ imHΓH

v̄ðp1ÞðOLH
11 PL þORH

11 PRÞuðp2Þ;

M2a ¼ −i
X
k

1

t −m2
χ0k

v̄ðp1ÞðOLH
1k PL þORH

1k PRÞðp3 − p1 þmχþ
0
ÞðOLH

k1 PL þORH
k1 PRÞuðp2Þ;

M2b ¼ −i
X
k

1

u −m2
χ0k

v̄ðp1ÞðOLH
k1 PL þORH

k1 PRÞðp4 − p1 þmχþ
0
ÞðOLH

1k PL þORH
1k PRÞuðp2Þ;

M2c ¼ −i
X
k

1

u −m2
χ0k

v̄ðp1ÞðOLH
1k PL þORH

1k PRÞðp4 − p1 þmχþ
0
ÞðOLH

k1 PL þORH
k1 PRÞuðp2Þ;

M2d ¼ −i
X
k

1

t −m2
χ0k

v̄ðp1ÞðOLH
k1 PL þORH

k1 PRÞðp3 − p1 þmχþ
0
ÞðOLH

1k PL þORH
1k PRÞuðp2Þ: ðD4Þ

3. χ 01χ
0
1 → Z0Z0

The dark matter can annihilate into Z0Z0 via the t-channel exchange of a neutral WIMP and the s-channel exchange of a
H0 scalar corresponding to the matrix element

Mðχ01χ01 → Z0Z0Þ ¼ M1a þM1b þM1c þM1d þ 4M2a; ðD5Þ

where
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M1a ¼ −i
�

g
2 cos θW

�
2 1

t −m2
χ0k

½v̄ðp1ÞγμðOLZ
1k PL þORZ

1k PRÞðp3 − p1 þmχ0k
ÞγνðOLZ

k1PL þORZ
k1PRÞuðp2Þ�ϵ�μðp3Þϵ�νðp4Þ;

M1b ¼ −i
�

g
2 cos θW

�
2 1

u −m2
χ0k

½v̄ðp1ÞγνðOLZ
k1PL þORZ

k1PRÞðp4 − p1 þmχ0k
ÞγμðOLZ

1k PL þORZ
1k PRÞuðp2Þ�ϵ�μðp3Þϵ�νðp4Þ;

M1c ¼ −i
�

g
2 cos θW

�
2 1

u −m2
χ0k

½v̄ðp1ÞγνðOLZ
1k PL þORZ

1k PRÞðp4 − p1 þmχ0k
ÞγμðOLZ

k1PL þORZ
k1PRÞuðp2Þ�ϵ�μðp3Þϵ�νðp4Þ;

M1d ¼ −i
�

g
2 cos θW

�
2 1

t −m2
χ0k

½v̄ðp1ÞγμðOLZ
k1PL þORZ

k1PRÞðp3 − p1 þmχ0k
ÞγνðOLZ

1k PL þORZ
1k PRÞuðp2Þ�ϵ�μðp3Þϵ�νðp4Þ;

M2a ¼ i

�
g

2 cos θW

�
MZ

1

s −M2
H þ iMHΓH

½v̄ðp1ÞðOLH
11 PL þORH

11 PRÞuðp2Þ�: ðD6Þ

4. χ 01χ
0
1 → H0Z0

The dark matter can annihilate into H0Z0 via the t-channel exchange of a neutral WIMP and s-channel exchange of a Z0

boson corresponding to the matrix element

Mðχ01χ01 → HZÞ ¼ M1a þM1b þ 4M2a; ðD7Þ

where

M1a ¼ i
g

2 cos θW

1

t −m2
χ0k

½v̄ðp1ÞγμðOLZ
1k PL þORZ

1k PRÞðp3 − p1 þmχ0k
ÞðOLH

k1 PL þORH
k1 PRÞuðp2Þ�ϵ�μðp3Þ;

M1b ¼ i
g

2 cos θW

1

u −m2
χ0k

½v̄ðp1ÞðOLH
k1 PL þORH

k1 PRÞðp3 − p1 þmχ0k
ÞðOLZ

1k PL þORZ
1k PRÞγμuðp2Þ�ϵ�μðp3Þ;

M2a ¼ −i
�

g
2 cos θW

�
2

OLZ
11MZ

1

s −M2
Z þ iMZΓZ

½v̄ðp1Þγαγ5uðp2Þ�ϵ�αðp3Þ: ðD8Þ

5. χ 01χ
0
1 → f f̄

The dark matter can annihilate into ff̄ via the s-channel exchange of a Z0 boson or a H0 scalar corresponding to the
matrix element

Mðχ01χ01 → ff̄Þ ¼ 2M1a þ 2M2a; ðD9Þ

where

M1a ¼ i
�

g
2 cos θW

�
2

OLZ
11MZ

1

s −M2
Z þ iMZΓZ

gαμ½v̄ðp1Þγαγ5uðp2Þ�½ūðp3Þγμ�ðgfV þ gfAγ
5Þvðp4Þ�;

M2a ¼ −i
gmf

2MW

1

s −M2
H þ iMHΓH

½v̄ðp1ÞðOLH
11 PL þORH

11 PRÞuðp2Þ�½ūðp3Þvðp4Þ� ðD10Þ

with gfV ¼ 1
2
Tf
3L −Qfsin2θW , and gfA ¼ − 1

2
Tf
3L.

APPENDIX E: CP symmetry

Before transforming the gauge eigenstates to mass eigenstates, all parameters in the Lagrangian are assumed to be real in
this model. The Lagrangian is CP conserved. After field redefinition, some parameters become purely imaginary. The
Lagrangian should still be CP conserved. We explicitly show this and a useful application below.

CHUN-KHIANG CHUA and GWO-GUANG WONG PHYSICAL REVIEW D 94, 035002 (2016)

035002-38



The CP transformation of a four-component field is
given by

CPχiðxÞP†C† ¼ ρCP;χiγ0χ
c
i ð~xÞ ¼ ρCP;χiγ0Cχ̄

T
i ð~xÞ; ðE1Þ

with the phase ρCP;χi for χi, ~x
μ ≡ xμ and C ¼ iγ2γ0. For a

Majorana field, we have χci ¼ ρM;χiχi, where ρM;χi is a
phase. Equation (E1) implies that ρCP;χiρM;χi is purely
imaginary [60]. This can be seen by using vð~p; sÞ ¼
CūTð~p; sÞ, uð~p; sÞ ¼ Cv̄Tð~p; sÞ, γ0uð~p; sÞ ¼ uð−~p;−sÞ,
γ0vð~p; sÞ ¼ −vð~p;−sÞ,

CPχiðxÞP†C† ¼ ρCP;χiγ0χ
c
i ð~xÞ ¼ ρCP;χiρM;χiγ0χið~xÞ; ðE2Þ

and

χiðxÞ ¼
Z

d3p
ð2πÞ32E ðbið~p; sÞuð~p; sÞe−ip·x

þ b†i ð~p; sÞρ�Mχi
vð~p; sÞeip·xÞ; ðE3Þ

which imply

CPb†i ð~p; sÞðCPÞ† ¼ ρ�CP;χiρ
�
M;χi

b†i ð−~p;−sÞ
¼ −ρCP;χiρM;χib

†
i ð−~p;−sÞ: ðE4Þ

Hence, the phase ρCP;χiρM;χi is purely imaginary.
As shown in Appendix B, the neutral WIMP mass

eigenstates are defined (in two-component notation) by

ζ0i ¼ Nijη
0
j : ðE5Þ

In the above, the superscript in ηj here denotes the charge
instead of the third component of isospin, andN is a unitary
matrix satisfying

N�YN�T ¼ M0
D; ðE6Þ

where M0
D is a diagonal matrix with non-negative entries.

Note, in the case one obtains a negative mass in the first
place, the negative sign in front of the mass mi can be
absorbed in Nij with Nij being purely imaginary in the
corresponding i row.
The four-component neutral Majorana states are

defined as

χ0i ¼
�
ζ0i

ζ̄0i

�
¼

�Nijη
0
i

N�
ijη̄

0
i

�
¼ NijPLψ

0
i þ N�

ijPRψ
0
i ; ðE7Þ

where

ψ0
i ≡

�
η0i
η̄0i

�
: ðE8Þ

From above definition, we have ψ0c
i ¼ ψ0

i and χ0ci ¼ χ0i so
that ρM;χi ¼ ρM;ψ i

¼ 1.
For some given i, Nij are real, which gives

χ0i ¼
�
Nijη

0
i

Nijη̄
0
i

�
¼ Nijψ

0
i ¼ NijðPLψ

0
i þ PRψ

0
i Þ: ðE9Þ

We now assume that ψ0
i has common ρCP;ψ for all i.

Therefore, we have

CPψ0
i ðxÞP†C† ¼ ρCP;ψγ0ψ

0
i ð~xÞ: ðE10Þ

For the case of real Nij for some i, we now have

CPχ0i ðxÞP†C† ¼ NijCPψ0
i ðxÞP†C†

¼ ρCP;ψγ0Nijψ
0
i ð~xÞ: ðE11Þ

We obtain for the real Nij case

ρCP;χi ¼ ρCP;ψ : ðE12Þ

If for some i,Nij are imaginary, i.e.,N�
ij ¼ −Nij, we now

have

χ0i ¼
�Nijη

0
i

N�
ijη̄

0
i

�
¼

�
Nijη

0
i

−Nijη̄
0
i

�

¼ Nijð−γ5Þψ0
i ¼ NijðPLψ

0
i − PRψ

0
i Þ: ðE13Þ

Note that the relative sign of PL ~ψ
0
i and PR ~ψ

0
i is the key to

absorbing the minus of the mass term, which consists of
left-handed and right-handed fields at the same time. The
CP transformation of χ0i is

CPχ0i ðxÞP†C† ¼ Nijð−γ5ÞCPψ0
i ðxÞP†C†

¼ ρCP;ψð−γ5Þγ0Nijψ
0
i ð~xÞ

¼ −ρCP;ψγ0χ0i ð~xÞ: ðE14Þ

We obtain for the imaginary Nij case

ρCP;χi ¼ −ρCP;ψ : ðE15Þ

Consider a Hermitian operator OðxÞ:

OijðxÞ ¼ vijχ̄iðxÞγμTaAaμðxÞχjðxÞ
þ aijχ̄iðxÞγμγ5TaAaμðxÞχjðxÞ
þ ½vijχ̄iðxÞγμTaAaμðxÞχjðxÞ
þ aijχ̄iðxÞγμγ5TaAaμðxÞχjðxÞ�†: ðE16Þ

For example, in Eq. (C5), we have
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vij ¼
g

4 cos θW
ðOLZ

ij þORZ
ij Þ;

aij ¼
g

4 cos θW
ð−OLZ

ij þORZ
ij Þ ðE17Þ

with OLZ
ij ¼ P

6
k¼1 qkNikN

†
kj and ORZ

ij ¼ −OLZ�
ij .

Under CP transformation, the operator transforms as

CPOijðxÞP†C†¼vijρ�CP;χiρCP;χj ½χ̄ið~xÞγμTaAaμð~xÞχjð~xÞ�†
þaijρ�CP;χiρCP;χj ½χ̄ið~xÞγμγ5TaAaμð~xÞχjð~xÞ�†
þv�ijρCP;χiρ

�
CP;χj

χ̄ið~xÞγμTaAaμð~xÞχjð~xÞ
þa�ijρCP;χiρ

�
CP;χj

χ̄ið~xÞγμγ5TaAaμð~xÞχjð~xÞ:
ðE18Þ

To have CP symmetry, one requires

CP
Z

d4xOijðxÞP†C† ¼
Z

d4xOijð~xÞ ¼
Z

d4xOijðxÞ

ðE19Þ

so that

vijρ�CP;χiρCP;χj ¼ v�ij; aijρ�CP;χiρCP;χj ¼ a�ij: ðE20Þ

In the case both χ0i and χ0j contain only real (or
imaginary) Nik, Njr, Eq. (E17) gives

v�ij ¼ vij; a�ij ¼ aij; ðE21Þ

and with Eq. (E12), we have

vijρ�CP;χiρCP;χj ¼ v�ij; aijρ�CP;χiρCP;χj ¼ a�ij: ðE22Þ

Hence, O is CP conserved.
In the case that χ0i is with a real Nik, but χ0j is with a

imaginary Njr, Eq. (E17) gives

v�ij ¼ −vij; a�ij ¼ −aij; ðE23Þ

and Eqs. (E12) and (E15) give

ρCP;χi ¼ ρCP; ~ψ ¼ −ρCP;χj : ðE24Þ

It implies

vijρ�CP;χiρCP;χj ¼ v�ij; aijρ�CP;χiρCP;χj ¼ a�ij: ðE25Þ

The operator O is CP conserved as expected.
In the center-of-mass frame of two Majorana particles,

which are in a definite angular momentum configuration,
the state is given by

j2Sþ1LJ; Jzi ¼
X
m;sz;s0z

Z
d3p
2E

fJzmð~pÞSmðsz; s0zÞb†

× ð~p; szÞb†ð−~p; s0zÞj0i; ðE26Þ

where

fJzmð~pÞ≡ hL;M; S;mjL; S; J; JziYLMðp̂ÞRðj~pjÞ; ðE27Þ

with hL;M; S;mjL; S; J; Jzi as the Clebsch-Gordan coef-
ficient and Rðj~pjÞ as the radial wave function. Note that it is
easier to use spin instead of helicity basis here. For the spin
wave function, we have

Smðsz; s0zÞ ¼ ð−1ÞSþ1Smðs0z; szÞ: ðE28Þ
The spherical harmonic wave function has the following
property:

YLMð−p̂Þ ¼ ð−1ÞLYLMðp̂Þ: ðE29Þ
Note that

b†ð~p; szÞb†ð−~p; s0zÞj0i ¼ −b†ð−~p; s0zÞb†ð~p; szÞj0i; ðE30Þ

the above relations of χm and YLM lead to

ð−ÞLþS ¼ 1: ðE31Þ
Since

CPb†ð~p; szÞb†ð−~p; s0zÞj0i ¼ −b†ð−~p; szÞb†ð~p; s0zÞj0i;
ðE32Þ

where we use the fact that the phase ρCPρM is purely
imaginary, we have

CPj2Sþ1LJ; Jzi ¼ −
X
m;sz;s0z

Z
d3p
2E

fJzmð~pÞSmðsz; s0zÞb†

× ð−~p; szÞb†ð~p; s0zÞj0i
¼ ð−ÞLþ1j2Sþ1LJ; Jzi; ðE33Þ

where we have made use of fJzmð−~pÞ ¼ ð−ÞLfJzmð~pÞ.
Note that for a ff̄ pair a similar argument leads
to CPj2Sþ1LJ; Jzi ¼ ð−ÞSþ1j2Sþ1LJ; Jzi.
As CP is a good quantum number, it can be used as a

selection rule in dark matter annihilation processes, when
the initial state has a specific L (and S) configuration.

APPENDIX F: FORMULAS FOR DM-NUCLEUS
ELASTIC SCATTERING CROSS SECTION

The derivations of the DM-nucleus elastic scattering
cross section in the literature are scattered and usually with
different approximations, normalizations, and notations. It
will be useful to rederive the formulas here.
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1. Kinematics

We consider the elastic scattering of

χðpχÞ þN ðpÞ → χðp0
χÞ þN ðp0Þ: ðF1Þ

We define

q≡ p0 − p ¼ pχ − p0
χ ; P≡ pþ p0; Pχ ≡ pχ þ p0

χ ;

S≡ ðpð0Þ þ pð0Þ
χ Þ2 ¼ m2

N þm2
χ þ 2pð0Þ · pð0Þ

χ : ðF2Þ

In particular, we have

q2 ¼ 2m2
N − 2p · p0 ¼ 2m2

χ − 2pχ · p0
χ ; ðF3Þ

and, in the center-of-mass frame,

q2 ¼ ðE0 − EÞ2 − ðj~p0
cmj2 þ j~pcmj2 − 2~p0

cm · ~pcmÞ
¼ 2j~pcmj2ðcos θ − 1Þ: ðF4Þ

When q2 ¼ 0, we must have j~pcmj ¼ 0 or cos θ ¼ 1. In
either case, it gives q ¼ 0. Therefore, in elastic scattering,
q2 ¼ 0 implies q ¼ 0 in the center-of-mass frame and in all
other frames.

In the lab frame, p ¼ ðmN ; ~0Þ and pχ ¼ ðmχþ
mχv2=2; mχ~vÞ. We obtain

S ¼ ðmN þmχÞ2
�
1þ μN

mN þmχ
v2
�
; ðF5Þ

where μN ≡mχmN =ðmN þmχÞ is the reduced mass. The
center-of-mass energy of the whole system is

Ecm ¼ ffiffiffi
s

p ¼ mN þmχ þ
1

2
μN v2; ðF6Þ

as expected.
The center-of-mass velocity in the lab frame is mχ~v=

ðmN þmχÞ. Boosting the frame by −mχ~v=ðmN þmχÞ, we
obtain the velocity of p and pχ at the center-of-mass frame
as −mχ~v=ðmN þmχÞ and ~vmN =ðmN þmχÞ, respectively.
Hence, we have

j~pcmj ¼ μN v; ðF7Þ

and q2 ¼ 2μ2N v2ðcos θ − 1Þ.

2. Effective Lagrangian for direct searches

In this model, we have scalar-scalar, psudo-scalar-scalar,
axial-axial, and axial-vector interactions for direct searches.
The process of DM-nucleus scattering is nonrelativistic, so
we can use the effective Lagrangian which can be derived
from the Lagrangian in Appendix C to calculate the related
SI and SD cross sections. We just give the results as below.
The effective Lagrangians for scalar-scalar and pseudo-
scalar-scalar interactions are

LSS ¼
X
q

aqχ̄01χ
0
1q̄q; LPS ¼

X
q

a0qχ̄01γ5χ
0
1q̄q; ðF8Þ

where

aq ¼ i
gmq

2MWm2
H
ReðOLH

11 Þ;

a0q ¼ gmq

2MWm2
H
ImðOLH

11 Þ; ðF9Þ

and the effective Lagrangians for axial-axial and axial-
vector interactions are

LAA ¼
X
q

dqχ̄01γ
μγ5χ01q̄γμγ

5q;

LAV ¼
X
q

bqχ̄01γ
μγ5χ01q̄γμq; ðF10Þ

where

dq ¼ −
i
2

�
g

MW

�
2

OLZ
11 gA;

bq ¼ −2i
�

g
MW

�
2

OLZ
11 gV ðF11Þ

with gA ¼ − 1
2
Tq
3L and gV ¼ 1

2
Tq
3L − sin2θWQq.

3. Vector, axial-vector current, scalar, and pseudoscalar
matrix elements in the q = 0 limit

Using parity transformation, one can see that the matrix
elements of vector (jVh), axial-vector current (jAh), scalar
(sh), and pseudoscalar (ph) matrix elements should satisfy
the relations

hN ðp0; s0ÞjjVðAÞh;μðxÞjN ðp; sÞi ¼ hN ðp0; s0ÞjP†PjVðAÞh;μðxÞP†PjN ðp; sÞi
¼ �η�PηPhN ð ~p0; s0ÞjjμVðAÞhð~xÞjN ð ~p; sÞi
¼ �hN ð ~p0; s0ÞjjμVðAÞhð~xÞjN ð ~p; sÞi;

hN ðp0; s0ÞjshðphÞðxÞjN ðp; sÞi ¼ �hN ð ~p0; s0ÞjshðphÞð~xÞjN ð ~p; sÞi; ðF12Þ
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where ~pμ, ~xμ ≡ pμ, xμ, ηs are phases and s, s0 are spin (Sz) quantum numbers.

From Eq. (F12), it is clear that in the case of p ¼ p0 and in the momentum rest frame, p ¼ ðmN ; ~0Þ, we have

hN ðmN ; s0ÞjjVðAÞh;μð0ÞjN ðmN ; sÞi ¼ �hN ðmN ; s0ÞjjμVðAÞhð0ÞjN ðmN ; sÞi; ðF13Þ

which gives

hN ðmN ; s0ÞjjVh;ið0ÞjN ðmN ; sÞi ¼ 0; hN ðmN ; s0ÞjjAh;0ð0ÞjN ðmN ; sÞi ¼ 0: ðF14Þ

These imply that hN ðp0; s0ÞjjVh;iðxÞjN ðp; sÞi and hN ðp0; s0ÞjjAh;0ðxÞjN ðp; sÞi are suppressed in the nonrelativistic

limit: p≃ p0 ≃ ðmN ; ~0Þ.
We consider the vector current case first. From the first equation of Eq. (F14), we obtain

hN ðmN ; s0ÞjjVh;μð0ÞjN ðmN ; sÞi ¼ ð2mN δs0sFN ð0Þ; ~0Þ; ðF15Þ

where FN is the form factor and the δss0 factor is obtained as jVh;0 is a singlet under rotation. We can write it in a covariant
form:

hN ðp; s0ÞjjVh;μð0ÞjN ðp; sÞi ¼ 2pμFN ð0Þδs0s: ðF16Þ

In the case of nonvanishing but small q, we have

hN ðp0; s0ÞjjμðxÞjN ðp; sÞi≃ ðpμ þ p0
μÞFN ðq2Þδs;s0 exp½iðp0 − pÞ · x�: ðF17Þ

Now, we want to find FN ð0Þ. From Q≡ R
d3xjVh;0ð0; ~xÞ, we have

Z
d3xhN ðp0; s0ÞjjVh;0ðxÞjN ðp; sÞi ¼ ðp0 þ p0

0ÞFVhðq2Þδs;s0
Z

d3x exp½iðp0 − pÞ · x� þ…; ðF18Þ

giving

hN ðp0; s0ÞjQjN ðp; sÞi ¼ ðEþ E0Þδs;s0FN ðq2Þ exp½iðE0 − EÞt�ð2πÞ3δ3ð~p − ~p0Þ: ðF19Þ

Therefore, we have

QN hN ðp0; s0ÞjN ðp; sÞi ¼ FN ð0Þδs;s0 ð2πÞ32Eδ3ð~p − ~p0Þ; ðF20Þ

which implies

FN ð0Þ ¼ QN ; ðF21Þ

and, hence, the vector current matrix elements in q ¼ 0 case and in the pð0Þ rest frame is

hN ðmN ; s0ÞjjVh;0ð0ÞjN ðmN ; sÞi ¼ 2mN δss0Fð0Þ ¼ 2mN δss0QVN ;

hN ðmN ; s0ÞjjVh;ið0ÞjN ðmN ; sÞi ¼ 0: ðF22Þ

These results will be useful in later discussion. For

jhV;μ ¼ bqjqV;μ ¼ buūγμuþ bdd̄γμdþ…; ðF23Þ

it can be proved, by using the isospin invariant, that

QVp ¼ 2bu þ bd ≡ fVp; QVn ¼ bu þ 2bd ≡ fVn: ðF24Þ
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Hence, the corresponding charge is

QVN ¼ ZQVp þ ðA − ZÞQVn ¼ Zð2bu þ bdÞ þ ðA − ZÞðbu þ 2bdÞ: ðF25Þ

We now turn to the axial-vector case. We start from

hN ðp0; s0ÞjjiAqð0ÞjN ðp; sÞi ¼ hN ðp0; s0Þjq̄γiγ5qð0ÞjN ðp; sÞi

¼ 2hN ðp0; s0Þjq̄γ0
~Σ
2
qð0ÞjN ðp; sÞi

≃ 2hN ðp0; s0Þjq̄
~Σ
2
qð0ÞjN ðp; sÞi; ðF26Þ

where the nonrelativistic approximation is used in the last line and note that the operator is spin density in the quark degree
of freedom. Changing the degree of freedom from a quark to a nucleon, as one usually does in effective theory, we have

hN ðp0; s0Þjq̄
~Σ
2
qð0ÞjN ðp; sÞi ¼ hN ðp0; s0Þj

�
Δp

qp̄
~Σ
2
pð0Þ þ Δn

qn̄
~Σ
2
nð0Þ

�
jN ðp; sÞi

≡ hN ðp0; s0ÞjðΔp
q~spð0Þ þ Δn

q~snð0ÞÞjN ðp; sÞi; ðF27Þ

where Δq
pðnÞ is the quark spin proportion in a proton (neutron).

Note that spin operators Sp;n;N are related to ~sp;n;N by

~Sp;n;N ¼
Z

d3x~sp;n;N ð0; ~xÞ: ðF28Þ

We consider the nonrelativistic case, p≃ ðmN ; ~0Þ, q≃ 0,

hN ðp; s0Þj~sp;n;N ðxÞjN ðp; sÞi≃ 2mN hJN ; s0j~Sp;n;N jJN ; si expðiq · xÞ: ðF29Þ

From Wigner-Eckart theorem, the rotational property of the above matrix element is well understood and it is identical to
that of the matrix element of any vector operator. Explicitly, from the Wigner-Eckart theorem, we have

hJN ; s0jð~Sp;nÞmjJN ; si ¼ hJN 1; smjJN 1; JN s0ihJN jjSp;njjJN i;
hJN ; s0jð~SN ÞmjJN ; si ¼ hJN 1; smjJN 1; JN s0ihJN jjSN jjJN i; ðF30Þ

with ð~Sp;n;N Þm¼0;�1 ¼ ð~Sp;n;N Þz;∓½ð~Sp;n;N Þx � ið~Sp;n;N Þy�=
ffiffiffi
2

p
. Since the double line matrix elements are independent of s

and s0 (with m ¼ s0 − s), so does the ratio

hJN ; s0jð~Sp;nÞmjJN ; si
hJN ; s0jð~SN ÞmjJN ; si

¼ hJN jjSp;njjJN i
hJN jjSN jjJN i ≡ λp;n: ðF31Þ

Consequently, its value can be obtained by taking a convenient choice of s, s0 as s ¼ s0 ¼ JN and m ¼ 0. In other words,
we have

hJN ; s0j~Sp;njJN ; si ¼ λp;nhJN ; s0j~SN jJN ; si; ðF32Þ

with

λp;n ¼
hJN ; s ¼ JN jðSp;nÞzjJN ; s ¼ JN i
hJN ; s ¼ JN jðSN ÞzjJN ; s ¼ JN i ≡ hSp;n;zi

JN
: ðF33Þ
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When the contributions of the two-body current are included, one needs to change hSp;ni in λp;n into effective hSp;nieff ,
where we have

hSpðnÞieff ≡ hSpðnÞi � δa1
hSpi − hSni

2
; ðF34Þ

and δa1 is the fraction contributing to the isovector coupling [55]. We use the predicted spin expectation values in
Refs. [20,55] for the calculation. Putting everything together in the q ¼ 0 limit and the pð0Þ rest frame, we obtain

hN ðmN ; s0ÞjjiAqð0ÞjN ðmN ; sÞi ¼ 4mðΔp
qλp þ Δn

qλnÞhJN ; s0jð~SN ÞijJN ; si;
hN ðmN ; s0Þjj0Aqð0ÞjN ðmN ; sÞi ¼ 0; ðF35Þ

where Eq. (F14) has been used. These results will be useful later.
Similarly, from Eq. (F12), we have

hN ðmN ; s0Þjshð0ÞjN ðmN ; sÞi ¼ 2mN fsN δss0 ;

hN ðmN ; s0Þjphð0ÞjN ðmN ; sÞi ¼ 0; ðF36Þ

where sh ¼ aqq̄q. For the scalar density matrix element, we make use of (no sum on q)

hpðp; s0Þjmqq̄qð0Þjpðp; sÞi ¼ 2Eδss0mqfsp;q ¼ 2Eδss0

8>><
>>:

mpf
ðpÞ
Tq ; q ¼ u; d; s;

2
27
mp

�
1 −

P
q¼u;d;s

fðpÞTq

�
; q ¼ c; b; t:

ðF37Þ

In the above, the matrix elements of the light-quark currents in the proton or neutron are obtained in chiral perturbation
theory from measurements of the pion-nucleon sigma term [61–63]. Heavy quarks contribute to the mass of the nucleon
through triangle diagrams [64]. Consequently, we have

fsN ¼ ðZfsp þ ðA − ZÞfsnÞ;

fspðnÞ ¼ aqfsp;q ¼
X

q¼u;d;s

aq
mpðnÞ
mq

fðpðnÞÞTq þ
X

q¼c;b;t

aq
2

27

mpðnÞ
mq

�
1 −

X
q0¼u;d;s

fðpðnÞÞTq0

�
: ðF38Þ

These matrix elements at q ¼ 0 are used in Eq. (50) in Sec. II C to obtain the DM-nucleus scattering differential cross
section at q2 ¼ 0.

4. Total cross section σ and σ0
Using the standard formula, we find that the differential cross section in the center-of-mass frame is given by

dσðq2 ¼ 0Þ
d cos θ

¼ 1

32πS

p0
χ

pχ

X
jMfiðq2 ¼ 0Þj2 ≃ μ2N

32πm2
Nm

2
χ

X
jMfiðq2 ¼ 0Þj2; ðF39Þ

where μN is the reduced mass of mχ and mN . The explicit expression of Mfi is given in Eq. (58). It is useful to define
σ0 as [13]

σ0 ≡
���� dσðq2 ¼ 0Þ

djqj2
����
Z

4μ2
N
v2

0

djqj2: ðF40Þ

Recall that we have jqj2 ¼ −q2 ¼ 2μN v2ð1 − cos θÞ and, consequently, the Jacobian djqj2=d cos θ ¼ −2μ2N v2 is a
constant. The quantity σ0 can now be expressed as
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σ0 ¼
���� dσðq2 ¼ 0Þ

d cos θ

����
Z

1

−1
d cos θ≃ μ2N

16πm2
Nm

2
χ

X
jMfiðq2 ¼ 0Þj2: ðF41Þ

The differential cross section dσ=djqj2 with nonzero momentum transfer is parametrized as [13]

dσðq2Þ
djqj2 ¼ dσðq2 ¼ 0Þ

djqj2 F2ðjqj2Þ ðF42Þ

with F2ðjqj2Þ a form factor, giving

σ ¼
Z

4μ2v2

0

djqj2 dσðq
2Þ

djqj2 ¼
Z

4μ2v2

0

djqj2F2ðjqjÞ dσðq ¼ 0Þ
djqj2 ¼ σ0

4μ2v2

Z
4μ2v2

0

djqj2F2ðjqjÞ: ðF43Þ

5. Normalizing σ

The generic form of SI cross section σ0 of DM scattering off the nucleus A with the ith isotope induced by spin-
independent interaction is

σSI0;Ai
≃ μ2N

16π

PjMSI
fiðq2 ¼ 0Þj2
m2

Nm2
χ

¼ μ2Ai

16π
ðQ2

VAi
þQ2

SAi
Þ≡ μ2Ai

16π

X
X¼V;S

CX½fXpZ þ fXnðAi − ZÞ�2; ðF44Þ

where

CV ¼ 16κ2χ
v2

1 − v2
and CS ¼ 16κ2χ : ðF45Þ

For proton (A ¼ 1, Z ¼ 1) and neutron (A ¼ 1, Z ¼ 0), the above formulas give

σSI0;p ¼
X
X¼V;S

σSIðXÞ0;p ¼ μ2p
16π

ðCVf2Vp þ CSf2SpÞ;

σSI0;n ¼
X
X¼V;S

σSIðXÞ0;n ¼ μ2n
16π

ðCVf2Vn þ CSf2SnÞ: ðF46Þ

For the nucleus with atomic mass number Ai and isotope abundance ηi, we define a scaled cross section as

σZN ≡
P

iηiσ
SI
AiP

jηjA
2
j

μ2Aj
μ2p

; ðF47Þ

with the SI DM-nucleus cross section defined as

σSIAi
≡

Z
djqj2
4μ2Ai

v2
σSI0;Ai

F2
SIðjqjÞ; ðF48Þ

so

σZ0;N ¼
P

X¼V;Sσ
SIðXÞ
0;p

P
iηiμ

2
Ai
½Z þ ðAi − ZÞ fXn

fXp
�2P

ηjμ
2
Aj
A2
j

: ðF49Þ

In the isospin limit,
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fXp
fXn

→ 1; ðF50Þ

we have

σZ0;N → σSI0;p ¼ σSI0;n: ðF51Þ

Data obtained from different experiments can be compared using σZN defined in Eq. (F47). Note that even if the isospin limit
is not satisfied, we can still normalize σSIA to σZN as in Eq. (F47) and compare it to the experimental result by taking σZN as
some sort of scaled cross section but losing the generality among different experiments.
For spin-dependent interaction, from Eq. (58), we obtain

σSD0;Ai
≃ μ2Ai

16π
64κ2χdqdq

0 ðΔp
qhSpieff þ Δn

qhSnieffÞðΔp
q0 hSpieff þ Δn

q0 hSnieffÞ
JAi

þ 1

JAi

: ðF52Þ

When DM scatters off a proton (neutron) target, we have

σSD
0;pðnÞ ≃

μ2pðnÞ
16π

64κ2χdqdq
0
�
ΔpðnÞ

q
1

2

��
ΔpðnÞ

q0
1

2

� ð1=2Þ þ 1

1=2

≃ μ2pðnÞ
16π

64κ2χdqdq
0 ðΔpðnÞ

q ÞðΔpðnÞ
q0 Þ 3

4
: ðF53Þ

Now, return to the generic case, but observe that in the case the proton (neutron) contribution dominates the interaction
(jdqΔq

pðnÞj ≫ jdqΔq
nðpÞj) we have

σSD0;Ai
→

4μ2Aj
hSp;ni2effðJAj

þ 1Þ
3μ2p;nJAj

σSD
0;pðnÞ: ðF54Þ

Given the above result, it will be useful to define the normalized DM-nucleus cross section as [58,65,66]

σSDp;n ≡
�X

i

ηiσ
SD
Ai

��X
j
ηj
4μ2Aj

hSp;ni2effðJAj
þ 1Þ

3μ2p;nJAj

�−1

; ðF55Þ

with the DM-nucleus SD cross section

σSDAi
≡

Z
djqj2
4μ2Ai

v2
σSD0;Ai

F2
SDðjqjÞ: ðF56Þ

In the above, the form factor is related to the structure function by [20,67]

F2
SDðjqjÞ ¼

SAðjqjÞ
SAð0Þ

so that F2
SDð0Þ ¼ 1; ðF57Þ

where

SAð0Þ ¼
ð2J þ 1ÞðJ þ 1Þ

πJ
½aphSpieff þ anhSnieff �: ðF58Þ

The axial-vector structure function SAðjqjÞ can be written in terms of its isoscalar/isovector (0=1) structure factors
S00ðjqjÞ; S01ðjqjÞ, and S11ðjqjÞ as [55]
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SAðjqjÞ ¼ a20S00ðjqjÞ þ a0a1S01ðjqjÞ þ a21S11ðjqjÞ; ðF59Þ

where the isoscalar and isovector couplings in this model are given by

a0;1 ¼ ap � an ¼
dq

GF=
ffiffiffi
2

p ðΔp
q � Δn

qÞ: ðF60Þ

In fact, the form factor can be defined as

F2
SDðjqjÞ≡

ðdqΔp
qÞ2hSpi2effF2

ppðjqjÞ þ 2dqdq
0Δp

qΔn
q0 hSpieffhSnieffF2

pnðjqjÞ þ ðdqΔn
qÞ2hSni2effF2

nnðjqjÞ
ðdqΔp

qÞ2hSpi2effF2
ppð0Þ þ 2dqdq

0Δp
qΔn

q0 hSpieffhSnieffF2
pnð0Þ þ ðdqΔn

qÞ2hSni2effF2
nnð0Þ

¼
ðdqΔp

qÞ2hSpi2effF2
ppðjqjÞ þ 2dqdq

0Δp
qΔn

q0 hSpieffhSnieffF2
pnðjqjÞ þ ðdqΔn

qÞ2hSni2effF2
nnðjqjÞ

ðdqΔp
qhSpieff þ dqΔn

qhSnieffÞ2
; ðF61Þ

where

F2
ppðnnÞðjqjÞ≡

S00ðjqjÞ þ S11ðjqjÞ � S01ðjqjÞ
S00ð0Þ þ S11ð0Þ � S01ð0Þ

; F2
pnðjqjÞ≡ S00ðjqjÞ − S11ðjqjÞ

S00ð0Þ − S11ð0Þ
: ðF62Þ

Using the relations

S00ð0Þ þ S11ð0Þ � S01ð0Þ ¼
ð2JAi

þ 1ÞðJAi
þ 1Þ

πJAi

hSp;ni2eff ;

S00ð0Þ − S11ð0Þ ¼
ð2JAi

þ 1ÞðJAi
þ 1Þ

πJAi

hSpieffhSnieff ; ðF63Þ

the former of which is derived from Eq. (F58) and the latter of which is from Eq. (F59), we recover the usual expression,

F2
SDðjqjÞ ¼

a20S00ððjqjÞ þ a1a0S01ððjqjÞ þ a21S11ððjqjÞ
a20S00ð0Þ þ a1a0S01ð0Þ þ a21S11ð0Þ

; a0;1 ¼
dq

GF=
ffiffiffi
2

p ðΔp
q � Δn

qÞ: ðF64Þ

One may define another normalized SD cross section σ0SD by attempting to remove the q2 dependence,

σ0SDp;n ≡X
i

ηi

Z
djqj2
4μ2Ai

v2
σSD0;Ai

F2
SDðjqjÞ

�X
j
ηj
4μ2Aj

hSp;ni2effF2
ppðnnÞðjqjÞðJAj

þ 1Þ
3μ2p;nJAj

�−1

: ðF65Þ

Although FSDðjqjÞ gives a compact expression for the relation between σSD and σSD0 , it is not universal as it depends on the
coupling dq; nevertheless, F2

pp;nn;pnðjqjÞ do not depend on the coupling dq. We will give another expression below.
In the case with both spin-independent and spin-dependent interactions, we have

dσAi

djqj2 ¼
1

4μ2Ai
v2

ðσSD0 F2
SIðjqjÞ þ σSD0;ppF

2
ppðjqjÞ þ σSD0;nnF

2
nnðjqjÞ þ σSD0;pnF

2
pnðjqjÞÞ; ðF66Þ

where
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σSI0 ¼ μ2Ai

π
κ2χ

�
v2

1 − v2
Q2

VAi
þ f2sAi

	
;

σSD
0;ppðnnÞ ¼

μ2Ai

π
κ2χ

��
4þ 4v2

3ð1 − v2Þ
��X

dqΔpðnÞ
q

�
2

λ2pðnÞJAi
ðJAi

þ 1Þ
	
;

σSD0;pn ¼
μ2Ai

π
κ2χ

��
4þ 4v2

3ð1 − v2Þ
�
2

�X
dqdq

0Δp
qΔn

q0

�
λpλnJAi

ðJAi
þ 1Þ

	
: ðF67Þ

Consequently, we have

σAi
¼

Z
djqj2 dσ

djqj2 ¼ ðσSI0 rSI þ σSD0;pprpp þ σSD0;nnrnn þ σSD0;pnrpnÞ; ðF68Þ

where

rj ≡
Z

4μ2Ai
v2

0

djqj2
4μ2Ai

v2
F2
jðjqjÞ; ðF69Þ

with j ¼ SI, pp, nn, pn.
We defined scaled cross sections as

σZN ≡
P

iηiσAiP
jηjA

2
j

μ2Aj
μ2p

ðF70Þ

and

σSDp;n ≡
�X

i

ηiσAi

��X
j
ηj
4μ2Aj

hSp;ni2ðJAj
þ 1Þ

3μ2p;nJAj

�−1

; ðF71Þ

or

σ0SDp;n ≡
�X

i

ηiσ
0
Ai;pðnÞ

��X
j
ηj
4μ2Aj

hSp;ni2ðJAj
þ 1Þ

3μ2p;nJAj

�−1

; ðF72Þ

with

σ0Ai;pðnÞ ¼ ðσSI0 r0SI;pðnÞ þ σSD0;ppr
0
pp;pðnÞ þ σSD0;nnr

0
nn;pðnÞ þ σSD0;pnr

0
pn;pðnÞÞ;

r0j;pðnÞ ¼
Z

4μ2Ai
v2

0

djqj2
4μ2Ai

v2
F2
jðjqjÞ

F2
ppðnnÞðjqjÞ

: ðF73Þ

Data obtained from different experiments can be compared using σZN and σSDp;n or σ0SDp;n.

APPENDIX G: COANNIHILATION FORMULATION

It has been mentioned [50] that coannihilation becomes significantly important if the mass splitting δm≃ Tf between the
dark matter particle χ01 and one of the other WIMPs in this generic model. Let χ1 be the dark matter and χiði ¼ 1; 2;…; NÞ
be the WIMPs having the masses with mi < mj for i < j and the internal degree of freedom gi. Let ni denote the number
density of χi. We only need to consider the total number density n ¼ P

N
i¼1 ni since all WIMPs χi will eventually decay to

the dark matter χ1. With the assumption ni=n ≈ neqi =n
eq before and after freeze-out, we have the Boltzmann equation [50]

dn
dt

þ 3Hn ¼ −hσeffvMϕliðn2 − n2eqÞ; ðG1Þ
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where hσeffvMϕli ¼
P

N
i;j¼1 σijðχiχj → XX0Þrirjvij. The X and X0 denote the SM particles, and the ri is the ratio of n

eq
i =n

eq.
Let the mass fraction be Δi ≡ ðmi −m1Þ=m1 so that ri can be given by

ri ≡ neqi =n
eq ¼ gið1þ ΔiÞ3=2 expð−xΔiÞP

N
i¼1 gið1þ ΔiÞ3=2 expð−xΔiÞ

≡ gið1þ ΔiÞ3=2 expð−xΔiÞ
geff

: ðG2Þ

Here, we only consider the leading effect; namely, we only consider the effect of the WIMPs, χ02 and χ�1;2, with two SM
particles in the final states through the s-channel interaction. Similarly, we do not take the Taylor series expansion on v2 in
the s channel and put a step function for the allowed threshold energy for each interaction channel in the nonrelativistic
thermal averaged cross section as follows:

hσeffvMϕlin:r: ¼
X
i;j

x3=2ij

2
ffiffiffi
π

p
X
A;B

Z
∞

0

dvv2e−xijv
2=4½σðχiχ̄j → Aþ BÞv�θ

�
m2

i þm2
j þ

2mimjffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p − ðmA þmBÞ2
	
: ðG3Þ

In the above, xij ¼ μij
μ11

x and μij is the reduced mass of χi and χj. From the freeze-out condition, the new freeze-out
temperature parameter xf can be solved numerically by the following equation:

xf ¼ ln

�
cðcþ 2Þ

ffiffiffiffiffi
45

8

r
geffmχMPLhσeffvix¼xf

2π3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�ðmχÞ

p
x1=2f

	
: ðG4Þ

The relic density now becomes

ΩDMh2 ≈ 1.04 × 109
GeV−1

MPL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�ðmχÞ

p
JðxfÞ

; ðG5Þ

where

JðxfÞ≡
Z

∞

xf

hσeffvi
x2

dx: ðG6Þ

Note that the σeff is not only the function of v but also a function of x in coannilation.

APPENDIX H: MATRIX ELEMENTS FOR WIMP COANNIHILATION

In this article, we only consider the leading effect of coannihilation with the first two lightest neutral as well as single
charged WIMPs annihilating to SM fermions through the s channel.

1. χ 0j χ
þ
k → q̄0q, lþν

The neutral WIMP χ0j and the single charged WIMP χþk can annihilate into SM fermions through the s-channel exchange
of a Wþ boson corresponding to the matrix element

Mðχ0jχþk → q̄0qÞ ¼ −i
�

gffiffiffi
2

p
�

2

Vqq0
1

s−M2
W þ iMWΓW

gμν½v̄jðp1ÞγμðOLW−
jk PL þORW−

jk PRÞukðp2Þ�½ūðp4ÞγνPLvðp3Þ�; ðH1Þ

and

Mðχ0jχþk → lþνÞ ¼ −i
�

gffiffiffi
2

p
�

2 1

s −M2
W þ iMWΓW

gμν

× ½v̄jðp1ÞγμðOLW−
jk PL þORW−

jk PRÞukðp2Þ�½ūðp4ÞγνPLvðp3Þ�: ðH2Þ
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2. χ 0kχ
−
j → q0q̄;l−ν̄

Similarly, the neutral WIMP χ0k and the single charged WIMP χ−j can annihilate into SM fermions via the s-channel
exchange of a W− boson corresponding to the matrix element

Mðχ0kχ−j → q0q̄Þ ¼ −i
�

gffiffiffi
2

p
�

2

V�
qq0

1

s −M2
W þ iMWΓW

gμν

× ½v̄jðp2ÞγμðOLWþ
jk PL þORWþ

jk PRÞukðp1Þ�½ūðp3ÞγνPLvðp4Þ�; ðH3Þ

and

Mðχ0kχ−j → l−ν̄Þ ¼ −i
�

gffiffiffi
2

p
�

2 1

s −M2
W þ iMWΓW

gμν

× ½v̄jðp2ÞγμðOLWþ
jk PL þORWþ

jk PRÞukðp1Þ�½ūðp3ÞγνPLvðp4Þ�: ðH4Þ

3. χ 0j χ
0
k → f f̄

The neutral WIMPs χ0j and χ0k can annihilate into ff̄ through the s-channel exchange of a Z0 boson or an H0 scalar
corresponding to the matrix element

Mðχ0jχ0k → ff̄Þ ¼ M1a þM1b þ 2M2a; ðH5Þ

where

M1a ¼ −
i
2

�
g

cos θW

�
2

gαν
1

s −M2
Z þ iMZΓZ

× ½vjðp1Þγα½ðOLZ
jk PL þORZ

jk ÞPRÞukðp2Þ�½ūðp3ÞγνðgfV þ gfAγ
5Þvðp4Þ�;

M1b ¼ −
i
2

�
g

cos θW

�
2

gαν
1

s −M2
Z þ iMZΓZ

× ½vkðp1Þγα½ðOLZ
kj PL þORZ

kj ÞPRÞujðp2Þ�½ūðp3ÞγνðgfV þ gfAγ
5Þvðp4Þ�;

M2a ¼ i
gmf

2MW

1

s −M2
H þ iMHΓH

½v̄jðp1ÞðOLH
jk PL þORH

jk PRÞukðp2Þ�½ūðp3Þvðp − 4Þ�: ðH6Þ

4. χ−j χ
þ
k → f f̄

The single chargedWIMPs χ−j and χþk can annihilate into ff̄ through the s-channel exchange of a Z0 boson, an A0 boson,
or a H0 scalar corresponding to the matrix element

Mðχ−j χþk → ff̄Þ ¼ M1 þM2 þM3; ðH7Þ

where

M1 ¼ i

�
g

cos θw

�
2 1

s −M2
Z þ iMZΓZ

gαμ½ūðp3ÞγαðgfV þ gfAγ
5Þvðp4Þ�½v̄jðp2ÞγμðOLþ

Z
jk PL þO

Rþ
Z

jk PRÞjkðp1Þ;

M2 ¼ −ie2gαμ
1

s
δjk½ūðp3Þγαvðp4Þ�½v̄jðp2Þγμukðp1Þ;

M3 ¼ −i
gmf

2MW

1

s −M2
H þ iMHΓH

½ūðp3Þvðp4Þ�½v̄jðp2ÞðOLþ
H

jk PL þO
Rþ
H

jk PRÞukðp1Þ�: ðH8Þ
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