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We present a determination of the strange, charm, and bottom quark masses as well as the strong
coupling constant in 2þ 1 flavor lattice QCD simulations using highly improved staggered quark action.
The ratios of the charm quark mass to the strange quark mass and the bottom quark mass to the charm quark
mass are obtained from the meson masses calculated on the lattice and found to be mc=ms ¼ 11.877ð91Þ
and mb=mc ¼ 4.528ð57Þ in the continuum limit. We also determine the strong coupling constant and the
charm quark mass using the moments of pseudoscalar charmonium correlators: αsðμ ¼ mcÞ ¼ 0.3697ð85Þ
and mcðμ ¼ mcÞ ¼ 1.267ð12Þ GeV. Our result for αs corresponds to the determination of the
strong coupling constant at the lowest energy scale so far and is translated to the value
αsðμ ¼ MZ; nf ¼ 5Þ ¼ 0.11622ð84Þ.
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I. INTRODUCTION

Accurate determination of QCD parameters received a
lot of attention in recent years. Lattice QCD calculations
play an important role in this quest. The precise knowledge
of the QCD parameters is important for testing the
prediction of the standard model. One prominent example
is the sensitivity of Higgs branching ratios to the heavy
quark masses and the strong coupling constant [1]. While
several precise determinations of the heavy quark masses
and the strong coupling constant αs on the lattice exist, it is
always important to obtain results using different lattice
methods to ensure that all the errors are under control. In
the case of αs, different lattice and nonlattice methods often
give quite different results, possibly suggesting that not all
the sources of errors are under control [2]. In particular, the
lattice determinations that use the static quark antiquark
potential lead to smaller values of αs [3,4]. As a result of
this, the error on the αs quoted in the most recent Particle
Data Group (PDG) Review update has increased for the
first time in many years: αsðMZÞ ¼ 0.1181ð16Þ [5]. This
should be compared to the 2013 PDG value,
αsðMZÞ ¼ 0.1185ð6Þ. Lattice QCD offers the possibility
to determine the strong coupling constant at relatively low
energy scales. So far the only nonlattice method that offers
a low energy determination of αs is the analysis of the τ
decay, but there are large systematic uncertainties due to
different ways of organizing the perturbative expansion in
this method (see Ref. [6] for a recent work on this topic and
references therein). For certain applications, it is important
to have the running of the coupling constant at low energy
scales. One example is the comparison of weak coupling
and lattice results in QCD thermodynamics, where the
typical scale ≃πT could be as low as 1 GeV [7–10].
There are also sizable differences in the value of the

charm quark masses. The recent determination ofmc by the
HPQCD Collaboration [11] is significantly lower than

the value obtained by the ETMC Collaboration [12].
Some lattice QCD calculations use 2 or 3 flavors of
dynamical quarks [13–15], while others use 4 dynamical
flavors [11,12,16]. Therefore, understanding of the flavor
dependence of the charm quark mass is also important.
Furthermore, nonperturbative determination of the bottom

quark mass is a problematic matter in the lattice simulations
due to the discretization errors caused by powers of mha,
where mh is the bare mass of the heavy quarks. However,
owing to improvements of discretization of the action as well
as simulations with smaller lattice spacing using powerful
computing resources, it has recently become possible to
perform calculations with quark masses larger than the
charm quark mass. The region around the bottom quark
mass can be accessed using extrapolations [17]. Several
determinations of the quark mass ratio of the bottom to
charm have been reported, and a slight inconsistency has
been found: The ratio recently obtained by the ETMC
ollaboration [18] shows a smaller value than that previously
determined by the HPQCD Collaboration [11,17]. Thus, the
determinations of the bottom quark mass with different
setups and approaches are also important to provide precise
theoretical predictions.
In this paper, we report on the calculation of the quark

masses and the strong coupling constant in 2þ 1 flavor
QCD using highly improved staggered quark (HISQ)
action. More precisely, we determine the ratio of the charm
quark mass to the strange quark mass and the bottom quark
mass to the charm quark mass from the pseudoscalar and
vector meson masses calculated on the lattice and com-
bined with the experimental inputs. Furthermore, the strong
coupling constant αs and the charm quark mass mcðmcÞ in
MS renormalization scheme are determined from the
moments of the pseudoscalar charmonium correlators
and the comparison to the corresponding perturbative
result. By using the quark mass ratios together with αs
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and mcðmcÞ, we also determine the strange and bottom
quark masses.
This paper is organized as follows: In Sec. II, we

introduce the details of the lattice setup and explain our
approach to determine the quark mass ratios, the strong
coupling constant, and the quark masses. Our main
numerical results are discussed in Sec. III, including the
determination of the physical values of the charm quark
mass and the ratios of the quark masses, as well as the
moments of the pseudoscalar charmonium correlators. In
Sec. IV, we compare our results for the strong coupling
constant and the quark masses with other lattice results. The
paper is concluded in Sec. V.

II. LATTICE SETUP AND DETAILS

OF ANALYSIS

To determine the quark masses and the strong coupling
constant, we calculate meson masses as well as the
moments of pseudoscalar charmonium correlators in
2þ 1 flavor lattice QCD. The gauge configuration used
in our study has been generated using tree-level improved
gauge action [19] and highly improved staggered quark
(HISQ) action [20] by the HotQCD Collaboration [21].
The strange quark mass,ms, was fixed to its physical value,
while for the light (u and d) quark masses the value ml ¼
ms=20 was used. The later corresponds to the pion mass of
160 MeV in the continuum limit. Thus, the values of the
light quark masses are slightly larger than the physical
value. This small difference, however, does not lead to any
visible effects in the physical observables at zero temper-
ature, which agree well with the experimental values
[21,22]. For the valence charm and bottom quarks, we
use the HISQ action with the so-called ϵ-term [20], which
removes the tree-level discretization effects due to the large
quark mass up to OððamÞ4Þ. The HISQ action with ϵ-term
turned out to be very effective for treating the charm quark
on the lattice [16,20,22,23]. The lattice spacing in our
calculations has been fixed using the r1 scale defined in
terms of the energy of static quark antiquark pair VðrÞ as

r2
dV
dr

����
r¼r1

¼ 1.0: ð1Þ

We use the value of r1 determined in Ref. [24] using the
pion decay constant as an input:

r1 ¼ 0.3106ð18Þ fm: ð2Þ

In the above equation, all the sources of errors in Ref. [24]
have been added in quadrature. The above value of r1
corresponds to the value of the scale parameter determined
from the Wilson flow w0 ¼ 0.1749ð14Þ [21]. This agrees
very well with determination of the Wilson flow parameter
by the BMW Collaboration, w0 ¼ 0.1755ð18Þð4Þ [25]. It is

also consistent with the HPQCD value r1 ¼ 0.3133ð23Þð3Þ
within errors [26]. This gives us confidence in our scale
setting.
All of the quantities in this paper can be calculated from

the meson correlation functions. In this study, we focus
only on the local meson operators which have the same
structures in the taste and spin generators of Dirac gamma
matrices Γ. In particular, we calculate the meson propa-
gators consisting of the pseudoscalar Γ ¼ γ5 and vector γi
operators. To obtain the moments of the charmonium
correlators (explained in detail below), we calculate the
pseudoscalar meson correlators with the point sources. On
the other hand, to determine the bare charm quark mass and
quark mass ratios,mc=ms andmb=mc, we utilize the meson
correlators obtained with the corner-wall sources, where on
a given time slice we set the sources to one at the origin of
each 23 cube and to zero elsewhere. The corner-wall
sources enable reduction of the contribution of higher
excited states and thus more accurate determination of
the ground state masses. From the meson propagators, we
extract the charmonium and bottomonium masses using
two type of fits. The first type of fits includes only the
ground state contributions, while the second type of fits
includes the ground state contribution and the first excited
state contribution [27]. The second type of fit allows us to
use a larger range in the time direction. We find that the two
fits agree quite well. We also checked the fit range
dependence of the extracted masses and found it to be
small. Any dependence on the fit range that is larger than
the statistical error is treated as a systematic error. For the
determination of the ratio mc=ms, we need the mass of the
unmixed pseudoscalar ss meson mass at the physical point
and utilize the lattice results from Ref. [21].
Using the J=ψ and ηc masses obtained for several trial

values of the lattice bare quark mass mct, we study the
charm quark mass dependence of the spin averaged mass

M ¼ 1

4
ð3MJ=ψ þMηcÞ: ð3Þ

Using M has the advantage that effects of hyperfine
splitting, which are sensitive to discretization errors, cancel
out in this combination. We fit the mct dependence of M
using the linear form

M ¼ dþ bmct; ð4Þ

which works very well. Then, the physical value of the bare
charm quark mass can be determined as

mc0 ¼
1

b

�
M − d0

�
r1
a

�
r−11

�
; ð5Þ

where we explicitly expressed d in terms of a dimensionless
quantity given in the lattice unit: d0 ¼ ad.
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The mass of the unmixed pseudoscalar meson is given by
M2

ηss
¼ Bms0. Then, the mass ratio of the charm to strange

quarks can be written as

mc0

ms0
¼ B

M2
ηss

M − d
b

: ð6Þ

By using the r1 scale as well as the values of B, r1=a, d0,
and b, extracted on the lattice, the above equation can be
rewritten as

mc0

ms0
¼ B0

bMηss
r1

�
r1
a

��
M
Mηss

−
�
r1
a

�
d0

Mηss
r1

�
; ð7Þ

where B0 ¼ aB. Since the ratio of the quark masses is
scheme and scale independent, mc=ms ¼ mc0=ms0, and the
above equation is the basis for our extraction of mc=ms.
Using the experimental input for the meson masses M and
Mηss

on one hand and the value of the fit parameters b and
d0 obtained on the lattice together with the values of B0

and r1=a from Ref. [21] on the other hand, we can obtain
the value ofmc=ms at each lattice spacing. Next, we have to
perform the continuum extrapolation of this ratio to obtain
its physical value. In the next section, we discuss the
numerical details of these steps along the discussion of the
corresponding error budget.
A similar approach can be applied to the bottom quark

mass and the ratio of the bottom to charm quark mass. With
the meson correlation functions at heavy valence quark
masses, in general, mh > mc0; we also fit the quark mass
dependence of pseudoscalar masses with the linear form

Mηh ¼ dh þ bhmh: ð8Þ

With the experimental value of the ηb meson mass, the
quark mass ratio can be evaluated as

mb

mc
¼ Mηb − dh

M − d

b
bh

¼ b
bh

r1Mηb − dh0ðr1=aÞ
r1M − d0ðr1=aÞ

; ð9Þ

where dh0 ¼ adh. Here, we use the pseudoscalar mass
instead of the spin averaged mass because the effects of
hyperfine splitting are quite small compared to the overall
mass scale. Even in the state-of-the-art lattice simulations, it
is difficult to obtain the ηb mass because amb ∼ 1.0, and the
discretization errors are significant. To circumvent this
problem, we perform calculations for several values of the
valence quark masses that are smaller than the bottom quark
mass and extrapolate to the region of the bottom quark mass.
If the utilized valence quark masses are too small, this
procedure could have systematic uncertainties. To inves-
tigate such uncertainties, we perform the extrapolations from

the data points at amh < 1.0 tomb0 with several mass ranges
and estimate discrepancy between the results obtained using
different ranges. These discrepancies are treated as system-
atic errors.
Once the lattice charm quark masses mc0 corresponding

to the physical value have been determined, we calculate
the pseudoscalar charmonium correlator with the valence
mass of mc0 using point sources. Then, we consider the
moments of the pseudoscalar charmonium correlator,
which are defined as

Gn ¼
X
t

tnGðtÞ; GðtÞ ¼ a6
X
x

ðamc0Þ2hj5ðx; tÞj5ð0; 0Þi;

ð10Þ

Here, j5 ¼ ψγ5ψ is the pseudoscalar current. To take into
account the periodicity of the lattice of temporal sizeNt, the
above definition of the moments can be generalized as
follows:

Gn ¼
X
t

tnðGðtÞ þGðNt − tÞÞ: ð11Þ

The moments Gn are finite for n ≥ 4 (n even) since the
correlation function diverges as t−4 for small t.
Furthermore, the moments Gn do not need renormalization
because the explicit factors of the quark mass are included
in their definition [28]. They can be calculated in pertur-
bation theory in MS scheme

Gn ¼
gnðαsðμÞ; μ=mcÞ

amn−4
c ðμÞ : ð12Þ

Here, μ is the MS renormalization scale. The coefficient
gnðαsðμÞ; μ=mcÞ is calculated up to 4-loop, i.e., up to order
α3s [29–31]. Given the lattice data on Gn, one can extract
αsðμÞ and mcðμÞ from the above equation. However, as it
was pointed out in Ref. [28], it is more practical to consider
the reduced moments

Rn ¼
�
Gn=G

ð0Þ
n ðn ¼ 4Þ

ðGn=G
ð0Þ
n Þ1=ðn−4Þ ðn ≥ 6Þ

; ð13Þ

where Gð0Þ
n is the moment calculated from the free

correlation function. The lattice artifacts largely cancel
out in these reduced moments. It is straightforward to write
down the perturbative expansion for Rn:

Rn ¼
�
r4 ðn ¼ 4Þ
rn · ðmc0=mcðμÞÞ ðn ≥ 6Þ ; ð14Þ

rn ¼ 1þ
X3
j¼1

rnjðμ; mcÞαjsðμÞ: ð15Þ
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For the choice of the renormalization scale μ ¼ mc, the
expansion coefficients are just simple numbers that have
been tabulated, for example, in Ref. [11]. This choice of the
renormalization scale has the advantage that the expansion
coefficients are never large.

III. NUMERICAL ANALYSIS AND CONTINUUM
EXTRAPOLATIONS

A. Determinations of mc0 and ratios mc=ms and mb=mc

To obtain the value of mc0 as well as mc=ms and mb=mc

at each lattice spacing, we need physical masses: M, Mηss
,

and Mηb . We directly utilize the experimental value Mηb ¼
9.3980ð32Þ GeV from PDG [5], whereas to specify M we
take the values of ηc and J=ψ masses from PDG and
obtain M ¼ 3.067 GeV.
The gauge configurations used in our study are sum-

marized in Table I, together with the number of analyzed
trajectories and the corresponding lattice spacings. The
statistical errors on meson masses and more generally on
meson correlation functions and their moments have been
estimated using jackknife analysis. We varied the jackknife
bin size and checked that the estimated statistical errors do
not change significantly. Therefore, the analysis does not
suffer from the effects of autocorrelations.
Our calculation neglects disconnected diagrams and

electromagnetic effects. The effect of disconnected diagrams
on the ground state charmonium is know to be a few MeV
[32]. Electromagnetic effects are of similar size [11].
Therefore, following Ref. [11], we assign an error of
3 MeV to the value of M. On the other hand, to estimate
the unmixed pseudoscalar ssmesonmass, we use the leading
order chiral perturbation theory, Mηss

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M2

K −M2
π

p
. We

need, however, to take into account the breaking of the isospin
symmetry and the electromagnetic effects, which are

neglected in our calculations. Following Ref. [33] for the
pion and kaon masses, we write

M2
π ¼ M2

π0
; ð16Þ

M2
K ¼ 1

2
ðM2

K0 þM2
Kþ − ð1þ ΔEÞðM2

πþ −M2
π0
ÞÞ: ð17Þ

The parameter ΔE characterizes the violation of the Dashen
theorem stating that in the chiral limit the electromagnetic
corrections toMKþ andMπþ are the same, while there are no
electromagnetic corrections toMπ0 andMK0 . Thevalue ofΔE
was determined to be ΔE ¼ 0.84ð25Þ [34]. There is also a
very recent lattice determination of this parameter [35]. Here,
however, we follow Ref. [33] and use a more conservative
approach varying ΔE from 0 to 2. We find

Mηss
¼ 686.00ð92Þ MeV; ð18Þ

where the central value corresponds toΔE ¼ 0. This value is
in excellent agreement with the HPQCD determination,
Mηss

¼ 685.8ð3.8Þð1.2Þ MeV [26], making us confident that
the value based on leading order chiral perturbation theory is
accurate.
To associate the absolute scale r1 with evaluated quan-

tities on the lattice, we use the values of r1=a given in
Table VIII of Ref. [21]. These values are obtained from the
interpolation of the calculated r1=a values [21]. Since r1=a
is a smooth function of the gauge coupling, the errors in the
determination of r1=a can be largely reduced by using a
smooth interpolation (see Ref. [21] for details). We also
performed the analysis using the calculated value of r1=a at
each β and checked that our final result does not change.
Now, we can determine the bare charm quark mass mc0

on the lattice and the mass ratio of the charm to strange
quarks. To determine d0 and b at each β, we calculate the

TABLE I. The gauge couplings (β), lattice sizes (N3
s × Nt), and the strange quark masses (ams) used in our

calculations, as well as corresponding lattice spacing (a−1 [GeV]). The number of trajectories (traj.) we use to
calculate the charmonium correlation function with the corner-wall sources are also summarized, as well as
the results for the bare charm quark masses, mc0 in GeV, and ratios of charm to strange quark masses ðmc=msÞ.
The calculations have been done every five trajectories for Nt ¼ 32 and 48 and six trajectories for Nt ¼ 64.

β N3
s × Nt ams a−1 [GeV] traj. mc0 mc=ms

6.488 324 0.0620 1.42 2500 1.0899(23) 12.586(28)
6.515 324 0.0604 1.46 2500 1.0810(23) 12.518(28)
6.664 324 0.0514 1.69 2500 1.0407(20) 12.299(25)
6.740 484 0.0476 1.81 2440 1.0215(18) 12.162(22)
6.880 484 0.0412 2.07 2465 0.9935(21) 12.023(26)
7.030 484 0.0356 2.39 1530 0.9673(21) 11.917(27)
7.150 483 × 64 0.0320 2.67 2406 0.9471(25) 11.926(32)
7.280 483 × 64 0.0284 3.01 2376 0.9289(25) 11.886(34)
7.373 483 × 64 0.0250 3.28 1206 0.9161(27) 11.832(35)
7.596 644 0.0202 4.00 1200 0.8878(34) 11.850(46)
7.825 644 0.0164 4.89 1200 0.8679(57) 11.930(80)
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masses of J=ψ and ηc mesons for several trial values of the
charm quark mass in the range that encompasses the
physical value of the charm quark mass. Some details
on the determination of the charmonium masses are given
in the Appendix. We perform interpolation of the calculated
spin averaged mass M to its physical value. We find that
the linear fits aM ¼ d0 þ bðamctÞ work very well, and the
statistical errors of d0 and b are estimated using the
bootstrap analysis. The results of mc0 are also shown in
Table I with the number of trajectories used to calculate
J=ψ and ηc masses. The statistical errors on mc0 are
estimated from the errors on d0 and b, as well as from
the errors on r1=a added in quadrature. Table I shows that
the determination of mc0 achieves an accuracy of 0.4%,
except for the highest β value, where the error becomes
about 0.7% mainly due to the uncertainty of r1=a. The
determined mc0 values are used for the calculations of the
moments of the pseudoscalar charmonium correlator dis-
cussed below.
Using the value of B0 calculated from the values of ams

and aMηss
given in Tables III and V of Ref. [21],

B0 ¼ ðaMηss
Þ2=ams, and we can determine mc=ms using

Eq. (7) at each lattice spacing. The error on B0 comes from
the error on the mass of the unmixed pseudoscalar ss
meson determined in Ref. [21]. This error was included in
the analysis, however, it is subdominant. The results are
shown in Fig. 1 as a function of a2. At this point, we do not
include the errors on M, Mηss

, and the physical value of r1,
as these are common for all data points. We performed
continuum extrapolations using the a2 form as well as the
a2 form plus a4 term. These are shown in Fig. 1. The
coarsest two lattice spacings are not in the scaling regime
and therefore are not included in the final analysis. Using
a2 þ a4 extrapolation, we obtain mc=ms ¼ 11.877ð56Þ

with χ2=Ndf ¼ 0.54, while for the a2 extrapolation we
have 11.863(89) with χ2=Ndf ¼ 1.01. Since the two
extrapolations agree within the errors, we take mc=ms ¼
11.877ð56Þ as our final continuum result. Now, adding the
errors from the absolute values of M, Mηss

, and r1, we
obtain our final result:

mc

ms
¼ 11.877ð56Þð72Þ; ð19Þ

where the first (second) parenthesis indicates the statistical
(scale) uncertainty.
To test possible cutoff effects in our calculations, we

consider the charmonium spectra and hyperfine splitting in
the continuum limit. For the pseudoscalar (PS) and vector
(V) masses with the trial amc values, we perform similar

fits with Eq. (4) and obtain dðiÞ0 and bðiÞ with i ¼ PS and V.
Then, those masses on the lattice can be determined as

Mi ¼ r−11

�
r1
a

�
dðiÞ0 þ bðiÞmc0; i ¼ PS and V: ð20Þ

We find that the dependence of the masses on the lattice
spacing becomes very mild. From the continuum extrapo-
lation using the a2 form and the six highest β values, we
obtain

MPS ¼ 2.982ð12Þ GeV; ð21Þ

MV ¼ 3.095ð12Þ GeV; ð22Þ

which agree well with the experimental values Mηc ¼
2.9836ð6Þ GeV and MJ=ψ ¼ 3.096916ð11Þ GeV. The
hyperfine splitting ΔM ≡MV −MPS can also be extracted
from the lattice masses and is shown in Fig. 2. We perform
continuum extrapolations of the hyperfine splitting using
a2 and a2 þ a4 forms, which are also shown in Fig. 2. The
results from the two continuum extrapolations agree very
well within the errors. Taking the results from the a2 þ a4

extrapolations and considering the errors from the absolute
values of M and r1, we obtain:

ΔM ¼ 113.5ð18Þð7Þ MeV: ð23Þ

This agrees very well with the experimental value
MJ=ψ −Mηc ¼ 113.3ð6Þ MeV.
In the end of the subsection, we determine the ratio of the

bottom to charm quark mass mb=mc. For this purpose, we
chose heavier valence masses than the charm quark mass,
mh > mc0, and calculate the pseudoscalar meson massMηh .
For the four finest lattice spacings at β ¼ 7.280–7.825, we
calculate the meson correlation functions at 0.5 ≤ amh ≤
1.0 and determine the quark mass dependence of Mηh
according to Eq. (8). The number of trajectories we use for

a2 + a4

mc/ms = 11.877(56)

χ2/Ndf = 0.54

a2, mc/ms = 11.863(89)

χ2/Ndf = 1.01 a2 [GeV-2]11.6

11.8

 12

12.2

12.4

12.6

 0  0.1  0.2  0.3  0.4  0.5

mc/ms

FIG. 1. The lattice spacing dependence of mc=ms together with
continuum extrapolations. The triangle (square) corresponds to
the a2 (a2 þ a4) continuum extrapolation. The results of extrap-
olations with χ2=Ndf of the fits are also shown. The thick lines
show the extrapolation curves in the interval in which the fits have
been performed, while the thin lines show the same curves
outside that interval.
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this calculation is summarized in Table II for each gauge
coupling β. The details of the extraction of the heavy
pseudoscalar meson masses are discussed in the Appendix.
The parameters dh0 and bh are determined by the linear
fittings of Mηh as a function of mh, with three data at
amh ¼ 0.7, 0.8 and 0.9. In our calculations, the interpo-
lation from Mηh to the experimental Mηb is possible for
β ¼ 7.825. For other β values, however, the bottom quark
mass corresponds to the region amh > 1, and extrapola-
tions are necessary to obtainMηb . We estimate uncertainties
coming from the extrapolation to the bottom quark masses
in the following way: First, by using dh0 and bh obtained
from the fit at amh ¼ ð0.7; 0.8; 0.9Þ, we determine the bare
bottom quark mass mb0 at each β as

mb0 ¼
1

bh

�
Mηb − dh0

�
r1
a

�
r−11

�
: ð24Þ

Then, we iterate the fit with the different data points at
0.5 ≤ amh ≤ 1.0, e.g., amh ¼ ð0.8; 0.9; 1.0Þ, and calculate

mb0 again. The difference between these two values
provides an estimate of the systematic errors. The numeri-
cal values of mb=mc obtained from Eq. (9) are summarized
in Table II, where the first and second parentheses indicate
the statistical and systematic errors, respectively. The lattice
spacing dependence ofmb=mc is shown in Fig. 3, where the
error bars and gray shadows indicate the statistical and
systematic errors, respectively. We find that the lattice
spacing dependence is very mild. The systematic errors
become larger on coarser lattices and are significantly
larger than the statistical errors for β ≤ 7.373. Although
there is no significant lattice spacing dependence, we
perform the continuum extrapolations with the a2 form,
including the uncertainties from the statistical and system-
atic errors in quadrature. As a consequence we obtain

mb

mc
¼ 4.528ð50Þð27Þ; ð25Þ

where the number in the first parenthesis shows the
combined statistical and extrapolation errors, and the
number in the second parenthesis is the combined error
from the values of M, Mηb , and r1. As a test of our
approach, we have performed the calculations ofmb=mc by
using vector bottomonium MV masses obtained on the
lattice combined with the experimental Υ mass and
obtained the value mb=mc ¼ 4.531ð52Þ, which is essen-
tially the same as above. The small lattice spacing depend-
ence of the ratio mb=mc may appear somewhat surprising.
Note, however, that the discretization errors for the HISQ
action are small also in the heavy quark mass region as long
as amh ≤ 1 [20]. In particular, the cutoff dependence of the
ground state quarkonium masses was studied in a wide

a2 [GeV-2]

[MeV]

a2 + a4

ΔM = 113.5(18)
χ2/Ndf = 0.57

a2

ΔM = 113.0(18)
χ2/Ndf = 1.10

100

105

110

115

120

 0  0.1  0.2  0.3  0.4  0.5

MV − MPS

experiments

FIG. 2. The lattice spacing dependence of the charmonium
hyperfine splitting together with continuum extrapolations. The
triangle (square) plot corresponds to the a2 (a2 þ a4) continuum
extrapolation. The results of extrapolations with χ2=Ndf of the fits
as well as the experimental value MJ=ψ −Mηc ¼ 113.3ð6Þ MeV
are also shown. The thick lines show the extrapolation curves in
the interval in which the fits have been performed, while the thin
lines show the same curves outside that interval.

a2 [GeV-2]

mb/mc

a2

mb/mc = 4.528(50)

χ2/Ndf = 0.43
 4.4

4.45

 4.5

4.55

 4.6

 0  0.05  0.1  0.15  0.2

FIG. 3. The lattice spacing dependence of mb=mc. The error
bars indicate the statistical errors, whereas the gray shadows
indicate systematic uncertainties due to the heavy quark mass
extrapolations (see text for more details). Result of the continuum
extrapolation done by the a2 form is also shown with χ2=Ndf
value of the fit. The thick line shows the extrapolation curve in the
interval in which the fit has been performed, while the thin line
shows the same curve outside that interval.

TABLE II. The gauge coupling (β) and the number of trajecto-
ries (traj.) used to calculate the bottomonium correlation functions
with the corner-wall sources. Also shown are the results of the
ratios of the bottom to charm quark mass. The first parenthesis in
the last column indicates the statistical errors, and the second one
indicates the systematic errors due to extrapolations to heavy quark
masses (see the text for more detail).

β traj. mb=mc

7.280 1800 4.512(12)(41)
7.373 1800 4.525(13)(43)
7.596 1680 4.547(17)(22)
7.825 2562 4.512(30)(0)
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range of quark masses and was found to be small [17]. This
is the reason why the cutoff dependence ofmb=mc is small.

B. Strong coupling constant and quark masses
from the moments

The strong coupling constant is determined from the
moments of the pseudoscalar charmonium correlators on
the lattice combined with the perturbative expansion of the
corresponding quantity. We calculate the pseudoscalar
charmonium meson correlators with the valence mass
mc0 determined above using point sources with large
statistics. Gauge couplings β and the number of trajectories
used to calculate the moments are summarized in Table III
(see also Table I for the corresponding lattice size andmc0).
The numerical results of the reduced moments are also
summarized in Table III up to n ≤ 10. The statistical errors
of the reduced moments Rn have been estimated using
jackknife procedure, and we checked again that there is no
dependence on the jackknife bin size.
Since the lattice gauge configurations used in our study do

not include the effects of charm quarks, following Ref. [28],
we estimate such effects using perturbation theory. It was
shown that charm quarks increase the value of R4 by 0.7%
[28]. Therefore, we scale our lattice results for R4 by 1.007.
In the following, we always give the rescaled value of R4.
The results of R4 are shown in Fig. 4 as a function of the
lattice spacing a2. The lattice spacing dependence of R4 is
significant, and for the coarsest lattice, it amounts to 6%. We
have performed continuum extrapolation of our results using
various fit forms. For HISQ action, the leading discretization
effects are expected to be αsa2 and a4. It is usually assumed
that the running of the coupling constant αs can be neglected
if the considered range of the lattice spacing is not too large.
Therefore, we can fit the numerical results for R4 using a2

and a2 þ a4 forms. We could also perform continuum
extrapolations using the αsa2 form by defining the boosted
coupling constant

αbs ð1=aÞ ¼
1

4π

g20
u40

; ð26Þ

where g20 ¼ 10=β is a bare lattice gauge coupling and u0 is
an averaged link valuable defined by the plaquette
u40 ¼ hTrU□i=3. Furthermore, we perform continuum
extrapolations using αsa2 þ a4 and αsða2 þ a4Þ forms.
We obtain the following continuum results:

R4 ¼ 1.2743ð40Þ; a2 fit

R4 ¼ 1.2799ð53Þ; a2 þ a4 fit

R4 ¼ 1.2705ð37Þ; αbsa2 fit

R4 ¼ 1.2769ð49Þ; αbsa2 þ a4 fit

R4 ¼ 1.2759ð47Þ; αbs ða2 þ a4Þ fit: ð27Þ

The continuum extrapolations with a2 and a2 þ a4 forms are
shown in Fig. 4. When performing fits with a2 and αbsa2

forms. the data for the two coarsest lattice spacings have
been excluded since these are not in the scaling regime. As
our final continuum result, we take the value of R4 obtained
from the simple a2 extrapolation and assign a systematic
error of 0.0047 due to the continuum extrapolation to take
into account the spread in the central values of R4 obtained
above:

R4 ¼ 1.2743ð40Þð47Þ: ð28Þ

Our continuum result for R4 agrees with the continuum
results R4 ¼ 1.281ð5Þ and R4 ¼ 1.282ð4Þ obtained in
Ref. [28] and Ref. [17], respectively, within errors. Our
central value is slightly smaller. It should be pointed out that
we have many more lattice spacings in the region a <
0.1 fm to perform the continuum extrapolations compared to
Refs. [28] and [17].
Using the above results for R4 as well as the correspond-

ing perturbative expansion, it is straightforward to deter-
mine αsðμ ¼ mcÞ. We obtain the value

αsðμ ¼ mc; nf ¼ 3Þ ¼ 0.3697ð54Þð64Þð15Þ; ð29Þ

where the first error is statistical, the second error corre-
sponds to the uncertainty of the continuum extrapolation,

TABLE III. The gauge couplings (β) and the number of trajectories (traj.) used for the calculations of the moments
of the pseudoscalar correlation functions with the valence mass mc0 and point sources. Numerical results of the
reduced moments Rn are also shown up to n ≤ 10.

β traj. R4 R6 R8 R10

6.740 8005 1.2012(24) 1.0252(12) 0.94261(67) 0.89873(48)
6.880 8095 1.2110(27) 1.0014(13) 0.91399(75) 0.87025(54)
7.030 9830 1.2196(25) 0.9763(12) 0.88726(69) 0.84523(50)
7.150 7902 1.2289(33) 0.9577(16) 0.86794(83) 0.82661(58)
7.280 8058 1.2401(34) 0.9424(17) 0.85182(90) 0.81119(63)
7.373 9246 1.2454(41) 0.9303(18) 0.84022(94) 0.80054(65)
7.596 9510 1.2542(38) 0.9020(17) … …
7.825 9516 1.2614(47) 0.8811(20) … …
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and the last error comes from the truncation of the
perturbative series for r4. The truncation error was esti-
mated as follows: First, we used the perturbative result up
to order α3s to estimate the strong coupling constant. Then
we included α4s term with a coefficient equal to r43 × 2 and
estimated the strong coupling constant again. The differ-
ence between these two estimates is the truncation error.
Now let us discuss the determination of the charm quark

mass. The value of the charm quark mass is also needed to
specify αs at any scale using Eq. (29). We determine the
charm quark mass by considering R6. The MS charm
mass can be estimated from the lattice mass as
mc ¼ r6=ðR6=mc0Þ. The effect of charm quark loops turns
out to be much smaller for R6 than for R4 when estimated
using perturbation theory. It was estimated that charm
quark loops increase R6, and this effect amounts to 0.1%
[28]. We corrected our lattice data for this tiny effect and
always show the corrected values of R6 in the discussions
below. Our lattice results for R6=mc0 are shown in Fig. 5.
The lattice spacing dependence of R6=mc0 is milder than

for R4. The maximal discretization errors are less than 2%.
This is not surprising since the contribution to G6 from the
data points at small t is smaller than for G4. The data points
at small t are the most sensitive to the lattice artifacts.
To obtain the continuum result, we again perform a2

extrapolation which results in R6=mc0 ¼ 1.0191ð27Þ.
Performing an extrapolation with the a4 term included
results in R6=mc0 ¼ 1.0196ð61Þ, which is in very good
agreement with the above result (shown in Fig. 5).
We also performed extrapolations using αsa2 and
αsa2 þ a4 forms and obtained R6=mc0 ¼ 1.0181ð23Þ and
R6=mc0 ¼ 1.0192ð56Þ, respectively. Since all the above
continuum results agree well within the estimated statistical
errors, we use the value from simple a2 extrapolations as
our final continuum estimate

R6=mc0 ¼ 1.0191ð27Þ: ð30Þ

Using this and the perturbative result for r6, we obtain

mcðμ ¼ mc; nf ¼ 3Þ ¼ 1.2668ð33Þð34Þð79Þð73Þ GeV;
ð31Þ

where the first error is statistical, the second error is the
truncation error in r6, the third error comes from αs
determined above, and the last error comes from setting
the scale in our lattice calculations.
The higher moments can also be utilized to determine αs

and mc. Namely, we can use Rn−2=Rn to determine αs and
Rn=mc0 to determine mcðmcÞ. Here, n ≥ 8. These calcu-
lations provide a valuable cross check for the extraction of
αs and mc. There is also an advantage that the lattice
spacing dependence for higher moments is expected to
become milder as discussed above. Thus, more accurate
continuum extrapolations could be possible. There is,
however, a disadvantage in using higher moments.
Higher order contributions in the perturbative expansion
become significant for higher moments, but the perturba-
tive coefficients are known up to α3s orders at present. The
absence of higher order perturbative calculations leads to
larger truncation errors. On the lattice side there is also a
disadvantage that the higher moments require information
of the correlation functions at larger distance [c.f. Eq. (11)],
but the calculation is performed on the finite lattice. Thus,
the results for the higher moments potentially suffer from
larger finite volume effects. In our calculations, the finite
volume effects become more serious at finer lattice spacing.
In our study, the finite volume effects mostly appear in

the moments of the free correlation functions Gð0Þ
n intro-

duced in Eq. (13). This is due to the fact that the
exponential decay of the free meson correlator is governed
by 2mc0 ≃ 1.8 − 2.0 GeV rather than by mηc ≃ 3 GeV. To
investigate such effects, we calculate the free moments in
the infinite temporal-size limit by using the results of 1.5Nt

a2 [GeV-2]

a2+a4

R4 = 1.2799(53)

χ2/Ndf = 0.20

a2

R4 = 1.2743(40)

χ2/Ndf = 0.06

1.15

 1.2

1.25

 1.3

 0  0.1  0.2  0.3  0.4

R4

FIG. 4. Lattice results for R4. Also shown are the continuum
extrapolations. The thick lines show the extrapolation curves in
the interval in which the fits have been performed, while the thin
lines show the same curves outside that interval.

a2 [GeV-2]

a2+a4

R6/mc0 = 1.0196(61)

χ2/Ndf = 0.10

a2

R6/mc0 = 1.0191(27)

χ2/Ndf = 0.09
0.99

 1

1.01

1.02

1.03

 0  0.1  0.2  0.3  0.4

R6/mc0

FIG. 5. Lattice results for R6. Also shown are the continuum
extrapolations. The thick lines show the extrapolation curves in
the interval in which the fits have been performed, while the thin
lines show the same curves outside that interval.
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and 2Nt and estimate the finite volume effects from

Gð0Þ
n ðNtÞ=Gð0Þ

n ð∞Þ, where the numerator is the same one
used in Eq. (13), whereas the denominator is that on the
infinite temporal size. We perform this calculation for the
highest two β values and find that the effects become
negligible for n ≤ 6, whereas 1% and 6% effects appear for
R8 and R10 at β ¼ 7.596, respectively, and 7% and 23%
effects appear for R8 and R10 at β ¼ 7.825, respectively.
Those are larger than the amount of the statistical errors of
corresponding quantities, and we omit the corresponding
data in our analysis. We perform the continuum extrapo-
lations of Rn−2=Rn and Rn=mc0 for n ¼ 8 and 10 using a2

form and including the lattice data for β ¼ 7.030–7.373
and obtain the following continuum results:

R6=R8 ¼ 1.1140ð18Þ; ð32Þ

R8=R10 ¼ 1.04954ð65Þ; ð33Þ

R8=mc0 ¼ 0.9167ð54Þ; ð34Þ

R10=mc0 ¼ 0.8731ð50Þ: ð35Þ

Since the continuum extrapolations using the a2 þ a4 fit
form with the lattice data for β ¼ 6.740–7.373 leads to
results that agree very well with the above results within
errors, we consider them as our final continuum results.
From the continuum results for the ratio Rn−2=Rn and
Rn=mc0, we obtain the following values for αs and mc:

n ¼ 8 n ¼ 10

αsðmcÞ ¼ 0.3954ð71Þð210Þ 0.3611ð50Þð152Þ
mcðmcÞ ¼ 1.2717ð75Þð9Þ 1.2708ð73Þð35Þ; ð36Þ

where the first (second) parenthesis indicates the statistical
(truncation) errors. We see that the truncation errors for αs
are an order of magnitude larger than the truncation errors
coming from R4. Within the large errors, the above values
of αs are consistent with the αs determination from the
fourth moment. On the other hand, the truncation errors are
fairly small for the charm quark mass, and the above values
of mc agree well with our previous determination.
Before concluding this section, let us compare the

continuum results for the higher moments Rn, n ≥ 6 with
the HPQCD results [17,28]. In Refs. [17,28], a slightly
different definition of Rn was used: Rn ¼ mηc=ð2mc0Þ
ðGn=G

ð0Þ
n Þ1=ðn−4Þ. If we use this definition, we obtain

R6 ¼ 1.520ð4Þ, R8 ¼ 1.367ð8Þ, and R10 ¼ 1.302ð8Þ,
which agree well with the results of Ref. [17]:
R6 ¼ 1.527ð4Þ, R8 ¼ 1.373ð3Þ, and R10 ¼ 1.304ð2Þ, as
well as with the results of Ref. [28]: R6 ¼ 1.528ð11Þ,
R8 ¼ 1.370ð10Þ, and R10 ¼ 1.304ð9Þ.

IV. SUMMARY OF RESULTS AND
COMPARISON WITH OTHER WORKS

Now, we summarize the main findings of this paper.
From the masses of pseudoscalar and vector mesons on the
lattice, we obtained the quark mass ratios:

mc

ms
¼ 11.877ð91Þ; mb

mc
¼ 4.528ð57Þ; ð37Þ

where the statistical and systematic errors are added in
quadrature. On the other hand, from the moments of the
pseudoscalar charmonium correlation functions, we esti-
mated the strong coupling constant and the charm quark
masses in MS scheme for μ ¼ mc:

αsðμ ¼ mc; nf ¼ 3Þ ¼ 0.3697ð85Þ; ð38Þ

mcðμ ¼ mc; nf ¼ 3Þ ¼ 1.267ð12Þ GeV: ð39Þ

Let us first compare the quark mass ratios, which are
scale and scheme independent quantities, with other lattice
determinations. In Fig. 6, we show our result onmc=ms and
compare it with several recent lattice QCD results. We find
that the results in 2þ 1 flavor simulations show similar
values. Our result formc=ms is about one sigma larger than
2þ 1þ 1 flavor results. In Fig. 7, we compare our result on
mb=mc with other recent lattice QCD determinations. Our
result agrees well with the result from the HPQCD
Collaboration and has similar errors. By just multiplying
both ratios, we obtain the mass ratio of the bottom to the
strange quarks:

mb

ms
¼ 53.78ð79Þ: ð40Þ

 10.5  11  11.5  12  12.5

mc/ms

Nf = 2

Nf = 2 + 1

Nf = 2 + 1 + 1 HPQCD’15

MILC’14

ETMC’14

this paper

χQCD’15

HPQCD’10

ETMC’10

Durr’12

FIG. 6. Determinations of the ratio of the charm quark mass to
strange quark mass mc=ms in lattice QCD simulations. We
include the determinations from HPQCD’15 [11], MILC’14
[16], ETMC’14 [12], χQCD’15 [15], HPQCD’10 [14], ETMC’10
[41], and Durr’12 [13].
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This can be compared with one of the prediction in the
grand unified theory, namely, the Georgi-Jarlskog relation,
which states: mb=ms ¼ 3mτ=mμ ¼ 50.45 [36]. Our result
is 6% away from this prediction.
To compare our result on the strong coupling constant

with other determinations, we need to evolve it to higher
scales μ. We do so by using the 4-loop perturbation theory
in the MS scheme and the RunDeC package [37]. First, we
compare our result to two low energy determinations of αs
in 2þ 1 flavor lattice QCD simulations. One of them
comes from the analysis of static quark-antiquark energy
[3,4] with the most recent value αsð1.5 GeVÞ ¼
0.336ðþ12Þð−0.008Þ [4]. Evolving our result to μ ¼
1.5 GeV and propagating the uncertainties, we obtain

αsð1.5 GeV; nf ¼ 3Þ ¼ 0.3316ð69Þ ð41Þ

in excellent agreement with the above result. Another low
energy determination of αs by the HPQCD Collaboration
comes from the lattice calculations of the moments of
meson correlators consisting of heavy quarks with
several values of the heavy quark mass and the Bayesian
fit of these correlators to the perturbative result [17]:
αsð5 GeV; nf ¼ 3Þ ¼ 0.2034ð21Þ. Evolving our results
to μ ¼ 5 GeV and propagating the errors, we obtain

αsð5 GeV; nf ¼ 3Þ ¼ 0.1978ð22Þ; ð42Þ

which is two sigma lower than the above result.
Furthermore, we evolve our result to the commonly used
scale μ ¼ MZ with nf ¼ 5 by adding the contributions of
the charm and bottom quarks using the RunDeC package1

αsðMZ; nf ¼ 5Þ ¼ 0.11622ð84Þ: ð43Þ

In Fig. 8, we compare our αsðMZÞ with recent results
obtained by other collaborations. We see that our result is in
agreement with Ref. [4] (“Bazavov’14”) but is lower than
other lattice determinations.
The charm quark mass mcðmcÞ was directly obtained by

extrapolating the lattice moments to the continuum and
matching those to the corresponding perturbative results.
Figure 9 shows the comparison of our charm quark mass
with the recent results of other collaborations. We find that
our result is similar to other lattice determinations but is
lower than the ETMC’14 result [12]. We can also calculate
the strange and bottom quark masses frommcðmcÞ with the
quark mass ratios and obtain

msðμ ¼ 2 GeV; nf ¼ 3Þ ¼ 92.0ð1.7Þ MeV; ð44Þ

 4.3  4.4  4.5  4.6

mb/mc

Nf = 2 + 1

Nf = 2 + 1 + 1
ETMC’16

HPQCD’15

this paper

HPQCD’10

FIG. 7. Determinations of the ratio of the bottom quark mass to
charm quark mass mb=mc in lattice QCD simulations. In the
comparison, we include the results from ETMC’16 [18],
HPQCD’15 [11], and HPQCD’10 [17].

 0.116  0.118  0.12

αs(MZ)

Nf = 2 + 1

Nf = 2 + 1 + 1
HPQCD’15

ETMC’14

this paper

JLQCD’16

Bazavov’14

HPQCD’10

FIG. 8. Determinations of αsðMZ; nf ¼ 5Þ in lattice QCD
simulations. Recent results are included from HPQCD’15 [11],
ETMC’14 [38], JLQCD’16 [39], Bazavov’14 [4], and
HPQCD’10 [14].

 1.2  1.25  1.3  1.35

mc(mc)

Nf = 2

Nf = 2 + 1

Nf = 2 + 1 + 1

HPQCD’15

ETMC’14

this paper

JLQCD’16

χQCD’15

HPQCD’10
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FIG. 9. Charm quark mass in MS schememcðμ ¼ mcÞ obtained
in this work and compared with other lattice determinations:
HPQCD’15 [11], ETMC’14 [12], χQCD’15 [15] HPQCD’10
[14], and ETMC’10 [41].

1In more detail, we start from our αsðmc; nf ¼ 3Þ and match it
to αsðmc; nf ¼ 4Þ using mcðmcÞ as the threshold. We evolve the
corresponding αsðmc; nf ¼ 4Þ to the scale μ ¼ mbðmbÞ, where
we match it to αsðmb; nf ¼ 5Þ. Finally, we evolve the coupling
constant to μ ¼ MZ.
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mbðμ ¼ mb; nf ¼ 5Þ ¼ 4.184ð89Þ GeV: ð45Þ
Our result ofmbðmbÞ is almost the same as the recent result
by the HPQCD Collaboration mbðmbÞ ¼ 4.162ð48Þ [11]
and also agrees with the ETMC result mbðmbÞ ¼ 4.26ð10Þ
[18] within the errors. On the other hand, for the strange
quark mass, our result agrees well with the recent
HPQCD result [11] within uncertainties: msð2 GeVÞ ¼
93.6ð8Þ MeV. It is lower than the values obtained by the
ETMC Collaboration [12], msð2 GeVÞ ¼ 99.6ð4.3Þ MeV
and Dürr et al. [13], msð2 GeVÞ ¼ 97.0ð2.6Þð2.5Þ MeV.
Evolving our result to μ ¼ 3 GeV, we get msð3 GeVÞ ¼
83.6ð1.5Þ. This is in good agreement with the result from
RBC/UKQCD, msð3 GeVÞ ¼ 81.64ð1.17Þ MeV [40].

V. CONCLUSION

We have performed determinations of the quark mass
ratios as well as the strong coupling constant and the quark
masses in 2þ 1 flavor lattice QCD simulations. The former
have been obtained from the pseudoscalar and vector
meson masses together with the experimental mass values,
whereas the latter have been obtained from the moments of
the pseudoscalar charmonium correlators and its compari-
son to the perturbative result at scale μ ¼ mc.
At the level of the reduced moments, our results agreewell

with the results obtained by the HPQCD Collaboration. Our
results for bottom, charm, and strange quark masses are also
in very good agreement with the HPQCD results. We
determined the QCD running coupling constant in the
MS scheme at the lowest energy scale so far. The error in
our determination of the strong coupling constant is domi-
nated by the lattice error, whereas the error due to the
truncation of the perturbative series is very small. Evolving
this low energy determination to μ ¼ MZ, we obtain
αsðMZ; nf ¼ 5Þ ¼ 0.11622ð84Þ, which is lower than the
most lattice QCD determinations, as well as the PDG value.
One open issue with the present determination based

on moments of heavy meson correlators is whether the
systematic error of the perturbative expansion is suffi-
ciently conservative. Recent analysis seems to suggest
that the error in the perturbative expansion may be
underestimated [42].
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APPENDIX: PSEUDOSCALAR
MESON MASSES

In this appendix, we discuss the determination of the
pseudoscalar meson masses for various quark masses

including the quark mass region utilized to estimate the
bottom quark mass. To determine the bottom quark mass,
we calculate the meson correlator in the pseudoscalar
channel and estimate the lowest lying pseudoscalar meson
masses, Mηh , at the quark mass range of 0.7 ≤ amh ≤ 0.9.
Then, we extrapolate to the region of heavier quark masses.
Thus, high quality extraction of the ground state meson
masses is crucial to ensure the quality of the heavy quark
extrapolations.
To demonstrate the quality of meson mass determination

in Fig. 10, we show the effective masses as well as the fit
results for the pseudoscalar channel at amh ¼ 0.8 obtained
with corner-wall sources. In the figure, results for four β
values are shown, which are used to estimate the bottom
quark mass in the continuum limit. Here, the gray symbols

1.8

1.9

 2

 0  4  8  12  16  20  24  28  32

aMPS,  amh = 0.8

t / a

β          
7.280
7.373
7.596
7.825

FIG. 10. Effective masses extracted from the pseudoscalar
meson correlators at the valence quark mass of amh ¼ 0.8 (gray
symbols) as a function of the separation t. Also shown are the
extracted pseudoscalar meson masses as function of tmin=a.
The lines in the right-hand-side indicate estimated magnitude
of the plateaus for each β (see text for more details).
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FIG. 11. Effective masses extracted from the pseudoscalar
meson correlators with the valence quark masses around the
charm quark mass (gray symbols) as a function of the separation
t. Also shown are the extracted pseudoscalar meson masses as a
function of tmin=a. The lines in the right-hand side indicate
estimated values of the plateaus for each β (see text for more
details).
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correspond to the results of the effective masses, whereas
the colored symbols depict the fit results of the pseudo-
scalar meson masses performed in the range at [tmin=a,
Nt − tmin=a]. We find that both the effective masses and fit
results approach a plateau for large t or large values of
tmin=a. On finer lattices, one needs larger separations to
achieve the plateau. For the finest lattice, β ¼ 7.825, the
plateau behavior can be seen at t=a ≥ 24. The values of the
plateaus are estimated by averaging over the fit results
tmin=a ¼ 24–27. This is also shown by the lines in the
right-hand side. We find that the effective masses as well as

the fit results are converged to the lines at a large distance,
which implies that magnitudes of our extracted plateau well
reproduce the lowest lying masses of the corresponding
states.
A similar analysis has been performed for the valence

quark masses around the charm quark mass. The corre-
sponding results are shown in Fig. 11 for several gauge
couplings, β. Once again, we see that the extracted masses
are stable with respect to the variation of tmin=a within a
reasonable range, and the extracted masses agree with the
plateaus of the effective masses.
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