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We present a lattice simulation study of large Nc regularities of meson and baryon spectroscopy in
SUðNcÞ gauge theory with two flavors of dynamical fundamental representation fermions. Systems
investigated include Nc ¼ 2, 3, 4, and 5, over a range of fermion masses parametrized by a squared
pseudoscalar to vector meson mass ratio between about 0.2 to 0.7. Good agreement with largeNc scaling is
observed in the static potential, in meson masses and decay constants, and in baryon spectroscopy.
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I. INTRODUCTION

’t Hooft’s [1] large-Nc limit of QCD has been a fruitful
source of qualitative and quantitative information about the
strong interactions for more than forty years. As the gauge
group of QCD, SUð3Þ, is replaced by an SUðNcÞ group,
and as Nc is taken to infinity, simple diagrammatic
counting rules display characteristic scaling as powers of
Nc. This scaling is used to abstract the relative sizes of
various hadronic matrix elements in the real world
of Nc ¼ 3. In a single (oversimplified) sentence, large
Nc counting predicts that meson spectroscopy is indepen-
dent of Nc (up to corrections going like 1=Nc) and matrix
elements scale as characteristic powers of Nc.
Baryon spectroscopy also shows large-Nc regularities.

Baryons in large Nc can be regarded as many-quark states
[2] or as topological objects in effective theories of mesons
[3–6]. Large-Nc mass formulas for baryons have been
developed by the authors of Refs. [7–12]. Results up to
1998 have been summarized in a review, Ref. [13].
In large-Nc phenomenology, nonperturbative quantities

can generally be written as a power series in the small
parameter 1=Nc. The coefficients of the expansion are not
given by large Nc counting; rather, phenomenology
assumes that they have some typical hadronic size. In a
mass formula, a dimensionful parameter with units of mass
would be expected to have a size of a few hundred MeV. To
pin these numbers down requires a real nonperturbative
calculation, which can be given by numerical simulation of
the lattice regularized theory. Over the past decade or so a
number of lattice comparisons to large Nc counting have
been carried out. Most of them involve pure gauge theory.
A summary of results can be found in the review article by
Lucini and Panero [14].
The literature on large Nc with fermions is small. Nearly

all studies are done in quenched approximation, neglecting
virtual quark antiquark pairs. The most extensive study of
meson spectroscopy and matrix elements is done by Bali

et al. [15]. They cover Nc ¼ 2–7 and 17. Reference [16]
discusses large Nc expectations for baryons, but it only
makes comparisons to actual lattice data for Nc ¼ 3. Its
data sets are unquenched. One of us has co-authored three
papers on baryon spectroscopy [17–19], with Nc ¼ 3, 5,
and 7. Reference [20] is a study of quenched baryon
spectroscopy in SUð4Þ which also contains large Nc
comparisons. The results of all these studies are easy to
state: large Nc counting works very well.
These days, interest in large Nc regularities is not

restricted to the study of QCD. There is a relatively large
body of literature devoted to beyond standard model
physics, where the new physics is composite. The targets
of such investigations are either composite dark matter, or
alternative dynamics replacing the standard model Higgs
boson, or both. (Reference [21] is a good recent review of
strongly coupled dark matter models and lattice simula-
tions.) Typically, large Nc counting is used to extrapolate
results from Nc ¼ 3 into the system under study. These
extrapolations can be replaced by results from lattice
simulation. Some relevant investigations already exist.
There are several studies of spectroscopy for Nc ¼ 2 with
Nf ¼ 2 flavors of dynamical fermions. (See Refs. [22–27].)
The spectroscopy is QCD-like. Reference [28], a study of
SUð4Þ with two flavors of antisymmetric representation
fermions, also makes reference to large-Nc scaling to
compare results to SUð3Þ. Good agreement is observed.
There are also many studies of systems with small Nc

and many fermionic degrees of freedom. The physics of
these systems is thought to be different from QCD. (For a
survey of this unrelated field, see Ref. [29].) However,
these studies raised a question relevant to our work: to what
extent do theories which are nearby real world QCD
resemble QCD? “Nearby” probably describes a space with
at least three dimensions. One is Nc. Two involve the
number of fermionic degrees of freedom, the representation
of the fermions and the number of fermion flavors. One
could imagine studying systems with fermions in several
representations. All of these more exotic systems have a
place in beyond standard model phenomenology. The*thomas.degrand@colorado.edu
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conventional ’t Hooft large Nc limit might be a useful first
benchmark for comparisons.
Finding the spectrum of QCD in the Nc → ∞ limit can

be done by working in the quenched approximation,
computing at many values of Nc and taking the limit.
The technology for doing this was worked out long ago

by Bernard, Golterman, Sharpe, and others [30,31], and
involves the low energy chiral effective theories for
quenched and unquenched QCD. Typical observables have
an expansion in terms of the pseudoscalar decay constant
fPS and pseudoscalar mass mPS,

QðmPSÞ ¼ A

�
1þ B

m2
PS

f2PS
logm2

PS

�
þ…: ð1Þ

Quenched and unquenched QCD can have different B
coefficients. Quenched QCD can also have a different
functional form, for example,

m2
PS=mq ¼ Cmðδ=ð1þδÞÞ

q þDmq þ � � � ; ð2Þ

where δ, C, and D are all constants.
At any finite value of Nc, these differences mean that the

quenched approximation differs fundamentally from a
system with real dynamical fermions. This is why modern
lattice calculations in QCD no longer use the quenched
approximation; they all include the effects of dynamical
fermions.
However, for infinite Nc the quenched approximation is

expected to become exact because of suppression of
dynamical quark loops by powers of Nf=Nc. What is done
in the literature is to fit lattice data Nc by Nc to the
appropriate quenched formula [such as Eq. (2)], and take
the limit of the constants δ, C, and D. The discussion in
Ref. [15] is probably the most complete summary to date. It
is hard to imagine that any other lattice technique could
compete with this one, to find the Nc → ∞ spectrum.
We believe that to do anything more requires simulations

with dynamical fermions. For example, presumably the
Nc → ∞ spectrum would be known for all values of the
fermion masses. How does it compare to the spectrum of
Nc ¼ 3? Real experimental data only exists at the physical
values of the quark masses. Comparing the spectrum
anywhere else requires the synthetic data that only a
simulation with dynamical fermions can give. A related
question is, what is the spectroscopy of systems with the
same fermion flavor content, but with different Nc values?
How well does large Nc scaling relate their observables?
Presumably there are Nf=Nc corrections. Therefore, we
have performed a calculation of meson and baryon spec-
troscopy in SUðNcÞ gauge theories with two flavors of
fundamental representation dynamical fermions.
We collected data at Nc ¼ 2, 3, 4, and 5. The minimal

large-Nc study needs at least three Nc’s, to see corrections
to leading behavior. For example, a baryon of angular

momentum J made of Nc quarks has a spectrum charac-
terized by two parameters m0 and B,

MðNc; JÞ ¼ Ncm0 þ B
JðJ þ 1Þ

Nc
ð3Þ

which in leading order in Nc are independent of Nc. At
next-to-leading order, there are corrections: m0ðNcÞ ¼
m00 þm01=Nc þ � � �. More than two Nc’s are needed to
fit such behavior.
Next, SUð2Þ is special: there are no baryons (only

diquarks) and the pattern of chiral symmetry breaking is
different than Nc ≥ 3. (Fundamental fermions occupy a
pseudoreal representation in SUð2Þ. The pattern of chiral
symmetry breaking is SUð4Þ → Spð4Þ for two flavors.) We
are not sure if it is a legitimate participant in a large Nc
scaling plot, but we have the data and will include it.
Anyway, for three Nc’s for baryons, we have Nc ¼ 3, 4
and 5.
Simulating large Nc presents some slightly different

issues than are seen in ordinary QCD. The goal of a QCD
simulation is usually a direct comparison with experiment.
To achieve this goal requires taking the lattice spacing to
zero, the volume to infinity, and the fermion masses to their
small physical values. LargeNc comparisons do not require
any of these limits: they can be made for any value of the
cutoff, the volume, and the fermion mass, as long as these
quantities are treated consistently across Nc. Nevertheless,
it is always a goal, to try to tie a large Nc prediction to a
physical observable. Doing that imposes all the require-
ments of a QCD simulation, plus being able to vary Nc.
This is a tall order, but this project is a start.
In a nutshell, we find that large-Nc scaling laws give an

excellent quantitative description of the static potential, of
meson and baryon spectroscopy and of simple mesonic
matrix elements. The biggest deviations occur for Nc ¼ 2.
Large-Nc regularities also reveal themselves in the way
bare parameters, such as the bare gauge coupling, must be
tuned to match physical observables across Nc, and in how
the lattice spacing is affected by the fermion mass.
The outline of the paper is as follows: Sec. II contains all

the details of the lattice calculation. It also shows our first
large-Nc comparisons, of how bare parameters must be
tuned to produce more or less constant physics across Nc.
Then we begin comparisons of more physical quantities:
Sec. III shows the Nc and fermion mass dependence of the
static potential. Section IV shows results for mesonic
observables. Section V shows results for baryon spectros-
copy. Our conclusions are presented in Sec. VI.

II. THE LATTICE CALCULATION

A. Overview

The lattice calculation has two parts. We begin by
carrying out simulations for a set of SUðNcÞ gauge theories
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coupled to Nf ¼ 2 fundamental representation fermions.
For each Nc we simulate at a number of values of the bare
fermion mass. We adjust the bare gauge coupling so that the
lattice spacing (as determined by some common observ-
able) is roughly the same for all Nc’s. Nothing about large
Nc phenomenology enters at this stage.
After we have collected the data sets, we can compare

them using the framework of large-Nc counting. This
also has two parts. Large-Nc phenomenology involves
the ’t Hooft coupling λ ¼ g2Nc where g2 is the gauge
coupling. We can ask whether or not the matched
scales that we have determined in the first part of the
calculation occur at similar values of λ, expressed in terms
of g2 the bare gauge coupling. If this is so, then lines of
constant physics across Nc will correspond approximately
to lines of constant ‘t Hooft coupling. We then compare the
values of observables such as the static potential, meson
and baryon spectroscopy, and simple mesonic matrix
elements.

B. Methodology

The lattice theory is taken to be the usual Wilson
plaquette gauge action coupled to Wilson-clover fermions.
The fermion action uses gauge connections defined as
normalized hypercubic (nHYP) smeared links [32–34]. The
bare gauge coupling g0 is set by the simulation parameter
β ¼ 2Nc=g20. We take the two Dirac flavors to be degen-
erate, with common bare quark mass mq

0 introduced via the
hopping parameter κ ¼ ð2mq

0aþ 8Þ−1. As is appropriate
for nHYP smearing [35], the clover coefficient is fixed to its
tree level value, cSW ¼ 1.
References [32–34] describe the construction of nHYP

links for Nc ¼ 2, 3, and 4. We need an implementation
which can be used for arbitrary Nc. Doing this was
straightforward. The details of the construction are given
in Appendix A.
Gauge-field updates used the hybrid Monte Carlo

(HMC) algorithm [36–38] with a multilevel Omelyan
integrator [39] and multiple integration time steps [40],
including one level of mass preconditioning for the
fermions [41]. Lattices used for analysis are spaced a
minimum of 10 HMC time units apart [50 time units for
some of the SUð4Þ data sets]. All data sets except the three
lightest mass SUð5Þ points are based on a single stream.
These last sets were composed of five streams, four of
which were seeded from the first one and the first fifty
trajectories discarded.
We wanted to fix all parameters of the simulation other

than Nc to a common value. Accordingly, we tuned the
lattice spacing to be approximately equal and we worked at
a common lattice volume, 163 × 32 sites. This volume,
small by today’s standards, is a compromise forced on us
by the constraint that large-Nc simulations become expen-
sive as Nc grows; their cost scales roughly like N3

c. This

will impact our ability to present results at light fermion
masses. We return to this point in Sec. II D below.
We set the lattice spacing using the shorter version [42]

of the Sommer [43] parameter r1, defined in terms of the
force FðrÞ between static quarks: r2FðrÞ ¼ −1.0 at r ¼ r1.
It is r1 ¼ 0.31 fm as measured in real-world SUð3Þ [44].
We will also need the usual Sommer parameter, r2FðrÞ ¼
−1.65 at r ¼ r0 (about 0.5 fm).
The correlation functions whose analysis produced our

spectroscopy used propagators constructed in Coulomb
gauge, with Gaussian sources and ~p ¼ 0 point sinks. We
collected sets for several different values of the width R0 of
the source. These correlation functions are not variational
since the source and sink are different. We begin each fit
with a distance-dependent effective massmeffðtÞ, defined to
be meffðtÞ ¼ logCðtÞ=Cðtþ 1Þ in the case of open boun-
dary conditions for the correlator CðtÞ. Because our sources
and sinks are not identical, meffðtÞ can approach its
asymptotic value from above or below. We empirically
chose R0’s which produced flat effective mass plateaus.
When it improved the signal, we mixed data with different
values of R0 to produce correlators with relatively flat
meffðtÞ. All results are based on a standard full correlated
analysis involving fits to a wide range of t’s. For more
detail see Ref. [17].
Meson correlators come from the usual ψ̄Γψ bilinear

operators. Baryon masses are found using interpolating
fields which are operators which create nonrelativistic
quark model trial states. They are diagonal in a γ0 basis,
exactly as was done in Ref. [17].
Our resulting data sets are shown in Tables I–VIII. Some

of the SUð3Þ data has previously been published in
Ref. [28]. Shown in the tables is the so-called axial
Ward identity (AWI) quark mass mq, defined as

TABLE I. Masses in lattice units for the SUð2Þ data sets. From
left to right, the entries are the hopping parameter κ, the relative
scale r1=a, the axial Ward identity quark mass, the pseudoscalar
mass, the pseudoscalar decay constant, the vector meson mass,
and the number of lattices in the measurement set.

κ r1=a amq amPS afPS amV N

β ¼ 1.9 κc¼0.13020
0.1280 2.49(3) 0.093 0.582(2) 0.436(6) 0.761(5) 90
0.1285 2.56(3) 0.075 0.528(3) 0.384(9) 0.722(4) 90
0.1290 2.59(3) 0.059 0.464(3) 0.383(3) 0.663(12) 90
0.1295 2.76(4) 0.044 0.392(4) 0.354(11) 0.608(6) 90
0.1297 2.82(4) 0.035 0.359(3) 0.326(4) 0.604(6) 90
0.1300 2.97(5) 0.026 0.302(5) 0.297(5) 0.542(10) 90
0.1302 3.00(4) 0.020 0.266(5) 0.269(14) 0.540(11) 90

β¼1.95 κc¼0.13014
0.1270 2.66(3) 0.097 0.575(3) 0.395(3) 0.728(4) 90
0.1280 2.84(3) 0.063 0.456(2) 0.354(3) 0.629(5) 90
0.1290 3.26(5) 0.030 0.311(3) 0.275(4) 0.530(8) 90
0.1292 3.29(5) 0.023 0.287(4) 0.237(5) 0.516(8) 90
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∂t

X
x

hAa
0ðx; tÞOai ¼ 2mq

X
x

hPaðx; tÞOai; ð4Þ

where the axial current Aa
μ ¼ ψ̄γμγ5ðτa=2Þψ , the pseudo-

scalar density Pa ¼ ψ̄γ5ðτa=2Þψ, and Oa can be any
source. Here it is the Gaussian shell model source.
Tables IX–XI give the baryon mass differences.

These are computed together with the baryon masses: a
jackknife average of correlated, single-exponential
fits to all different states’ masses is performed and the
differences are collected. This ensures that the average
mass difference is equal to the difference of the
average masses. Correlations in the data mean that the
uncertainty in the mass difference is usually smaller than
the naive combination of uncertainties on the individual
masses. These fits are over the range t ¼ 4–10. We
have checked that the numbers are insensitive to the
fit range.

C. Nc dependence of simulation points

The relation of the ’t Hooft coupling λ to the usual
definition of the lattice coupling is

β ¼ 2Nc

g2
¼ 2N2

c

λ
: ð5Þ

We chose to simulate each Nc at fixed bare gauge coupling,
varying κ to tune the quark mass. For SUð2Þ we worked at
two beta values, 1.9 and 1.95. For SUð3Þ, SUð4Þ and SUð5Þ
we collected data at β ¼ 5.4, 10.2, and 16.4, respectively.
As expected, we see that lattice spacings are approximately
matched scaling β by N2

c. That is, lattice spacings are
matched when the bare lattice regulated ’t Hooft couplings
λ ¼ β=N2

c are approximately matched. This is shown in
Fig. 1. Wewanted to use roughly the same lattice spacing as
the earlier quenched study of Ref. [17] and we see that our
λ’s approach the quenched ones as Nc increases. The
expected size of fermionic corrections is Oð1=NcÞ and
the shift of the coupling, at least for Nc ≥ 3, is consistent
with that behavior. Because we encountered more severe
finite volume effects for SUð2Þ, we ended up collecting
data for that group at larger lattice spacing. This is why β is

TABLE II. More SUð2Þ results, all in lattice units: hopping
parameter κ, axial vector mass, tensor mass, vector decay
constant, and rescaled condensate in MS from jackknife fit.

κ amA amT fV ð3=2Þr31Σ
β ¼ 1.9
0.1280 1.096(16) 1.108(19) 0.820(20) 0.299(17)
0.1285 1.134(36) 1.085(19) 0.871(16) 0.267(17)
0.1290 0.998(18) 0.978(18) 0.956(20) 0.262(18)
0.1295 0.888(17) 0.904(20) 0.953(20) 0.242(18)
0.1297 0.852(17) 0.897(21) 0.945(24) 0.215(15)
0.1300 0.786(19) 0.801(19) 0.991(16) 0.207(17)
0.1302 0.713(24) 0.762(19) 0.949(17) 0.146(13)

β ¼ 1.95
0.1270 0.932(33) 1.077(13) 0.781(4) 0.289(15)
0.1280 0.929(17) 0.931(18) 0.860(7) 0.248(15)
0.1290 0.706(29) 0.803(18) 0.861(22) 0.208(20)
0.1292 0.564(30) 0.728(14) 0.952(15) 0.177(19)

TABLE III. Masses in lattice units for the SUð3Þ data sets. From left to right, the entries are the hopping parameter κ, the relative scale
r1=a, the axial Ward identity quark mass, the pseudoscalar mass, the pseudoscalar decay constant, the vector meson mass, the baryons,
labeled by their spin J, and the number of lattices in the measurement set.

β ¼ 5.4 κc ¼ 0.12838

κ r1=a amq amPS afPS amV amBðJ ¼ 3
2
Þ amBðJ ¼ 1

2
Þ N

0.1250 2.95(2) 0.105 0.559(2) 0.456(6) 0.696(3) 1.143(13) 1.042(7) 100
0.1260 3.08(3) 0.070 0.457(1) 0.424(4) 0.619(3) 1.011(10) 0.926(7) 100
0.1265 3.11(3) 0.059 0.404(2) 0.393(5) 0.575(4) 0.941(13) 0.841(10) 101
0.1270 3.23(3) 0.042 0.340(3) 0.370(5) 0.531(5) 0.887(22) 0.748(8) 101
0.1272 3.30(3) 0.033 0.307(3) 0.318(7) 0.479(6) 0.833(25) 0.698(8) 100
0.1274 3.32(2) 0.028 0.264(3) 0.319(5) 0.472(7) 0.819(25) 0.690(12) 107
0.1276 3.46(2) 0.021 0.239(2) 0.294(4) 0.462(10) 0.785(20) 0.629(9) 107
0.1278 3.41(3) 0.014 0.206(3) 0.258(6) 0.439(8) 0.767(25) 0.633(16) 107

TABLE IV. More SUð3Þ results, all in lattice units: hopping
parameter κ, axial vector mass, tensor mass, vector decay
constant, and condensate in MS from jackknife fit.

κ amA amT fV r31Σ

0.1250 0.973(9) 0.985(9) 0.905(4) 0.314(10)
0.1260 0.882(7) 0.895(6) 0.993(8) 0.251(10)
0.1265 0.829(8) 0.848(8) 1.010(6) 0.204(7)
0.1270 0.722(25) 0.804(10) 1.050(9) 0.210(10)
0.1272 0.668(19) 0.769(12) 1.037(13) 0.169(8)
0.1274 0.714(12) 0.747(13) 1.084(8) 0.153(6)
0.1276 0.665(8) 0.686(10) 1.058(12) 0.160(7)
0.1278 0.618(8) 0.665(15) 1.072(10) 0.130(8)
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smaller and λ is larger than naive extrapolation would
desire.
Figure 1 oversimplifies the situation: the lattice spacing

depends on both the bare gauge coupling and the fermion
mass. The dependence of the lattice spacing, through the
ratio r1=a, on fermion mass at fixed gauge coupling is
shown in Fig. 2. The ratio ðmPS=mVÞ2 is used instead of a
fermion mass. Data sets are crosses for Nc ¼ 2, β ¼ 1.9,
fancy crosses for Nc ¼ 2, β ¼ 1.95, octagons for Nc ¼ 3,
squares for Nc ¼ 4 and diamonds for Nc ¼ 5. It seems to
be the case that the quark mass dependence of the lattice
spacing decreases as Nc increases. This is the expected
large-Nc behavior, because the relative number of fer-
mionic degrees of freedom decreases compared to the
gauge ones as Nc increases.
Certainly, SUð2Þ is special from a simulation point of

view: there is a very strong dependence of the lattice
spacing on the quark mass. We note that we have
experience with another system where the number of

TABLE V. Masses in lattice units for the SUð4Þ data sets.

β ¼ 10.2 κc ¼ 0.12841

κ r1=a amq amPS afPS amV amBðJ ¼ 2Þ amBðJ ¼ 1Þ amBðJ ¼ 0Þ N

0.1252 2.96(2) 0.098 0.525(1) 0.507(3) 0.675(2) 1.524(11) 1.431(7) 1.388(8) 90
0.1262 3.09(2) 0.066 0.422(1) 0.462(3) 0.592(2) 1.340(13) 1.249(16) 1.202(10) 90
0.1265 3.14(3) 0.057 0.385(1) 0.449(3) 0.560(3) 1.295(11) 1.196(9) 1.141(8) 101
0.1270 3.19(2) 0.041 0.328(1) 0.410(3) 0.516(4) 1.196(13) 1.086(10) 1.036(10) 101
0.1275 3.29(3) 0.026 0.258(2) 0.367(4) 0.475(6) 1.136(19) 1.007(10) 0.944(11) 101
0.1277 3.32(4) 0.019 0.218(2) 0.336(4) 0.465(6) 1.062(17) 0.959(13) 0.894(13) 121

TABLE VI. More SUð4Þ results, all in lattice units: hopping
parameter κ, axial vector mass, tensor mass, vector decay
constant, and rescaled condensate in MS from jackknife fit.

κ amA amT fV ð3=4Þr31Σ
0.1252 0.941(12) 0.957(5) 1.056(4) 0.260(6)
0.1262 0.851(6) 0.862(7) 1.157(6) 0.225(7)
0.1265 0.796(7) 0.824(7) 1.240(14) 0.206(8)
0.1270 0.759(6) 0.780(6) 1.181(8) 0.176(5)
0.1275 0.689(6) 0.708(7) 1.238(10) 0.152(6)
0.1277 0.639(5) 0.555(35) 1.268(8) 0.125(6)

TABLE VII. Masses in lattice units for the SUð5Þ data sets.

β ¼ 16.4 κc ¼ 0.12951

κ r1=a amq amPS afPS amV amBðJ ¼ 5
2
Þ amBðJ ¼ 3

2
Þ amBðJ ¼ 1

2
Þ N

0.1260 2.99(1) 0.102 0.549(1) 0.590(6) 0.694(2) 2.010(17) 1.928(15) 1.881(14) 90
0.1270 3.11(1) 0.073 0.448(2) 0.522(3) 0.607(3) 1.792(22) 1.711(12) 1.664(11) 100
0.1275 3.19(2) 0.057 0.390(1) 0.482(3) 0.566(2) 1.651(11) 1.560(10) 1.508(9) 111
0.1280 3.24(2) 0.041 0.332(2) 0.450(3) 0.526(2) 1.548(12) 1.444(11) 1.395(10) 114
0.1285 3.20(1) 0.027 0.263(2) 0.443(5) 0.487(7) 1.472(16) 1.371(15) 1.305(14) 106

TABLE VIII. More SUð5Þ results, all in lattice units: hopping
parameter κ, axial vector mass, tensor mass, vector decay
constant, and rescaled condensate in MS from jackknife fit.

κ amA amT fV ð3=5Þr31Σ
0.1260 0.970(6) 0.982(5) 1.183(9) 0.292(8)
0.1270 0.880(5) 0.895(5) 1.232(10) 0.242(6)
0.1275 0.796(4) 0.797(7) 1.282(5) 0.210(6)
0.1280 0.742(6) 0.750(8) 1.360(18) 0.189(5)
0.1285 0.742(6) 0.760(7) 1.396(18) 0.160(5)

TABLE IX. Baryon mass splittings for Nc ¼ 3.

κ ΔmBð32 ; 12Þ
0.1250 0.101(11)
0.1260 0.085(9)
0.1265 0.101(13)
0.1270 0.139(22)
0.1272 0.135(24)
0.1274 0.129(22)
0.1276 0.156(18)
0.1278 0.135(28)

TABLE X. Baryon mass splittings for Nc ¼ 4.

κ ΔmBð2; 1Þ ΔmBð2; 0Þ ΔmBð1; 0Þ
0.1252 0.093(9) 0.136(10) 0.043(4)
0.1262 0.091(21) 0.138(14) 0.047(16)
0.1265 0.099(8) 0.154(9) 0.056(6)
0.1270 0.110(11) 0.160(15) 0.050(10)
0.1275 0.129(19) 0.192(20) 0.063(10)
0.1277 0.103(18) 0.168(17) 0.065(14)
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fermionic degrees of freedom is large compared to the
gauge ones: SUð4Þ with Nf ¼ 2 two-index antisymmetric
representation flavors [28]. A similar strong dependence of
the lattice spacing on fermion mass was also observed for
that system.

D. Minimizing finite volume effects

The dominant way that finite volume affects spectros-
copy is when tadpoles, where a meson is emitted from some
location and returns to the same point, are replaced by a set
of contributions connecting the location to its image points.
Generally, we can write the pseudoscalar correlator for a
particle of mass m in a box of length Lμ in direction μ as

Δðm; xÞ →
X
nμ

Δðm; xþ nμLμÞ ð6Þ

and the infinite volume propagator, call it Δ̄ðm; xÞ, is the
n ¼ 0 term in the sum. The finite volume tadpole is

Δðm; 0Þ ¼ Δ̄ðm; 0Þ þ Ī1ðm;LÞ; ð7Þ

where Ī1ðm;LÞ is the sum over images. If a typical infinite
volume observable has a chiral expansion

OðL ¼ ∞Þ ¼ O0

�
1þ C0

1

f2PS
Δ̄ðm; 0Þ

�
ð8Þ

then the finite volume correction is

OðLÞ −OðL ¼ ∞Þ ¼ O0

�
C0

1

f2PS
Ī1ðm;LÞ

�
: ð9Þ

We need some criterion to tell us whether any given data
set might be compromised by finite volume. Sharpe [31]
has shown that nearest image contribution gives a useful
lower bound on the finite volume correction. It is

I1ðm;LÞ ∼ 6

�
m2

16π2

��
8π

ðmLÞ3
�

1=2
expð−mLÞ: ð10Þ

The factor of 6 counts the three neighboring points at
positive offset, and the three neighboring points at negative
offset.
We can use Eq. (10), plus our tables of lattice masses

and decay constants, to check to see which of our data
sets might be compromised by volume. The result,
2I1ðm;LÞ=f2PS (the 2 is needed to convert our 130 MeV
definition of the decay constant to the standard chiral
literature’s 93 MeV) is shown in Fig. 3. This figure includes
all the data sets we collected, the ones shown in the tables
plus other ones. Pretty clearly, to keep finite volume
corrections under control, we need to keep r1mq greater
than about 0.05. The data sets we discarded are ones
with r1mq < 0.05.

TABLE XI. Baryon mass splittings for Nc ¼ 5.

κ ΔmBð52 ; 32Þ ΔmBð52 ; 12Þ ΔmBð32 ; 12Þ
0.1260 0.082(8) 0.129(11) 0.047(3)
0.1270 0.080(13) 0.128(15) 0.048(6)
0.1275 0.091(6) 0.144(8) 0.053(4)
0.1280 0.104(9) 0.153(8) 0.049(5)
0.1285 0.101(12) 0.167(15) 0.067(10)

FIG. 1. Comparison of the bare ’t Hooft coupling λ ¼ 2N2
c=β at

which data was collected, vs 1=Nc. Octagons show the values
used in this work while the squares are from the earlier quenched
study of [17].

FIG. 2. Comparison of the short Sommer parameter vs quark
mass, here parametrized as the ratio ðmPS=mVÞ2, for Nc ¼ 2
(crosses for β ¼ 1.9, fancy crosses for β ¼ 1.95), 3 (octagons),
4 (squares), and 5 (diamonds).
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Our SUð2Þ results showed much larger finite volume
effects than the higher-Nc data sets did. We believe that is a
consequence of two effects. One is the large Nc scaling for
the pseudoscalar decay constant. Finite volume effects
scale as 1=f2PS and as we will see, fPS scales approximately
as

ffiffiffiffiffiffi
Nc

p
. The other is the different pattern of chiral

symmetry breaking in SUð2Þ, which gives rise to different
coefficients in the chiral expansion. For example, C0 in
Eq. (8) for the squared pseudoscalar mass is −1=2 for
Nc ≥ 3 and −3=4 for SUð2Þ. (See the tables in Ref. [45].)
One can also notice that the two SUð2Þ data sets have

different finite volume corrections, and that the β ¼ 1.95
data set has larger ones. This is because the lattice valued
fPS is smaller at the bigger β value.
SUð2Þ has diquark states rather than baryons. However,

there is no new physics in these states; their correlators are
identical to the corresponding mesonic ones, by charge
conjugation. This is natural: the three pseudoscalar meson
Goldstone bosons are accompanied by a pair of scalar
diquark Goldstones. These states are nicely described by
Ref. [22]. We do not consider them further.
Comparisons of our two SUð2Þ data sets (results from

which are shown separately in all figures to follow) show
that discretization effects are generally small for them.

E. Matching data across different Nc’s

It is straightforward to analyze each Nc data set
separately. The questions we can ask are the usual ones:
how do dimensionless ratios of dimensionful quantities
(mass ratios, for example) depend on the fermion mass?
The correct version of this question should add the phrase
“as the lattice spacing is taken to zero.” However, in
keeping with most exploratory QCD simulations, we pick

a convenient observable (call it mH to be definite) to set the
lattice spacing, and then quote ratios such as mi=mH as our
predictions. We must also pose our sample question more
sharply, trading the (unphysical) bare mass for some more
physical observable such as the AWI quark mass or the
squared pseudoscalar mass, and expressing it in terms of
some physical observable: how does ðmPS=mHÞ2 vary with
mq=mH? We then might ask how sensitive our answer is, to
a particular choice of mH. This sensitivity would be a
rough measure of the residual cutoff dependence in the
calculation.
Nowwewant to combine data from differentNc. As long

as we analyze the data from different Nc values in precisely
the same way, we can make a large-Nc comparison. But “in
precisely the same way” requires making some arbitrary
choice of what is fixed, and what is allowed to vary. This is
not a lattice artifact. It happens because we are studying
different physical systems: SUð3Þ with Nf ¼ 2 fundamen-
tals simply has a different spectrum from SUð4Þ with
Nf ¼ 2 fundamentals. We need to look at several dimen-
sionless observables which might be used to make matches:
we chose the squared ratio of the pseudoscalar mass to
vector mass (squared, because this quantity is linear in the
quark mass), or r1mq using the Sommer parameter and the
AWI quark mass, or r1mPS.
Figure 4 shows one such plot: ðmPS=mVÞ2 versus κ. The

horizontal lines, of course, mark out constant values which
we will use when we make comparisons at fixed physical
quark mass. They are ðmPS=mVÞ2 ¼ C, where from the top
C ¼ 0.6, 0.54, 0.48, 0.4 and 0.3.
Figure 5 continues the comparison: we could use the

AWI quark mass itself, rather than ðmPS=mVÞ2 as a

FIG. 3. Expected finite size effect from Eq. (10), from our
tabulated data. Symbols are crosses for SUð2Þ, β ¼ 1.9, fancy
crosses for SUð2Þ, β ¼ 1.95, squares for SUð3Þ, octagons
for SUð4Þ.

FIG. 4. One observable which will be used to match data across
Nc: ðmPS=mVÞ2 versus the bare hopping parameter κ. The lines
are ðmPS=mVÞ2 ¼ 0.6, 0.54, 0.48, 0.4 and 0.3. Crosses and fancy
crosses label SUð2Þ, β ¼ 1.9 and 1.95; squares are SUð3Þ,
octagons SUð4Þ, and diamonds SUð5Þ.

LATTICE STUDY OF LARGE Nc QCD PHYSICAL REVIEW D 94, 034506 (2016)

034506-7



measurement of a quark mass. The lines again label
ðmPS=mVÞ2 ¼ C. Figure 6 replots the data in Fig. 5 along
its horizontal lines. It shows r1mq at roughly matched
ðmPS=mVÞ2 values, versus 1=Nc. It appears that for Nc ≥ 3,
matching ðmPS=mVÞ2 is nearly equivalent to matching
r1mq, but that Nc ¼ 2 is discrepant.
We believe that the discrepancy is intrinsic to SUð2Þ. A

match can only be successful if the candidate theories for
matching are really identical in all ways except for their Nc
dependence. This is the case for Nf ¼ 2 and Nc ≥ 3, which

have an identical pattern of chiral symmetry breaking.
These systems have identical chiral expansions and the
only place Nc dependence enters is in the intrinsic
dependence of dimensionful chiral quantities (such as
the pseudoscalar decay constant) on Nc. Then we can
trade quark mass dependence for pseudoscalar mass
dependence, using the formulas of chiral perturbation
theory. The pattern of chiral symmetry breaking is different
for SUð2Þ than it is for the other Nc’s, and so the relation
betweenmq andm2

PS is simply different for SUð2Þ than it is
for the other systems. We will have to keep this difference
in mind as we make comparisons.

III. Nc SCALING FOR THE POTENTIAL

We begin our comparison with large-Nc scaling with the
static potential. We performed a standard analysis of
Wilson loop data (similar to the one in Ref. [46]) to extract
the parameters of the static potential. The lattice spacing
varies with the dynamical fermion mass, and in principle
the shape of the potential could also vary. Therefore, to
make comparisons, we must work at a common physical
value, and plot the dimensionless combination r1VðrÞ vs
r=r1. In Fig. 7 we choose that value to be ðmPS=mVÞ2¼0.4.
This corresponds to κ ¼ 0.1295, 0.127, 0.127, 0.128 for
Nc ¼ 2, 3, 4, 5 respectively. The potential appears to show
little Nc dependence.
We can then examine how the shape of the potential

varies with fermion mass. We have two dimensionless
observables, r1

ffiffiffi
σ

p
and r0

ffiffiffi
σ

p
, where σ is the string tension.

Figure 8 shows the variation of these quantities withNc and
fermion mass, through the observable ðmPS=mVÞ2. The data

FIG. 5. A comparison of ðmPS=mVÞ2 versus the AWI quark
mass, r1mq. Crosses and fancy crosses label SUð2Þ, β ¼ 1.9 and
1.95; squares are SUð3Þ, octagons SUð4Þ, and diamonds
SUð5Þ.

FIG. 6. The scaled AWI quark mass r1mq from Fig. 5. The
symbols are at ðmPS=mVÞ2 ¼ C where C ¼ 0.6 (octagons), 0.54
(squares), 0.48 (diamonds), 0.4 (crosses) and 0.3 (fancy crosses).

FIG. 7. Comparison of the dimensionless combination r1VðrÞ
vs r=r1 from data sets matched in quark mass, at ðmPS=mVÞ2 ¼
0.4. Symbols are crosses for Nc ¼ 2, octagons for Nc ¼ 3,
squares for Nc ¼ 4 and diamonds for Nc ¼ 5.
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sets are noisier than in the previous figure, but also show
little Nc dependence.
We can quantify this statement by modeling the quark

mass dependence of this scaling quantity, fitting r1
ffiffiffi
σ

p ¼
Ai þ Bix with various choices for x. We considered
x ¼ ðmPS=mVÞ2, x ¼ ðr1mPSÞ2, and x ¼ r1mq (with the
AWI quark mass). Not all the individual fits were of high
quality (chi-squared per degree of freedom ranged from
below 2 for 2 degrees of freedom to 23 for 8 degrees of
freedom) and of course a linear dependence is purely
phenomenological. The results are shown in Fig. 9.
Nc ¼ 3, 4, and 5 exhibit essentially no Nc dependence
for this observable while Nc ¼ 2 is only about 12 percent
lower. The parameter Bi is larger for SUð2Þ. For the x ¼
ðmPS=mVÞ2 case, it is 0.22(5), 0.03(2), 0.05(3), and 0.04(2)

forNc ¼ 2, 3, 4, and 5. This common small value forNc≥3
is the expected scaling behavior.

IV. MESONIC OBSERVABLES

A. Masses

Both the pseudoscalar and vector meson mass show their
expected lack of dependence on Nc. The dimensionless
quantities ðr1mPSÞ2 and r1mV are displayed versus r1mq in
Figs. 10 and 11.
A closer look at the squared pseudoscalar mass reveals

some differences between SUð2Þ and the higher Nc’s. The
data is shown in Fig. 12, a plot of r1m2

PS=mq. The r1
multiplier makes this a dimensionless quantity. It appears
that the quantity is about ten percent higher for SUð2Þ than
it is for the other Nc’s. There also appears to be some
tendency for this quantity to flatten as Nc increases. This is

FIG. 8. Panels (a) and (b) show comparisons of the dimensionless combinations r1
ffiffiffi
σ

p
and r0

ffiffiffi
σ

p
vs quark mass, here parametrized as

the ratio ðmPS=mVÞ2, for Nc ¼ 2 (crosses for β ¼ 1.9, fancy crosses for β ¼ 1.95), 3 (octagons), 4 (squares) and 5 (diamonds).

FIG. 9. The combination r1
ffiffiffi
σ

p
at zero quark mass from linear

fits described in the text. The plotting symbols show results where
the independent variable is ðmPS=mVÞ2 (squares), ðr1mPSÞ2
(diamonds) and r1mq (octagons).

FIG. 10. Squared pseudoscalar mass versus quark mass. Data
are crosses and fancy crosses for SUð2Þ, squares for SUð3Þ,
octagons for SUð4Þ, and diamonds for SUð5Þ.
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a large-Nc expectation since the nonanalytic part of the
chiral expansion for r1m2

PS=mq, which affects the mass in
both infinite and finite volume, scales as 1=f2PS ∝ 1=Nc.
However, we do not feel that we can do more than display
the figure. Probably several larger volumes per Nc will be
needed to disentangle finite volume effects and chiral
logarithms.
It does not appear that the data are good enough quality

to directly extract a more detailed picture of Nc depend-
ence, say a plot versus 1=Nc at matched quark masses. We
can, however, compare results of a naive fit of r1mV to the

linear form r1mV ¼ Aþ Br1mq. All fits are of good
quality, with χ2=DoF at or below unity. The A coefficients
forNc ¼ 3, 4, and 5 are identical [1.39(2), 1.39(2), 1.40(2)]
as are the B coefficients [2.16(9), 2.11(8), 2.19(7)]. Again,
SUð2Þ is an outlier: A ¼ 1.50ð2Þ, B ¼ 1.5ð1Þ. r1mV ¼ 1.4
translates to a vector meson mass in the chiral limit of
890 MeV, which is high compared to the physical rho
meson. However, our simulation volumes are not large and
a linear extrapolation to zero is far too naive to account for
the two-pion threshold’s impact on the rho mass.
We also collected data for the scalar, axial vector, and

tensor mesons (with interpolating fields ψ̄Γψ and Γ ¼ 1,
γiγ5, and γiγj, respectively). The scalar channel is too noisy
to analyze. The axial vector and tensor channels had
signals, although at large time separations they degraded.
We show the masses for these channels in Fig. 13. We
observe, again, Nc independence. With 1=r1 ¼ 635 MeV,
the mq ¼ 0 extrapolations appear to be in good, though
noisy, agreement with observation [the a1ð1235Þ and the
a2ð1320Þ]. The strange quark is around r1mq ∼ 0.15 and
we note that the f1ð1420Þ and f02ð1525Þ would be the ss̄
states, at r1M ∼ 2.2 and 2.4.

B. Decay constants

Decay constants are defined as follows: the pseudoscalar
decay constant is

h0jūγ0γ5djPSi ¼ mPSfPS ð11Þ

(so in our conventions fπ ∼ 130 MeV) while the vector
meson decay constant of state V is defined as

h0jūγidjVi ¼ m2
VfVϵi: ð12Þ

ϵi is a unit polarization vector.
Calculations of matrix elements require a conversion to

continuum regularization. We choose to adopt the old
tadpole-improved procedure of Lepage and Mackenzie
[47], and work at one loop.
In this scheme a continuum-regulated fermionic bilinear

quantityQwith engineering dimensionD [we have in mind
the MS (modified minimal subtraction) value at scale μ] is
related to the lattice value by

QðμÞ ¼ aDQðaÞ
�
1 −

3κ

4κc

�
ZQ ð13Þ

and at scale μa ¼ 1,

ZQ ¼ 1þ α
CF

4π
zQ; ð14Þ

where α ¼ g2=ð4πÞ, CF is the usual quadratic Casimir, here
ðN2

c − 1Þ=ð2NcÞ, and zQ is a scheme matching number.
(The ones we need are tabulated in Ref. [48].) The axial

FIG. 11. Vector meson mass versus quark mass. Data are
crosses for SUð2Þ, squares for SUð3Þ, octagons for SUð4Þ,
and diamonds for SUð5Þ.

FIG. 12. Squared pseudoscalar mass divided by quark mass,
versus quark mass and scaled by r1. Data are crosses and fancy
crosses for SUð2Þ, squares for SUð3Þ, octagons for SUð4Þ, and
diamonds for SUð5Þ.
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vector and vector Z-factors are only a few percent different
from unity for nHYP clover fermions and so ZQ is taken to
be unity.
κc is the value of the hopping parameter where the AWI

quark mass and the pion mass vanish. Because the lattice
spacing depends on the bare simulation parameters, we
determined the values of κc by fitting the dimensionless
combination r1mq to a linear dependence on κ. Plots of this
quantity and of ðr1mPSÞ2 vs κ are shown in Fig. 14. The

resulting values of κc are listed in the tables of data. The
uncertainties are �1 in the final quoted digit.
The pseudoscalar and vector decay constants are

expected to scale as
ffiffiffiffiffiffi
Nc

p
. To expose deviations from this

behavior, we scale the decay constants by
ffiffiffiffiffiffiffiffiffiffiffi
3=Nc

p
and see

whether they lie on a single curve. That appears to be the
case for fPS: see Fig. 15.
The vector meson decay constants are shown in

Fig. 16. They are noisier than the pseudoscalar decay

FIG. 13. Axial vector (a) and tensor (b) meson masses versus quark mass. Data are crosses and fancy crosses for SUð2Þ, squares for
SUð3Þ, octagons for SUð4Þ, and diamonds for SUð5Þ.

FIG. 14. Plots of r1mq and ðr1mPSÞ2 vs hopping parameter κ, for (a) SUð2Þ (β ¼ 1.9), (b) SUð3Þ, (c) SUð4Þ and (d) SUð5Þ.
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constant but still appear to exhibit the appropriate scaling
behavior.

C. The condensate from the Gell-Mann,
Oakes, Renner relation

As a proxy for the condensate, we compute a conden-
sate-like variable ΣðmqÞ from the Gell-Mann, Oakes,
Renner relation,

ΣðmÞ ¼ m2
PSf

2
PS

4mq
ð15Þ

(the factor of 4 compensates for our convention that
fPS ¼ 130 MeV). The actual condensate might be obtained
from the zero mass limit of this quantity.
We are aware of more modern ways of finding the

condensate, from the spectrum of eigenvalues of the Dirac
operator [49–53], but these methods seem to us to require
smaller quark mass data than we can safely obtain given our
simulation volumes.
We evaluated Eq. (15) using a single elimination jack-

knife from separate fits to the AWI quark mass, the decay
constant, and the pseudoscalar mass.
A renormalization constant is needed to convert the

lattice result of the quark condensate to its MS value. We do
this as follows: We use the coupling constant from the so-
called “αV” scheme [47]. The one-loop expression relating
the plaquette to the coupling is

ln
1

Nc
TrUp ¼ −4πCFαVðq�VÞ; ð16Þ

where q� ¼ 3.41=a for the Wilson plaquette gauge action.
In this and in all following formulas, αV appears in the
combination αVCF ∝ αVNc. This is nearly identical over
the values of Nc studied (compare Fig. 17) and so the
conversion factor from lattice to continuum regularization
will be nearly the same over our data sets.
Then (following Ref. [54]) we make the conversion

αMSðe−5=6q�Þ ¼ αVð1 − 2αV=πÞ and run to αMSð2 GeVÞ
by using the two-loop beta function.
The constant zS is tabulated in Ref. [48]. (This paper has

a typo: the pseudoscalar and scalar z-factors are inter-
changed. zs ¼ 0.04.) The matching between lattice and
continuum is done at a scale μ ¼ q�S ¼ 1.66=a according to
the prescription of Ref. [55]. Finally the MS quark mass
and condensate are run to μ ¼ 2 GeV using the usual

FIG. 15. Pseudoscalar decay constant divided by
ffiffiffiffiffiffiffiffiffiffiffi
Nc=3

p
so

that curve collapse signals the correct large Nc scaling behavior,
versus quark mass. Data are crosses for SUð2Þ, squares for
SUð3Þ, octagons for SUð4Þ, and diamonds for SUð5Þ.

FIG. 16. Vector meson decay constant divided by
ffiffiffiffiffiffiffiffiffiffiffi
Nc=3

p
so

that curve collapse signals the correct large Nc scaling behavior,
versus quark mass. Data are crosses for SUð2Þ, squares for
SUð3Þ, octagons for SUð4Þ, and diamonds for SUð5Þ.

FIG. 17. Coupling constants extracted from plaquette measure-
ments and then scaled by an overall factor of Nc, plotted as a
function of hopping parameter, from the various data sets.
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two-loop formula. Recall that the scale is set by
r1 ¼ 0.31 fm. The overall rescaling is quite small since
zS is tiny and since the inverse lattice spacings are close to
the fiducial 2 GeV scale.
A plot of the condensate, again with all dimensions

scaled by r1, is shown in Fig. 18. The different Nc values
are also rescaled by the expected large-Nc factor, 1=Nc.
The figure shows that ΣðmÞ follows the expected linear
scaling in Nc for Nc ¼ 3, 4, and 5. The lack of scaling for
Nc ¼ 2 is the largest such effect we observe in any of our
data sets. We recall that SUð2Þ is special from the point of
chiral symmetry breaking; its pattern of symmetry breaking
is different and it has five Goldstones in its spectrum rather
than three.
Most of the effect seems to come from the higher value

of r1m2
PS=mq already presented in Fig. 12, which is related

to the lower value of the quark mass at fixed ðmPS=mVÞ2 for
SUð2Þ than for the other Nc’s, seen in Fig. 6.
Again we cannot resist performing a naive linear

fit to the data, ð3=NcÞr31Σ ¼ Σ0 þ Σ1ðr1mqÞ. We find
ðΣ0;Σ1; χ2=DoFÞ of (0.137(4), 0.68(8), 14=9), (0.099(6),
0.66(3), 15=6), (0.097(6), 0.59(6), 5.5=4), and (0.105(7),
0.60(4), 1.4=3) for Nc ¼ 2, 3, 4, and 5. As we have already
seen many times, Nc ¼ 2 is the outlier. With r1 ¼ 0.31 fm,
Σ0 ¼ 0.1 corresponds to a physical value for the condensate
of about ð295 MeVÞ3, which is higher than typical results
from good quality simulations on larger volumes and at
smaller fermion masses: for example, ð260 MeVÞ3 from
Ref. [52].

V. BARYONIC OBSERVABLES

Unlike mesons, the Nc scaling of baryonic quantities
cannot be displayed in a single picture. We begin with the
data for individual masses. It is shown in Fig. 19. For each
Nc there is a set of angular momentum (J) and isospin (I)
locked states ranging down from I ¼ J ¼ Nc=2 to I ¼ J ¼
1=2 or 0. In all cases, the masses of the baryons increase
roughly linearly with Nc, and the states are ordered in
ascending value with J.
The numerator of the rotor term of Eq. (3) can be tested

at fixed Nc using the ratio of differences

ΔðJ1; J2; J3Þ ¼
MðNc; J2Þ −MðNc; J3Þ
MðNc; J1Þ −MðNc; J3Þ

; ð17Þ

for which the constants (m0, B) cancel. The result is shown
in Fig. 20 for Nc ¼ 4 and 5. The lines have zero intercept
and the slopes are given by the rotor spectrum. Equation (3)
seems to describe the data. Identical behavior was observed
in the quenched simulations of Ref. [17] and for the six-
quark baryons in SUð4Þ gauge theory with two-index
antisymmetric representation fermions [28].
We now fit the masses to the rotor formula. We do this

for each individual fermion mass, to produce plots of m0

and B as a function of fermion mass. For Nc ¼ 3 these fits
have no degrees of freedom; for Nc ¼ 4 and 5 they have
1 degree of freedom. In all cases the χ2 is below 0.3, as
expected from an examination of Fig. 19. The results are
shown in Figs. 21 and 22.
Figure 21 shows a pretty clear systematic drift of m0

with Nc at fixed ðmPS=mVÞ2. In large Nc phenomenology
the origin of this drift is that the coefficients in the

FIG. 19. Baryon masses versus quark mass. Data are squares
for SUð3Þ, octagons for SUð4Þ, and diamonds for SUð5Þ. The
splitting of the higher Nc baryons follows the rotor formula.

FIG. 18. Rescaled condensate, more properly ð3=NcÞm2
PSf

2
PS=

ð4mqÞ which extrapolates to the rescaled condensate in the chiral
limit, versus quark mass. Data are crosses for SUð2Þ, squares for
SUð3Þ, octagons for SUð4Þ, and diamonds for SUð5Þ. Curve
collapse shows that the condensate scales as Nc. Recall that
SUð2Þ has different chiral properties than the others. Lattice data
are converted to an MS quantity using the method described in
the text.
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rotor formula are themselves functions of Nc, Ji ¼
Ji0 þ Ji1=Nc þ Ji2=N2

c þ � � �. This means that a large Nc
expression which is exact through Oð1=NcÞ is

MðNc; JÞ ¼ Ncm00 þm01 þ B
JðJ þ 1Þ

Nc
ð18Þ

rather than the naive Eq. (3). Can we separate outm01? This
has to come from a two-stage process where we first
determine m0ðNcÞ from a fit, then filter the results. In
Sec. II E we filtered the data in terms of lines of constant
ðmPS=mVÞ2. Projecting the data of Fig. 21 produces Fig. 23.
We would say that the large Nc resolution, that
m0 ¼ m00 þm01=Nc, is plausible, but of course there
could be an m02=N2

c term as well. Note that checking this
dependence would require at least four values of Nc if a fit
with a nonzero number of degrees of freedom were desired.

The uncertainties in B do not allow us to look for Nc
dependence. One piece of phenomenology we can inves-
tigate is the relation of B and m0. One can imagine two
origins for the rotor formula. The first is just a rigid rotation
of the baryon, in which case B=Nc is the inverse moment of
inertia of the baryon. This implies that B scales as 1=m0.
Alternatively, one could generate the rotor formula from
one gluon exchange, a color magnetic hyperfine interac-
tion, which is proportional to the product of the two
participants’ magnetic moments. As a fermion magnetic
moment scales inversely with its mass, this suggests B
scaling as 1=m2

0. Our data certainly show that B decreases
as m0 increases, but does not allow us to say much more.
Chiral perturbation theory, specifically heavy baryon

chiral perturbation theory [56,57], allows us to go a bit
farther. The authors of Ref. [19], drawing on the derivation
in Ref. [58], have formulas for the mass of a baryon withNc

FIG. 20. Mass differences in the SUð4Þ and SUð5Þ multiplets, panels (a) and (b) respectively. Lines are slopes from Eq. (17).

FIG. 21. The quantity m0 [as defined in the rotor formula,
Eq. (3)] vs ðmPS=mVÞ2. Data are squares for SUð3Þ, octagons for
SUð4Þ, and diamonds for SUð5Þ.

FIG. 22. The quantity B [as defined in the rotor formula,
Eq. (3)] vs ðmPS=mVÞ2. Data are squares for SUð3Þ, octagons for
SUð4Þ, and diamonds for SUð5Þ.
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colors and angular momentum J. Figures 21 and 22 show
that we should only consider the most minimal truncations
of their mass formulas. In a simpler notation, the baryon
mass through order 1=Nc is

mB ¼ Ncðm00 þ μ1m2
PSÞ þ ðm01 þ μ2m2

PSÞ

þ JðJ þ 1Þ
Nc

ðB0 þ bm2
PSÞ þ � � � : ð19Þ

Altogether we have data for 49 combinations of Nc and J.
We fit r1mB to a function of ðr1mPSÞ2. The fit is excellent;
χ2 ¼ 42 for 43 degrees of freedom. We display it in Fig. 24.
We record the dimensionless (i.e. rescaled by appropriate
powers of r1) best-fit parameters in Table XII. As one
would expect from Figs. 21 and 22, m00, μ1, m01, and B0

are well determined while b and especially μ2 are less
well fixed.
One pion exchange generates a contribution to the

baryon mass proportional to g2A=F
2
PSm

3
PS where FPS is

the pseudoscalar decay constant in the chiral limit and
gA is the axial charge of the nucleon. Rather than looking
for the complete functional form given in Ref. [19], we
simply add a spin-independent term δr1mB ¼ p7ðr1mPSÞ3
or δr1mB ¼ p7Ncðr1mPSÞ3 to the fitting function. The χ2 of
the fit is unchanged (χ2 ¼ 41 for 42 degrees of freedom for
either choice) and p7 is essentially undetermined, p7 ¼
−0.055ð50Þ or −0.016ð20Þ for the two possibilities.
Our data sets allow us to compare the baryonic matrix

element of the scalar density (the sigma term) using the
Feynman-Hellman theorem. We define

FIG. 23. The quantity m0 from the rotor formula plotted versus
1=Nc along lines of approximately constant fermion mass. The
symbols are at ðmPS=mVÞ2 ¼ C where C ¼ 0.6 (octagons), 0.54
(squares), 0.48 (diamonds), 0.4 (crosses) and 0.3 (fancy crosses).

FIG. 24. Baryon spectroscopy overplotted with the best fit
values from Eq. (19). Data are squares for SUð3Þ, octagons for
SUð4Þ, and diamonds for SUð5Þ. Results of the fit are shown as
fancy crosses.

TABLE XII. Dimensionless (i.e. scaled by the appropriate
power of r1) fit parameters corresponding to the fit of
Eq. (19) and Fig. 24.

m00 0.87(2)
μ1 0.15(2)
m01 −0.81ð8Þ
μ2 −0.13ð47Þ
B0 0.43(3)
b −0.07ð2Þ

FIG. 25. The quantity fðBÞq defined in Eq. (20), plotted vs the
ratio ðmPS=mVÞ2. Data are squares for SUð3Þ, octagons for
SUð4Þ, and diamonds for SUð5Þ.
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fðBÞq ¼ mq

mB

∂mB

∂mq
¼ mq

mB
hBjψ̄ψ jBi: ð20Þ

Multiplying by the ratio mq=mB cancels the renormaliza-
tion of the quark mass and gives a dimensionless ratio. As
described in Refs. [28] and [29] (see also [20]) this quantity
is interesting in composite dark matter phenomenology; it
enters into a cross section for dark matter scattering
mediated by Higgs exchange. We determined it by carrying
out a linear fit to r1mB as a function of r1mq and
multiplying the resulting slope by mq=mB at each data
point. The result (only for the minimum-J state in each Nc)
is shown in Fig. 25. Comparison with the figures in [28,29]
shows that this quantity is quite insensitive to Nc and even
to representation content.

VI. CONCLUSIONS

A coarse summary of our results is that we observe that
large-Nc scaling does an excellent job of reproducing
the regularities in the spectrum of SUðNcÞ gauge theories
with two flavors of dynamical fermions, for Nc ¼
3, 4, and 5, and fermion masses in a range so that
0.2 < ðmPS=mVÞ2 < 0.7.
Nc ¼ 2 is the outlier. This is not surprising: 1=Nc ¼ 1=2

is not a small number and the pattern of chiral symmetry
breaking is different from that of the other Nc values. Note
that the larger finite volume effects we encountered for
SUð2Þ meant that we had to simulate at larger lattice
spacing than we used for the other Nc values. It is possible
that some of the differences we saw may simply be due to
the larger lattice spacing. Even saying all that, Nc ¼ 2
results are not discrepant by more than 15–20 percent.
This was a pilot study. Its major deficiency was the small

simulation volume. This was necessitated by the desire to
study larger Nc’s. It meant that we could not go to small
fermion masses without encountering finite volume arti-
facts. This prevented us from studying detailed features of
chiral symmetry breaking, such as the relative sizes of
chiral logarithms, or indeed of any proper extrapolation to
the zero fermion mass limit. A follow-up calculation ought
to be done on bigger lattice volumes and perhaps at several
lattice spacings to take an honest continuum limit.
Of course, we have only scratched the surface of largeNc

lattice calculations. Obvious goals for future work would be
to investigate the large-Nc scaling of more difficult observ-
ables. Examples which immediately come to mind include
the Nc dependence of higher order terms in the chiral
Lagrangian, or indeed the whole issue of the eta prime mass
at increasing Nc. (Recall the discussion in Ref. [59].)
We also recall the recent discussion by Buras [60] about

connections between lattice [61,62] and large-Nc [63]
calculations of kaon weak matrix elements. The lattice
calculations relevant to K → ππ decays are difficult even at
Nc ¼ 3, but a direct study of the kaon B-parameter is

feasible with relatively small resources. (While this paper
was under review, Ref. [64] appeared. It directly addresses
this question. It is done in quenched approximation, with
care taken to include important nonleading Nf=Nc effects.)
The reader can no doubt list many more possibilities.
An issue with large Nc simulations that we have not

resolved is simply that they are expensive. One might argue
that, since the fermions are supposed to become less
important at large Nc, simulations might somehow become
easier there. We did not observe this. However, modern
dynamical fermion simulations have many tunable param-
eters; perhaps we have missed something obvious. Having
said that, we do not see any technical barriers to performing
any analog of a QCD calculation atNc > 3 as long as one is
willing to put up with the extra computational expense.
Finally, we suspect that our results indicate that if an

analytic solution to large Nc QCD could be constructed, it
could be compared both qualitatively and quantitatively
(with appropriate rescaling) to real-world data. This is not a
controversial statement, but of course it is nice to have data
in hand to justify it.
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APPENDIX: nHYP SMEARING FOR SUðNcÞ
Normalized hypercubic or nHYP smearing, introduced

in Ref. [32], is described in Ref. [33] for the SU(2) and
SU(3) gauge groups and in Ref. [34] for SU(4). Smeared
links Vnμ are constructed from bare links Unμ in three
consecutive smearing steps,

Vnμ ¼ ProjUðNcÞ

�
ð1 − α1ÞUnμ

þ α1
6

X
�ν≠μ

~Vnν;μ
~Vnþν̂;μ;ν

~V†
nþμ̂;ν;μ

�
; ðA1aÞ

~Vnμ;ν ¼ ProjUðNcÞ

�
ð1 − α2ÞUnμ

þ α2
4

X
�ρ≠ν;μ

V̄nρ;νμV̄nþρ̂;μ;ρνV̄
†
nþμ̂;ρ;νμ

�
; ðA1bÞ
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V̄nμ;νρ ¼ ProjUðNcÞ

�
ð1 − α3ÞUnμ

þ α3
2

X
�η≠ρ;ν;μ

UnηUnþη̂;μU
†
nþμ̂;η

�
: ðA1cÞ

The restricted sums mean that only links which share a
hypercube with Unμ participate in the smearing. The
projection to UðNcÞ indicated in Eq. (A1) normalizes
the link. It is the only place where Nc dependence appears
in the algorithm.We take α1 ¼ 0.75, α2 ¼ 0.6 and α3 ¼ 0.3
as in previous work.
References [33,34] employed the Cayley-Hamilton theo-

rem to give an expression that can be differentiated later to
obtain the force for the molecular-dynamics evolution.
For a general Nc × Nc matrix Ω, the projected matrix V is
given by

V ¼ ΩðΩ†ΩÞ−1=2: ðA2Þ
We need to find the inverse square root ofQ≡ Ω†Ω, which
is a positive Hermitian matrix. If it is nonsingular, the
Cayley-Hamilton theorem allows us to write Q−1=2 as a
polynomial in Q,

Q−1=2 ¼
XNc−1

j¼0

fjQj: ðA3Þ

The fj’s are constructed from the eigenvalues gi of Q,
which we find numerically. In the eigenbasis ofQ, Eq. (A3)
becomes

Gi ¼ Wijfj ðA4Þ

where Gk ¼ g−1=2k andWij ¼ gji , in both cases summing all
indices from 0 to Nc − 1. This is a Vandermonde matrix
equation which we solve numerically. This is the place
where we diverge from Refs. [33,34], who solve the system
analytically and express the result in terms of symmetric
polynomials of the

ffiffiffiffi
gi

p
’s. If the molecular dynamics force

is not needed, one is done.
Now for the force. We follow the derivation in Sec. 3 of

Ref. [33], which in turn is based on Ref. [66]. The force is
the derivative of the effective action with respect to the
simulation time τ. The fermionic part of the action includes
only the fat links Vnμ, so

d
dτ

Seff ¼ Retr
δSeff
δVμ

dVμ

dτ
≡ RetrðΣnμ

_VnμÞ: ðA5Þ

The chain rule is repeatedly applied to _Vnμ via Eq. (A1)
until one reaches derivatives _Unμ of the thin links. (If the
fermions were not in the fundamental representation, one
would first apply the chain rule to the change of
representation.)

The only factor in the chain rule that depends on the
group comes from the UðNcÞ projection [Eq. (A2)]. It
appears at every level of smearing in Eq. (A1). We need to
express _V in terms of _Ω. Equations (A3) or (A4) let us do
that. [See also Eq. (3.10) of Ref. [33].]

Re trΣ _V ¼ Re tr

�
Σ
d
dτ

ðΩQ−1=2Þ
�

¼ Re

�
trðQ−1=2Σ _ΩÞ þ tr

�
ΣΩ

d
dτ

Q−1=2
��

¼ Re

�
trðQ−1=2Σ _ΩÞ

þ tr

�
ΣΩ

X
n

�
dfn
dt

Qn þ fn
dQn

dt

���
: ðA6Þ

The third term can be written as

Re tr

�
ΣΩ

X
n

fn
dQn

dt

�
≡ Re trðA3

_QÞ; ðA7Þ

using the chain rule

dQn

dt
¼ _QQn−1 þQ _QQn−2 þ � � � þQn−1 _Q; ðA8Þ

and the cyclic property of the trace to construct A3.
The goal now is to write the second term as

Re tr

�
ΣΩ

X
n

dfn
dt

Qn

�
≡ Re trðA2

_QÞ ðA9Þ

because if we can do that, then (with A ¼ A2 þ A3), we can
differentiate Q ¼ Ω†Ω to obtain

Re trΣ _V ¼ Re tr½ðQ−1=2Σþ AΩþ þ AþΩþÞ _Ω�: ðA10Þ
[This is Eq. (A14) of Ref. [34].]
A2 is found as follows: fn depends on the traces

cn ¼
1

nþ 1
trQnþ1; ðA11Þ

so one can write

_fi ¼
XNc

n¼0

bintrðQn _QÞ; ðA12Þ

where bin ¼ ∂fi=∂cn. These quantities are calculated via
the eigenvalues gk through the chain rule,

bij ¼
∂fi
∂cj ¼

X
k

∂fi
∂gk

∂gk
∂cj ≡ FikGkj: ðA13Þ

Equation (A11) tells us that
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Vjm ¼ ∂cj
∂gm ¼ ðgmÞj ¼ WT; ðA14Þ

the transpose of the Vandermonde matrix in Eq. (A4).
Thus Gkl ¼ ðV−1Þkl.
To find Fij we again use Eq. (A4), fl ¼ ðW−1ÞliGi, so

that

∂fl
∂gk ¼−ðW−1Þlm

∂Wmn

∂gk ðW−1ÞniGiþðW−1Þli
∂Gi

∂gk : ðA15Þ

The pieces of this are

∂Gi

∂gk ¼ −
1

2g3=2k

δik ðA16Þ

and

∂Wmn

∂gk ¼ δmk

X
n

ngn−1k fn: ðA17Þ

Putting everything together,

bij ¼ −ðW−1ÞikðW−1ÞjkSk; ðA18Þ

where

Sk ¼
1

2g3=2k

þ
XNc

n¼0

ngn−1k fn: ðA19Þ

This goes into

A2 ¼
X
n

trðBnΣΩÞQn; ðA20Þ

where

Bn ¼
X
i

binQi ðA21Þ

as in Refs. [33,34]. Basically, their long, Nc-dependent
analytic calculations are replaced by the numerical inver-
sion of the Vandermonde matrix W.
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