
Thermal dilepton rates and electrical conductivity of the QGP
from the lattice

Heng-Tong Ding,1,* Olaf Kaczmarek,2,† and Florian Meyer2,‡
1Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics,

Central China Normal University, Wuhan 430079, China
2Fakultät für Physik, Universität Bielefeld, 33615 Bielefeld, Germany

(Received 10 May 2016; published 15 August 2016)

We investigate the temperature dependence of the thermal dilepton rate and the electrical conductivity
of the gluon plasma at temperatures of 1.1, 1.3, and 1.5Tc in quenched QCD. Making use of
nonperturbatively clover-improved Wilson valence quarks allows for a clean extrapolation of the vector
meson correlation function to the continuum limit. We found that the vector correlation function divided
by T3 is almost temperature independent in the current temperature window. The spectral functions are
obtained by χ2 fitting of phenomenologically inspired Ansätze for the spectral function to the continuum
extrapolated correlator data, where the correlations between the data points have been included.
Systematic uncertainties arising from varying the Ansätze motivated from strong coupling theory as well
as perturbation theory are discussed and estimated. We found that the electrical conductivity of the hot
medium, related to the slope of the vector spectral function at zero frequency and momentum, is
0.2Cem ≲ σ=T ≲ 0.7Cem for T ¼ 1.1Tc and 0.2Cem ≲ σ=T ≲ 0.4Cem for the higher temperatures. The
dilepton rates and soft photon rates, resulting from the obtained spectral functions, show no significant
temperature dependence, either.
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I. INTRODUCTION

Ongoing heavy ion collision experiments conducted at
facilities like RHIC and LHC provide new output about the
nature of elementary particles and their interactions. Direct
photons and dileptons (eþe−, μþμ−) are especially good
probes of the Quark Gluon Plasma (QGP), as they are
produced in all stages of its evolution and, since they are
objects underlying the electroweak interaction, their cou-
pling to QGP constituents is small [1,2]; once they are
produced, they leave the interaction region largely unmodi-
fied. The latest experiments performed at PHENIX and
STAR provide indications of thermal enhancements of
dilepton spectra in the small to medium frequency region
[3,4], which indicates that modifications by the surround-
ing thermal medium take place. On the other hand, the
spectral function in the vector channel at finite temperature
provides theoretical information on the thermal dilepton
rates accessible in these experiments [5,6], which renders it
a worthwhile object to study from theory. Especially the
small frequency region of the spectral function contains
information on important dynamical quantities like the
flavor diffusion constant and the electrical conductivity of
the plasma [7,8]. Because this regime is also inherently
nonperturbative, the use of lattice QCD data is needed. We
attempt to determine the vector channel spectral function

for light quark flavors from the theory of QCD. With this
we extend our former investigations [9–12]. For other
lattice QCD studies, based on finite lattices, see [13–16].
Other determinations of the electrical conductivity can be
found in [17–19].
Awell-accessible quantity on the lattice is the correlation

function in a given mesonic channel. It inhibits dynamical
properties of the QGP when investigated at finite temper-
ature. As such, the light vector correlator is related to the
electrical conductivity σ of the QGP, the dilepton rate dW

dωd3p
and the photon rate dR

d3p as accessible in heavy ion collision

experiments, via the vector channel spectral function ρV
[20,21]. While in general spectral functions relate to
correlators through an integral equation,

Gðτ; ~pÞ ¼
Z

∞

0

dω
2π

ρHðω; ~p; TÞKðω; τ; TÞ ð1Þ

with Kðω; τ; TÞ ¼ coshðωðτ − 1
2TÞÞ

sinhð ω
2TÞ

; ð2Þ

transport coefficients are related to the spectral functions
via Kubo formulas. Examples of these are the shear and
bulk viscosity obtained from energy momentum tensor
correlation functions, the heavy quark momentum diffusion
coefficient from color electric correlators [22,23], and the
electrical conductivity, related to the light vector spectral
function. In the latter case, the Kubo formula is explicitly
written as
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σ

T
¼ Cem

6
lim
ω→0

ρiiðω; ~p ¼ ~0; TÞ
ωT

; ð3Þ

with ρii denoting only the spatial components of the vector
channel and Cem ¼ e2

P
q2f being the sum of the square of

the individual quark charges. The two experimentally
observable rates mentioned above, originating from proc-
esses at all stages of the collisions, can be written in terms
of the spectral function in the vector channel and to leading
order (LO) read [20,21]

dW
dωd3p

¼ Cemα
2
emρVðω; ~p; TÞ

6π3ðω2 − ~p2Þðeω=T − 1Þ ; ð4Þ

ω
dRγ

d3p
¼ Cemαemρ

Tðω ¼ j~pj; TÞ
4π2ðeω=T − 1Þ ; ð5Þ

where ρV is again the vector channel spectral function and
ρT is the spectral function transversally polarized with
respect to the direction of ~p. These relations imply that
once the spectral function of the vector channel is extracted
from QCD, important insights into nonperturbative phe-
nomena of heavy ion collisions and the QGP can be gained.
In order to determine the spectral function, however, the

Fredholm type-I equation (1) has to be inverted, which is
often referred to as an “ill-posed” problem [7]. In our case it
is a discrete problem, as we can access the value of the
correlation function only at a finite number of points in τT.
The basic fact is that the numerical (temporal) correlator
data containOð10Þ points, while a solution should be much
more fine grained, ideally even continuous. This means that
there is more information desired on the rhs than is actually
provided on the lhs of Eq. (1). This simple lack of
information identifies problem (1) to be principally under-
determined. Moreover, the available correlator data points
are not known exactly either, as they stem from a
Monte Carlo simulation and are subject to statistical
uncertainties. This adds to the problem of having only a
finite amount of input data. It can be investigated in some
cases where it is possible to make a quantitative statement
about the connection of fluctuations in the input data and
fluctuations in the resulting solution, revealing a strong
dependence of the solution on the accuracy of the input
data. This has been done in [24], specifically for the
Laplace kernel, or [25], where essentially arbitrary inte-
gration kernels are considered specifically within the
framework of Tikhonov regularization. In addition to the
finiteness of the data and their statistical uncertainties,
within the framework of lattice QCD an important source of
systematic errors is cutoff effects, arising from the lattice
regularization itself, that have to be removed by an
extrapolation to the physical continuum.
Any approach to solving an ill-posed problem, i.e.,

regain uniqueness and stability, must add information in
order to regularize the problem and thus render it at least

“better posed,” with two important methods being the
already mentioned Tikhonov regularization and the maxi-
mum entropy method (MEM) [26,27] or related Bayesian
methods [28]. Stochastic approaches for the reconstruction
of spectral functions are currently under investigation
[29,30]. In a recent study [15] the Backus-Gilbert method
was applied for the determination of vector spectral
functions and the electrical conductivity.
In the present work we choose the necessary additional

information to enter the procedure in the form of a
phenomenologically inspired Ansatz, which is fitted to
continuum extrapolated lattice QCD correlation functions.
Fixing the shape of the solution by supplying an Ansatz
with two or three degrees of freedom is a very strong
assumption, and the method of least squares fitting con-
sequently is the natural tool to be employed. Because in this
sense the problem has turned into an overdetermined one,
the choice of the Ansatz plays an essential role, and is
assessed critically by using different functional shapes in
the fit.
The paper is organized as follows. After discussing the

setup of the lattice calculation function and the continuum
extrapolation of the vector correlation function in the next
section, we introduce our Ansatz for the spectral function in
Sec. III, discuss its properties and the thermal moments
derived from it, and analyze the statistical uncertainties of
the continuum extrapolated correlators with a special
emphasis on the importance of covariances included in
our study. Based on this, in Sec. IV we use a class of
spectral functions fitted to the continuum correlators to
elaborate the systematic uncertainties for the extraction of
the vector spectral function. In Sec. V we present our final
results for the electrical conductivity, dilepton rates, as well
as soft photon rates for the three temperatures used in this
work, and conclude in Sec. VI.

II. LATTICE SETUP AND CONTINUUM
EXTRAPOLATION

The thermal expectation value of the renormalized
Euclidean isovector correlation function,

GHðτ; ~xÞ ¼ hJhðτ; ~xÞJ†hð0; ~0Þi; ð6Þ

is constructed from the renormalized vector current

Jh ¼ ZVψðxÞγhψðxÞ; ð7Þ

where ZV is the appropriate renormalization constant,
nonperturbatively determined in [31], and H ¼ hh ¼ 00,
ii, μμ are components of the vector correlation function.
Note that when computing the correlator on the lattice, we
do not include the sum of squared charges Cem ¼ P

fQ
2
f,

and thus the spectral function obtained from lattice data
does not contain this factor, either.
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The point to point correlators (6) are projected to definite
momentum ~p by summing over all spatial coordinates,

GHðτ; ~pÞ ¼
X
~x

GHðτ; ~xÞei~p ~x: ð8Þ

In this study we constrain ourselves to the case ~p ¼ 0.
Results for nonvanishing momenta and how these allow us
to obtain lattice constraints on the thermal photon rate can
be found in [32].

Splitting the correlation function (8) into spatially and
temporally polarized components, defining for H ¼ V in
the Euclidean metric GV ¼ Gii þ G00, we form a ratio of
correlation functions,

Rii ¼
T2

χq

GiiðτTÞ
Gfree;lat

V ðτTÞ ; ð9Þ

where Gii is normalized by both the free, massless
correlator on the lattice [33,34], and the quark number

TABLE I. Parameters of all lattices used in this study. The t0 scale [37], r0 scale [38], and conversion to Tc are based on [36]. Note that
for the continuum extrapolated data we state temperatures of T ¼ 1.1Tc, T ¼ 1.3Tc, and T ¼ 1.5Tc for the three data sets, respectively.

Nτ Nσ β κ T
ffiffiffiffi
t0

p
T=Tcjt0 Tr0 T=Tcjr0 Configurations

32 96 7.192 0.13440 0.2796 1.12 0.8164 1.09 314
48 144 7.544 0.13383 0.2843 1.14 0.8169 1.10 358
64 192 7.793 0.13345 0.2862 1.15 0.8127 1.09 242

28 96 7.192 0.13440 0.3195 1.28 0.9330 1.25 232
42 144 7.544 0.13383 0.3249 1.31 0.9336 1.25 417
56 192 7.793 0.13345 0.3271 1.31 0.9288 1.25 273

24 128 7.192 0.13440 0.3728 1.50 1.0886 1.46 340
32 128 7.457 0.13390 0.3846 1.55 1.1093 1.49 255
48 128 7.793 0.13340 0.3817 1.53 1.0836 1.45 456

FIG. 1. Left and top right: All three lattice correlators and the resulting continuum extrapolated correlator for the data sets at
T ¼ 1.1Tc, T ¼ 1.3Tc, and T ¼ 1.5Tc, respectively. Note that the finest lattice agrees with the continuum extrapolation down to
τT ∼ 0.2 in all cases. The single black data point at τT ¼ 0 indicates the continuum extrapolated result for the inverted quark number
susceptibility. Bottom right: The continuum extrapolations for all three temperatures.
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susceptibility χq=T2 ¼ −G00=T3 is defined by the time-
time component of the correlation function, which is
constant in Euclidean time. The division by the latter is
used make the ratio independent of renormalization, while
the division by the former cancels the exponential falloff of
the interacting correlator.
Lattice calculations have been performed in the

quenched approximation using the standard Wilson gauge
action with configurations separated by 500 sweeps of
over-relaxed heat bath updates, and the nonperturbatively
improved Wilson-clover action [35] for the valence quarks.
The bare gauge couplings g2ðaÞ ¼ 6=β are fixed to yield
three different temperatures T ¼ 1=ðaNτÞ ¼ 1.1, 1.3, and
1.5Tc, with lattice spacings a and lattice time extents Nτ,
following the procedure of scale setting recently performed
in Ref. [36]. The temperatures and scales quoted in Table I
are estimated from the t0 scale [37] and r0 scale [38]
determined in [36], where also the conversions to Tc for the
two different scales are based. For the continuum extrapo-
lated data, in the following, we state temperatures of
T ¼ 1.1Tc, T ¼ 1.3Tc, and T ¼ 1.5Tc for the three data
sets, respectively. For each temperature three increasingly
finer lattices are considered to allow for linear extrapola-
tions to the continuum limit; see Table I. Valence quark

masses are estimated via the improved axial Ward identity
mass [35]. The hopping parameters κ are tuned such that
the valence quark masses are small, corresponding to
mMSðμ ¼ 2 GeVÞ ∼Oð10 MeVÞ in the MS scheme.
Note that for the two lowest temperatures the aspect ratio
is fixed to Nσ=Nτ ¼ 3 and Nσ=Nτ ¼ 3.42 for all lattices,
respectively, ensuring a constant physical volume, while for
the T ¼ 1.5Tc lattices the aspect ratio decreases with
decreasing cutoff a. However, finite volume effects are
supposed to be small [9].
For each of the three temperatures, all three increasingly

fine lattices are used to perform continuum extrapolations
of the ratio (9) and the quark number susceptibility χq=T2.
In our case, these are linear extrapolations in 1=N2

τ∼
a2 → 0, as opposed to 1=Nτ ∼ a for an unimproved
Wilson action. In order to carry over a maximum of
information from the lattices to the continuum, we inter-
polate Rii in τT on the two coarser lattices using a natural
cubic spline, so that at any distance τT available on the
finest lattice the continuum limit can be performed. The
results for the ratio (9) are shown in Fig. 1. The errors on
the continuum extrapolated ratios are obtained from a
bootstrap analysis, and are slightly below the 1% level.
For the renormalized quark number susceptibility χq=T2 we
show the extrapolation in Fig. 2 (top) and the resulting
continuum extrapolated values in Table II. The inverse of
the continuum extrapolated susceptibility is also shown in
Fig. 1 (left and top right) as red data points in the bottom
left corners.
A comparison of the continuum extrapolated ratios for

all three temperatures is shown in Fig. 1 (bottom right). The
results for the two highest temperatures overlap to a large
extent within errors, while the extrapolation for T ¼ 1.1Tc
lies above the former. On the other hand, looking at the
continuum extrapolated correlator ratio Gii=Gfree

V , i.e.,
without the dividing by χq, for all three temperatures in
Fig. 2 (bottom), they show a very pronounced overlap.
In the plot the free continuum correlator Gfree

ii =Gfree
V is

shown as a solid line and is independent of T. The reason
for Riið1.1TcÞ deviating from the almost overlapping
Riið1.3TcÞ and Riið1.5TcÞ is thus the quark number
susceptibility χq=T2 differing in the two cases, as can be
seen from their inverses in Fig 1. However, note that this
difference is rather small. From this and the agreement of
the correlators in Fig. 2 (bottom), the only scale in this
temperature window is the temperature and no resonance
contributions, e.g., a rho meson, are expected in the gluon

FIG. 2. Top: The extrapolation of χq=T2. The leftmost data
points are the continuum extrapolated values. Bottom: Con-
tinuum extrapolated ratios of renormalized correlation functions
Gii=Gfree

V for all three temperatures, not normalized by χq=T2.
The solid line is the corresponding noninteracting ratio
Gfree

ii =Gfree
V .

TABLE II. The continuum extrapolated values of the quark
number susceptibility χq=T2.

T 1.1Tc 1.3Tc 1.5Tc

χq=T2 0.857(16) 0.897(17) 0.897(12)
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plasma in this temperature region. Additionally it can
already be inferred here that the underlying spectral
functions should be very similar for all three temperatures,
already indicating that temperature effects in the temper-
ature scaled dilepton rates and the electrical conductivities
will be rather small.

III. SPECTRAL FUNCTIONS AND
THERMAL MOMENTS

In order to extract the vector spectral function via (1) we
employ an Ansatz for its spatial component, already used
before in [9],

ρansðω; TÞ ¼ χqcBW
ωΓ

ω2 þ ðΓ=2Þ2

þ 3

2π
ð1þ kÞω2 tanh

�
ω

4T

�

≡ ρBWðω; TÞ þ ð1þ kÞρfreeV ðω; TÞ: ð10Þ

It consists of two constituents: a Breit-Wigner peak,
governing the behavior in the low ω region, and a modified
version of the free, massless continuum spectral function.
The modification parameter in the latter case fulfils k ¼
αs=π at leading order perturbation theory. As was discussed
at the end of the previous section there is no indication of
resonances at the temperatures studied in this work and
therefore we do not include any bound state contribution in
our Ansatz. The Ansatz (10) is inspired by the known
relations for massless continuum spectral functions in the
noninteracting case [39],

ρfreeii ðω; TÞ ¼ 2πT2ωδðωÞ þ 3

2π
ω2 tanh

�
ω

4T

�
; ð11Þ

ρfree00 ðω; TÞ ¼ 2πT2ωδðωÞ; ð12Þ

ρfreeV ðω; TÞ ¼ ρfreeii ðω; TÞ − ρfree00 ðω; TÞ: ð13Þ

While the temporal correlator G00 also in the interacting
case is a constant due to charge conservation, which
protects the δ-function contained in its spectral function
by symmetry, the corresponding δ-function in the spatial
part is expected to be washed out upon the onset of
interactions [8,21,40,41] reflecting the transport properties
of the thermal medium [42,43]. Following the analysis in
[9], motivated by arguments from hydrodynamics and
kinetic theory, the δ-function is smeared to a Breit-
Wigner peak ρBW due to thermal modifications. The inverse
width of the peak is a measure of the correlation time scale
of the medium [7]. In a quasiparticle picture, a larger
correlation time implies that there are fewer (or less strong)
interactions to wash out existing correlations, and hence the
medium is more weakly coupled. Concerning the shape of

the resulting spectral function at low frequencies, this is in
turn signaled by a narrower peak.
An estimator for the spectral function is then obtained

from relation (1) by χ2-minimizing the Ansatz ρans from
(10) with respect to the continuum extrapolated ratio data
from Eq. (9), i.e.,

RiiðτTÞ ¼
T2

χqGfree
V ðτTÞ

Z
∞

0

dω
2π

ρiiðω; TÞKðω; τ; TÞ

¼ T3

2πGfree
V ðτTÞ

×
Z

∞

0

d

�
ω

T

�
cBWT
Γ

ω=T

ðω=TΓ=TÞ2 þ 1
4

Kðω=T; τTÞ

þ T2

χq
ð1þ kÞ: ð14Þ

Note that, as we have continuum extrapolated data, the
free, massless continuum correlation function Gfree

V ðτTÞ,
given by

1

T3
Gfree

V ðτTÞ ¼ 1

2π

Z
∞

0

d
�
ω

T

�
ρfreeV ðω=TÞKðω; τTÞ

¼ 6

�
πð1 − 2τTÞ 1þ cos2ð2πτTÞ

sin3ð2πτTÞ

þ 2
cosð2πτTÞ
sin2ð2πτTÞ

�
; ð15Þ

appears in the rhs after the integration over ω=T is
performed. It thus cancels with the normalizing free
spectral function and the free part of the Ansatz simplifies
to a constant in the fit. The fit itself is performed by taking
into account all statistical correlations among the data
points, with the covariance matrix M of the extrapolated
continuum ratio R̂iiðτTÞ being estimated fromNbs available

bootstrap samples RðnÞ
ii ðτTÞ via the bootstrap estimator

Mjk ¼
1

Nbs

XNbs

n¼1

ðRðnÞ
ii ðτTjÞ − R̂iiðτTjÞÞ

× ðRðnÞ
ii ðτTkÞ − R̂iiðτTkÞÞ: ð16Þ

From the entries of the correlation matrix

Cij ¼
Mijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MiiMjj

p ðno sumÞ; ð17Þ

visualized in Fig. 3 (top) for the case T ¼ 1.1Tc, it becomes
apparent that there are statistical correlations between data
points throughout the whole range of τT > 0.1. Although
they fall off with rising distance, they are still larger than
0.5 for all points that will be considered in the fit and hence
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non-negligible in the construction of the χ2 function. This is
in accordance with [9], where the 1.5Tc data set has been
used for a similar procedure. There the fit is done with only
the diagonal parts of the covariance matrix and it yields a
very small value of χ2=dof, which is due to neglecting
correlations among the data. Figure 3 (bottom) shows the
eigenvalues of the used covariance matrices. Note that
the estimated condition number σmax=σmin ∼ 106, with
σmin =max being the smallest/largest eigenvalue of the
covariance matrix, is large, but sufficiently small for a
stable inversion of Cij.
However, the information about the small ω region

resides in the large τT region of the correlator [44], i.e.,
around its midpoint. In order to extract more information
from this region we also extract the second thermal moment
of the correlator data and account for it in the fit procedure
as an additional data point. The thermal moments are
defined by Taylor expanding around the midpoint,

GHðτTÞ ¼
X∞
n¼0

GðnÞ
H

�
1

2
− τ; T

�
n
; ð18Þ

where

GðnÞ
H ¼ 1

n!
dnGHðτTÞ
dðτTÞn

����
τT¼1=2

ð19Þ

¼ 1

n!

Z
∞

0

dω
2π

�
ω

T

�
n ρHðωÞ
sinhðω=ð2TÞÞ : ð20Þ

Because of the symmetry of the integral, the odd thermal

moments Gð2nþ1Þ
H vanish. The first thermal moment Gð0Þ

H is
the value of the correlation function at the midpoint, which
is included in the fit trivially, while the second thermal

moment Gð2Þ
H is the curvature of the correlation function at

the midpoint. In order to extract it from the lattice data, we
further define the midpoint subtracted correlator ratio by

ΔHðτTÞ≡ T2

χq

GHðτTÞ −Gð0Þ
H

Gfree
H ðτTÞ − Gð0Þ;free

H

; ð21Þ

which at the midpoint satisfies

ΔHðτTÞ ⟶
τT~1=2 T2

χq

Gð2Þ
H

Gð2Þ;free
H

; ð22Þ

hence arriving at a ratio similar to (9). Because we cannot
compute the limit (22) directly from the lattice data, we first
compute (21) for each lattice spacing for all available
distances τT < 0.5, and extrapolate this to the continuum
limit. From (21) and the expansion (18) we find an Ansatz
to extrapolate the resulting continuum extrapolated mid-
point subtracted correlator ratio to τT ¼ 0.5,

Δii ¼
T2

χq

Gð2Þ
ii

Gð2Þ;free
ii

�
1þðRð4;2Þ

ii −Rð4;2Þ
ii;freeÞ

�
1

2
− τT

�
2

þO
��

1

2
− τT

�
4
��

;

with Rðn;mÞ
X ¼GðnÞ

X =GðmÞ
X : ð23Þ

FIG. 3. Top: A heat map of the entries of the estimated
continuum correlation matrix for all points τT > 0.1 at 1.1Tc.
The axes label the row and column entry, respectively. Hence, the
midpoint τTj ¼ τTk ¼ 0.5 is located in the bottom right corner.
Bottom: The eigenvalues of the covariance matrices of the data.
Note that they decrease in a regular fashion, without strong
fluctuations.

FIG. 4. The necessary extrapolation in τT to obtain Δii for the
case T ¼ 1.1Tc. The fit interval is τT ∈ ½0.2; 0.45�, i.e., the point
at the far right is not included in the fit.
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The two unknown parameters are the thermal moment

Gð2Þ
ii =Gð2Þ

ii;free and the ratio Rð4;2Þ
ii . Figure 4 shows the

extrapolation for the case T ¼ 1.1Tc. The results for Δii

and the ratio Rð4;2Þ
ii are shown in Table III. Note that since

the obtained value for the ratio Rð4;2Þ
ii is quite accurate, we

could also use it to constrain the fits. However, looking at

(20), we see that the maximum of the weight ðω=TÞn
n! sinhðω=ð2TÞÞ in

the integrand is given by the self-consistent expression
ω=T ¼ 2n tanhðω=ð2TÞÞ, which means that for larger n the
region of dominating weight shifts to larger frequencies. In
turn, this moves the focus further away from the region of
interest.
As a remark, it would, in principle, be easier to obtain the

second moment from the continuum extrapolated ratio data
(9) in a similar fashion by expandingGiiðτTÞ=Gfree

ii in terms
of moments, as we already have it at zero lattice spacing
and no additional continuum extrapolation would be
necessary. The advantage in constructing the midpoint
subtracted correlator ratio from the data from scratch is
that the desired second thermal moment then appears in the
Ansatz (23) as its intercept, while expanding analogously
for GiiðτTÞ=Gfree

ii yields the second thermal moment as its
curvature. The former is simply more reliable to obtain
from a fit.

IV. ANALYSES OF VECTOR CURRENT
CORRELATION FUNCTIONS

When estimating the systematics of our procedure, an
essential source of uncertainty is the fit Ansatz itself.
Because of the general lack of information in an ill-posed
inversion problem, and the fact that we add information by
choosing our Ansatz, which is inspired from phenomenol-
ogy, it is not excluded that other Ansätze fit the data as well.
In the next section we thus complement the analysis of
Ansatz ρans by developing several structural changes, and
discuss what conclusion could be drawn from the respec-
tive modified Ansatz. Finally, the fit procedure is applied
using each new Ansatz, and the results are presented.

A. Spectral function Ansatz: Breit-Wigner
peakþ free continuum

In the fit of our Ansatz ρans to the extrapolated continuum
data we provide as much physical information as possible.

From the continuum extrapolations shown in Fig. 1 we see
that for all three temperatures the extrapolation results
almost agree with the data on the corresponding finest
lattice from the midpoint down to τT ≃ 0.15–0.20. This is
also where the coarsest lattice starts to bend upwards. As
the ratios are supposed to approach Rii → T2=χq in the
limit τT → 0, the “bending up” when going shorter dis-
tances is a cutoff effect. Since we want to be sure to include
only continuum data, which is free of those effects, into our
fit procedure, we aim for τT ∼ 0.2 and in practice take the
distance that yields the χ2=dof closest to unity when fitting
Ansatz ρans. This amounts to τTmin ¼ 0.187, 0.232, 0.229
for T ¼ 1.1, 1.3, 1.5Tc, respectively, which is also used as a
definite choice of fit intervals for all the following fits.
The fits of ρans to the continuum extrapolated correlator

data show a good convergence behavior and yield as a
result the three fit parameters Γ, cBW, and k and their
respective statistical fit errors; see Table IV. The relative
statistical fit errors of the parameters are roughly 25%–40%
for cBWT=Γ and 20%–30% for Γ=T. Note that the former
has been calculated taking into account the correlation of
the two parameters. The dimensionless modification k to
the large frequency free behavior is small, but distinctly
larger than 0 in all cases. Their values are reasonable when
using the leading order perturbative relation, k≃ αs=π, to
compare to other determinations of temperature dependent
running couplings [45]. However, within errors there is no
visible trend for the available range of temperatures. At this
point we treat k or αs as a constant and do not include a
dependence on ω, i.e., a running αs. In the following
subsections we study a class of spectral functions and also
model the effect of more involved perturbative large ω
behavior in Sec. IV D. The values of χ2=dof vary around
unity and show that the fit to the data performs reliably.
Using these parameters and their correlation matrix we
construct the resulting spectral function, normalized by the
frequency, with its corresponding statistical error band in
Fig. 5 (left and top right). The Hard Thermal Loop (HTL)
result [46] is also plotted and lies mostly below our estimate
of the spectral function. In the low frequency region a
straightforward HTL resummation cannot reproduce a
finite electrical conductivity as it behaves as ρHTL ∼ 1=ω
for small ω [46,47].
The electrical conductivity is obtained from the origin of

the spectral function via the Kubo relation (3), which is
proportional to the ratio of the fit parameters CBW and Γ=T,
written as follows:

TABLE III. The results for the extrapolation in τT to obtain Δii.
The fits have been performed using the full covariance matrix of
the data.

T Δii Rð4;2Þ
ii

χ2=dof

1.1Tc 1.245(14) 10.287(120) 0.67
1.3Tc 1.203(12) 10.070(108) 0.50
1.5Tc 1.200(9) 10.205(73) 0.89

TABLE IV. Results of fitting the Ansatz ρans for all three
temperatures.

T σ=ðCemTÞ Γ=T cBWT=Γ k χ2=dof

1.1Tc 0.302(88) 2.86(1.16) 0.528(154) 0.038(8) 1.15
1.3Tc 0.254(51) 3.91(1.25) 0.425(85) 0.029(9) 0.52
1.5Tc 0.266(48) 3.33(89) 0.445(80) 0.040(7) 1.13
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σ

CemT
¼ 2

3T
χq

cBW
Γ

: ð24Þ

As an intermediate step in our analysis, it is given in
Table IV for all three temperatures with the corresponding
fitting error. Consequently, the soft photon rate can also be
obtained and written in terms of the electrical conductivity
as follows,

lim
ω→0

ω
dRγ

d3p
¼ αemCem

2π2

�
σ

CemT

�
T2; ð25Þ

and is presented at the end of this work, including the
systematics developed in the following sections.

B. Spectral function Ansatz: flat transport
peakþ free continuum

The Ansatz above is motivated by kinetic theory com-
putations and arguments. On the other hand, in the strong
coupling limit the vector spectral function can be obtained
from the AdS/CFT correspondence. The resulting spectral
function in the low frequency region usually has no peak
structure [48], consisting of a flat, “featureless” shape in
ρ=ω and then going over into a typical large frequency
behavior. This transition is typically accompanied by small,
exponentially damped oscillations. A simple Ansatz
roughly showing this behavior is given by

ρflatðωÞ ¼ aχqωð1 − ~Θðω0;Δ0ÞÞ
þ ð1þ kÞρfreeðωÞ ~Θðω1;Δ1Þ; ð26Þ

with ωi and Δi chosen such that ρ=ω then results in the
desired shape. The functions ~Θðωi;ΔiÞ are smoothed
Heaviside functions

~Θðω;ωi;ΔiÞ ¼
�
1þ exp

�
ω2
i − ω2

ωΔi

��−1
; ð27Þ

which become sharp Heaviside functions in the limit
Δi → 0. The cut on the first term is needed to make sure
the large frequency regime is not affected by the low
frequency constant contribution. This is of course a very
rough model: not only is there a certain arbitrariness in the
choice of ωi and Δi, but in general there are many possible
expressions that approximately describe the desired func-
tional shape. Also, details like the exponentially damped
oscillations are not built into this model. For these reasons
we do not give definite results for the electrical conductivity
or the photon rate, and merely utilize the model to test a
nonpeaked, flat low frequency region in ρ=ω. Technically,
this change of the Ansatz, compared to the previous case,
aims at making a statement about the resolution of our fit
method regarding the low frequency region of the spectral
function.

FIG. 5. The spectral functions resulting from the fit for all temperatures. The dotted lines are the Breit-Wigner and the free
contributions separately to guide the eye. Note the consistently higher intercept of the spectral functions with the cut applied. Bottom
right: The final results for the electrical conductivity for all three temperatures as resulting from Ansatz ρans.
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When fitting ρflat to the data, we tune the cut positions ωi
and the smoothing parameters Δi in such a way that the
result from the fit roughly describes the characteristic,
featureless ADS/CFT solution. The fits work well for a
range of cuts at ωi and smoothing parameters Δi.
Throughout all temperatures they yield good fit qualities
of χ2=dof ∼ 1.1 for T ¼ 1.1,1.2Tc and χ2=dof ∼ 0.5 for
T ¼ 1.2Tc; see Fig. 6 for the resulting spectral functions.
The interpretation of this is, first, that qualitatively this type
of solution, being featureless in the low frequency region,
fits our data just as well as a broad Breit-Wigner peak,
motivated by kinetic theory, does. This implies that our
method, with regard to the available data, does not have the
resolution to differentiate between these two shapes. The
second point to make is that when varying the cut positions
in such a way that we still have a smooth curve, we always
end up with an electrical conductivity that is close to the
lower bound of the results presented in Table IV, i.e., when
using ρans.

C. Cross-check at low frequency

As a rather technical cross-check, instead of using a
Breit-Wigner peak for the low frequency part of the spectral

function, we change it to be a real δ function with variable
height,

ρδðωÞ ¼ aχqωδðωÞ þ ð1þ kÞρfreeV ðωÞ: ð28Þ

Up to the parameter k this is essentially the free case.
Theoretically, when turning off interactions, the conduc-
tivity should approach infinity, since no force changes the
state of motion of a charge. Using the Kubo formula, this is
clearly reflected in the above Ansatz ρδ for ω → 0, i.e., it is
incompatible with a finite conductivity. Thus, performing
the fit using this Ansatz we can check whether this wrong
assumption works out with our interacting data, which
should definitely yield a finite conductivity.
Performing the fit with Ansatz ρδ we find that the

procedure yields values of χ2=dof ∼ 1.5 for the two lower
temperatures, and χ2=dof ∼ 2.5, for 1.5Tc, which also
quantitatively shows a decrease in fit quality. Looking at
the resulting correlators, shown in Fig. 7 (left) for all
temperatures, we see that the reconstructed curves really
underestimate respectively the correlator data points sys-
tematically by an amount of one standard deviation or
more. Specifically, the fitted second thermal moments,
shown at τT ¼ 0.535 in the plot, drastically deviate from
the data. We conclude that the Ansatz does not describe the
data sufficiently, and also place an emphasis on the
importance of accurately determined thermal moments
for the analysis. However, one peculiarity in this case is
that, when we perform the fit without the covariance matrix
in the minimizing χ2 term, i.e., minimizing only with
respect to the diagonal terms, we end up with a function
that reconstructs the data points reasonably well at large
distances, see Fig. 7 (Right), and also shows the usual small
χ2=dof ∼Oð0.1Þ, which is typical for missing correlations.
In this case, the second thermal moment is not quite as well
reproduced compared to the data points of the ratio RiiðτTÞ,
but is still distinctly better than in the fully correlated case.
Reversing the argument, we see that the a priori insufficient

FIG. 6. The spectral function resulting from the fit of the
(coarse) model ρflat for all temperatures.

FIG. 7. Fit of a real delta peak in the low frequency region. The points at τT > 0.5 are the second thermal moments and their fit results,
respectively. Left: fit including the covariance of the data. Note how the second thermal moments are described much worse than the
corresponding correlator data points. Right: Fit without the covariance of the data. The correlator is described nicely; the thermal
moments are a bit off, but less than in the fit including the covariance. The curves are offset for visibility.
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fit Ansatz ρδ, which yields no finite conductivity, fails to
describe the data only if the information of the full
covariance matrix is incorporated in the fit. In this sense
we find that including covariances in the fit procedure
measurably enhances our resolution of the spectral function
in the low frequency region.

D. Uncertainties from the high frequency region

In order to check for uncertainties arising from the way
we model the high frequency behavior in ρans, we introduce
a low frequency cutoff multiplied to ρfreeV , as proposed in
[9], so that in total the modified Ansatz is given by

ρcutðω;ω0;Δ0Þ ¼ ρBWðωÞ þ ð1þ kÞρfreeV ðωÞ ~Θðω;ω0;Δ0Þ:
ð29Þ

The cutoff factor ~Θðω;ω0;ΔωÞ is a representation of the
Heaviside function for Δω → 0; see Eq. (27). Consider that
our choice in ρans to account for the large frequency regime
is essentially the free vector spectral function. However,
this function has positive contributions for all positive
frequencies ω > 0, and it influences the Breit-Wigner peak
for small frequencies. Thus we probe for this influence by
cutting off the low frequency part and observing how the fit
results react on this.
In order to fit the function ρcut to the continuum

extrapolated data, we first of all set the width of the
smeared Heaviside function to Δ0=T ¼ 0.5. We varied
the value of Δ0=T and found that the result does not
strongly depend on it. Applying the cut to different
frequencies ω0=T has a direct effect on the resulting
electrical conductivity, illustrated in Fig. 8. As can be
seen, it rises slightly when moving the cut to higher
frequencies, showing that the peak rises in height.
Around ω0=T ≃ 3 also Γ=T starts to rise sharply, i.e., at
that point the peak is becoming much broader to compen-
sate for the missing free contribution in the low ω regime,

and thus cBWT=Γ falls off again. The fit itself still works
well over a long range of ω0 in the sense that χ2=dof does
not change much. However, raising ω0=T further finally
makes the model not fit the data anymore. For the electrical
conductivity, we can include its maximal deviation from the
result obtained using the untruncated Ansatz as an upper
systematical error; see Fig. 5 (bottom right). The corre-
sponding spectral function with the cut applied at ω0=T ¼
3 is shown in Fig. 5 for all three temperatures.
In our standard Ansatz ρans we model the large frequency

behavior as a scaled free continuum spectral function.
Another approach is to instead incorporate a (higher order)
perturbative calculation of the vector channel spectral func-
tion. We choose to follow the strategy adopted in [49] and
utilize a spectral function that consists of two contributions,
first, the LO expression for the vector spectral function in a
thermal environment, which just corresponds to ρfreeV ðωÞ.
Second, we multiply it with the R ratio in the vacuum,
computed to N4LO [50,51], altogether leading to

ρimprðω; TÞ≡ ρfreeV ðω; TÞRðω2Þ: ð30Þ

In this case we still incorporate a factor multiplying the
perturbative spectral function, C, to account for modifica-
tions from the surrounding medium, uncertainties in the
renormalization, etc. The modified Ansatz thus is given by

ρRðω; TÞ ¼ ρBWðω; TÞ þ Cρimprðω; TÞ: ð31Þ

Fitting our data with the Ansatz ρR and listing the results in
Table V, we generally find that the transport peak becomes a
bit narrower and higher, when compared to ρans, with the
most pronounced effect at T ¼ 1.1Tc, where the peak rises
one third in height. However, the strong effect at 1.1Tc is
accompanied by huge errors of both the transport peak’s
width and height, of 50%–80%. The resulting spectral
functions for all three temperatures are shown in Fig. 9.
The parameterC is smaller than unity in all cases, and for 1.1
and 1.5Tc it is even compatible with unity within its errors.
From (31) we see, comparing to the large frequency part of
ρansðωÞ, that the factor (1þ k) corresponds to a factor of
CRðω2Þ in the improved case.On the one hand thismakes the
improvement of the large frequency part explicit, as
the correction coefficient now depends on the frequency.
On the other hand, from a purely technical point of view, the
remaining correction constant C becomes less important for

FIG. 8. The increase of electrical conductivity upon the
increase of the cutoff ω0=T in (27). It reaches its maximum
around ω0=T ≃ 3 for all three temperatures. The smoothing
parameter is fixed to Δ0=T ¼ 0.5 throughout the analysis.

TABLE V. Results of fitting the Ansatz ρR for all three
temperatures.

T σ=ðCemTÞ Γ=T cBWT=Γ C χ2=dof

1.1Tc 0.452(251) 1.62(1.09) 0.790(438) 0.993(7) 1.11
1.3Tc 0.301(87) 2.89(1.18) 0.504(145) 0.984(8) 0.53
1.5Tc 0.326(87) 2.38(85) 0.548(146) 0.996(7) 1.12
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the fit itself, as its deviation from unity is small, and partly
negligible within its errors. To state a final result from this
Ansatz, we plotted the maximum and minimum electrical
conductivity, with errors coming from the fit, as the respec-
tive right bar of the paired bars in Fig. 5 (bottom right).

V. RESULTS

Comparing the three models ρans, ρflat, and ρR in Fig. 10
(top left), we see that the area under each peak of the
spectral functions is very similar. From a rather sharp peak
to a fully flat behavior, all solutions are equally good ones
in terms of stability and χ2. Figure 10 (top right) shows the

primitive integral of ρ=ðωTÞ for all three cases, which
reveals that there is a range of frequencies, roughly
ω=T ≳ 3, for which the areas under the curves are the
same. There is a sum rule found in perturbation theory [21],
which states that the area under ρ=ω over the peak region is
independent of the coupling, i.e., fixed for our purposes.
The authors compute an explicit expression in the frame-
work of kinetic theory, given by

Z
d

�
ω

T

�
ρðωTÞ
ωT

¼ 2π

3
Nc; ð32Þ

where we suppressed a factor Cem, which is not contained
in the spectral function we obtain from the continuum
extrapolated correlators. We plot this value as a straight line
for reference. Information about the exact shape of the
spectral function is difficult to obtain using Euclidean data,
because for small frequencies Kðω; τ; TÞ → 2=ω, indepen-
dent of τ, and thus (1) is fulfilled for any spectral function
whose low frequency region has the correct area. This
effect we clearly also see in our fit procedure working on
nonperturbative continuum data. The sum rule also reflects
the small electrical conductivities obtained by fitting ρflat,
compared to the other Ansätze, which inhibit peaked
structures. As discussed in Sec. III, the width of the peaks,
in the Ansätze that feature a Breit-Wigner peak at small
frequency, is characteristic for the strength of the

FIG. 9. The resulting spectral function when utilizing pertur-
bative input.

FIG. 10. Top left: The solutions of different Ansätze compared for T ¼ 1.1Tc. Note that the difference between ρR and ρans is most
pronounced at T ¼ 1.1Tc. Top right: Integrating ρ=ðωTÞ up to ωmax, i.e., numerically computing its primitive function for T ¼ 1.1Tc.
Bottom: The thermal moments for all T and their respective reconstructions from the fit, shown for all three models ρans, ρflat, and ρR.
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interactions in the medium. We generally find Γ=2 ∼OðTÞ
in all of our fits. A width of this order is typical for a
strongly coupled regime, and the corresponding scale for a
weakly coupled plasma is Γ=2 ∼OðgTÞ [7], which is
parametrically smaller. Thus, our fitting results, obtained
using the Ansätze motivated from kinetic theory and from
the AdS/CFT correspondence, are both in agreement with
expectations of a rather strongly coupled medium from 1.1
to 1.5Tc and with qualitative features expected from
perturbation theory, although perturbative estimates usually
overestimate the electrical conductivity for example.
Calculations at finite momenta may offer an alternative
way to estimate the electrical conductivity as the system
becomes more perturbative at the relevant scales as
observed in the study in [32], which can be used to further
reduce the systematic uncertainties of the spectral function
also at zero momentum.
As mentioned before, generally the fits of the models

ρans, ρpart, and ρflat to the correlator data yield equally good
results, which shows the difficulties in resolving details of
the transport region of the spectral function. We find that
utilizing the covariance of the data points in the fit generally
increases the resolution of the procedure with respect to the
low frequency region, as described in Sec. IV C, and also
generally enhances the quality of the fit, in the sense that
the errors on the resulting parameters are smaller compared
to fits without the covariance matrix. The role of the second
thermal moment as a constraint in the fit, however, turns out
to be a more subtle one: On the one hand, when ignoring
the covariance of the data, fitting with the second thermal
moment as a constraint essentially also shows the effect of
reducing the errors on the resulting fit parameters, as
opposed to not constraining the fit with the thermal
moment. But this effect does not appear when fitting with
the full covariance of the data, showing that the information
on the curvature of the correlation function is already
largely contained in the statistical correlation. On the other
hand, in the fit of ρδðωÞ, done with the full covariance of the
data, it still serves as a very strong indication that the fit
breaks down. This observation motivates us to also show

the reconstruction of the extrapolated second thermal
moment and the ratio of the fourth to second thermal
moments in Fig. 10 (bottom) for all temperatures. The
reconstructed values from the fits [apart from ρδðωÞ]
generally are in accord with the second thermal moments
as extracted from the data, which underlines that our fits
work well from the point of view of fit quality. Although
the second thermal moment is especially sensitive to the
low frequency region of the spectral function, at the current
state of data accuracy we cannot clearly differentiate
between the models ρans, ρR, and ρflat using this observable.
Considering that for T ¼ 1.1Tc and T ¼ 1.5Tc the thermal
moment for ρflat deviates from the data visibly, but within
errors, increasing the accuracy of the thermal moment data

might provide a handle for this. The ratios Rð4;2Þ
ii are not

included in the fit as a constraint, but a posteriori (re)
constructed from the data and resulting fit parameters,
respectively. They compare within errors, although for
T ¼ 1.1Tc and T ¼ 1.5Tc the results from the fit do not
compare well. Note that the value from ρδ compares as well
as any other reconstructed value, unlike in the case of the
second moments discussed above. As expected in Sec. III
from a rather qualitative argument, we thus see here
explicitly that the ratios of the fourth to second thermal
moment are indeed far less sensitive to the low frequency
region than the second thermal moments.
Our final results for the electrical conductivity for all

three temperatures are summarized in Fig. 11 (Right). In the
plot we show the respective minimum and maximum value
resulting from the two Ansätze ρans and ρR, to incorporate
the full systematics found in our analysis,

σ

CemT

����
1.1Tc

¼ 0.201–0.703

σ

CemT

����
1.3Tc

¼ 0.203–0.388

σ

CemT

����
1.5Tc

¼ 0.218–0.413:

FIG. 11. Left: The thermal dilepton rate as obtained from ρR as a function of ω=T, accompanied by the HTL rate and the
noninteracting Born rate. Right: The final results for the electrical conductivity. They incorporate the full systematics, i.e., the minimum
and maximum conductivities, respectively, of ρans and ρR.
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In this temperature region they are comparable to recent
lattice QCD results using dynamical fermions [15,16,52].
Note that in these studies a drop of the electrical conductivity
is observed when going to smaller temperatures around Tc,
which may be due to the different nature of the deconfine-
ment transition. For a comparison of recent lattice QCD
results see [15] and a comparison of different determinations
of the electrical conductivity can be found in [19].
For a comparison of different calculations of the elec-

trical conductivity see [19]. The resulting thermal dilepton
rates, obtained from the spectral function ρR via the first
expression of (4), are shown in Fig. 11 (left) for all three
temperatures and a sum of squared charges of Cem ¼P

iq
2
i ¼ 5=9, corresponding to two valence quark flavors u

and d. Our rates are qualitatively comparable to the rate
obtained by an HTL calculation [46] in the large frequency
region, as well as to the leading order (Born) rate. However,
compared to the HTL computation, our results show an
enhancement in the intermediate region ω=T ∼ 2 and a
qualitatively different behavior for small frequency, as the
leading term forω → 0 is different (see also Fig. 5). Finally,
the soft photon rate is given for all temperatures by the
electrical conductivity via (25), and Cem ¼ 5=9, as

ω
dRγ

dp3

����
1.1Tc

¼ f5.00–17.48g × 10−5T2
c;

ω
dRγ

dp3

����
1.3Tc

¼ f7.05–13.47g × 10−5T2
c;

ω
dRγ

dp3

����
1.5Tc

¼ f10.08–19.18g × 10−5T2
c:

The photon rates at the two higher temperatures show a
slight trend to rise with temperature, but this is within
errors, and for the lower bound alone this trend is true for
all T. However, the lowest temperature suffers from a large
upper bound, which is also seen in the determined electrical
conductivity.

VI. CONCLUSION AND OUTLOOK

Using nonperturbatively improved Wilson-clover
valence fermions we performed continuum extrapolations
of light vector channel correlation functions at three
temperatures. The extrapolations yield reliable results with
errors at the subpercent level. A consequence of boot-
strapping the extrapolation is that the covariance matrix of
the data can be computed and is shown to permit stable fits.
Employing a phenomenologically motivated Ansatz for the
corresponding spectral function, these are used to perform a
fully correlated χ2 minimization and to obtain results for
the spectral functions and thus the electrical conductivities
via a Kubo relation, the thermal dilepton rates, and the soft
photon rates. The second thermal moments, obtained from
a separate continuum extrapolation, are found to be

sensitive to the low frequency region of the spectral
function, while the ratios of the fourth to the second
thermal moment are sensitive to a region at larger fre-
quency. Different systematics related to the Ansatz are
investigated. We find an essential improvement of the fit
with respect to the low frequency region when performing
the fit fully correlated, as opposed to neglecting the
covariances of the data. Fitting a form of Ansatz inspired
by the phenomenology of a strongly coupled QGP shows a
comparable fit quality to the Ansatz motivated by a
quasiparticle description, which implies that our procedure
at this time does not resolve a difference between these two
differently shaped spectral functions. This difficulty is
reflected by the fact that the different spectral functions,
extracted from our nonperturbative data, all fulfil a sum rule
that is valid in the low frequency region. However, by
observing the resulting peak widths from the fits of a Breit-
Wigner peak, we find that they are of the order of
Γ=2 ∼OðTÞ, which reveals that both the peaked Ansätze
and the flat Ansatz hint at a strongly coupled medium. The
use of a perturbative estimate for the large frequency part of
the spectral function is found to generally increase the upper
bound of the electrical conductivity. The electrical conduc-
tivities are in accordance with earlier results obtained by
MEM and χ2-minimization methods. We find no significant
temperature dependence in the temperature range investi-
gated, as was expected from the weak temperature depend-
ence of the correlation functions. The thermal dilepton rates
are compared to the HTL and leading order rates and show
almost no temperature dependence in the analyzed temper-
ature region, either. The lower bound on the determined soft
photon rates clearly follows a trend by rising with temper-
ature. However, the overall large errors, especially at
T ¼ 1.1Tc, make it difficult to determine a general trend.
The use of a higher order perturbative estimate for the

large frequency behavior of our Ansatz opens two concrete
possibilities. First, because for two temperatures the result-
ing constant in front of the large frequency part of the
spectral function is compatible with unity within errors, we
mark that in this sense further improvements might make it
superfluous and thus reduce the number of parameters in
the fit. Second, the low frequency behavior of the pertur-
bative estimate is merely leading order. By incorporating
additional, possibly perturbative, input there, the resolution
of the fit in the low frequency region might increase. A fit
with a general polynomial Ansatz for the low frequency
region, and constraints on a smooth connection to the
perturbative large frequency behavior, has been done in
[32] on the same data as used in this work leading to results
in agreement with the ones presented here. Additionally,
fits were performed to the same continuum extrapolated
vector correlators, but featuring nonvanishing spatial
momenta, which allows for an evaluation of photon rates
at frequencies ω > 0 and also opens the possibility to
estimate the electrical conductivity and diffusion

THERMAL DILEPTON RATES AND ELECTRICAL … PHYSICAL REVIEW D 94, 034504 (2016)

034504-13



coefficients in general from correlation functions at non-
zero momenta. A natural extension of these studies should
be an investigation at lower temperatures closer to Tc and
below. As light quark degrees of freedom become more
important and vector resonance contributions emerge at
lower temperatures, this is well justified only in the
presence of dynamical quarks.
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