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We deliver a lattice study of ρ resonance parameters with p-wave ππ scattering phases, which are
extracted by finite-size methods at one center-of-mass frame and four moving frames for six lattice
ensembles from the MILC Collaboration with pion masses ranging from 346 to 176 MeV. The effective
range formula is applied to describe the scattering phases as a function of the energy covering the resonance
region; this allows us to extract ρ resonance parameters and to investigate the quark-mass dependence.
Lattice studies with three flavors of Asqtad-improved staggered fermions enable us to use the moving-wall
source technique on large lattice spatial dimensions (L ¼ 64) and small light u=d quarks. Numerical
computations are carried out at two lattice spacings, a ≈ 0.12 and 0.09 fm.
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I. INTRODUCTION

Resonances decay into elementary particles via strong
interaction, which is experimentally studied by scattering
approaches. The theoretical computation of the resonance
parameters from QCD is difficult because of its non-
perturbative property. At present, it is practical to apply
lattice QCD to calculate the scattering observables. The ρ
meson is the simplest resonance for such a lattice study.
The principal decay channel of the ρ meson is to a pair of
pions with a branching rate close to 100.0% [1], which can
be precisely handled with lattice QCD. Nonetheless, the
reliable calculations of ππ correlators are expensive; hence,
the hadronic coupling constants were used in early studies
of the ρ resonance parameters [2–7].
With the great progress of numerical algorithms, aided

by the tremendous advancement of computer power, the
finite-size formulas established by Lüscher in the center-of-
mass frame (CMF) [8,9] and the extensions to the moving
frame (MF) [10] have been employed to extract ρ resonance
parameters from p-wave I ¼ 1 ππ scattering phases.
Such an exploratory study was conducted by the CP-PACS
Collaboration with Wilson fermions [11]. After this pio-
neering work, the QCDSF Collaboration delivered results
with clover fermions [12], the ETMC Collaboration
reported results with maximally twisted mass fermions
and explored the pion mass dependence [13], J. Frison et al.
presented preliminary results with Wilson fermions and
pion masses as low as 200 MeV [14], Lang et al. delivered
results with clover-Wilson fermions using Laplacian
Heaviside smearing operators [15], and the PACS-CS

Collaboration investigated them with Wilson fermions
using the efficient smearing techniques [16]. Pelissier
and Alexandru presented results from asymmetrical lattices
using nHYP-smeared clover fermions [17]. The Hadron
Spectrum Collaboration (HSC) adopted the anisotropic
lattice formulation of clover fermions [18] and recently
further used the coupled channel [19] to study ρ resonance
parameters. Good statistical precision was obtained
from anisotropic Wilson clover by J. Bulava et al. [20],
and Guo et al. presented their results with nHYP-smeared
clover fermions [21]. The RQCD Collaboration recently
computed ρ resonance parameters at a nearly physical
pion mass using nonperturbatively improved Wilson
fermions [22].
It is well known that the rectangular diagrams of I ¼ 1

ππ scattering are hard to calculate, and the stochastic source
method or its variants (the distillation method, etc.) are
normally used to study the ρ resonance [11–22]. Although
its calculations are expensive to carry out, the moving-wall
source technique, which has been explored in the center-of-
mass frame [23,24], is believed to calculate the rectangular
diagram of the two-particle scattering with high quality.
Recently we further extended this method to a two-particle
system with nonzero momenta to tentatively investigate
the κ, σ, and K⋆ð892Þ meson decays [25], along with a few
studies of the meson-meson scattering [26]. In these works,
we found that the moving-wall source can calculate both
the four-point and three-point correlators with high quality;
this encourages us to explore uses of this technique to study
ρ resonance parameters.
The rapid deterioration of the pion propagator signal as

momentum increases is impressive [27]. According to the
analytical arguments in Ref. [28], the noise-to-signal ratio
RNSðtÞ of pion energy Eπðp ¼ 2π

L nÞ grows exponentially as
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RNSðtÞ ∝ 1ffiffiffiffi
Nc

p exp ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ 4π2

L2 n2

q
−mπÞt, where Nc is the

number of gauge configurations. Consequently, for a given
momentum p, one of the most efficient ways to improve the
statistics is to choose lattice ensembles with higher lattice
spatial dimension L (see more discussion in the Appendix),
which are explored by RQCD [22].
It is economical to perform lattice studies using stag-

gered fermions compared to using other discretizations;
this permits lattice examinations with larger lattice spatial
dimensions L or smaller quark masses within limited
computer resources. For this reason, we first use staggered
fermions to examine ρ resonance parameters and then carry
out lattice calculations on MILC lattice ensembles with
Asqtad-improved staggered sea quarks (we use two ensem-
bles with L ¼ 40 and one ensemble with L ¼ 64). This not
only allows us to measure the pion energy for higher
momenta with high quality, but also enables us to study ππ
scattering for the moving frame with total momentum
P ¼ ð2π=LÞðe1 þ e2 þ e3Þ and P ¼ ð2π=LÞ2e3, which
are explored by HSC [18].
Tomapout the resonance region efficiently, for each lattice

ensemble we study the I ¼ 1 ππ system with five Lorentz
frames, one CMF and four MFs. The first moving frame is
implemented with total momentum P ¼ ð2π=LÞe3 (MF1),
the secondmoving framewithP ¼ ð2π=LÞðe1 þ e2Þ (MF2),
and the thirdmoving framewithP ¼ ð2π=LÞðe1 þ e2 þ e3Þ
(MF3), where the ei is a unit vector in the spatial direction i.
For the large lattice space (i.e., L ≥ 32), we also use a fourth
moving frame with P ¼ ð2π=LÞ2e3 (MF4). For a CMF, we
extract the p-wave scattering phase only from the energy
levels of the ground state; for each of the MFs, we extract
them from the energy levels of the ground state and the first
excited state: consequently, we can obtain the scattering
phases at seven or nine energies for six MILC lattice
ensembles. We will find that usually at least four energies
are calculated for the p-wave I ¼ 1 ππ scattering phases,
which either lie in or are in the vicinity of the resonance
range ½mρ − Γρ; mρ þ Γρ�.
The lattice ensemble parameters of the MILC gauge

configurations have been reliably determined by the MILC
Collaboration [29,30]. Our lattice simulation used six pion
masses ranging from 346 to 176 MeV, ensuring that the
physical kinematics for the ρ-meson decay, mπ=mρ < 0.5,
is satisfied. Moreover, the computation of ρ resonance
parameters at six lattice ensembles allows us, following the
ETMC Collaboration [13], to investigate the pion mass
dependence of the resonance mass and decay width and,
hence, to reliably perform a chiral extrapolation to the
physical point. Additionally, our numerical calculations of
the ππ correlators are for the first time calculated with the
moving-wall source, which allows us to obtain results with
high statistics. Moreover, according to the discussion in the
Appendix, the usage of lattice ensembles with relatively
large L and the summations of the ρ correlator over all the

even time slices and the ππ correlator over all the time
slices also significantly improved the signals of the
corresponding correlators.
This article is organized as follows. In Sec. II, we

elaborate on our calculation method. Our concrete lattice
calculations are provided in Sec. III. We deliver our lattice
results in Sec. IV, provide analysis in Sec. V, and reach our
conclusions and outlooks in Sec. VI. Discussions of the
noise-to-signal ratio of correlator are left to the Appendix.

II. FINITE-VOLUME METHODS

In the present study, we will examine the neutral ρ-meson
decay into a pair of pions in the p-wave state, and
concentrate on ππ system with the isospin representation
of ðI; IzÞ ¼ ð1; 0Þ. We restrict ourselves to the overall
momenta P ¼ ½0; 0; 0�, [0, 0, 1], [1, 1, 0], [1, 1, 1] and
[0, 0, 2].1

A. Center-of-mass frame

In the center-of-mass frame, the energy levels of two free
pions are provided by

E ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ jpj2
q

;

where p ¼ 2π
L n and n ∈ Z3. For the lattice ensembles with

sufficiently large L and small pion masses, the lowest
energy E for n ≠ 0 [e.g., n ¼ ð1; 0; 0Þ] is usually in the
vicinity of the lattice-measured ρ mass mρ. Therefore, we
will pay special attention to the n ¼ ð1; 0; 0Þ case. In fact,
we indeed calculate the energy levels for the n ¼ ð1; 1; 0Þ
and n ¼ ð1; 1; 1Þ cases. Unfortunately, almost all of these
energy levels either turned out to be beyond 4π threshold
or the relevant signals were not good enough. We should
remark at this point that the finite-volume methods are only
valid for the elastic scattering; consequently, we are only
interested in the energy levels of the ππ system in the elastic
region 2mπ < E < 4mπ .
In the presence of the interaction between two pions, the

energy levels of the ππ system are displaced by the
hadronic interaction from E to Ē,

Ē ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ k2
q

; k ¼ 2π

L
q;

where the dimensionless scattering momentum q ∈ R.
These energy levels transform as the irreducible represen-
tation T−

1 under the cubic group Oh. The Lüscher formula
links the energy Ē to the p-wave ππ scattering phase δ1
[8,9],

1The momentum is written in units of 2π
L . For easy notation, in

some places of this paper, the square braces are adopted to
suggest a suppression of the dimensional factor; to be specific,
P ¼ ½0; 0; 0� denotes a momentum of ð0; 0; 0Þ 2πL .
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tan δ1ðkÞ ¼
π3=2q

Z00ð1; q2Þ
; ð1Þ

where the zeta function is formally defined by

Z00ðs; q2Þ ¼
1ffiffiffiffiffiffi
4π

p
X
n∈Z3

1

ðjnj2 − q2Þs : ð2Þ

The zeta function Z00ðs; q2Þ can be efficiently evaluated by
the method described in Ref. [31]. We notice an equivalent
Lüscher formula has been recently developed in Ref. [32].

B. Moving frame

Using a moving frame with nonzero total momentum
P ¼ ð2π=LÞd, d ∈ Z3, the energy levels of two free pions
are represented by

EMF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ jp1j2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ jp2j2
q

;

where p1, p2 denote the three-momenta of the pions, which
obey the periodic boundary condition,p1¼2π

L n1,p2 ¼ 2π
L n2,

n1;n2 ∈ Z3, and total momentum P is P ¼ p1 þ p2 [10].
In the presence of an interaction between two pions, the

energy ECM is

ECM ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ p�2
q

; p� ¼ 2π

L
q; ð3Þ

where the dimensionless momentum q ∈ R, p� ¼ jp�j, and
p� are quantized to the values p� ¼ 2π

L r, r ∈ Pd, and the
set Pd is

Pd ¼
�
rjr ¼ ~γ−1

�
nþ d

2

�
; n ∈ Z3

�
; ð4Þ

where ~γ−1 is the inverse Lorentz transformation operating
in the direction of the center-of-mass velocity v,
~γ−1p ¼ γ−1p∥ þ p⊥, where p∥ and p⊥ are the ingredients
of the momentum p parallel and perpendicular to v,
respectively. Using the Lorentz transformation, the energy
ECM is connected to the EMF through

E2
CM ¼ E2

MF − P2:

The scattering phase shifts are expressed in terms of the
generalized zeta function

Zd
lmðs; q2Þ ¼

X
r∈Pd

rlYlmðΩrÞ
ðr2 − q2Þs ; ð5Þ

where the set Pd is defined in Eq. (4), the Ylm are the
spherical harmonic functions, and Ωr stands for the solid
angle parameters ðθ;ϕÞ of r in spherical coordinates.
The first moving frame (MF1) is taken with d ¼ e3, and

the energy levels of the ππ system transform under the
tetragonal group D4h. The irreducible representations A−

2

and E− are associated with the p-wave ππ scattering
states in a torus. In this work, we are only interested in
the A−

2 sector due to limited computer resources; the energy
levels Ē are linked to the p-wave ππ scattering phase shift
δ1 with the Rummukainen-Gottlieb formula for the A−

2

representation [10],

tan δ1ðqÞ ¼
γπ3=2q

Zd
00ð1; q2Þ þ 2ffiffi

5
p q−2Zd

20ð1; q2Þ
; ð6Þ

where the higher scattering phase shifts δlðl ≥ 3Þ are
ignored, and the dimensionless center-of-mass scattering
momentum q is calculated from the lattice-measured
energies of the ππ system through Eq. (3). The boost
factor γ is calculated by γ ¼ EMF=ECM.
We implemented the second moving frame (MF2) with

d ¼ e1 þ e2, and the corresponding energy levels of the ππ
system transform under the orthorhombic group D2h. The
irreducible representations A−

1 , B−
1 , and B−

2 occur for
p-wave ππ scattering states in a torus. In this work, we
concentrate on the B−

1 sector; the corresponding finite-size
formula for B−

1 representation is given by [10,13,15,33]

tan δ1ðkÞ

¼ γπ3=2q

Zd
00ð1; q2Þ − 1ffiffi

5
p q−2Zd

20ð1; q2Þ − i
ffiffi
6
5

q
q−2Zd

22ð1; q2Þ
;

ð7Þ
where we also ignore the higher scattering phase
shifts δlðl ≥ 3Þ.
In order to acquire more eigenenergies in the resonance

region, we considered the third moving frame (MF3) with
d ¼ e1 þ e2 þ e3. The corresponding energy eigenstates
transform under the orthorhombic group D3d. The irreduc-
ible representations A−

2 and E− occur for the p-wave ππ
scattering states in a torus. Here we are only interested in
the A−

2 sector; the corresponding finite-size formula for
MF3 with A−

2 representation is provided by [18,33]

cot δ1ðkÞ ¼
1

γπ3=2q

�
Zd

00ð1; q2Þ − i

ffiffiffiffiffi
8

15

r
1

q2
Zd

22ð1; q2Þ

−
ffiffiffiffiffi
8

15

r
1

q2
½ReZd

21ð1; q2Þ þ ImZd
21ð1; q2Þ�

�
;

ð8Þ
where we overlook the higher scattering phase shifts
δlðl ≥ 3Þ as well.
For large lattice ensembles (i.e., L ≥ 32), the fourth

moving frame (MF4) with d ¼ 2e3 is also considered, and
the energy levels of ππ system transform under the
tetragonal group D4h. The irreducible representations A−

2

and E− are associated with the p-wave ππ scattering states
in a torus. We here concentrate on the A−

2 sector. The energy
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levels Ē linked to the p-wave ππ scattering phase δ1 with
the Rummukainen-Gottlieb formula for the A−

2 representa-
tion can be calculated by Eq. (6).
The calculation method of zeta functions Zd

00ð1; q2Þ,
Zd

21ð1; q2Þ, and Zd
22ð1; q2Þ is elaborated in Appendix A of

Ref. [31], where we also gave its extensions in the two-
particle system with arbitrary masses [25]. In this work, we
are particularly interested in a MF3, with one pion at rest
and one pion with momentum p ¼ ð2π=LÞðe1 þ e2 þ e3Þ,
and a MF4, with one pion at rest and one pion with
momentum p ¼ ð4π=LÞe3. For our concrete calculations,
we found that the relevant scattering phases are usually
calculated at energies which are more efficiently used to
directly mark out the resonance region.
In this work, we only calculate the scattering phase of the

ground state for the T−
1 representation, since the relevant

eigenenergies are expected to be much smaller than those
of the excited states [16]. For the A−

2 and the B−
1

representations, we will also calculate the scattering phase
shift for the first excited state. The relevant representations
for the ground and the first excited states with the isospin
ðI; IzÞ ¼ ð1; 0Þ are summarized in Table I.

C. Variational analysis

In order to extract the energy eigenvalues of the lower
two states for the A−

2 and the B−
1 representations discussed

in Sec. II—i.e., Ēn (n ¼ 1, 2)—the state-of-the-art varia-
tional method [9] is exploited for Wilson fermions.
Moreover, corrections to the true energy levels are dis-
cussed in detail when the energies are extracted from the
generalized eigenvalues [34]. These methods can readily be
applied to staggered fermions with a small alteration [35].
In practice, we employ a two-dimensional variational basis
and build the correlation function matrix,

CðtÞ

¼
�h0jO†

ππðp; tÞOππðp;0Þj0i h0jO†
ππðp; tÞOρðp;0Þj0i

h0jO†
ρðp; tÞOππðp;0Þj0i h0jO†

ρðp; tÞOρðp;0Þj0i

�
;

ð9Þ

where Oρ is an interpolator for the neutral ρ meson
with the specified momentum p and the polarization
vector parallel to the ρ momentum p, and Oππ is an
interpolator for the ππ system with the given total
momentum P ¼ p.

1. ππ sector

In this section, the original definitions and notations are
employed to review the basic formulas for the lattice
calculation of the p-wave scattering phase of the I ¼ 1
ππ system enclosed in a cubic torus [23,24]. Let us
concentrate on the scattering of two Nambu-Goldstone
pions in the Kogut-Susskind staggered fermion formalism.
We build the ππ interpolator with the isospin represen-

tation ðI; IzÞ ¼ ð1; 0Þ as [11,14]

OI¼1
ππ ðp;q; tÞ ¼ 1ffiffiffi

2
p ðπþðq; tÞπ−ðp; tþ 1Þ

− πþðp; tÞπ−ðq; tþ 1ÞÞ; ð10Þ

where the pion momenta p ≠ q and the total momentum of
the ππ system P ¼ pþ q. In order to avoid the complicated
Fierz rearrangement of quark lines [24], we choose creation
operators at time slices that are different by one lattice time
spacing.
The operator that creates a single pion with

nonzero momentum p from the vacuum is obtained by the
Fourier transform Oπðp; tÞ ¼

P
xe

ip·xOπðx; tÞ, where
the pion interpolators are denoted by Oπþðx; tÞ ¼
−d̄ðx; tÞγ5uðx; tÞ, Oπ−ðx; tÞ ¼ ūðx; tÞγ5dðx; tÞ.
In the present work, we will concentrate on the five

irreducible representations, T−
1 , A

−
2 , B

−
1 , A

−
2 , and A

−
2 , for the

CMF, MF1, MF2, MF3, and MF4, respectively. In practice,
for CMF, the ππ interpolator is implemented with q ¼ −p
and p ¼ ½0; 0; 1�. For the A−

2 and B−
1 irreducible represen-

tations of four MFs, the ππ interpolators are all taken with
q ¼ 0, and we calculate at four momenta, p ¼ ½0; 0; 1�,
[1, 1, 0], [1, 1, 1], and [0, 0, 2], for each of the four moving
frames, respectively.

TABLE I. Summary of the irreducible representations for the ground and first excited states with the isospin
ðI; IzÞ ¼ ð1; 0Þ, where P denotes total momentum, g gives the rotational group in each frame, and Γ shows the
relevant irreducible representation. The two-pion operatorsOππ and rho operatorsOρ are listed in the fifth and sixth
columns, respectively. The vectors in parentheses behind π and ρ represent the momenta of the two-pion state and
the ρ meson in units of 2π=L, respectively.

Frame P g Γ Oππ Oρ

CMF [0,0,0] Oh T−
1 πð0; 0; 1Þπð0; 0;−1Þ ðρ1 þ ρ2 þ ρ3Þð0; 0; 0Þ

MF1 [0,0,1] D4h A−
2 πð0; 0; 1Þπð0; 0; 0Þ ρ3ð0; 0; 1Þ

MF2 [1,1,0] D2h B−
1 πð1; 1; 0Þπð0; 0; 0Þ ðρ1 þ ρ2Þð1; 1; 0Þ

MF3 [1,1,1] D3h A−
2 πð1; 1; 1Þπð0; 0; 0Þ ðρ1 þ ρ2 þ ρ3Þð1; 1; 1Þ

MF4 [0,0,2] D4h A−
2 πð0; 0; 2Þπð0; 0; 0Þ ρ3ð0; 0; 2Þ
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In the isospin limit, topologically only six quark-line
diagrams contribute to I ¼ 1 ππ scattering amplitudes,
which are schematically illustrated in Fig. 1 of Ref. [11].
These diagrams are also elucidated in Fig. 1, where four
pions are placed at lattice points x1, x2, x3, and x4,
respectively [x1 ≡ ðx1; t1Þ, etc.]. We usually label these
diagrams asD, X, R8, R0

8, R, and R
0 diagrams, respectively.

The second diagram is also a kind of direct diagram; we call
it X since its shape looks like an “X”. The shape of the third
diagram looks like the number 8; thus, we use “R8” to
identify it, which in fact is also a kind of the rectangular
diagram. The superscript prime in R and R8 indicates the
corresponding counterclockwise partners.
The moving-wall source technique was initially intro-

duced by Kuramashi et al. [23,24] to study the I ¼ 0, 2ππ
scattering in the center-of-mass frame. Recently, we further
extended this technique to the two-particle system with
nonzero momenta to tentatively investigate the scalar κ, σ,
and vector K⋆ð892Þ meson decays [25]. In the present
study, we use this technique to calculate the I ¼ 1 ππ

scattering amplitudes by computing each T quark propa-
gator corresponding to the moving-wall source at all the
time slices [23–25],

X
n0
Dn;n0G

p
t ðn0Þ ¼

X
x

δn;ðx;tÞ; 0 ≤ t ≤ T − 1;

where D is the Dirac quark matrix, the subscript t in the
quark propagator G indicates the temporal position of the
wall source [23–25], and the superscript p in G suggests
that for the specified momentum p, we select an up-quark
source or sink with eip·x, and choose an up-antiquark
source or sink with 1 on each lattice site x for the pion
creation operator [25,36,37]. The associations of the
quark propagators Gp

t ðnÞ exploiting the I ¼ 1 ππ four-
point correlation functions are schematically illustrated in
Fig. 1 [23–25]. In terms of the quark propagators Gp

t ðnÞ,
the D, X, R8, R0

8, R, and R0 quark-line diagrams can be
represented as

CD
ππðp;q; t4; t3; t2; t1Þ ¼

X
x3

X
x4

e−iðp·x3þq·x4ÞhTr½G†
t1ðx3; t3ÞGp

t1ðx3; t3Þ�Tr½G†
t2ðx4; t4ÞGq

t2ðx4; t4Þ�i;

CX
ππðp;q; t4; t3; t2; t1Þ ¼

X
x3

X
x4

e−iðp·x3þq·x4ÞhTr½G†
t1ðx4; t4ÞGp

t1ðx4; t4Þ�Tr½G†
t2ðx3; t3ÞGq

t2ðx3; t3Þ�i;

CR8
ππðp;q; t4; t3; t2; t1Þ ¼

X
x2

X
x4

eiq·ðx2−x4ÞhTr½Gp
t1ðx2; t2ÞG†

t3ðx2; t2ÞG−p
t3 ðx4; t4ÞG†

t1ðx4; t4Þ�i;

C
R0
8

ππðp;q; t4; t3; t2; t1Þ ¼
X
x2

X
x4

eiq·ðx2−x4ÞhTr½G−p
t3 ðx2; t2ÞG†

t1ðx2; t2ÞGp
t1ðx4; t4ÞG†

t3ðx4; t4Þ�i;

CR
ππðp;q; t4; t3; t2; t1Þ ¼

X
x2

X
x3

eiðq·x2−p·x3ÞhTr½Gp
t1ðx3; t3ÞG†

t4ðx3; t3ÞG−q
t4 ðx2; t2ÞG†

t1ðx2; t2Þ�i;

CR0
ππðp;q; t4; t3; t2; t1Þ ¼

X
x2

X
x3

eiðq·x2−p·x3ÞhTr½Gp
t1ðx2; t2ÞG†

t4ðx2; t2ÞG−q
t4 ðx3; t3ÞG†

t1ðx3; t3Þ�i; ð11Þ

where the traces are carried out over the color index,
and the γ5-Hermiticity nature of the light quark
propagatorG, i.e.,Gðt; t0Þ† ¼ γ5Gðt0; tÞγ5, has been applied
[23,24].

According to the discussions in Ref. [17], in the isospin
limit, the real parts of the third and fourth quark-line
diagrams in Fig. 1 have the same values, while the
corresponding imaginary parts have the same magnitudes

FIG. 1. Quark-link diagrams contributing to the I ¼ 1 ππ four-point functions: (a) D; (b) X; (c) R8; (d) R0
8; (e) R; (f) R

0. Short black
bars stand for the wall sources. Open circles are sinks for local pion operators. The time flows upward in the diagrams. The pion
operators are given with a momentum specified in the diagram.
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as well, just with the opposite sign (likewise for the fifth
and sixth quark-line diagrams).2 Therefore, the value of the
I ¼ 1 ππ four-point correlation function is purely real.
Consequently, only four quark-line diagrams (D, X, R8,
and R) are needed to calculate the I ¼ 1 ππ four-point
correlation function, namely,

Cππðp;q; tÞ≡ hOππðp;q; tÞjOππðp;q; 0Þi
¼ D − X þ 2NfR8 − 2NfR; ð12Þ

where the staggered-flavor factor Nf should be inserted
into the rectangular diagrams (R and R8) to amend for the
additional factor Nf in the valence fermion loops [38]. We
should remark at this point that the fourth-root recipes are
supposed to correctly recover the right continuum limit of
QCD [39].

2. ρ sector

In principle, we can measure the propagators for two
local ρ mesons, γi ⊗ γi (VT) and γ0γi ⊗ γ0γi (PV) [36,37].
Nonetheless, we merely present lattice results for the local
VT ρ meson because it gives more stable signals [36,37].
Additionally, the numerical calculation of the three-point
correlation function ρ → ππ is rather simple to compute if
the local VT ρ interpolator is used. Therefore, we only
employ an interpolator with isospin I ¼ 1 and JP ¼ 1− at
source and sink,

OðxÞ≡X
c

1ffiffiffi
2

p fucðxÞγi ⊗ γiūcðxÞ − dcðxÞγi ⊗ γid̄cðxÞg;

where c is the color index, and the subscript i in γi indicates
the polarizations of the ρ vector current.
In the isospin limit, the disconnected quark-line dia-

grams for the ρ meson are nicely canceled out; conse-
quently, the correlator for the neutral ρ meson in the
momentum p state is solely computed by the connected
diagram

Cρðp; tÞ ¼
X
x

X
a;b

eip·xhubðx; tÞγi ⊗ γiūbðx; tÞ

× uað0; 0Þγi ⊗ γiūagð0; 0Þi;

where 0, x are lattice spatial points of ρ states at the source
and sink, respectively. In practice, we use the wall-source
and point-sink interpolators to efficiently reduce the over-
lap with the excited states [40].

We fit the ρ correlator with the physical model as

CρðtÞ¼Acosh

�
m

�
t−

T
2

��
þA0ð−1Þtþ1cosh

�
m0

�
t−

T
2

��
;

where A and A0 are two overlap amplitudes, where only one
mass is taken with each parity [36,37,41], and the oscillat-
ing parity partner is the p-wave meson with JP ¼ 1þ.

3. Off-diagonal sector

When studying the resonance parameters of the ρ meson
[4–6,11–22], one chiefly employs the stochastic method or
its variants to measure the three-point function [42], which
are successfully recently measured with the moving-wall
source technique [25]. To hinder the twisted color Fierz
transformation of the quark lines [24], we commonly
choose t1 ≠ t2. In practice, we pick t1 ¼ 0, t2 ¼ 1, and t3 ¼
t for the ππ → ρ three-point correlation function, and select
t1 ¼ 0; t2 ¼ t, and t3 ¼ tþ 1 for the ρ → ππ three-point
correlation function. The quark-line diagrams correspond-
ing to the ρ → ππ and ππ → ρ are schematically illustrated
in Figs. 2(a) and 2(b), respectively.
In practice, we employ an up-antiquark source with 1 on

each lattice site x for pion creation operator, and an
up-quark source with eip·x on each lattice site x for pion
creation operator [25]. It is worth stressing that the imaginary
part of the second diagram for ππ → ρ should have same
magnitude, but with the minus sign, as that of the first
diagram [17] (likewise for ρ → ππ). As a consequence, the
three-point diagrams are purely imaginary, and only one
quark-line diagram is required to calculate each of the three-
point correlation functions. We then write each of the first
diagrams for the ρ → ππ and ππ → ρ quark-line diagrams in
Fig. 2 in terms of the light quark propagators G,

Cππ→ρðp; t3; t2; t1Þ
¼

X
x3;x2

eip·x3hTr½Gt2ðx3; t3Þγ5G†
t1ðx3; t3ÞγiGt1ðx2; t2Þ�γ5i;

Cρ→ππðp; t3; t2; t1Þ
¼

X
x2;x3

eip·x2hTr½Gt3ðx2; t2ÞγiG†
t1ðx2; t2Þγ5Gt1ðx3; t3Þ�γ5i;

FIG. 2. Quark-link diagrams contributing to ππ → ρ and ρ →
ππ three-point correlation functions. Short black bars indicate the
wall sources. (a) Quark contractions of ππ → ρ, where the open
circle is the sink for ρ operator. (b) Quark contractions of ρ → ππ,
where the open circle is the sink for pion operator.

2This is true for the average with respect to the gauge
configurations [17]. Note that this is true even for calculations
at a single gauge configuration because the moving-wall source
technique, a nonstochastic method, is used. This can be readily
verified from the analytical expression in Eq. (11), where the
random numbers are not used in these expressions.
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where the trace is taken over the color index and the Dirac
matrix is used as an interpolator for the ith meson; γ5
represents the pseudoscalarmeson and γi the vector ρmeson,
where the subscript i in the γi indicates the polarization of the
ρ vector current.

4. Extraction of energies

To map out the avoided level crossings between the ρ
resonance and its decay products, the variational method
[9] is applied to separate the ground state from the first
excited state. In practice, we calculate 2 × 2 correlation
function matrix CðtÞ denoted in (9), and construct a ratio of
the correlation function matrices as

Mðt; tRÞ ¼ CðtÞC−1ðtRÞ; ð13Þ

with some reference time tR [9] to extract two energy
eigenvalues Ēn (n ¼ 1, 2), which can be obtained by a cosh
fit to two eigenvalues λnðt; tRÞ (n ¼ 1, 2) of the correlation
matrix Mðt; tRÞ [43]

λnðt; tRÞ ¼ An cosh

�
−En

�
t −

T
2

��

þ ð−1ÞtBn cosh

�
−E0

n

�
t −

T
2

��
: ð14Þ

Note that the relevant higher correction is discussed in
Ref. [35]. In practice, we will remove the “wraparound”
contamination [44–47] before fitting with this formula.

III. LATTICE CALCULATION

We employed the MILC gauge configurations with three
Asqtad-improved staggered sea quarks [29,30]. The sim-
ulation parameters are summarized in Table II. By MILC
convention, lattice ensembles are referred to as “coarse” for
the spatial lattice spacing a ≈ 0.12 fm and “fine” for

a ≈ 0.09 fm. It is convenient to adopt ðaml; amsÞ to
classify MILC lattice ensembles. The conjugate gradient
method is exploited to calculate the light quark propaga-
tors. We should remember that the MILC gauge configu-
rations are generated using the staggered formulation of
lattice fermions [48] with the fourth root of the fermion
determinant [36]. All the gauge configurations were gauge
fixed to the Coulomb gauge before calculating the light
quark propagators.
To compute the ππ four-point functions, the standard

conjugate gradient method is adopted to get the necessary
matrix element of the inverse Dirac fermion matrix, and the
periodic boundary condition is applied to both the spatial
and temporal directions. We compute the correlators on all
the time slices, and explicitly combine the results from all
the time slices T; namely, the diagonal correlator C11ðtÞ is
measured through

C11ðtÞ ¼
1

T

XT
ts¼0

hðππÞðtþ tsÞðππÞ†ðtsÞi:

After averaging the propagators over all the T values, the
statistics are found to be remarkably improved.
For another diagonal correlator C22ðtÞ, the ρ correlator,

we calculate

C22ðtÞ ¼
2

T

XT
ts¼0;2;4;…

hρ†ðtþ tsÞρðtsÞi;

where we sum the correlator over all the even time slices
and average it.
According to the discussion in the Appendix, the noise-

to-signal ratio of the ρ correlator and ππ correlator are
improved as approximately ∝ 1ffiffiffiffiffiffiffiffiffiffiffi

NsliceL3
p , where L is the

lattice spatial dimension and Nslice is the number of the
time slices calculated the propagators for each of the gauge

TABLE II. Simulation parameters of the MILC gauge configurations. Lattice dimensions are described in lattice units with spatial (L)
and temporal (T) size. The gauge coupling β is shown in the third column. The fourth column gives bare masses of the light and strange
quark masses in terms of aml and ams, respectively. The fifth column gives pion masses in MeV. The lattice spatial dimension (L) in fm
and in units of the finite-volume pion mass are given in the sixth and seventh columns, respectively. We also list the mass ratio mπ=mρ.
The number of time slices that calculated the ππ correlators and ρ propagators for each of the lattice ensembles are shown in the ninth
and tenth columns, respectively, and the last column gives the number of gauge configurations used in this work.

Ensemble L3 × T β aml=ams mπðMeVÞ LðfmÞ mπL mπ=mρ Nππ
slice Nρ

slice Ncfg

a ≈ 0.09 fm
6496f21b7075m00155m031 643 × 96 7.075 0.00155=0.031 176 5.4 4.80 0.224 96 48 60
4096f21b708m0031m031 403 × 96 7.08 0.0031=0.031 247 3.4 4.21 0.297 96 48 400
4096f3b7045m0031 403 × 96 7.045 0.0031=0.0031 248 3.4 4.20 0.303 96 48 400
3296f21b7085m00465m031 323 × 96 7.085 0.00465=0.031 301 2.7 4.11 0.312 96 48 400
2896f21b709m0062m031 283 × 96 7.09 0.0062=0.031 346 2.4 4.14 0.380 96 48 400

a ≈ 0.12 fm
3264f3b6715m005 323 × 64 6.715 0.005=0.005 275 3.7 5.15 0.299 64 32 637
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configurations. In this work, we use the lattice ensembles
with relatively large L and sum the ρ correlator over all the
even time slices and the ππ correlator over all the time
slices; consequently, it is natural that the signals of the
correlators should be significantly improved. Admittedly,
the most efficient way to improve the relevant noise-to-
signal ratio is to use finer gauge configurations or aniso-
tropic gauge configurations [18,19]. See the Appendix for
more details.
We evaluate the first off-diagonal correlator C21ðtÞ, the

ππ → ρ three-point function, through

C21ðtÞ ¼
1

T

XT
ts

hρðtþ tsÞðππÞ†ðtsÞi;

where the summation is over all the time slice. Because of
the time-reversal symmetry [17], we can in practice only
calculate C�

21ðtÞ. Through the relation C12ðtÞ ¼ C�
21ðtÞ, we

can freely obtain the second off-diagonal correlator C12ðtÞ.
We measure two-point pion correlators with the zero and

nonzero momenta (0 and p) as well,

Cπð0; tÞ ¼
1

T

XT−1
ts¼0

h0jπ†ð0; tþ tsÞWπð0; tsÞj0i; ð15Þ

Cπðp; tÞ ¼
1

T

XT−1
ts¼0

h0jπ†ðp; tþ tsÞWπðp; tsÞj0i; ð16Þ

where π is the pion point-source operator and Wπ is the
pion wall-source operator [36,37]. To simplify notation, the
summation over the lattice space point in the sink is not
written out. It is worth noting that the summations over all
the time slices for π propagators guarantee the extraction of
the pion mass with high precision.
Disregarding the contributions from the excited states,

the pion mass mπ and energy EπðpÞ can be robustly
extracted at large t from the two-point pion correlators
(15) and (16), respectively [30],

Cπð0; tÞ ¼ Aπð0Þ½e−mπ t þ e−mπðT−tÞ� þ � � � ; ð17Þ

Cπðp; tÞ ¼ AπðpÞ½e−EπðpÞt þ e−EπðpÞðT−tÞ� þ � � � ; ð18Þ

where the ellipses show the oscillating parity partners and
Aπð0Þ and AπðpÞ are two overlapping amplitudes, which
will be subsequently exploited to estimate the wraparound
contributions for I ¼ 1 ππ correlators [44–46].

IV. LATTICE SIMULATION RESULTS

A. Pion mass and dispersion relation

For each of the lattice ensembles, the pion masses mπ

and energies EπðpÞ were carefully selected by seeking a
combination of a plateau in the mass (or energy) as a

function of the minimum fitting distances Dmin [36,37],
fit quality, and a Dmin large enough to efficiently suppress
the excited states [40,45]. For example, Fig. 3 exhibits
the fit results of the pion masses or pion energies in
lattice units as a function of Dmin for the (0.005, 0.005)
ensemble. It is interesting and important to note that the
rapid relaxations to the ground state for all of the five
momenta, typically at or before t ¼ 8 from the source,
indicates the feasibility of the wall-source and point-sink
pion interpolators.
The lattice-measured values of the pion masses mπ

and pion energies EπðpÞ in lattice units, along with the
fit ranges and fit qualities, are tabulated in Table III.
The overlapping amplitudes Aπð0Þ or AπðpÞ denoted in
Eqs. (17) and (18) are also listed in Table III; these are later
used to estimate the wraparound pollution to the I ¼ 1 ππ
four-point correlators [44–46]. Note that the ETMC
Collaboration reduces this unwanted lattice wraparound
artifact by choosing the maximum time of the fit range
to be far enough from the temporal boundaries [13]. In the
present work, our measured quantities from these two-point
functions are sufficiently precise to allow us to subtract the
wraparound contributions.
The rho masses mρ are extracted from the ρ correlator,

and the mass ratios of mπ=mρ are listed in Table II. It is
important to note that our lattice-measured pion masses
and the mass ratios of mπ=mρ turn out to be in good
agreement with the corresponding MILC determinations
[30,36,37,49]. Note that our simulations are all carried out
at physical kinematics mπ=mρ < 1=2.

4 6 8 10 12 14 16 18 20 22 24 26 28

D
min
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0.38

0.40

0.42

0.44

0.46

0.48

0.50

am
π

 o
r

aE
π(p

)

p=[0,0,0]
p=[0,0,1]
p=[1,1,0]
p=[1,1,1]
p=[0,0,2]

(0.005,0.005)

FIG. 3. Effective pion mass mπ or energy EπðpÞ plots as the
functions of Dmin for the (0.005,0.005) ensemble. The plateaus
are quickly reached typically at or before t ¼ 8 from the source.
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It is interesting and important to note that the pion
mesons on the lattice are found to have a continuumlike
dispersion relation, as previously observed in Ref. [50].
More specifically, for n2 < 4, our lattice-measured pion
energies Eπðp ¼ 2π

L nÞ are in good keeping with the
continuum dispersion relation

EcontðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ jpj2
q

; ð19Þ

within the errors, and are better than those evaluated with
the prediction of the free lattice theory

aElat ¼ cosh−1
�
coshðamπÞ þ 2

X
i

sin2
�
1

2
api

��
; ð20Þ

where p ¼ jpj is the magnitude of each pion’s scattering
momentum in the center-of-mass frame. This is probably

because the rotational invariance properties are improved
due to the hypercubic smearing of the gauge link and quark
operators [50].3

Note that for n2 ¼ 4 (i.e., p ¼ ½0; 0; 2�), our lattice-
measured pion energies EπðpÞ for the (0.0031, 0.031)
½L ¼ 40�, (0.0031, 0.0031) ½L ¼ 40�, (0.00465, 0.031)
½L ¼ 32�, and (0.005, 0.005) ½L ¼ 32� ensembles are well
consistent with the continuum dispersion relation (19),
while those of the (0.0062, 0.031) ½L ¼ 28� ensemble only
barely meet the continuum dispersion relation (19). For this
reason, we ignore the calculations relevant to the momen-
tum p ¼ ½0; 0; 2� for the (0.0062, 0.031) ensemble.

TABLE III. Summary of the pion masses amπ or pion energies aEπðpÞ obtained from the pion propagators for six MILC lattice
ensembles with four momenta, p ¼ ½0; 0; 1�, [1,1,0], [1,1,1], and [0,0,2]. The lattice-measured pion energies aEπðpÞ are compared with
the analytical predictions from the continuum (19) and free lattice theory (20), where the uncertainties are estimated solely from the
statistical errors of the lattice-measured amπ . The fifth column shows the overlapping amplitudes Aπð0Þ or AπðpÞ denoted in Eqs. (17)
and (18), respectively. The third and fourth columns indicate the fit range and fit quality χ2=DOF, respectively.

Ensemble n ¼ p L
2π

Range χ2=DOF Aπð0Þ=AπðpÞ amπ=aEπðpÞ aEcont aElat

(0.00155,0.031) (0,0,0) 33–48 14.1=12 6603.86� 4.84 0.07501(6) � � � � � �
(0,0,1) 19–45 26.1=21 4136.59� 7.49 0.12348(14) 0.12355(6) 0.12345(6)
(1,1,0) 16–42 18.4=23 3035.31� 12.73 0.15793(19) 0.15780(5) 0.15760(4)
(1,1,1) 15–40 26.2=22 2324.42� 16.12 0.18579(24) 0.18585(4) 0.18553(4)
(0,0,2) 13–36 23.6=20 2055.65� 18.74 0.21023(36) 0.21019(4) 0.20951(4)

(0.0031,0.0031) (0,0,0) 30–47 15.8=14 1091.62� 1.73 0.10505(6) � � � � � �
(0,0,1) 19–48 23.9=26 619.13� 2.37 0.18963(38) 0.18896(5) 0.18857(5)
(1,1,0) 16–48 37.8=29 482.97� 3.24 0.24709(95) 0.24572(4) 0.24493(4)
(1,1,1) 13–36 29.2=20 414.45� 7.44 0.2929(15) 0.29164(3) 0.29038(3)
(0,0,2) 12–48 38.3=33 381.03� 7.93 0.3343(18) 0.33125(3) 0.32856(3)

(0.0031,0.031) (0,0,0) 33–45 11.1=9 1218.53� 1.74 0.10535(6) � � � � � �
(0,0,1) 19–41 24.1=19 684.89� 1.89 0.19016(21) 0.18916(6) 0.18875(6)
(1,1,0) 16–36 16.4=17 525.61� 3.83 0.24713(49) 0.24588(5) 0.24506(4)
(1,1,1) 15–37 16.4=19 431.92� 6.32 0.29124(105) 0.29177(4) 0.29049(4)
(0,0,2) 13–34 22.6=18 398.53� 9.34 0.33244(172) 0.33135(4) 0.32866(3)

(0.00465,0.031) (0,0,0) 30–48 10.3=15 538.41� 1.31 0.12852(9) � � � � � �
(0,0,1) 20–45 30.9=22 292.55� 2.32 0.23513(46) 0.23465(10) 0.23390(10)
(1,1,0) 17–43 28.2=23 224.28� 5.03 0.3048(13) 0.30596(8) 0.30442(8)
(1,1,1) 15–27 14.2=9 197.07� 6.46 0.3643(23) 0.36355(6) 0.36110(6)
(0,0,2) 13–24 10.6=8 172.67� 9.00 0.4132(42) 0.41318(6) 0.40798(6)

(0.0062,0.031) (0,0,0) 30–48 24.3=15 330.73� 0.94 0.14718(13) � � � � � �
(0,0,1) 20–48 34.3=25 179.83� 2.31 0.26751(72) 0.26837(14) 0.26725(14)
(1,1,0) 17–42 22.7=22 139.60� 3.65 0.3471(17) 0.34982(11) 0.34752(11)
(1,1,1) 14–19 3.0=2 126.23� 4.27 0.4170(26) 0.41561(9) 0.411987(9)

(0.005,0.005) (0,0,0) 20–32 6.8=9 1717.95� 1.66 0.16068(5) � � � � � �
(0,0,1) 14–32 22.4=15 1091.01� 1.96 0.25371(13) 0.25373(3) 0.25292(3)
(1,1,0) 13–30 23.4=13 856.21� 3.86 0.32013(35) 0.32083(3) 0.31917(3)
(1,1,1) 12–32 11.7=17 737.78� 6.11 0.37610(71) 0.37614(2) 0.37355(2)
(0,0,2) 11–32 22.6=18 669.81� 8.00 0.42475(112) 0.42430(2) 0.41897(2)

3This is also probably due to the significant improvement of
the signal of the pion propagator as the pion momentum increases
with large-enough L [27,28]. As previously explained, the noise-
to-signal ratio RNSðtÞ of the pion energy Eπðp ¼ 2π

L nÞ usually

grows exponentially as RNSðtÞ ∝ 1ffiffiffiffi
L3

p exp ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ 4π2

L2 n2

q
−mπÞt.
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In summary, the continuum dispersion relation (19)
for the single pion state is valid up to the momentum
p ¼ ½0; 0; 2�within statistical errors [except for the (0.0062,
0.031) ensemble, the relevant results for which are not
listed in Table III]. Consequently, we will make use of the
continuum dispersion relation (19) throughout the remain-
ing analysis. This means that the center-of-mass scattering
momentum p� is extracted from the lattice energy through
the continuum dispersion relation, and the resulting p� is
used to extract the scattering phase shift. Additional
relevant issues will be discussed in Sec. IV D. It is worth
stressing that the robust measurements of the pion propa-
gator with high momenta indeed guarantee reliable esti-
mations of the ππ propagator with high momenta.

B. Finite-T contributions for the ππ correlators

In this work, I ¼ 1 ππ energy spectra are meticulously
secured from ππ correlators, which are unavoidably
impacted by the finite temporal extent of the lattice
[44–47]. In principle, the size of the finite temporal effects
can be estimated, and on a typical lattice study are slight.
Nonetheless, these effects are large enough to be visible,
particularly for the I ¼ 1 ππ correlators calculating with
small quark masses [26]. Using the original notations in
Ref. [47], we here briefly review the finite-T effects on
I ¼ 1 ππ correlators at rest (i.e., the total momentum of ππ
system P ¼ 0) and those in flight (i.e., P ≠ 0).
Because the periodic boundary condition is enforced in

the temporal direction, one of two pions can spread T − t
time steps backwards, which leads to a pollution of the ππ
correlators at large t [44–46]. Additionally, in the isospin
limit, two direct quark-line diagrams (D and X) in Fig. 1
contribute to the I ¼ 1 ππ scattering amplitudes, and both
of them have wraparound pollution. The wraparound
pollution from the direct diagram D in the limit of weakly
interacting pions, which is one pion with momentum p, and
another pion with momentum q, can be approximately
estimated by [47]

WPðtÞ ≈ AπðqÞAπðpÞðe−EπðqÞðT−tÞe−EπðpÞt

þe−EπðpÞðT−tÞe−EπðqÞtÞ; ð21Þ
where the overlapping amplitudes AπðpÞ denoted in (18),
along with the pion masses mπ and pion energy EπðpÞ,
can be robustly extracted from the pion propagators.
The undesired wraparound contributions to the I ¼ 1 ππ
four-point correlators in the moving frame are generally
time dependent [47]. The wraparound pollution of the
direct diagram X in Fig. 1 can be analogously dealt with;
therefore, we do not explicitly write it out. As a simple
example, considering the I ¼ 1 ππ correlators in CMF
(q ¼ −p) leads to a constant pollution

CðpÞ ¼ 2ðAπðpÞÞ2e−EπðpÞT; ð22Þ

where the overlapping amplitudes AπðpÞ and pion energy
EπðpÞ are summarized in Table III.
Considering another concrete example of the ππ corre-

lator with πþð0ÞπþðpÞ at the source and π−ð0Þπ−ðpÞ at the
sink (this is one pion at rest, one pion with the momentum
p, and total momentum P ¼ p), the wanted contribution in
the limit of weakly interacting pions can be approximately
estimated by [47]

≈Aπð0ÞAπðpÞe−ðmπþEπðpÞÞt; ð23Þ
where the overlapping amplitudes Aπð0Þ and AπðpÞ are
denoted in Eqs. (17) and (18), respectively. Meanwhile, the
wraparound terms for this moving frame WPMFðtÞ are
evaluated by [47]

WPMFðp; tÞ ≈ Aπð0ÞAπðpÞðe−mπðT−tÞe−EπðpÞt

þe−EπðpÞðT−tÞe−mπ tÞ; ð24Þ
where the first term is anticipated to lead the contamination
for the time regions of interest [47]. Moreover, the largest
pollution term is not a constant but rather has a time
dependence ∼e−ΔEπ t, where ΔEπ ≡ EπðpÞ −mπ is the
positive energy gap between one pion with zero momentum
and another with momentum p. In addition, the second
pollution term has a time dependence ∼eΔEπ t. Note that
the ratio of the first term to the second term is roughly
proportional to e−ΔEπðT−2tÞ, which indicates that both
pollution terms significantly contribute the whole pollution
on large times.
Because the impact of the finite-T effects on the I ¼ 1

ππ correlators in flight is statistically significant [47], it is
necessary to correct these terms in the variational analysis
of the in-flight ππ spectra. In practice, we subtract all the
pollution terms in Eq. (24) from the ππ correlators. This
turns out to be a rather good approximation for the lattice
simulation in this work.
In order to comprehend this finite-T effect at a quanti-

tative level, we denote a quantity

RMFðp; tÞ ¼
WPMFðp; tÞ
DI¼1

ππ ðp; tÞ ; ð25Þ

which is the ratio of the finite-T effect WPMFðp; tÞ
calculated by Eq. (24) to the I ¼ 1 ππ correlator
DI¼1

ππ ðp; tÞ of the direct diagram D. In Fig. 4, we illustrate
this ratio for the (0.005,0.005) ensemble at four momenta,
p ¼ ½0; 0; 1�, [1,1,0], [1,1,1], and [0,0,2], together with the
ratio for the center-of-mass frame, which is denoted by

RCMðp; tÞ ¼ CðpÞ=DI¼1
ππ ðp; tÞ

for p ¼ ½0; 0; 1�, where CðpÞ is defined in Eq. (22). These
ratios turn out to make a significant contribution to ππ
correlators as t approaches T=2 [44–47]. Consequently, it is
necessary to explicitly account for this pollution when
extracting the ππ energy. Through appropriately
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subtracting this effect from the ππ correlators, these
unwanted finite-T effects are anticipated to be neatly
removed. The relevant ratios for the (0.005,0.005) ensem-
ble are illustrated in Fig. 5. It is interesting to note that the
wraparound pollution generally contributes in relatively
smaller quantities for higher momenta.

C. Energy eigenvalues

The finite-T effects for ππ correlators at rest are constant
in time, while those in flight are generally time-dependent.
It is natural to explicitly incorporate these wraparound
terms for a successful energy spectral fit of ππ correlators.
In the present study, these wraparound effects can be
accurately estimated and, consequently, can be appropri-
ately subtracted from the corresponding I ¼ 1 ππ correla-
tors. After deducting these undesired effects, the remaining
I ¼ 1 ππ correlators then hold clean information.
As shown in Refs. [25], we calculate two eigenvalues

λnðt; tRÞ (n ¼ 1, 2) for the matrix Mðt; tRÞ denoted in
Eq. (13) with the reference time tR. By defining a fit range
½tmin; tmax� and adjusting the minimum fitting distance tmin
and maximum fitting distance tmax, we can acquire energy
levels from λnðn ¼ 1; 2Þ in a correct manner. In this work,
we take tmin ¼ tR þ 1 [13]; in order to extract the desired
energies ĒnðtminÞ ðn ¼ 1; 2Þ, two eigenvalues λnðt; tRÞðn ¼
1; 2Þ at the chosen tmin were fit to Eq. (14), with the tmax
either at T=2 or where the fractional statistical errors

exceeded about 20% for two successive time slices.
Examples of fitted energy levels as functions of tmin for
the nine energy states with the relevant representations
considered in the present work are illustrated in Fig. 5 for
the (0.005,0.005) ensemble. The dotted lines in each panel
indicate the energy levels of the two free pions for the
relevant representation.
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FIG. 5. Fitted energy levels as functions of tmin for the ground
states of the T−

1 representation in CMF, and for the ground and
first excited states of the A−

2 , B
−
1 , A

−
2 , and A

−
2 representations for

MF1, MF2, MF3, and MF4, respectively, with the (0.005,0.005)
ensemble.
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FIG. 4. Ratios of the wraparound pollution to the ππ correlators
of the direct diagram for the (0.005,0.005) ensemble using
Eq. (25) for four momenta, p ¼ ½0; 0; 1�, [1,1,0], [1,1,1], and
[0,0,2], along with the ratio for the center-of-mass frame at
p ¼ ½0; 0; 1�. These ratios are generally near 1=2 as t
approaches T=2, as anticipated from the analytical statements
in Refs. [44–47].
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For each of the lattice ensembles, the energy levels
Ēnðn ¼ 1; 2Þ with the A−

2 , B
−
1 , A

−
2 , and A

−
2 representations

for the MF1, MF2, MF3, and MF4, respectively, were
carefully selected by seeking the combination of a plateau
in the effective energy plots as the function of tmin and a
reasonable fit quality. The fit range and fit quality χ2=DOF,
along with the fitted Ēn (n ¼ 1, 2) for six MILC lattice
ensembles, are summarized inTable IV.The lattice-measured
energy levels Ēn ðn ¼ 1; 2Þ are then employed to derive
the p-wave scattering phase shifts δ1 by the corresponding
finite size formulas, which are also summarized in Table IV.
The relevant fitted results with the T−

1 representation for
CMF are summarized in Table IV as well.4

It is worth stressing that the finite-size effects are
exponentially suppressed with the combination mπL,
which obviously decreases with the small amπ; it is
expensive to compensate for this with higher lattice spatial
dimensions L. From Table II, we note that in the present
study our lattice volumes all have mπL > 4; consequently,
the finite-size effects are negligible, and the Lüscher
formulas are perfectly satisfied [8,9].

D. Finite-size effects

We employ the following relations:

ffiffiffi
s

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
MF − P⋆2

q
;

p⋆2 ¼ s
4
−m2

π; ð26Þ

in the Lorentz transformation for the invariant mass
ffiffiffi
s

p
, the

energy of ππ system in the moving frame EMF and the
center-of-mass scattering momentum p⋆. Equation (26) is
only suitable up to the truncation errors. Rummukainen and
Gottlieb suggest [10]

coshð ffiffiffi
s

p Þ ¼ coshðEMFÞ − 2sin2
�
P⋆
2

�
;

2sin2
�
p⋆
2

�
¼ cosh

� ffiffiffi
s

p
2

�
− coshðmπÞ ð27Þ

to reduce this truncation error. Recently, we extended these
suggestions to a two-particle system with arbitrary masses
[25].
We discern no obvious difference of the ultimate results

due to the selection of the energy momentum relations (26)
or (27) within the statistics, especially for lattice ensembles
with a smaller lattice space a or a large spatial extent L.
For these reasons, we computed the

ffiffiffi
s

p
and p⋆ by the

continuum relation (26).

V. ANALYSIS

We are now in a position to use the lattice-measured
scattering phases δ1 to secure the ρ resonance parameters.
Moreover, since we have six sets of lattice data at hand,
we can follow the pioneering work of the ETMC
Collaboration [13] to discuss the pion mass dependence
on ρ resonance parameters. After chiral extrapolation to
the physical point, the desired physical quantities can be
obtained.

A. Resonant parametrizations

To estimate the two-pion energies, we use the well-
known effective range formula [1]

tan δ1 ¼
g2ρππ
6π

p3ffiffiffi
s

p ðM2
R − sÞ ; p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
4
−m2

π

r
: ð28Þ

where the Mandelstam variable s is denoted by the center-
of-mass energy of the ππ system ECM through s ¼ E2

CM.
This enables a fit for two unknown quantities: the coupling
constant gρππ and the resonance mass MR from the lattice-
determined p-wave scattering phase δ1. The ρ decay width
is then calculated through

Γρ ¼ ΓRðsÞjs¼M2
R
¼ g2ρππ

6π

	
M2

R
4
−m2

π



3=2

M2
R

: ð29Þ

Equations (28) and (29) offer us a way to acquire ρ range
parameters by examining the dependence of δ1 on

ffiffiffi
s

p
.

B. Extraction of the resonance parameters

For six MILC lattice ensembles, we obtained seven or
nine separate energy levels, and we can then extract seven
or nine p-wave scattering phases δ1 from the relevant
invariant mass

ffiffiffi
s

p
; these are shown in Fig. 6. To extract the

resonance mass mρ and the coupling constant gρππ from a
single lattice ensemble, the seven or nine p-wave scattering
phases δ1 are then fitted with the effective range formula
denoted in Eq. (28).5 The corresponding fits for six lattice
ensembles are also exhibited in Fig. 6. The fitted mρ in
MeV and gρππ are summarized in Table V, where the
statistical errors of the lattice spacing a are also added in
quadrature.
Once the fitted values of the gρππ and mρ in lattice units

are acquired, the decay width Γρ in lattice units can be
estimated by Eq. (29), where the uncertainties are solely
estimated from the statistical errors of both gρππ and amρ.

4The lattice determinations of the four-pion thresholds for the
MFs and CMFs are discussed in general in Ref. [22]. Moreover,
according to the discussions in Refs. [22,51], the ρ meson to 4π
states is indeed negligible.

5Other parametrizations have been recently discussed for
the ρ resonance in Refs. [18,52–54]. Additionally, the RQCD
Collaboration found that all the resonant masses obtained from
other parametrizations are in perfect agreement with those from
Breit-Wigner [22].
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TABLE IV. Summaries of the fitted energy levels with theA−
2 representation for the ground state (n ¼ 1) and first excited state (n ¼ 2)

in MF1, MF2, MF3, and MF4, respectively, and the T−
1 representation in CMF, for six lattice ensembles. The fit range (tmin, tmax),

χ2=DOF, and extracted energy levels En (n ¼ 1, 2) are tabulated in the fourth, fifth, and sixth columns, respectively. The center-of-mass
scattering momentum p� and the invariant mass

ffiffiffi
s

p
are obtained using the dispersion relations (26), and the relevant p-wave scattering

phase δ1 in units of degree is obtained by the corresponding finite-size formulas.

Ensemble Frame Level n Fit range χ2=DOF aEn a
ffiffiffi
s

p
ap� δ1ð°Þ

(0.00155,0.031) CMF 21–40 21.5=16 0.2446(17) 0.00933(21) 6.0(3.9)

MF1
1 22–44 15.1=19 0.19779(21) 0.17170(24) 0.00174(2) 0.69(20)
2 9–34 26.4=22 0.3574(18) 0.3437(19) 0.02390(32) 100.4(8.1)

MF2
1 16–38 21.3=19 0.23190(32) 0.18575(40) 0.00300(4) 1.28(53)
2 8–20 9.6=9 0.3758(16) 0.3492(17) 0.02486(30) 103.5(6.9)

MF3
1 14–24 9.1=7 0.25950(48) 0.19602(64) 0.00398(6) 1.86(1.6)
2 8–18 8.2=7 0.3988(19) 0.3607(21) 0.02691(38) 132.8(4.1)

MF4
1 13–22 8.2=6 0.28404(71) 0.20525(98) 0.00490(10) 2.5(2)
2 8–18 7.2=7 0.4153(21) 0.3659(24) 0.02785(44) 131.59(5.3)

(0.0031,0.0031) CMF 22–48 28.2=23 0.3355(64) 0.0171(11) 53.6(7.2)

MF1
1 18–37 15.6=16 0.29003(40) 0.24381(48) 0.00383(6) 1.87(19)
2 9–35 20.7=23 0.3841(21) 0.3505(23) 0.01968(40) 96.8(2.8)

MF2
1 15–40 20.8=22 0.34589(81) 0.26512(106) 0.00654(14) 3.81(75)
2 8–28 19.6=17 0.4214(23) 0.3581(27) 0.02103(48) 109.4(3.2)

MF3
1 14–39 27.4=22 0.38929(133) 0.2784(19) 0.00835(26) 5.8(1.4)
2 8–22 13.2=11 0.4532(27) 0.3625(34) 0.02181(61) 123.9(4.6)

MF4
1 12–38 13.7=23 0.4283(25) 0.2911(36) 0.01016(52) 9.7(4.2)
2 8–18 11.2=7 0.4807(36) 0.3639(48) 0.02207(87) 123.6(5.9)

(0.0031,0.031) CMF 21–32 15.1=8 0.3423(61) 0.0182(10) 46.3(7.0)

MF1
1 22–41 18.4=16 0.29134(62) 0.24543(75) 0.00395(9) 1.51(31)
2 9–32 19.5=20 0.3900(18) 0.3570(20) 0.0208(35) 89.4(2.5)

MF2
1 16–36 20.6=17 0.34632(99) 0.2657(13) 0.00655(17) 3.8(0.9)
2 8–20 8.8=9 0.4230(27) 0.3600(32) 0.02130(57) 107.8(3.8)

MF3
1 14–22 8.1=5 0.3899(15) 0.2786(21) 0.00830(29) 6.0(1.6)
2 8–18 8.0=7 0.4590(24) 0.3697(30) 0.02307(55) 116.3(4.3)

MF4
1 13–21 9.3=5 0.4288(17) 0.2918(25) 0.01019(36) 9.6(2.8)
2 7–17 10.1=7 0.4873(32) 0.3725(42) 0.02359(77) 115.0(5.3)

(0.00465,0.031) CMF 10–18 7.2=5 0.3769(61) 0.0190(15) 86.7(6.7)

MF1
1 15–35 28.6=17 0.3539(14) 0.2944(17) 0.00516(25) 3.09(40)
2 7–28 24.9=18 0.4381(26) 0.3916(29) 0.0218(6) 131.2(2.2)

MF2
1 16–48 34.3=29 0.4214(42) 0.3170(56) 0.00862(88) 7.8(2.9)
2 7–27 29.8=17 0.4849(34) 0.3975(41) 0.0230(8) 144.2(3.1)

MF3
1 15–36 22.1=18 0.4741(63) 0.3303(90) 0.0108(15) 11.5(6.2)
2 8–21 15.9=10 0.5203(44) 0.4070(57) 0.0249(12) 154.7(4.2)

MF4
1 12–28 19.8=13 0.5219(56) 0.3438(86) 0.0130(15) 18.7(7.8)
2 8–20 14.7=9 0.5705(52) 0.4138(73) 0.0263(15) 152.0(6.6)

(0.0062,0.031) CMF 17–48 34.5=28 0.397(11) 0.0177(23) 110.7(4.0)

MF1
1 12–17 1.3=2 0.4018(12) 0.3333(13) 0.00611(23) 3.69(21)
2 7–20 13.0=10 0.4716(25) 0.4148(28) 0.02135(59) 150.6(1.7)

MF2
1 12–32 21.0=16 0.4766(40) 0.3559(51) 0.01001(91) 10.3(2.2)
2 7 − 17= 9.8=7 0.5367(48) 0.4328(60) 0.0252(13) 156.3(3.6)

MF3
1 13–21 5.9=5 0.5304(66) 0.3608(98) 0.0109(18) 20.2(8.0)
2 6 − 16= 8.4=7 0.5923(67) 0.4470(89) 0.0283(20) 163.7(5.0)

(0.005,0.005) CMF 18–24 2.9=3 0.4715(89) 0.0298(21) 40.4(9.2)

MF1
1 11–18 2.7=4 0.41110(25)) 0.36118(28) 0.00680(5) 1.49(12)
2 8–18 8.2=7 0.5296(43) 0.4919(46) 0.0347(11) 80.0(5.6)

MF2
1 13–32 21.0=16 0.47659(65) 0.3873(8) 0.01169(16) 3.59(54)
2 8–23 14.1=12 0.5699(57) 0.4977(65) 0.0361(16) 100.4(6.9)

MF3
1 13–18 0.9=2 0.5289(28) 0.4051(33) 0.0152(7) 5.7(2.3)
2 7–17 6.7=7 0.6058(50) 0.5013(62) 0.0370(15) 119.8(6.8)

MF4
1 13–32 19.5=16 0.5727(46) 0.4169(62) 0.0176(13) 14.1(6.8)
2 7–17 8.6=7 0.6399(73) 0.5052(92) 0.0380(23) 116.0(10.3)
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FIG. 6. Results of the scattering phase shifts and effective range formula fits for the ensembles (0.0031,0.031) (upper left),
(0.0031,0.0031) (upper right), (0.00465,0.0031) (middle left), (0.0062,0.031) (middle right), (0.005,0.005) (bottom left), and
(0.005,0.05) (bottom right). The scattering phase shifts are calculated in the CMF, MF1, MF2, MF3, and MF4, respectively.
The solid black curves exhibit the central values of the effective range formula fits. The dashed cyan lines display the resonance
masses amρ, the narrow yellow bands display their uncertainties, and the resonance regions amρ � aΓ are shown in the shadowed
grey boxes.
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The calculated Γρ is also listed in Table V, where the
statistical errors of the lattice spacing a are also added in
quadrature. It is worth mentioning that Γρ is mainly
determined by the ππ-phase space; consequently, this
number derived turns out to be different when derived
from the different quark masses.6 Note that the lattice-
calculated Γρ for the larger quark masses are significantly
smaller than the experimental value quoted by the Particle
Data Group (PDG) Γphys

ρ ¼ 147.8ð9Þ [1]. To make our
demonstrations of these results more intuitive, the reso-
nance masses and the resonance regions are shown graphi-
cally in Fig. 6.

C. Comparison with other results

In Fig. 7, we compare our lattice results of ρ resonance
parameters from the MILC Asqtad-improved staggered
fermions (2þ 1 or 3 flavors) with some other lattice
studies: an improved Wilson fermion action (2 flavors,
CP-PACS [11]), the maximally twisted mass fermions
(2 flavors, ETMC [13]), the tree-level improved clover-
Wilson fermions (2 flavors, Lang et al. [15]), the nHYP-
smeared clover fermions (2 flavors, Pelissier and
Alexandru [17]), the nonperturbatively OðaÞ-improved
Wilson fermion (2 flavors, PACS-CS [16]), the anisotropic
Clover Wilson fermions (2þ 1 flavors, HSC [18,19]), the
improved Wilson fermions (2þ 1 flavors, Frison et al.
[14]); the anisotropic Wilson clover fermions (2þ 1
flavors, Bulava et al. [20]), the nHYP-smeared clover
fermions (2 flavors, Guo et al. [21]), and the nonperturba-
tively improved Wilson fermions (2 flavors, RQCD [22]).
The top panel of Fig. 7 plots the effective coupling constant
gρππ and the bottom panel shows the resonance mass mρ.
The systematic uncertainty for the determination of the

lattice spacing is added to the statistical error in quadrature.
It is important to note that our lattice results obtained with
staggered fermions are reasonably consistent with those
using other actions, which have quite different systematics.
The effective coupling constant gρππ is dimensionless,

and thus practically has a weak quark mass dependence. We
also observe that the results of gρππ from all the lattice
studies are almost consistent in top panel of Fig. 7. Our
results of gρππ are well consistent with other lattice studies
and were determined with the similar precision. Indeed,
the stability of the results for gρππ with respect to other
magnitudes was anticipated in Ref. [56].
It is worth mentioning that the resonance massmρ is very

sensitive to the pion masses. In order to avoid the artificial
systematic error from the determination of the lattice
spacings, which are used to measure mρ and mπ in lattice
units, it is proper to adopt dimensionless quantities to
compare the resonance mass mρ with each other, and it is

TABLE V. Summary of the fitted ρ-meson mass mρ and the
effective coupling constant gρππ for the six MILC lattice ensem-
bles. The relevant estimated decay widths Γρ are also listed,
where the statistical errors of the lattice spacing a are also
considered. The last column shows fit quality χ2=DOF.

Ensemble mρ (MeV) gρππ Γρ (MeV) χ2=DOF

(0.00155,0.031) 791(10) 5.82(35) 128(16) 3.73=7
(0.0031,0.0031) 827(8) 6.09(21) 104(7) 3.55=7
(0.0031,0.031) 836(8) 6.03(28) 106(10) 9.09=7
(0.00465,0.031) 875(9) 5.88(21) 76.4(5.7) 12.3=7
(0.0062,0.031) 915(9) 5.80(17) 57.6(3.6) 12.5=5
(0.005,0.005) 840(8) 5.90(19) 90.8(5.7) 2.16=7
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FIG. 7. Comparison of our results with other lattice studies. The
top panel exhibits the effective coupling constant gρππ as a
function of m2

π . The bottom panel shows the resonance mass
mρ, where mρ and mπ are scaled with the Sommer scale r0 [55].
The red plus points indicate the corresponding PDG values.

6It is interesting and important to note that for the
(0.0031,0.031) and (0.0031,0.0031) lattice ensembles, the pion
masses are almost the same and L is identical; nonetheless, the
strange sea quarks for two lattice ensembles are quite different.
However, the discrepancies of the resonance mass mρ for two
ensembles are clearly noticed, which indicates the influence of
the strange sea quark.
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natural to use the Sommer scale r0 [55]. The bottom panel
of Fig. 7 shows the resonance mass mρ, where mρ and mπ

are both scaled with the Sommer scale r0 [55]. The lattice
spacings a and r0 for the six lattice ensembles used in the
present work have been professionally determined by the
MILC Collaboration in Refs. [29,30,37]; we can directly
quote these results.7 Lang et al. determined the lattice
spacing by inputting r0 ¼ 0.48 fm [15] and Pelissier and
Alexandru fixed the lattice spacing by setting r0 ¼ 0.5 fm
[17]. The value of r0 for the ETMC gauge configuration
was determined to be r0=a ¼ 5.32ð5Þ [57], the PACS-CS
gauge configuration has been reported as r0=a¼ 5.427ð51Þ
[58], and that for HSC has been reported as r0 ¼ 0.454 fm
[59]. The RQCD Collaboration determined the lattice
spacing by setting r0 ¼ 0.501 fm [22,60], and Guo et al.
usually set r0 ¼ 0.5 fm [21]. We should remark at this
point that the relevant PDG value in Fig. 7 is scaled with the
MILC Collaboration’s determinations of r0 on the same
lattices of this work [29,30,37] since it is reasonably
compatible with Sommer’s continuum extrapolation of r0
for the published Nf > 2 determinations [61].
Nonetheless, from the bottom panel of Fig. 7, large

differences for the resonance mass mρ are still discerned.
Note that there has been no attempt so far with a continuum
limit extrapolation. As pointed out in Ref. [16], there exist
some other possible issues through which this discrepancy
can be intepreted, such as the discretization error due to the
finite lattice spacing, the influence of the strange sea quark
(as we already discern in Sec. V B), the issue of the isospin
breaking and the reliability of the effective range para-
metrization, and so forth. In any case, the robust extraction
of the resonance mass mρ definitely needs more lattice
simulations in the vicinity of the physical point, as well as a
continuum limit extrapolation.

D. Quark mass dependence

So far, only the ETMC Collaboration has discussed the
quark mass dependence of ρ resonance parameters [13];
other lattice works have been studied with one pion mass or
two pion masses [11–22]. Because six quark masses are
used in the present study, we are now in a position to
examine the pion mass dependence of the ρ resonance
parameters.
The quark mass dependence of the ρ resonance param-

eters are discussed with effective field theory in Ref. [62].
The pion mass dependence of the ρ resonance massmρ and
ρ decay width Γρ can be generally expressed as [62]8

mρ ¼ m0
ρ þ Cm1M2

π þ Cm2m3
π þOðm4

πÞ; ð30Þ

Γρ ¼ Γ0
ρ þ CΓ1m2

π þ CΓ2m3
π þOðm4

πÞ: ð31Þ

In the top panel of Fig. 8, we display the ρ resonance
mass as a function of m2

π, together with a fit to Eq. (30);
these are also summarized on the left side of Table VI. After
the chiral extrapolation to the physical point, we obtain the
physical ρ resonance mass mρ;phys ¼ 780ð16Þ MeV, where
the uncertainty is solely estimated by the fitted statistical
errors of the three coefficients in Eq. (30) that are listed in
the left side of Table VI. It is obvious that our physical ρ
resonance mass mρ;phys is in good agreement with the PDG
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FIG. 8. The lattice-measured ρ resonance parameters as the
functions of the pion mass squared. The upper panel exhibits the
ρ-meson resonance mass and the lower panel shows the ρ-meson
decay width. The cyan bands correspond to the fits to our six data
points using the Eq. (30) and Eq. (31), respectively, and the solid
black curves are the central values of the corresponding fits. The
red plus points indicate the relevant PDG values.

7This work benefits significantly from the MILC Collabora-
tion; without their published data, we could not launch this work.

8Note that mρ and Γρ are statistically correlated, indicating
that the coefficients Cmi

and CΓi
(i ¼ 1, 2) are not independent

from each other. Therefore, following the strategy of Refs. [63],
Xu et al. introduced the complex pole parameter Z to fit their
data [13].

ZIWEN FU and LINGYUN WANG PHYSICAL REVIEW D 94, 034505 (2016)

034505-16



value of the ρ-meson mass mρ;PDG ¼ 775.26ð25Þ MeV [1]
within the statistical errors, which is indicated by the red
plus point in the top panel of Fig. 8.
As explained in Ref. [13], because the ETMC

Collaboration carried out the lattice calculations at the
relatively large pion masses (from 290 to 480 MeV), their
obtained physical ρ resonance mass mρ;phys is relatively
high compared to the PDG value even using the Oðq4Þ
extrapolations. On the other hand, this work carries out a
study with the relatively small pion mass (from 176 to
346 MeV), and with the more lattice ensembles. Note that
the RQCD Collabration recently worked at nearly physical
quark masses [22].
In practice, the decay width Γρ can be estimated through

Eq. (29), where the statistical errors are estimated from the
statistical errors of both gρππ and mρ. Therefore, our lattice-
extracted decay widths Γρ definitely indicate a union of the
two factors. In the bottom panel of Fig. 8, we exhibit the
decay width Γρ as a function of the pion mass squared,
along with a fit to Eq. (31); these are also summarized
in the right side of Table VI. Because Eq. (29) naturally
regresses to Γρ ¼ mρg2ρππ=ð48πÞ in the chiral limit, it
often leads to a good value of Γρ with the better value
of mρ. Moreover, the error of gρππ will be more quickly
propagated in the Γρ than that of mρ. After the chiral
extrapolation to the physical point, our physical ρ decay
width Γρ;phys ¼ 144.6ð17.3Þ MeV, where the uncertainty is
solely estimated by the fitted statistical errors of the three
coefficients in Eq. (31) that are listed in the right side of
Table VI. Our physical ρ decay width Γρ;phys is slightly
lower than the PDG value Γρ;PDG ¼ 147.8ð0.9Þ MeV [1],
but it is in reasonable agreement with the PDG value within
the statistical errors, which is indicated by the red plus
point in the bottom panel of Fig. 8. Nonetheless, it is worth
mentioning that our lattice-measured ρ resonance param-
eters are obviously much less accurate than the PDG
values [1].

VI. CONCLUSIONS AND OUTLOOK

In this work, we for the first time employ theNf ¼ 2þ 1

or 3 flavors of the MILC Asqtad-improved staggered

fermions at pion masses ranging from 176 to 346 MeV
to carry out the lattice computation of the p-wave I ¼ 1 ππ
scattering phase shifts near the ρ resonance region.
At all the pion masses, the physical kinematics for the
ρ-meson decay, mπ=mρ < 0.5, is satisfied. Additionally,
from Table II, we note that our lattice volumes all have
mπL > 4; thus, finite-size effects are negligible, and the
Lüscher formulas are perfectly satisfied, because the finite-
size effects are exponentially suppressed with the combi-
nation mπL. In particular, we marked out the resonance
region by simultaneously adopting five Lorentz frames
(CMF, MF1, MF2, MF3, and MF4).
Moreover, we for the first time investigated ρ resonance

parameters with the moving-wall source technique [23,24],
a nonstochastic source method. We have shown that the
lattice computation of the p-wave scattering phase for
the I ¼ 1 ππ system using the moving-wall source and the
estimation of the decay width of the ρ meson are feasible
and effective, and can be comparable with the stochastic
source method [11–14,16–19,22] or its variants (the
distillation method, etc. [15,20,21]). Most significantly,
we extracted the ρ-meson decay width from the scattering
phase data and demonstrated that it is reasonably compa-
rable with the ρ-meson decay width from PDG, within the
statistical errors.
We evaluated the scattering phase from the seven or nine

energy levels for the six lattice ensembles by the Lüscher
finite-size methods. The scattering phases are fitted with
the effective range formula to extract the ρ resonance mass
mρ, the decay width Γρ, and the effective coupling gρππ .
Despite not considering the inherent relation between mρ

and Γρ, we conducted a fit guided by the effective field
theory to our results at six pion masses. This provided an
alternative means of the chiral extrapolation to the physi-
cal point.
After the chiral extrapolation to the physical point, we

obtain the physical ρ-meson massmρ;phys ¼ 780ð16Þ MeV,
which is in agreement with the experimental value
mρ;PDG ¼ 775.26ð25Þ MeV [1], and the decay width
Γρ;phys ¼ 144.6ð17.3Þ MeV, which is slightly low relative
to the experimental value Γρ;PDG ¼ 147.8ð0.9Þ MeV [1].
Moreover, our results are compatible with most recent
lattice studies [11–22]. It is obvious that our lattice
computations cannot yet match the experimental accuracy.
With the development of better algorithms, more effi-

cient codes, and an increase in computational resources, the
lattice calculations of the ρ resonance parameters with large
L, small pion, and fine lattice will become possible, which
will make the lattice simulation more accurate [22] (see the
Appendix for more details). With this aim in mind, our
ongoing lattice studies will be carried out with the MILC
superfine gauge configuration (a ≈ 0.6 fm, L ¼ 48, and
beyond), and even with the MILC ultrafine gauge con-
figuration (a ≈ 0.45 fm and L ¼ 64). These studies will
include several lattice spacings, which enables us to make a

TABLE VI. Summary of the ρ resonance mass mρ and ρ decay
width Γρ fitting with Eqs. (30) and (31), respectively. The values
of m0

ρ and Γ0
ρ are given in units of GeV, those of Cm1 and CΓ1 are

given in units of GeV−1, and those of Cm2 and CΓ2 are given in
units of GeV−2. The corresponding fits result in fit qualities
χ2=DOF ¼ 2.06=3, 0.33=3, respectively.

Fit of mρ to Eq. (30) Fit of Γρ to Eq. (31)

m0
ρ 0.768(14) Γ0

ρ 0.166(15)
Cm1 0.38(42) CΓ1 −1.33ð44Þ
Cm2 2.49(96) CΓ2 1.21(96)
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continuum limit extrapolation. Furthermore, working
close to the physical pion mass with large L or very fine
lattice are crucial for lattice investigations of the scattering
processes involving thresholds, e.g., X(3872), DD̄�, and
beyond [64].
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APPENDIX: THE NOISE-TO-SIGNAL RATIO
OF THE CORRELATOR

In Ref. [24], the noise-to-signal ratio of the two-point
function at zero momentum evaluated with Ncfg indepen-
dent gauge configurations is estimated as

R2
NS ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NcfgL3

s
exp½ðmM −mπÞt�; ðA1Þ

where L is the lattice spatial dimension and mM is the
desired meson mass. The superscript in R indicates that this
is the two-point function.

It is straightforward to extend this expression to the two-
point function at nonzero momentum p,

R2
NS ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NcfgL3

s
exp½ðEM −mπÞt�; ðA2Þ

where the meson energy EM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

M þ p2
p

, p ¼ 2π
L n. In

fact, this expression can be inferred from the analytical
arguments in Refs. [27,28]. In practice, in order to improve
the statistics, the correlators are calculated from a given
number of time slices (Nslice). The corresponding noise-to-
signal ratio can be roughly evaluated as

R2
NS ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NcfgNsliceL3

s
exp½ðEM −mπÞt�: ðA3Þ

Here we crudely assume that the calculations from different
time slices are independent. In our concrete numerical
calculations [65], we indeed adjust the values of Nslice to
obtain the relevant masses with the desired precision; at the
same time, we found R2

NS ∝ 1=ðNcfgÞα, where the exponent
α ¼ 0.4 ∼ 0.5. Therefore, the relationship of the noise-to-
signal ratiowithNslice in Eq. (A3) is approximately satisfied.
The dramatic deterioration of the signal as the momen-

tum increases is shown in Fig. 2 of Ref. [27]. This quite
impressive result indicates that the expected asymptotic
behavior given in Eq. (A3) is generally met. We should
remark at this point that, in practice, the asymptotic trend
given in Eq. (A3) can effectively guide us how to improve
the relevant statistical errors.
For the ππ scattering (two pions with the momentum p

and q, respectively), the noise-to-signal ratio of the four-
point function can be straightforwardly generalized as [24]

R4
NS ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NcfgNsliceL3

s
exp½ðEπðpÞ þ EπðqÞ − 2mπÞt�;

ðA4Þ

where the energy Eπðp ¼ 2π
L nÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ 4π2

L2 n2

q
and

Eπðq ¼ 2π
L mÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ 4π2

L2 m2

q
.

According to the above analytical discussions, we can
readily deduce that the most efficient way to improve the
relevant noise-to-signal ratios is to use very fine gauge
configurations where the temporal lattice spacing at and the
spatial lattice spacing as are small (as ¼ at), since the
energy and the mass are measured in lattice at units atm
and atE; equivalently, the use of anisotropic gauge con-
figurations, where at is much smaller than as, is also a
powerful approach to improve the relevant noise-to-signal
ratios [18,19]. In addition, if we use the lattice ensembles
with larger lattice spatial dimensions L, and sum the
correlators over all the time slices (i.e., Nslice ¼ T, where
T is the lattice temporal dimension), the signals of the
correlators should also be significantly improved.
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