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We perform a high-precision calculation of the phase shifts for π-π scattering in the I ¼ 1, J ¼ 1 channel
in the elastic region using elongated lattices with two mass-degenerate quark flavors (Nf ¼ 2). We extract
the ρ resonance parameters using a Breit-Wigner fit at two different quark masses, corresponding to
mπ ¼ 226 MeV andmπ ¼ 315 MeV, and perform an extrapolation to the physical point. The extrapolation
is based on a unitarized chiral perturbation theory model that describes well the phase shifts around the
resonance for both quark masses. We find that the extrapolated value, mρ ¼ 720ð1Þð15Þ MeV, is
significantly lower that the physical rho mass and we argue that this shift could be due to the absence
of the strange quark in our calculation.
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I. INTRODUCTION

A large experimental and theoretical effort is dedicated
to measuring scattering cross sections in different channels,
extracting phase shifts, and determining the parameters for
resonances. Lattice QCD calculations can be used to
complement these efforts by providing input that is either
difficult to measure directly or not accessible in experi-
ments, for example by using nonphysical quark masses
which can help develop better phenomenological models.
In this study, we will focus on the ρð770Þ resonance in the
isospin-1, spin-1 channel for pion-pion scattering. This
resonance was the subject of a number of lattice QCD
calculations [1–12], with the results for phase shifts
becoming more and more precise and the quark masses
getting closer to the physical point.
Scattering information is determined from lattice QCD

indirectly by computing the energy of the two-hadron states
in a finite box with periodic boundary conditions. In a
series of papers Lüscher derived a formula connecting the
two-hadron energy states with the phase shift, valid up to
exponential corrections that decrease with volume [13–16].
The formula was originally developed for two particle
states with total zero momentum in a cubic box and it
was latter extended to nonzero momentum states (boosted
frame) [17] and asymmetric (elongated) boxes [18]. These
extensions were developed to extract phase shifts in differ-
ent kinematic regions, where the relative momentum of the
scattering particles is smaller that in the original setup when
using similar lattice volumes. In this study, we use
elongated boxes and extract phase shifts both for zero-
momentum states and for boosted states, states with a

moving center-of-mass, so that we can finely scan the
phase-shift pattern around the resonance region.
Our study is carried out using Nf ¼ 2 dynamical

configurations with nHYP (normalized hypercubic
smeared clover) fermions [19]. This study extends a
previous calculation [5] by adding a larger base of
interpolator fields and a set of ensembles at lower pion
masses. Using two different sea quark masses allows us to
extrapolate to the physical point. The need for a larger
interpolator field basis is discussed below.
To obtain the energy spectrum of a resonance in a

specific scattering channel, the choice of the interpolating
fields is nontrivial. The interpolating fields should not only
have the correct symmetries but also have enough overlap
with the relevant eigenstates of the system. For example, it
is known (and our study confirms it) that the quark-
antiquark (qq̄) operators do not have enough overlap with
the few lowest energy states in the channel studied in this
paper and two-hadron interpolator fields are required.
Moreover, as the pion mass becomes smaller, more multi-
hadrons states appear near and below the resonance region.
As a result, more and more multihadron operators have to
be included in order to capture these states. For the channel
studied in this paper, two-pion states with different scatter-
ing momentum have to be included to resolve the energy
spectrum near the ρ resonance region.
The large interpolating field basis leads to a large number

of correlation functions that need to be evaluated using
lattice QCD techniques. The most computational demand-
ing diagrams are the four-point correlation functions that
arise from Wick contractions generated by the two-hadron
interpolating fields. These diagrams require knowledge of
the quark propagator from all points on the lattice to all
other points. Direct evaluation of this all-to-all propagator
is impractical. The standard techniques used to overcome
this problem are stochastic evaluation or Laplacian-
Heaviside (LapH) smearing [20], which only require the
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evaluation of the quark propagator in a smaller subspace. In
our previous study [5] we used a stochastic method, but we
decided to use LapHmethod in this study. The advantage of
the latter method is that it separates the calculation of the
quark propagator from the evaluation of the hadronic
correlation functions and it allows more flexibility in
constructing the interpolator basis.
Note that in this study we use dynamical configurations

with two mass-degenerated fermions (Nf ¼ 2) and the
effects of the strange sea quarks are not included. This is
not ideal if one wants to compare the results with the
physical ones but it does have some advantages. First, it has
the advantage that the Lüscher equation can be used in the
entire region below the 4mπ threshold because the KK̄
channel is absent. Second, the results of this study allow us
to gauge the impact of the strange quark on the properties of
the ρ resonance. As we will show, at least in some respects,
the absence of the strange quark leads to surprisingly large
effects.
We analyze two sets of ensembles with different sea

quark masses: one corresponding to mπ ¼ 315 MeV and
the other to mπ ¼ 226 MeV. For each pion mass we use
three ensembles with different lattice geometry. For each
ensemble we analyze states at rest P ¼ ð0; 0; 0Þ, and states
moving along the elongated direction with momentum
P ¼ ð0; 0; 1Þ. For each case, we use four different qq̄
interpolators and two or three π-π operators in the varia-
tional basis. We extract the lowest three or four energy
states using the variational method [15]. For each energy
we compute the associated phase shift and then extract the
resonance parameters using both Breit-Wigner parametri-
zation and a unitary chiral perturbation theory (UχPT)
model based on Ref. [21].
The outline of this paper is the following: in Sec. II, we

discuss the technical details of our analysis. In Sec. III, we
present the results for the energy spectrum and the
associated phase shifts. In Sec. IV, we discuss the extraction
of the resonance parameters and the extrapolation to the
physical point. In Sec. V, we present our conclusion and
discuss future plans.

II. TECHNICAL DETAILS

A. Phase-shift formulas

As we mentioned in the Introduction, Lüscher derived a
relation between the two-hadron state energies and their
scattering phase shift [16]. In this study we use extensions
of this formula to elongated boxes and to states boosted
along the elongated direction. In this section we collect the
relevant formulas.
In a finite volume box with periodic boundary condi-

tions, the internal symmetries such as flavor and isospin are
the same as in the continuum. However, the spatial
symmetries are reduced to the symmetry group of the
box (at least for zero-momentum states). In this study, we

consider boxes elongated in one direction, which we take to
it be the z direction. For this geometry the rotational
symmetry is reduced to the D4h group which is a subgroup
of the full rotation group SOð3Þ. In this case, the multiplets
transforming under the irreducible representations (irreps)
of the SOð3Þ group are no longer irreducible under the
action of D4h group. Instead, they are split into multiplets
corresponding to irreps of theD4h group. The resulting split
for the lowest angular momentum multiplets is listed in
Table I. The ρ resonance has angular momentum l ¼ 1 and
negative parity. The irrep l ¼ 1 will split into A−

2 and E−

irreps. A−
2 is a one-dimensional irrep and the lowest states in

this channel correspond to π-π states with a back-to-back
momentum along the elongated directions. E− is a two-
dimensional irrep and the lowest states in this channel
correspond to pions moving in the two transversal direc-
tions. These later states change very little when varying the
elongation of the box. Since we want to vary the scattering
momentum using the elongation of the box, we will focus
on states in the A−

2 irrep.
We note that the states in the A−

2 irrep belong to different
irreps of SOð3Þ. From Table I we can see that the A−

2 irrep
couples not only to l ¼ 1, but also to other higher angular
momentum channels such as l ¼ 3, l ¼ 5, and so on.
However, to study the ρ resonance, we are interested in
two-pion states with relatively small scattering momenta. In
this energy region the phase shifts for the l ≥ 3 channels are
small and their contribution can be safely neglected.
Lüscher’s formula for zero-momentum states in asym-

metric boxes was derived previously [18] and the possibility
to use elongated boxes to scan resonances was also consid-
ered in Ref. [22]. We present here the form for elongated
boxes, with geometry L × L × ηL, we used in our previous
study [5,23]. We use the generalized zeta function

Zlmðs; q2; ηÞ ¼
X
n∈Z3

Ylmð ~nÞ
ð ~n2 − q2Þs ð1Þ

where the harmonic polynomials are

Ylmð ~nÞ ¼ ~nlYlmðΩ ~nÞ ð2Þ

with

TABLE I. Resolution of angular momentum from irrep of D4h
group.

l D4h

0 Aþ
1

1 A−
2 ⊕ E−

2 Aþ
1 ⊕ Bþ

1 ⊕ Bþ
2 ⊕ Eþ

3 A−
2 ⊕ B−

1 ⊕ B−
2 ⊕ 2E−

4 2Aþ
1 ⊕ Aþ

2 ⊕ Bþ
1 ⊕ Bþ

2 ⊕ 2Eþ
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~n ¼ ðn1; n2; n3=ηÞ; n ∈ Z3: ð3Þ

The phase-shift formula relevant for the A−
2 irrep of theD4h

group is

cot δ1ðkÞ ¼ W00 þ
2ffiffiffi
5

p W20; ð4Þ

where the W function is

Wlmð1; q2; ηÞ ¼
Zlmð1; q2; ηÞ
π3=2ηqlþ1

: ð5Þ

The normalized pion momentum q is defined in terms of the
pion momentum k,

q ¼ kL
2π

with E ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ k2
q

; ð6Þ

where E is the energy of the two-pion state and mπ is the
pion mass.
For boosted states with total momentum P, the relativ-

istic effects contract the box along the boost direction [17].
In the case of an elongated box a boost in a generic
direction will further reduce the symmetry group from D4h
to a subgroup which depends on the direction of the boost.
In this study, we consider states that have a nonzero
momentum parallel with the elongated direction. In this
case, the length contraction affects only the elongated
direction. Therefore the boost does not change the rota-
tional symmetry group which is still D4h. As a result, we
can still focus on the A−

2 irrep and use the same phase-shift
formula as in Eq. (4) with a slight modification.
For the boosted states in a cubic box with momentum

P ¼ ð2π=LÞd, where d is a triplet of integers, the relevant
zeta function is

Zd
lmðs; q; γÞ ¼

X
n∈PdðγÞ

YlmðnÞ
ðn2 − q2Þs ; ð7Þ

where

PdðγÞ ¼
�
n ∈ R3jn ¼ γ̂−1

�
mþ d

2

�
;m ∈ Z3

�
: ð8Þ

The projector γ̂−1 is defined as

γ̂−1n ¼ n∥=γ þ n⊥; n∥ ¼ vðn · vÞ=v2 and

n⊥ ¼ n − n∥: ð9Þ

The Lorentz boost factor γ can be obtained from the
velocity of the boost: γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
, where v ¼ P=E.

The energy in the center-of-mass frame is related the energy
in the lab frame

ECM ¼ E=γ: ð10Þ

The phase-shift formula is the same as in Eq. (4) but with a
modified W

Wlmð1; q2; γÞ ¼
Zd

lmð1; q2; γÞ
π

3
2γqlþ1

: ð11Þ

We extend now the phase-shift formula to boosted states
in an elongated box, with the boost in the elongated
direction. The only effect of the elongation is that the
summation region PdðγÞ changes to

Pdðγ; ηÞ ¼
�
n ∈ R3jn ¼ γ̂−1η̂−1

�
mþ 1

2
d

�
;m ∈ Z3

�
;

ð12Þ

with η̂−1m ¼ ðmx;my;mz=ηÞ, assuming that the boost and
elongation are in the z direction.
To evaluate the phase-shift formula in Eq. (4), we need to

computeZd
00ðs ¼ 1Þ andZd

20ðs ¼ 1Þ. The zeta functions as
defined in Eq. (1) and Eq. (7) diverge at s ¼ 1 and we need
to compute them via an analytical continuation. The details
for evaluating these functions are presented in Appendix A.

B. Interpolating basis

In order to extract several low-lying energy levels from
the Euclidean correlation functions, we use the variational
method proposed by Lüscher and Wolff [15]. The idea is to
construct a correlation matrix using a set of interpolating
fields with the same quantum numbers and extract the
energy levels by solving an eigenvalue problem. Choosing
a set of interpolating fields with different couplings to the
eigenstates of the Hamiltonian helps resolve energy states
that are nearly degenerated. In our case the interpolating
field set will include both quark-antiquark (single-hadron)
and multihadron interpolating fields.
The correlation matrix is constructed from two-point

functions of all the interpolating fields in the basis. If we
denote the N interpolators in the basis with Oi with
i ¼ 1;…; N, the elements of the correlation matrix are

CijðtÞ ¼ hOiðtÞO†
jð0Þi: ð13Þ

We compute the eigenvalues of the correlation matrix by
solving the generalized eigenvalue problem

Cðt0Þ−1
2CðtÞCðt0Þ−1

2ψ ðnÞðt; t0Þ ¼ λðnÞðt; t0Þψ ðnÞðt; t0Þ ð14Þ

for a particular initial time t0 and for each time slice t. For
t ∈ ½t0; 2t0� the eigenvalues were shown to behave as
[15,24]
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λðnÞðt; t0Þ ∝ e−Ent½1þOðe−ΔEntÞ�; n ¼ 1;…; N;

ð15Þ

where the correction is driven by the energy difference
ΔEn ¼ ENþ1 − En. This long-time behavior shows that the
larger interpolating basis we use, the faster the correction
for the low-energy states vanishes. However, since the
energy eigenstates get denser in the higher-energy part of
the spectrum, the payoff of the variational method
decreases as the size of the correlation matrix increases.
As we explained earlier we focus on the states in the A−

2

irrep, mainly because the lowest states in this channel
correspond to scattering states where the pions move in the
elongated direction. The energy of these states changes as
we increase the elongation and we can scan the resonance
region. For the volumes considered in this study, the elastic
region, E < 4mπ, contains only the lowest three or four
states and our focus will be on designing a set of
interpolators that allows us to compute the energies of
these states accurately. Note that as the pion mass becomes
lower and the volume is increased there are more multi-
hadron states in the elastic scattering energy region and the
basis would need to be adjusted accordingly.
To extract these states we need a basis that overlaps both

with the resonance state, which is expected to have mainly
a quark-antiquark content, and also with the states that have
a dominant two-pion content. From a numerical point of
view, the quark-antiquark interpolators are advantageous,
since they lead after Wick contraction to two-point quark-
correlation functions which can be evaluated cheaply using
lattice QCD techniques. The four quark-antiquark inter-
polators are of the form

ρ0ðΓiðpÞ; tÞ ¼
1ffiffiffi
2

p ½ūðtÞΓiðpÞuðtÞ − d̄ðtÞΓiðpÞdðtÞ�: ð16Þ

Here we consider uðtÞ and dðtÞ to be the quark field
on the entire t time slice, a column vector of size
N ¼ 12 × Nx × Ny × Nz, and ΓiðpÞ to be N × N matrices.
To help with notation we define Γ0

iðpÞ using
½ρ0ðΓiðpÞ; tÞ�† ¼ ρ0ðΓ0

iðpÞ; tÞ: ð17Þ
The structure of ΓiðpÞ for the quark-antiquark interpolators
is listed in the first four rows of Table II. Two of the
interpolators are pointlike and differ only in the gamma-
matrix structure and the other two involve a covariant
derivative

ð∇kÞabx;y ¼ Uab
k ðxÞδxþk̂;y − δabδx;y; ð18Þ

and they involve quark-antiquark pairs separated by one
lattice spacing.
Unfortunately, the quark-antiquark interpolators overlap

very poorly with the multihadron state (the overlap is
suppressed by a power of the lattice volume [8]). Therefore

we have to include also pion-pion interpolators in our basis.
The pion-pion interpolators are constructed to have isospin
I ¼ 1 and I3 ¼ 0, corresponding to ρ0:

ππðp1; p2Þ ¼
1ffiffiffi
2

p fπþðp1Þπ−ðp2Þ − π−ðp1Þπþðp2Þg: ð19Þ

Here we use

π−ðp; tÞ ¼
X
x

ūðx; tÞγ5dðx; tÞeipx ¼ ūðtÞΓ5ðpÞdðtÞ;

πþðp; tÞ ¼
X
x

d̄ðx; tÞγ5uðx; tÞeipx ¼ d̄ðtÞΓ5ðpÞuðtÞ: ð20Þ

To construct interpolators transforming according to A−
2

representation, we can start with any interpolator that
has some A−

2 component and project onto the relevant
subspace:

ππðp1; p2ÞA−
2
¼ 1

jD4hj
X
g∈D4h

χA−
2
ðgÞππðRðgÞp1; RðgÞp2Þ;

ð21Þ
where RðgÞ implements the rotation associated with the
symmetry transformation g, and χA−

2
is the character of g in

the A−
2 irrep.

For states with zero total momentum, P0 ¼ p1 þ p2 ¼ 0
and for nonzero momentum states with P1 ¼ ð0; 0; 1Þ we
use the following interpolators:

ππðiÞ001 ¼ ππðp1 ¼ ð0; 0; 1Þ; p2 ¼ Pi − p1Þ;
ππðiÞ002 ¼ ππðp1 ¼ ð0; 0; 2Þ; p2 ¼ Pi − p1Þ;

ππðiÞ011 ¼
1

2

X
p1∈P

ππðp1; p2 ¼ Pi − p1Þ; ð22Þ

where P ¼ fð0; 1; 1Þ; ð1; 0; 1Þ; ð−1; 0; 1Þ; ð0;−1; 1Þg, is
the set of momenta generated by symmetry transformations
RðgÞp from p ¼ ð0; 1; 1Þ which have pz > 0. The later
condition is imposed for different reasons for the ππð0Þ and

TABLE II. Interpolator structure for the quark bilinears used in
this study. The first four rows are used for the quark-antiquark
interpolators and the last row is used for the pion-pion inter-
polators. The elongation is assumed to be in the z direction and
the interpolators are chosen so that the ρ polarization is
longitudinal: γ3 and ∇3 need to be changed accordingly if the
elongation direction is changed.

i ΓiðpÞ Γ0
iðpÞ

1 γ3eip γ3e−ip

2 γ4γ3eip γ4γ3e−ip

3 γ3∇jeip∇j −γ3∇je−ip∇j

4 1
2
feip;∇3g − 1

2
fe−ip;∇3g

5 γ5eip −γ5e−ip

GUO, ALEXANDRU, MOLINA, and DÖRING PHYSICAL REVIEW D 94, 034501 (2016)

034501-4



ππð1Þ interpolators. In the zero-momentum case we impose
it because the interpolators ππðp;−pÞ and −ππð−p; pÞ are
identical. For nonzero momentum, the symmetry group
transformations mix states with different total momentum,
P1 and −P1. When computing the correlation functions of
such interpolating fields, the correlation functions between
sink and source of different momentum vanish. The non-
vanishing contributions connect states with the same total
momentum. The expectation values for correlations func-
tions associated with momentum P1 and −P1 are the same
due to symmetry, so we only need to evaluate the
contributions due to momentum P1.
The same interpolators for the nonzero momentum case

can also be derived using an analysis based on symmetries
of the Poincaré group on the lattice [25]. In our case the
little group for states with momentum P1 is C4v and the
relevant irrep is A1 since the longitudinal states have
projection 0þ in the momentum direction. We prefer to
derive them from projections onto the A−

2 irrep of D4h to
make clear that the connection between energies and phase
shifts is provided by the relation in Eq. (4).
To summarize, we use four quark-antiquark interpolators

and two pion-pion interpolators for most ensembles to form
a 6 × 6 variational basis. For the ensembles with the largest
elongation, Nz ¼ 48 for the largest pion mass and Nz ¼ 32
for the lowest mass, we add a third pion-pion interpolator

ππðiÞ002, for reasons that will be explained later. In principle,
six or seven energies can be extracted from the correlation
matrix. However, we only focus on the first three lowest
energy levels that are located in the elastic scattering region
with better signal-to-noise ratio.

C. LapH correlation functions

Our interpolator basis has quark-antiquark and pion-pion
operators. The correlation matrix will have then three types
of entries

Cρi←ρj ¼ hρiðP; tfÞρ†jðP; tiÞi ¼ −h½iPfjj0Pi�i;
Cρi←ππ ¼ hρiðP; tfÞππðp;P − p; tiÞ†i

¼ h½iPfj50P − pij50pi� − ½iPfj50pij50P − pi�i;
Cππ←ππ ¼ hππðp0;P − p0; tfÞππðp;P − p; tiÞ†i

¼ h½5p0fj5P − p0fj50pij50P − pi�
− ½5p0fj5P − p0fj50P − pij50pi�
þ ½5P − p0fj5p0fj50P − pij50pi�
− ½5P − p0fj5p0fj50pij50P − pi�
þ ½5p0fj50pi�½5P − p0fj50P − pi�
− ½5p0fj50P − pi�½5P − p0fj50pi�i: ð23Þ

Above we used the following notation for the traces
produced by Wick contractions:

½i1p1j1j…jikpkjk�≡ Tr
Yk
α¼1

ΓiαðpαÞM−1ðtjα ; tjαþ1
Þ; ð24Þ

where jkþ1 is defined to be j1 and M−1ðt; t0Þ ¼ huðtÞūðt0Þi
is the quark propagator between time slices t and t0, viewed
as a N × N matrix (for more details about the notation see
[5]). Note that Γi0 ðpÞ is meant to be Γ0

iðpÞ. We also note that
when P ¼ 0, the number of diagrams that needs to be
evaluated is reduced to one for three-point functions and to
four for four-point functions.
The two-point quark diagrams can be evaluated cheaply

by computing the quark propagator from one point on the
lattice and using the translational invariance. This is not
possible for three- and four-point diagrams. In this case the
all-to-all propagator needs to be computed which is not
practical. The LapH method [20,26] offers a way to address
this problem. This method can be understood as a form of
smearing of the quark fields, both at the source and sink,
with the added bonus that the calculation can be completely
expressed in terms of a quark propagator reduced to a
subspace of slowly moving quark states. The smearing is
purely in the spatial direction and it is gauge covariant by
construction. As such the smeared quark fields have the
same transformation properties under lattice symmetry
transformations and interpolators built out of smeared
fields have the same quantum numbers as the ones built
using the original fields.
The smearing is constructed using the eigenvectors of the

three-dimensional covariant Laplace operator,

Δt ¼ −
X3
k¼1

∇kðtÞ∇kðtÞ†; ð25Þ

with the components

Δab
t ðx; yÞ ¼

X3
k¼1

½Uab
k ðx; tÞδðxþ k̂; yÞ

þUba
k ðy; tÞ�δðx − k̂; yÞ − 2δabδðx; yÞ�: ð26Þ

This operator is negative definite and its eigenvalues
are all negative. We sort the eigenvalues so that
λ1ðtÞ > λ2ðtÞ > …. Using the eigenvectors js; ti of Δt
corresponding to eigenvalue λsðtÞ, we define the smearing
operator:

SðtÞ≡XNv

s¼1

js; tihs; tj; ð27Þ

which is the projector on the space spanned by the Nv
lowest frequency eigenmodes of the Laplacean operator.
The smearing operator only acts on the spatial and color
space. The smeared quark field is
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~qðtÞ≡ SðtÞqðtÞ: ð28Þ

As mentioned earlier, the bilinears ~̄qΓ ~q have the same
transformation properties as q̄Γq and we can use them as
building blocks for the ρ and ππ interpolators defined in the
previous section. The advantage of this substitution is that,
on one hand, the correlation functions will be less noisy,
since the overlap of these interpolators with the physical
states is better when we choose Nv appropriately. On the
other hand, as we will show below, the calculation of all
the correlation functions requires only the evaluation of the
quark propagators from 4 × Nv × Nt sources, which is a
significant improvement over evaluating the all-to-all
propagator when 4Nv ≪ N.
After Wick contractions, the correlation functions are

identical in form with the ones in Eq. (23), but the
propagator that appears in the spinorial traces in
Eq. (24) is replaced with a smeared version

hqðtÞq̄ðt0Þi → h ~qðtÞ ~̄qðt0Þi ¼ SðtÞM−1ðt; t0ÞSðt0Þ: ð29Þ
The traces in Eq. (24) are then replaced with a smeared
version

½½i1p1j1j…jikpkjk��≡

¼ Tr
Yk
α¼1

ΓiαðpαÞSðtjαÞM−1ðtjα ; tjαþ1
ÞSðtjαþ1

Þ

¼ Tr
Yk
α¼1

~Γiαðpα; tjαÞ ~M−1ðtjα ; tjαþ1
Þ; ð30Þ

where

~Γiðp; tÞαβs;s0 ≡ hs; tjΓiðpÞαβjs0; ti;
~M−1ðt; t0Þαβs;s0 ≡ hs; tjM−1ðt; t0Þαβjs0; t0i ð31Þ

are ð4NvÞ × ð4NvÞ matrices. Above, s, s0 are eigenvector
indices and α, β are spinorial indices. These relations can be
easily derived using the definition of the smearing operator
and the cyclic property of the trace. We note then that we
only require the evaluation of the smeared all-to-all
propagator ~M−1 which only requires 4Nv × Nt inversions
compared to N × Nt for the all-to-all propagator. For
example, even on the smallest lattice used in this study
N ¼ 12 × 243 ¼ 165, 888 whereas 4Nv ¼ 400, a signifi-
cant reduction.
We also note that the traces are over matrix products with

dimensions 4Nv. When evaluating a large number of
diagrams, the bottleneck becomes the matrix-matrix prod-
ucts. It is then advisable to carefully examine the required
products to reduce the calculation. One such simplification
can be implemented for matrices in this 4Nv space that
factorize in a tensor product between the spinorial and
Laplacean subspaces. For example

~Γ1ðp; tÞ ¼ γ3 ~eipðtÞ; ~eipðtÞs;s0 ≡ hs; tjeipjs0; ti: ð32Þ

The multiplication with this matrix can be implemented
four times more efficient than when using a full ð4NvÞ ×
ð4NvÞ representation for the ~Γ1 matrix.
The action of the smearing operator S can be

illustrated by acting on a point source. The magnitude of
∥ðSδxÞðyÞ∥ decays like a Gaussian away from the source,
expð−∥x − y∥2=r2Þ. The smearing radius r depends
of the on the energy cutoff, Λ ¼ −λNv

ðtÞ. We can determine
the optimal Λ by tuning individual operators to minimize
the error bars of the effective mass at a fixed time [20]. In
this study, we fix the number of Laplacean eigenvectors to
Nv ¼ 100. Since the volume varies with the ensemble, the
energy cutoff and the smearing radius change with the
ensemble too. In Fig. 1 we plot the smearing radius as a
function of Λ for the higher mass ensembles. We indicate in
the figure the smearing radii for η ¼ 1, 1.25, and 2. Note
that the change in the smearing radius from the smallest to
the largest volume is about 10%, so the smearing is very
similar on all ensembles, with r ≈ 0.5 fm.
Before we conclude we want to make a couple of points

about LapH smearing. One benefit of this method is that we
can separate the calculation of the smeared quark propa-
gator ~M−1 from computing the correlation functions. This
is very important when using a large variational basis,
especially since it allows us to add other interpolating fields
to the basis without having to redo the inversions. Another
point that we want to stress is that the smearing employed
here does not represent an approximation. The smeared
interpolating fields have the right symmetry properties even
when the number of Laplacean eigenvectors Nv is very
small. If the number is too small the overlap with the
physical states is poor and the signal-to-noise ratio will be
bad. Finally, even though the number of inversions is much
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FIG. 1. Smearing radius formπ ¼ 315 MeV and lattice spacing
a ≈ 0.121 fm. The radius is evaluated on a 163 × 32 ensembles
for Nv ¼ 25, 50, 75, and 100 and the line represents a power law
fit. The horizontal lines indicate the smearing radius correspond-
ing to Nv ¼ 100 on ensembles E1, E2, and E3.
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smaller than the total number required for the all-to-all
propagator, we still need to compute 4Nv × Nt inversions
for each configuration: 19,200 and 25,600 inversions per
configuration for the mπ ¼ 315 MeV and mπ ¼ 226 MeV
ensembles, respectively. This calculation was done using a
GPU implementation of a BiCGstab inverter [27].

D. Fitting method

To extract the mass and width of the resonance we need
to fit the phase-shift data using a phase-shift parametriza-
tion in the resonance region. For the ρ resonance a Breit-
Wigner parametrization,

tan δðEÞ ¼ EΓðEÞ
m2

ρ − E2
with ΓðEÞ ¼ g2ρππ

6π

p3

E2
; ð33Þ

describes the phase shift well close to the resonance. For a
given box geometry, this parametrization can be used to
determine the eigenvalues of the Hamiltonian using
Lüscher’s formula for A−

2 irrep in Eq. (4).
The energies Ek satisfying both Eq. (33) and Eq. (4) are

the expected eigenvalues of the Hamiltonian on periodic
boxes with geometry L2 × ηL. These solutions are func-
tions of the geometry of the box η and the parameters of the
Breit-Wigner curve and we will denote them with
Ekðmρ; gρππ; ηÞ. To determine the fit parameters we min-
imize the chi-square function

χ2ðmρ; gρππÞ ¼
X
e

δTeC−1
e δe; ð34Þ

where the sum runs over the statistically independent
ensembles with different elongations and the residue vector
is given by

ðδeÞk ¼ Ekðmρ; gρππ; ηeÞ − EðeÞ
k : ð35Þ

Above we denote with EðeÞ
k the kth energy extracted from

ensemble e and with Ce the covariance matrix for these
energies. Note that the residue vector includes the residues
for both zero-momentum states and boosted states and thus
it has between 6 and 8 entries depending on the ensemble

considered. The values for EðeÞ
k and covariance matrix Ce

are given in Appendix C. The energies are extracted using
individual correlated fits and the covariance matrices are
estimated using a jackknife analysis.

III. RESULTS

In this section we present the results for the energies and
phase shifts extracted from the ensembles used in this study
and discuss some of the salient issues. We have generated
configurations using Lüscher-Weiss gauge action [28,29]
and nHYP-smeared clover fermions [19] with two mass-
degenerate quark flavors (Nf ¼ 2). For each mass we
generated three sets of ensembles with different elonga-
tions. The elongations were chosen to ensure that the
energy spectrum for the zero-momentum states in the A−

2

channel overlaps well with the ρ-resonance region, follow-
ing the procedure described in a previous study [5].
The parameters for these ensembles are listed in

Table III. A couple of comments regarding the parameters
listed in the table. The lattice spacing was determined using
an observable based on the Wilson flow [30]: the w0

parameter [31]. This quantity can be determined with very
little stochastic error from a handful of configurations. We
used 150 configurations from ensembles E1 and E4 and
computed w0=a ¼ 1.3888ð24Þ and w0=a ¼ 1.4157ð37Þ
respectively. These measurements were used to fix the
lattice spacing using the conversion factors determined in
[32]: we computed the dimensionless quantity y ¼ m2

πt0,
determined w0ðyÞ=w0ðy ¼ 0Þ from Fig. 4 in the above
reference, and then converted to physical units using
w0ðy ¼ 0Þ ¼ 0.1776ð13Þ fm. This value of w0 was deter-
mined from a set of Nf ¼ 2 simulations where fK was used
to set the scale [33]. The scale determined this way differs
from the scale we used in our previous study [5] by 3.5%,
but we attribute this shift to the fact that the value of the
Sommer parameter [34] is difficult to define unambigu-
ously on configurations with light quarks. The value we
used in our previous study was r0 ¼ 0.5 fm, but recent
determinations of r0 from global fits of the hadronic
spectrum favor smaller values [35,36] and produce values
in agreement with the scale determined based on w0. We
decided to adopt the scale determined by w0 because the

TABLE III. The parameters for the ensembles used in this study. The lattice spacing a for each ensemble is listed as well as the number
of gauge configurations Ncfg and the number of eigenvectors used for LapH smearing. amN , afπ , and afK represent the nucleon mass,
pion decay constant, and kaon decay constant in lattice units. The two errors for the lattice spacing are stochastic, from the w0=a
determination, and a systematic one estimated to be 2%.

Ensemble Nt × N2
x;y × Nz η a [fm] Ncfg Nv amπ amK amN ampcac

u=d afπ ampcac
s afK

E1 48 × 242 × 24 1.0 0.1210(2)(24) 300 100 0.1934(5) 0.3235(6) 0.644(6) 0.01237(9) 0.0648(8) 0.03566(6) 0.1015(2)
E2 48 × 242 × 30 1.25 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
E3 48 × 242 × 48 2.0 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
E4 64 × 242 × 24 1.0 0.1215(3)(24) 400 100 0.1390(5) 0.3124(8) 0.62(1) 0.00617(9) 0.060(1) 0.03358(6) 0.0980(2)
E5 64 × 242 × 28 1.17 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
E6 64 × 242 × 32 1.33 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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method is very straightforward and it has small stochastic
errors. Note that at fixed lattice spacing in the presence of
lattice artifacts, the lattice spacing determination introduces
a systematic error. We estimate that our systematic error
associated with the lattice spacing is at the level of 2%. To
confirm the correctness of the lattice spacing we looked at
the nucleon mass, pion and kaon decays constants. We
computed the nucleon mass mN and extrapolated to the
physical point using an empirically motivated fit form [37].
The extrapolated values agree at the level of 2%, but this
may be fortuitous since the error bars of the extrapolation
were at the level of 4%. In any case this error level is in line
with the expectation from other studies that used hyper-
cubically nested stout (HEX)-smeared fermions at similar
lattice spacing [38], where the hadronic spectrum was
found to be shifted by about 2% relative to the continuum.
The values of fπ and fK were determined using the
procedure outlined in [33]. For the masses used in our
study our values for fK differ by less than 1% from the
values determined there at much smaller lattice spacing.
For each ensemble we extract the lowest three or four

levels in the A−
2 channel, since these levels correspond

roughly to the elastic region where the center-of-mass
energy is below 4mπ. To extract the energies we compute
the correlation matrixCðtÞ, solve the eigenvalue problem in
Eq. (14), and fit the extracted eigenvalues to an exponential
ansatz. In Fig. 2 we show the effective mass computed
from the three lowest eigenvalues on the E1 ensemble.
Note that the effective mass does not flatten out until
later times. To extract the energy we fit a double expo-
nential function constrained to pass through 1 at t ¼ t0:
f1ðtÞ ¼ Ae−Eðt−t0Þ þ ð1 − AÞe−E0ðt−t0Þ. For the lowest
P ¼ 0 state on ensemble E3 this fit form does not work,
due to wrap-around effects in the time direction [39,40]. We
added a constant term to the fit form to accommodate this
effect: f2ðtÞ ¼ Ae−Eðt−t0Þ þ ð1 − A − CÞe−E0ðt−t0Þ þ C. We

used this fit form with the other zero-momentum states in
all the ensembles, but the constant term produced by
minimizing χ2 was compatible with zero. For the moving
states, the wrap-around effect leads to a small, slowly
decaying term with a rate controlled by the mass difference
between the moving pion and the pion at rest δE ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ ð2π=LÞ2
p

−mπ [40]. For the states where this
contribution was significant, we used the following fit
form: f3ðtÞ¼Ae−Eðt−t0Þþð1−A−CÞe−E0ðt−t0ÞþCe−δEðt−t0Þ.
The fitting details including the choice of t0, fitting range,
fit form, energy extracted, and quality of the fit are
tabulated in Table VI in Appendix C.
We discuss now the choice of the interpolator fields and

in particular we address the question whether our inter-
polating field basis overlaps well with the lowest three
energy states in the A−

2 channel. To this end, we compare
the energy spectrum extracted using different subsets of the
interpolating fields basis. To simplify the discussion we
focus first on the E1 ensemble. The energy spectrum
extracted from different interpolating fields basis combi-
nations is plotted in Fig. 3. In the first panel, we include
only qq̄ operators. While the ground state seems to be well
approximated, the qq̄ operators have little overlap with the
first and second excited states which indicates that they are
multihadron states. In the second column, we use the ππ100
operator together with various combinations of qq̄ oper-
ators. The ground state and first excited state are well
reproduced, even when using only one qq̄ interpolator.
However, the second excited state has large error bars even
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FIG. 2. The effective mass for the lowest three energy levels of
E1 ensemble. The dashed line represent the 4mπ threshold.
Contamination from higher-energy levels is present in the early
time slices, therefore we used a double exponential to extract the
energy. The horizontal lines indicate the results of the fit.
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FIG. 3. Energy spectrum for ensemble E1 with different
interpolator basis combinations. The horizontal axis labels differ-
ent interpolator choice:O1−4 are the qq̄ interpolating fields,O5 is
ππ100 and O6 is ππ011. The vertical axis represents the energy for
the three lowest levels. Note that we use different scales for each
level. The three horizontal band shows the energy values
extracted from 6 × 6 correlation matrix. The first panel only
includes the qq̄ operators. Second panel includes ππ100 and
various qq̄ operators. The third panel has ππ100, ππ011 with
various qq̄ operators.
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if we add three other qq̄ operators, which indicates that it
has a large multihadron component. In the third panel, we
use two multihadron interpolators: ππ100 and ππ011. Once
one qq̄ operator is added to the basis, all three lowest
energy states are well determined with small error bars.
Adding more qq̄ operators to the basis does not improve the
extraction and we conclude that these lowest three states are
well captured by our set of interpolators.
To confirm the conclusion above, we fit a model based

on unitary chiral perturbation theory (see Appendix B) to
the energy levels extracted from ensemble E1 and use it to
predict the energy levels for different box elongations. The
expected energy levels are plotted in Fig. 4 as a function of
the elongation. In the graph we also indicate the expected
energy levels for two-pion states in the absence of inter-
actions. We see that for elongation η ¼ 1 which corre-
sponds to ensemble E1 the ground state is not in the vicinity
of any two-pion state and thus it is mainly a qq̄ state,
whereas the first two excited states are close to non-
interacting two-pion states, which indicates that they have
large two-hadron components. That is the reason why the
multihadron operators ππ001 and ππ011 are required to
extract these states reliably. For E1 and E2 these multi-
hadron operators are sufficient. However, for η ¼ 2.0, the
second excited state is no longer near the noninteracting
pions moving with back-to-back momentum p ¼ ð0; 1; 1Þ,
because the state with back-to-back momentum p ¼
ð0; 0; 2Þ has lower energy for this elongation. Note that
this level crossing is kinematical in nature rather than
due to a resonance. This is a peculiar feature of our
geometry due to the fact that the ordering of levels with
different transverse momenta changes when going from

small elongations to large ones. Thus, in order to extract the
second excited state reliably on E3 and E6 we need to add
the ππ002 interpolating field to our basis. For these
ensembles we use a 7 × 7 correlation matrix and extract
four energy levels since the third excited state is very close
the second excited state and below the 4mπ threshold. As a
result, we will have more data points to fit for the phase-
shift pattern in next section. The number of energy levels
we extracted for each ensemble is listed in Table VI in
Appendix C.

IV. RESONANCE PARAMETERS

We extract the resonance parameters by fitting the phase-
shift data, or equivalently the energy levels, using two
fitting forms: a simple Breit-Wigner form and a model
based on unitarized chiral perturbation theory (UχPT).
Note that when fitting the phase-shift data, the correlation
between Ecm and δðEcmÞ has to be taken into account.
The Breit-Wigner form is used in most lattice studies of the
ρ resonance since it fits the phase shift well. This also
offers a straightforward way to compare our results with the
ones from other studies. The UχPT model provides an
alternative parametrization which also captures well the
phase-shift behavior in the ρ-resonance region. Its main
advantage, and the reason we use it in our study, is that it
can be used to fit the data sets at different quark masses
simultaneously, and it offers a reasonable way to extrapo-
late our results to the physical point.
The Breit-Wigner parametrization is described in

Eq. (33). In Fig. 5 we show our phase shifts and the fitted
curves. Note that if we try to fit the entire elastic region,
Ecm < 4mπ, the quality of the fit, as indicated by χ2 per
degree of freedom, is not very good. While the curve passes
close to our points, our energy level determination is very
precise and the Breit-Wigner form is not describing the
entire energy range accurately. This is not a serious
problem since the Breit-Wigner form is only expected to
describe the data well near the resonance. Ideally, we would
restrict the fit only to a narrow region around the resonance,
but the number of data points included in our fit is also
reduced and the fit is poorly constrained. As a compromise
we decided to fit the data points that fall in the range
Ecm ∈ ½mρ − 2Γρ; mρ þ 2Γρ�. The fit quality is improved
and we will use the results of the narrower fits in the
following discussion. For the heavier pion mass the results
in lattice units are

amπ ¼ 0.1934ð5Þ; amρ ¼ 0.4878ð4Þ;
gρππ ¼ 5.47ð11Þ ð36Þ

and in physical units
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FIG. 4. Energy spectrum with different elongated factor from
unitary chiral perturbation theory in the rest frame P ¼ ð0; 0; 0Þ
(solid lines). The error bars of eigenvalues are smaller than the
symbol size (black circles). η labels the elongated factor, in
particular η ¼ 1.0, 1.25, 2.0 are the ensembles we used for
mπ ≈ 315 MeV. Here, the η ¼ 1 values are fitted and then
eigenvalues for η ¼ 1.25 and η ¼ 2 are predicted. The dashed
lines represent the energy of noninteracting pion states with
various momentum for two pions.
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mπ ¼315.4ð0.8Þð6.3ÞMeV; mρ¼795.5ð0.7Þð16ÞMeV;

Γρ¼35.7ð1.4Þð0.7ÞMeV; Γ0
ρ¼124.4ð5Þð2.5ÞMeV;

ð37Þ

where Γρ is the width at the current pion mass and Γ0
ρ is the

width extrapolated to the physical point. The widths are
evaluated using Eq. (33) with Γρ ¼ ΓBWðmρ; mπÞ and

Γ0
ρ ¼ ΓBWðmphys

ρ ; mphys
π Þ. The first error is the stochastic

error and the second one is the systematic error due to the
lattice spacing determination. For the lighter pion mass we
have

amπ ¼ 0.1390ð5Þ; amρ ¼ 0.4613ð10Þ;
gρππ ¼ 5.69ð12Þ; ð38Þ

and in physical units

mπ ¼225.7ð0.8Þð4.5ÞMeV; mρ¼749.2ð1.6Þð15ÞMeV;

Γρ¼81.7ð3.3Þð1.6ÞMeV; Γ0
ρ¼134.4ð5Þð2.7ÞMeV:

ð39Þ

We note that the Breit-Wigner fit parameters depend
mildly on the range of the fit. The mass of the resonance is
very well determined, with stochastic errors of the order of
few parts per thousand, and it is insensitive to the fit range.
This is because the place where the phase shift passes
through π=2 is well constrained by the lattice data. The
coupling gρππ is only constrained at the level of two percent
and it is more sensitive to the fit range, showing a clear drift
towards lower values as we narrow the fitting range.
If we are interested in capturing the phase-shift behavior

in the entire energy range available, we could use slight

variations of the Breit-Wigner parametrization. Indeed we
found that the quality of the fit in the full elastic region is
improved when adding barrier terms [41], especially on the
larger pion mass ensemble. However, such fitting forms
change the way the resonance mass and width are defined
making it harder to compare our results directly with other
determinations and we will not discuss these results here.
We include all the relevant data for the extracted energies
and their correlation matrix in Appendix C and invite the
interested reader to use it to fit any desired parametrization.
For the Breit-Wigner fit we found that the quality of the

fit changes significantly as we vary the pion mass within its
error bounds. If the Breit-Wigner fit was known to be the
exact description of the phase shift in the elastic region, we
could in principle use the pion mass as a fitting parameter in
this fit to further constrain its value. Since this is not the
case, we did not attempt to do this here.
We turn now to the discussion of the fit using the UχPT

model. A description is provided in Appendix B. An
important feature is that this model can be used to fit
the phase shift for both quark masses simultaneously. This
allows us to extrapolate the results to the physical point and
also to assess the corrections due to the missing strange
quark mass in our calculation. When considering only the
π-π channel, the model requires as input the pion mass, the
pion decay constant and two low-energy constants, l̂1;2.
The pion mass and decay constants used are the ones in
Table III. Note that the model can take directly dimension-
less input—amπ, afπ and the energies aE—so the sys-
tematic errors associated with the lattice spacings play no
role in the extraction of dimensionless parameters l̂1;2. The
error bars that appear in the tables below reflect just the
stochastic error.
In Table IV we show the results of fitting the UχPT

model. The model is similar to the Breit-Wigner para-
metrization: it captures the broad features of the phase shift
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FIG. 5. Phase shifts as a function of the center-of-mass energy. The error bars are slanted along the direction of the Lüscher curves. On
the left we have the mπ ¼ 315 MeV data and on the right the mπ ¼ 226 MeV data. The triangles, squares, and hexagons correspond to
data extracted from E1, E2, E3 (left) and E4, E5, E6 (right) respectively. The black curve, error bands, and fit parameters correspond to
Breit-Wigner fit to all data points in the elastic region, Ecm < 4mπ . Blue color indicates the fit to the data inmρ � 2Γρ region. The UχPT
fits are very close to the blue Breit-Wigner curves.
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in the elastic region but the quality of the fit is not good
when trying to fit all energy range. We restrict the fit range
tomρ � 2Γρ, as we did for Breit-Wigner parametrization. In
this range the quality of the fit is reasonable. The resonance
mass is determined from the center-of-mass energy that
corresponds to a 90° phase shift. The width corresponds to
the imaginary value of the resonance pole in the complex
plane. While these parameter definitions are not the same as
the ones determined from the Breit-Wigner fit, the results
are consistent as can be seen from the table.
Fitting each quark mass separately produces consistent

values for l̂1;2 which indicates that the phase-shift depend-
ence on the quark mass is well captured by this model.
Since the model is consistent for both quark masses we can
do a combined fit which allows us to pin down l̂1;2 with
even better precision. As can be seen from the table the
combined fit quality is similar to the individual ones. We
will use these parameters in the subsequent discussion.
Moreover, we can try to estimate the effects due to the

strange quark using the UχPT model by turning on the
coupling to the KK̄ channel. We fix the ππ → KK̄ and
KK̄ → KK̄ transitions from a fit to the physical data, while
keeping l̂1;2 for the ππ transition at the values we got from
fitting our data. The pion decay constant is adjusted to
mach the values in Table III. We report these estimates in
Table V. More details about the UχPT fit are included in
Appendix B.

In Fig. 6 we plot our results for the resonance mass
together with the UχPT extrapolation, in comparison with
results from other lattice groups. It is clear that the
extrapolation to the physical point in SU(2) is significantly
below the experimental value, missing it by about 50 MeV
which is about 8% of the resonance mass. The stochastic
error for the extrapolated result is tiny compared with the
shift. The systematic error due to the lattice spacing
determination is larger, but even this cannot account for
the discrepancy. The other possible sources of systematic
errors are finite lattice spacing contributions, finite volume
corrections, quark mass extrapolation error, and systemat-
ics associated with the missing KK̄ channel. The lattice
artifacts errors are included in our estimate for the sys-
tematic error associated with the lattice spacing determi-
nation. To gauge the effect of the lattice volume corrections
we compare our results with the ones from a study by Lang
et al [4]. This study was carried out on boxes of volume
ð2 fmÞ3, whereas our study uses boxes of about ð3 fmÞ3.
We see in Fig. 6 that the results agree and we conclude that
the finite volume corrections cannot account for the
discrepancy either. The errors associated with the quark
mass extrapolation are also expected to be small: in Fig. 6
we show the results of the extrapolation using a simple
polynomial extrapolation which at leading order depends
on m2

π [42,43]. The extrapolation agrees well with the
prediction of UχPT in SU(2). Moreover, a recent calcu-
lation by Bali et al. [6] close to the physical quark mass is
also consistent with our extrapolation.

TABLE IV. UχPT fits in the mρ � 2Γρ region and extrapola-
tions to the physical point. The errors quoted are statistical. The
upper two entries show the cases of heavy and light pion mass,
both individually extrapolated to the physical point. The third
entry shows the combined fit of both masses and its extrapolation.

mπ [MeV] l̂1 × 103 l̂2 × 103 mρ [MeV] Γρ [MeV] χ2=dof

315 1.5(5) −3.7ð2Þ 796(1) 35(1) 1
138 704(5) 110(3)

226 2(1) −3.5ð2Þ 748(1) 77(1) 1.53
138 719(4) 120(3)

Combined 2.26(14) −3.44ð3Þ 1.26
138 720(1) 120.8(8)

TABLE V. UχPT results for Nf ¼ 2, mρ and Γρ, and Nf ¼
2þ 1 estimates, m̂ρ and Γ̂ρ. The parameters l̂1;2 are taken from
the combined fit and the KK̄ channel parameters are taken from
fits to experimental data. The first set of errors quoted are
statistical; for m̂ρ and Γ̂ρ we also quote a set of systematic errors
associated with model dependence (see Appendix B for details).

mπ [MeV] mρ [MeV] Γρ [MeV] m̂ρ [MeV] Γ̂ρ [MeV]

315 795.2(7) 36.5(2) 846(0.3)(10) 54(0.1)(3)
226 747.6(6) 77.5(5) 793(0.4)(10) 99(0.3)(3)
138 720(1) 120.8(8) 766(0.7)(11) 150(0.4)(5)

Lang et al.
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FIG. 6. Resonance mass extrapolation to the physical point.
The red curve corresponds to an extrapolation based on the UχPT
model. The light-red curve corresponds to a simple mρ ¼
ðmρÞ0 þ const ×m2

π fit [42]. The blue band corresponds to an
Nf ¼ 2þ 1 estimate based on the UχPT model (see text). The
other lattice data-points are taken from Lang et al. [4], JLab group
studies [8,10], and Bali et al. [6]. The star corresponds to the
physical result. The error bars shown with solid lines are
stochastic. For the extrapolation the gray, thick error bar
indicates the systematic error associated with the lattice spacing
determination.
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The likely reason for the discrepancy between the
extrapolation and the physical result is the fact that the
strange quark flavor is not included in our calculation. We
note first that the results for UχPT in SU(2) agree very well
with the results of in the other Nf ¼ 2 studies by Lang and
Bali. The results when the strange quark is included are also
shown in Fig. 6 (blue band indicating estimated model
uncertainties as discussed in Appendix B). Note that the
estimated shift is surprisingly large and it reduces the
discrepancy substantially. The estimated resonance mass
curve agrees quite well with a Nf ¼ 2þ 1 lattice calcu-
lations reported by the Jlab group [8,10]. While these
estimates are likely affected by systematic errors, we feel
that they are accurate enough to indicate that the discrep-
ancy is mostly generated by the absence of the strange
quark in our calculation. We note that the magnitude of the
shift in the resonance mass due to the inclusion of the KK̄
channel is surprisingly large. The present work stresses the
importance of taking into account ππ − KK̄ loops, which is
the strength of the prediction of the UχPT model. We will
discuss this point in detail in an upcoming publication [45].

V. CONCLUSIONS

We presented a high-precision calculation of the phase
shift in the I ¼ 1, J ¼ 1 channel for ππ scattering. To scan
the resonance region we elongated the lattice in only one
direction, which makes the generation of configuration less
expensive. We used two sets of ensembles, each with three
different elongations, for two different quark masses. To
compute the phase shift we extracted the energies in the A−

2

channel both for states at rest and for states with one unit of
momentum in the elongated direction. The required two-,
three-, and four-point correlation functions were computed
using the LapH method. Elongated boxes have a different
symmetry than cubic ones and different Lüscher formulas
are required: for the zero-momentum case they were

worked out in [18,46] and in this paper we worked out
the required one for states boosted along the elongated
direction.
The phase shifts are broadly described by a Breit-Wigner

parametrization, as expected. However, our calculation is
precise enough to show that more sophisticated models are
required to describe the variation of the phase shift in the
entire elastic region. It is hoped that our results can be used
to validate these models and to constrain their parameters.
The resonance mass and gρππ coupling are extracted from

fitting a Breit-Wigner parametrization in the energy region
mρ � 2Γρ. In Fig. 7 we compare our results with other
lattice determinations. Other than the ETMC study, the
lattice data seems to be split in two groups: Nf ¼ 2þ 1

results (PACS [1] and Jlab [8,10]) which are in agreement
with Nf ¼ 2þ 1 expectations from UχPT [47], and Nf ¼
2 lattice data (Lang et al [4], Bali et al [6], and this work)
that agrees with a Nf ¼ 2 UχPT model fit to our data.
For the resonance mass, we performed an extrapolation

to the physical mass using a UχPT model, which we found
can describe well the phase-shift data at both quark masses
using the same parameters. The extrapolation results are
consistent with extrapolations based on other models [42]
and other Nf ¼ 2 lattice calculations, as discussed before.
The extrapolated results differ significantly from the
physical one and we argue that this is due to the absence
of the strange quark in our calculation.
For the quark masses used in this study, we did not find

evidence of significant finite volume effects. However, as
we lower the pion mass, larger volumes would most likely
be required. The original LapH method might turn out to be
too expensive to apply directly, but a stochastic variant was
already developed and showed to work well [11]. Note that
we did not include these data points in Fig. 7 because this
study is using the same ensemble as the Jlab group study
[10] and their results are compatible with the ones
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Bali et al. this work
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FIG. 7. Comparison of different lattice calculation for the ρ resonance mass (left) and width parameter gρππ (right). The errors included
here are only stochastic. The results labeled ETMC are taken from [3] and PACS from [1]. The band in the left plot indicates a
Nf ¼ 2þ 1 expectation from UχPT model constrained by some older lattice QCD data and some other physical input [47]. The dotted
line in the right plot indicates the gρππ that corresponds to the physical rho width [48].
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computed by the Jlab group, albeit with slightly larger
error bars.
Turning to the future, as far as phase shifts in the ρ

resonance channel are concerned, we seem to have moved
beyond proof-of-principle calculations and toward preci-
sion determinations. We anticipate that in the near future
precise calculations at the physical point might be possible
that will give us access directly to phase shifts to be
compared to values extracted from physical data. For
example, it would be interesting to see whether phase
shifts close to threshold match chiral perturbation theory
expectations, which at leading order are controlled solely
by mπ and fπ . The phase shifts calculated in this study do
not agree well with this prediction even for the data points
closest to the threshold. Note that even the experimental
determined phases also do not agree with the lowest order
chiral perturbation predictions.
Other channels are also of interest, for example the I ¼ 0

channel where the broad sigma resonance is expected to
appear, π-K scattering in the K� channels, baryon-meson
scattering, etc. We plan to investigate some of these
channels in the near future.
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APPENDIX A: ZETA FUNCTION

To compute the phase shift in Eq. (4) we need to
numerically evaluate the zeta function. For the zero-
momentum case the relevant formulas for elongated boxes
were derived in [18,46]. In the following we will show how
to extend this to the nonzero momentum states, when the
boost is parallel with the elongated direction of the box. We
discuss first the evaluation of the zeta function for cubic
boxes and then extend it to accommodate elongated boxes.
For a boosted state with momentum P ¼ d2π=L, the zeta
function in a cubic box is

Zd
lmðs; q; γÞ ¼

X
n∈Pdðγ;ηÞ

YlmðnÞ
ðn2 − q2Þs ; ðA1Þ

with

PdðγÞ ¼
�
n ∈ R3jn ¼ γ̂−1

�
mþ d

2

�
;m ∈ Z3

�
: ðA2Þ

The series above is only convergent when Re s > lþ 3=2
but the zeta function needs to be evaluated at s ¼ 1. The
function defined by the series above can be analytically
continued in the region Re s > 1=4. The analytic continu-
ation is done following Lüscher [16] and Rummukainen
[17] using the heat kernel expansion

Kðt; xÞ ¼ 1

ð2πÞ3
X

n∈PdðγÞ
ein·x−tn

2

¼ γ

ð4πtÞ32
X

n∈P0ð1=γÞ
ei2πðγ̂−1nÞ·d=2e−

1
4tðxþ2πnÞ2 : ðA3Þ

This relation is obtained using Poisson’s summation for-
mula

X
n∈Z3

fðnÞ ¼
X
k∈Z3

Z
∞

−∞
fðxÞei2πk·xd3x: ðA4Þ

The spherical projected kernel Klm is defined as Klm ¼
Ylmð−i∇ÞK which can be written as

Kd
lmðt; xÞ
¼ ð2πÞ−3=2

X
n∈Pd

YlmðnÞeðin·x−tn2Þ

¼ γ

ð4πtÞ3=2
il

ð2tÞl
X
n∈Z3

ð−1Þd·nYlmðxþ 2πγ̂nÞe− 1
4tðxþ2πγ̂nÞ2 :

ðA5Þ
Using the truncated kernels KΛ

lm ¼ Ylmð−i∇ÞKΛ with

KΛðt; xÞ≡ 1

ð2πÞ3
X

n∈PdðγÞ;jnj≤Λ
ein·x−tn

2

; ðA6Þ

we define the zeta function by separating the series terms in
two groups, a finite set close to the origin that remains in
the original form, and the rest that will be evaluated via a
kernel integral:

Zd
lmðs;q; γÞ

¼
X
n∈PdðγÞjnj<Λ

YlmðnÞ
ðn2 − q2Þs þ

ð2πÞ3
ΓðsÞ

�
δl0δm0γ

ð4πÞ2ðs − 3=2Þ

þ
Z

1

0

dtts−1
�
etq

2

KΛ
lmðt; 0Þ −

δl0δm0γ

ð4πÞ2t3=2
�

þ
Z

∞

1

etq
2

KΛ
lmðt; 0Þ

�
: ðA7Þ

For the integral on the t ∈ ½1;∞� range, the heat kernel
expansion in terms of expðin · x − tn2Þ is used, and on the
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t ∈ ½0; 1� range, the expansion in terms of exp½−ðxþ
2πnÞ2=4t� is used. In both cases the series converges the
slowest around t ¼ 1: for the t ∈ ½1;∞� range large n terms
contribute expð−tðn2 − q2ÞÞ and on the t ∈ ½0; 1� range
they contribute exp½tq2 − ð2πnÞ2=4t�. It is clear that this
series converges quickly for large n if we choose
Λ > Re q2. For the A−

2 irrep we need to evaluate Zd
00

and Zd
20. For Z

d
00, we have

Zd
00ðs; q; γÞ

¼
X
n∈PdðγÞjnj≤Λ

Y00ðnÞ
ðn2 − q2Þs þ

πγ

2ΓðsÞðs − 3=2Þ

þ γ
X

n∈P0ð1=γÞ
ei2πðγ̂−1nÞ·d=2Y00ðnÞI00ðs; q; jnjÞ

−
X
n∈PdðγÞjnj≤Λ

Y00ðnÞJ00ðs; q; jnjÞ

þ
X
n∈PdðγÞjnj>Λ

Y00ðnÞJ̄00ðs; q; γ; jnjÞ; ðA8Þ

where Y00ðnÞ ¼ 1ffiffiffiffi
4π

p and the notation used is

I00ðs; q; jnjÞ ¼
ð2πÞ3
ΓðsÞ

Z
1

0

dtts−1
ðetq2−ð2πnÞ2=4t − δjnj0Þ

ð4πtÞ3=2 ;

J00ðs; q; jnjÞ ¼
1

ΓðsÞ
Z

1

0

dtts−1etq
2

e−tn
2

;

J̄00ðs; q; jnjÞ ¼
1

ΓðsÞ
Z

∞

1

dtts−1etq
2

e−tn
2

¼ 1

ðn2 − q2Þs − J00ðs; q; jnjÞ: ðA9Þ

These functions can be expressed in terms of Euler gamma
function and exponential integral function

Γðs; zÞ ¼
Z

∞

z
ts−1e−tdt; EnðzÞ ¼

Z
∞

1

e−zt

tn
dt:

ðA10Þ

We have

J00ðs;q; jnjÞ¼
1

ðn2−q2Þs
�
1−

Γðs;n2−q2Þ
Γðs;0Þ

�
;

J̄00ðs;q; jnjÞ¼E1−sðn2−q2Þ for n2>q2: ðA11Þ

Therefore, the zeta function can be simplified to

Zd
00ðs;q;γÞ¼

πγ

2ΓðsÞðs−3=2Þþ
X

n∈PnðγÞ
Y00ðnÞJ̄00ðs;q;jnjÞ

þγ
X

n∈P0ð1=γÞ
ei2πðγ̂−1nÞ·d=2Y00ðnÞI00ðs;q;jnjÞ;

Zd
20ðs;q;γÞ¼γ

X
n∈P0ð1=γÞ

ei2πðγ̂−1nÞ·d=2Y20ðnÞI20ðs;q;jnjÞ

þ
X

n∈PdðrÞ
Y20ðnÞJ̄00ðs;q;jnjÞ: ðA12Þ

For the case of interest, s ¼ 1, the J00 and I00 integrals are

J̄00ð1; q; jnjÞ ¼
e−ðn2−q2Þ

n2 − q2
;

I00ð1; q; 0Þ ¼ 2π3=2½1 − eq
2 −

ffiffiffi
π

p
i qerfðiqÞ�;

I00ð1; q; jnj ≠ 0Þ ¼ π

jnjRe½e
2πiqjnjð1 − erfðiqþ πjnjÞÞ�:

ðA13Þ

Similarly, for s ¼ 1, the I20 integral can simplify to

I20ð1; q; jnjÞ ¼ −
ð3þ 2n2Þeq2−ðπnÞ2

2jnj4 ffiffiffi
π

p þ Re
e2πiqjnj½−3þ 2πqjnjð3iþ 2πqjnjÞ�½1 − erfðiqþ πjnjÞ�

4jnj5π ðA14Þ

where the error function is defined as

erfðzÞ ¼ 2ffiffiffi
π

p
Z

z

0

e−t
2

dt: ðA15Þ

All the relations above work for n2 − q2 ≠ 0. The series is
divergent at the points where n2 ¼ q2. To avoid this trivial
divergence these points are removed from the summation,
that is

Zd
lmðs; q; γÞ ¼

X
n∈PdðγÞ
n2≠q2

YlmðnÞ
ðn2 − q2Þs : ðA16Þ

This basically amounts to replacing 1=ðn2 − q2Þ with 0
when n2 ¼ q2. In the simplified expressions above this is
equivalent to setting

J̄lmðs; q; jnjÞ ¼ −
1

sΓðsÞ ðA17Þ
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when q2 ¼ jnj2. This is because the convergent counterpart
Jlmðs; q; jnjÞ ¼ 1=sΓðsÞ for s > 0 when q2 ¼ n2 and the
sum of J̄lm and Jlm is 1=ðn2 − q2Þ which is replaced with 0.
For the elongated box case the zeta functions also depend

on the elongation factor η. The only difference is the
domain of the summation which becomes

Pdðγ; ηÞ ¼
�
n ∈ R3

				n ¼ γ̂−1η̂−1
�
mþ d

2

�
;m ∈ Z3

�
;

ðA18Þ

where γ̂ and η̂ are defined in Eq. (9) and Eq. (12). In sum,
they can be calculated as

Zd
00ðs; q; γ; ηÞ ¼ Zd

00ðs; q; γηÞ;
Zd

20ðs; q; γ; ηÞ ¼ Zd
20ðs; q; γηÞ: ðA19Þ

APPENDIX B: UNITARIZED CHIRAL
PERTURBATION THEORY MODEL

χPT is successful in describing the meson-meson inter-
action at low energies [49,50]. However, the convergence
of the amplitude expansion in powers of the meson
momenta becomes slow when the energy increases.
Moreover, the perturbative expansion fails in the vicinity
of resonances, such as σ or ρ mesons. To describe the
resonant phase shifts and inelasticities extracted from
meson-meson scattering, one needs to extend the theory
to higher energies. UχPT is a nonperturbative method
which combines constraints from chiral symmetry and
its breaking and (coupled-channel) unitarity. The method
of Ref. [21] uses the Oðp2Þ and Oðp4Þ chiral Lagrangians
together with a coupled-channel scattering equation which
implements unitarity, and is able to describe the meson-
meson interaction up to about 1.2 GeV. The resulting
amplitudes show poles in the complex plane that can be
associated with the known scalar and vector resonances. In
the context of the inverse amplitude method [51–55], the
two-meson scattering equation reads [21]

T ¼ ½I − VG�−1V ðB1Þ

where

V ¼ V2½V2 − V4�−1V2: ðB2Þ

In Eq. (B1), G is a diagonal matrix whose elements are the
two-meson loop functions, evaluated in our case in dimen-
sional regularization in contrast to the cutoff scheme used
in the original model of Ref. [21]:

GDR
ii ðEÞ ¼ i

Z
d4q
ð2πÞ4

1

q2 −m2
1 þ iϵ

1

ðP − qÞ2 −m2
2 þ iϵ

¼ 1

16π2

�
aðμÞ þ ln

m2
1

μ2
þm2

2 −m2
1 þ E2

2E2
ln
m2

2

m2
1

þ pi

E
½lnðE2 − ðm2

1 −m2
2Þ þ 2piEÞ

þ lnðE2 þ ðm2
1 −m2

2Þ þ 2piEÞ
− lnð−E2 þ ðm2

1 −m2
2Þ þ 2piEÞ

− lnð−E2 − ðm2
1 −m2

2Þ þ 2piEÞ�
�
; ðB3Þ

where pi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2−ðm1þm2Þ2ÞðE2−ðm1−m2Þ2Þ

p
2E for the channel i, E

is the center-of-mass energy, and m1;2 refers to the masses
of the mesons 1,2 in the i channel. Throughout this study
we use μ ¼ 1 GeV and a natural value of the subtraction
constant αðμÞ ¼ −1.28.
For the case of the π-π interaction with ðI ¼ 1;L ¼ 1Þ,

the kernel of Eq. (B1), VðππÞ, can be expressed as [21]

VðππÞ ¼ −2p2

3ðf2π − 8l̂1m2
π þ 4l̂2E2Þ ; ðB4Þ

where specific combinations of low energy constants
(LECs) have been introduced, l̂1 ≡ 2L4 þ L5 and
l̂2 ≡ 2L1 − L2 þ L3. Note that these are not identical to
the SU(2) χPT low-energy constants. The one-channel
reduction given by Eq. (B4), which contains the lowest-
and next-to-leading order contributions, constitutes the fit
model for the Nf ¼ 2 lattice data of this study.

1. Coupled-channel case (ππ − KK̄)

In this section we describe the meson-meson interaction
in terms of the partial-wave decomposition of the amplitude
and apply it to the case of the ππ − KK̄ system with
quantum numbers ðL ¼ 1; I ¼ 1Þ. The partial-wave
decomposition of the scattering amplitude of two spinless
mesons with definite isospin I can be written as

TI ¼
X
J

ð2J þ 1ÞTIJPJðcos θÞ; ðB5Þ

where

TIJ ¼
1

2

Z
1

−1
PJðcos θÞTIðθÞd cos θ: ðB6Þ

In the case of two coupled channels, TIJ is a 2 × 2 matrix
whose elements ðTIJÞij are related to S-matrix elements
through the equations (omitting the I, J labels from
here on)
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ðTÞ11 ¼ −
8πE
2ip1

½ðSÞ11 − 1�; ðTÞ22 ¼ −
8πE
2ip2

½ðSÞ22 − 1�;

ðTÞ12 ¼ ðTÞ21 ¼ −
8πE

2i
ffiffiffiffiffiffiffiffiffiffi
p1p2

p ðSÞ12; ðB7Þ

with p1, p2 the center-of-mass momenta of the mesons
in channel 1 (ππ) or 2 (KK̄) respectively, that is
pi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE=2Þ2 −m2

i

p
. The S-matrix can be parametrized as

S¼
�

ηe2iδ1 ið1−η2Þ1=2eiðδ1þδ2Þ

ið1−η2Þ1=2eiðδ1þδ2Þ ηe2iδ2

�
: ðB8Þ

The interaction in the ππ − KK̄ system, is evaluated from
the Oðp2Þ and Oðp4Þ Lagrangians of the χPT expansion
[49,50]. The potentials, V2 and V4, projected in I ¼ 1 and
L ¼ 1 are [21]

V2ðEÞ ¼ −

0
B@

2p2
π

3f2π

ffiffi
2

p
pKpπ

3fKfπffiffi
2

p
pKpπ

3fKfπ

p2
K

3f2K

1
CA ðB9Þ

and

V4ðEÞ

¼ −1

0
B@

8p2
πð2l̂1m2

π−l̂2E2Þ
3f4π

8pπpKðL5ðm2
Kþm2

πÞ−L3E2Þ
3
ffiffi
2

p
f2πf2K

8pπpKðL5ðm2
Kþm2

πÞ−L3E2Þ
3
ffiffi
2

p
f2πf2K

4p2
Kð10l̂1m2

Kþ3ðL3−2l̂2ÞE2Þ
9f4K

1
CA:

ðB10Þ

The two-channel T-matrix is evaluated by means of
Eq. (B1). Note that the channel transitions in Eqs. (B9)
and (B10) depend on four low-energy constants, l̂1, l̂2, L3

and L5.

2. Meson-meson scattering in the finite
volume and UχPT model

In Refs. [22,56,57], a formalism has been developed that
is equivalent to the Lüscher framework up to exponentially
suppressed corrections. The formalism is summarized in
this section. Given the two-meson-interaction potential, as
the V with the Oðp2Þ and Oðp4Þ terms in the χPT
expansion, that is Eqs. (B2), (B9) and (B10), the scattering
amplitude in the finite volume can be written as

~T ¼ ½I − V ~G�−1V; ðB11Þ

or ~T ¼ ½V−1 − ~G�−1, similarly to Eq. (B1) in the infinite-
volume limit. In the case of boxes with asymmetry η in the
z direction, ~G can be evaluated as

~GðEÞ ¼ 1

ηL3

X
q

IðE; qÞ; ðB12Þ

where the channel index has been omitted. Here,

IðE;qÞ ¼ ω1ðqÞ þ ω2ðqÞ
2ω1ðqÞω2ðqÞ

1

E2 − ðω1ðqÞ2 þ ω2ðqÞ2Þ
;

ðB13Þ

where q ¼ 2π
L ðnx; ny; nz=ηÞ. The sum over the momenta is

cut off at qmax. The formalism can also be made indepen-
dent of qmax and related to the subtraction constant in the
dimensional-regularization method, α (as in the continuum
limit), see Ref. [58],

~G ¼ GDR þ lim
qmax→∞

�
1

ηL3

X
q<qmax

IðE; qÞ

−
Z
q<qmax

d3q
ð2πÞ3 IðE; qÞ

�

≡GDR þ lim
qmax→∞

δG; ðB14Þ

whereGDR stands for the two-meson loop function given in
Eq. (B3). For energies Ei which correspond to poles of ~T,
i.e., the energy eigenvalues in the finite volume, we can
obtain the T-matrix in the infinite volume,

T ¼ ½ ~GðEÞ −GðEÞ�−1; ðB15Þ

which is independent of the renormalization of the indi-
vidually divergent expressions.
In the general multichannel case, the energy spectrum in

a box, predicted by UχPT, is found as solution of the
equation

Det½V−1ðEÞ − ~GðEÞ� ¼ 0: ðB16Þ

As has been shown in Ref. [22], the formalism of
Refs. [22,56,57] is equivalent to the Lüscher approach
up to contributions which are exponentially suppressed
with the volume. In what follows, we refer to Ref. [59] for
the generalization of the formalism to moving frames. The
formalism of Ref. [59] is generalized to include partial-
wave mixing and coupled channels, but in the current study
the F wave is neglected.
For an equal-mass system interacting in p-wave and

moving with P ¼ 2π
ηL ð0; 0; 1Þ in the direction of the elon-

gation of the box, we find the following relations:

A−
2 ∶ − 1þ VðππÞ ~G10;10 ¼ 0 ðB17Þ

E−∶ − 1þ VðππÞ ~G11;11 ¼ 0; ðB18Þ
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with ~Glm;l0m0 given in Ref. [59] but modified as in
Eqs. (B13) and (B14) by the elongation factor η. Above,
VðππÞ is from Eq. (B4). The above relations are used to fit
l̂1; l̂2 directly to the energy levels in the finite volume.
We have also checked that the numerical results for the

phase shifts derived from Eq. (B17) are very similar to
those in Appendix A when the argument of the integrand
IðE; qÞ from Eq. (B13) is replaced as described in Ref. [22],
IðE; qÞ → ð2EÞ−1ðp2 − q2Þ−1, to remove exponentially
suppressed contributions and ensure comparability with
the Lüscher formalism. See also Eq. (18) of Ref. [59] for
the replacement in case of moving frames. In any case,
these exponentially suppressed contributions are small in
the present case.

3. UχPT fit results

The combined UχPT fit to eigenvalues at both pion
masses is discussed in Sec. III. We do not display the fit
because it is almost indistinguishable from the blue curves
in Fig. 5. The result of the chiral extrapolation is shown in
Fig. 8 with the red band indicating the statistical uncer-
tainties. The experimental data of Ref. [60] are depicted
with circles. As one can see, the Nf ¼ 2 extrapolation
remains far from the experimental data.
The two-channel UχPT formalism allows to estimate the

effect of the missing strange quark in terms of the KK̄
channel. For this, the T-matrix scattering amplitude,
Eq. (B1), is evaluated with the kernel V from Eqs. (B2),
(B9) and (B10). The LECs in the ππ → ππ transition l̂1 and
l̂2 are fixed at their values from the combined fit to the
Nf ¼ 2 lattice data (see Table IV).

The combinations of LECs appearing in the ππ → KK̄
and the KK̄ → KK̄ transitions of Eq. (B10) are different
from those of ππ → ππ and taken from a global fit to ππ
and πK experimental phase shift data, similar as in
Ref. [61]. Statistical uncertainties from this source are
not considered, because they are smaller than those from
lattice data. The relevant values from this fit are L3 ¼
−3.01ð2Þ × 10−3 and L5 ¼ 0.64ð3Þ × 10−3, l̂1 ¼ 0.26ð5Þ×
10−3, l̂2 ¼ −3.96ð4Þ × 10−3.
However, note that l̂1 and l̂2 also appear in the ππ → KK̄

and theKK̄ → KK̄ transitions [see Eq. (B10)]. It is then not
clear which values of l̂i to use in these transitions. We have
tested two variants:
(1) Evaluate the ππ → KK̄ and KK̄ → KK̄ transitions

with the l̂1 and l̂2 from the fit to Nf ¼ 2 lattice data.
(2) Set all the LECs involved in the ππ → KK̄ and

KK̄ → KK̄ transitions to the LECs from the men-
tioned fit to experimental data.

As Table IV shows, the l̂i from the fit to Nf ¼ 2 lattice data
are similar to the ones quoted above, but not entirely
compatible.
The result of the 2 → 3 flavor extrapolation with these

two variants is shown in Fig. 8 with the two blue curves
connected by the blue band. The difference between these
two strategies leads to about 20 MeV difference in the mass
of the ρð770Þ meson which gives an estimation of the
uncertainties from model consistency.
Even though the KK̄ channel has a significant impact on

the mass of the ρ, the elasticity remains close to unity when
this channel is open. This is shown in Fig. 9 (left). The
KK̄-phase shift is small and negative, as shown in Fig. 9
(right). It has the same sign as determined in Ref. [10] at an
unphysical pion mass.
Beforewe conclude,wewant to address a possible concern

regarding the four-pion channel, which we believe to have a
negligible effect on our results and conclusions. The effect is
expected to be small because the branching ratio of ρ to four
pions is smaller than 2 × 10−3 [48]. The lattice simulation
includes the four-pion channel and theUχPTmodel used here
takes this effects into account only implicitly, through a shift
in the values of the fitted low-energy constants. At the
simulation points the effect is thus, at least approximately,
included and the main uncertainty comes from the chiral
extrapolation. This is fundamentally different from theK − K̄
channel which is absent in the lattice simulation. We believe
that the uncertainty in the extrapolation is small, since the
model fits our data at two different pion masses consistently
and the extrapolation agrees very well, as can be seen from
Fig. 6, with another Nf ¼ 2 lattice calculation very close to
the physical point [6].
In summary, even with the discussed theoretical uncer-

tainty, the shift of the ρ mass by the KK̄ channel is
significant and leads to a surprisingly good post-diction of
experiment.

Nf 2 extrapolation

Nf 2 1 estimate

400 600 800 1000 1200
0

50

100

150

Ecm MeV

1
°

FIG. 8. Chiral extrapolation of the phase shift to the physical
mass (red band), obtained from the simultaneous fit to lattice
eigenvalues at both considered pion masses. Only statistical
uncertainties are indicated. The blue band shows the estimated
phase shift when including also the KK̄ channel in the two
variants mentioned in the text. To keep the figure simple,
statistical uncertainties are not indicated for these cases. They
are of the same size as the red band. Open circles indicate phase
shifts extracted from experiment [60].
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APPENDIX C: EXTRACTED ENERGIES AND CORRELATION MATRICES

In this section, we tabulate the details about fitting—fitting ansatz and fitting windows—for each energy level and for
each ensemble used in this study. These details are reported in Table VI.
As we discussed in Sec. II D, to determine resonance parameters by fitting a functional description to our phase shifts we

need to take into account cross-correlations between the extracted energies. The energies extracted from different ensembles
are uncorrelated, but there will be correlations between the levels extracted from the same ensemble. We computed these
covariance matrices using a jackknife procedure. These matrices are listed in Table VII.

U PT

Roy Steiner

850 900 950 1000 1050 1100 1150
0.80
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1.10

Ecm MeV
850 900 950 1000 1050 1100 1150

1.5

1.0

0.5

0.0

Ecm MeV

2
K

K
K

K
°

FIG. 9. Left: Elasticity of ππ → ππ at physical pion masses compared with experimental determinations [60]. The dashed line shows
the inelasticity due to the KK̄ channel alone as derived in Ref. [62] from the Roy-Steiner solution in Ref. [63]. Right: Phase shift
δ2ðKK̄ → KK̄Þ. In this figure we only show the result of variant 2 discussed in the text (results for variant 1 are very similar).

TABLE VI. Extracted energies and fitting details. The ansatz labels the fitting function used; referring to Sec. III we have d stands for
double exponential function f1ðtÞ, dc is a double exponential function plus a constant term f2ðtÞ, and dt stands for its boosted variant
f3ðtÞ. Q is the confidence level of the fit, that is the probability under ideal conditions that the χ2 is larger than the fit result.

mπ (MeV) P η n Ansatz t0 Fit Window aE χ2=d:o:f: Q

315 (0, 0, 0) 1.0 1 d 3 3–20 0.4932(16) 0.65 83
2 d 3 5–15 0.6612(14) 0.61 77
3 d 3 4–10 0.842(4) 0.61 65

1.25 1 d 3 4–15 0.4847(14) 1.5 13
2 d 3 5–14 0.5891(14) 1.5 16
3 d 3 4–12 0.785(5) 0.82 55

2.0 1 dc 3 4–16 0.4508(6) 0.96 47
2 d 3 6–17 0.5098(18) 1.23 27
3 d 3 5–15 0.6547(13) 0.92 49
4 d 3 3–12 0.704(2) 0.09 99

(0, 0, 1) 1.0 1 dt 3 5–17 0.5024(8) 0.64 77
2 d 3 5–16 0.5768(15) 0.47 89
3 d 3 3–13 0.7492(15) 0.30 96

1.25 1 dt 3 7–15 0.4701(9) 0.69 63
2 d 3 5–16 0.547(2) 0.95 47
3 d 3 3–13 0.717(2) 0.30 97

2.0 1 dt 3 3–20 0.4241(7) 0.95 50
2 d 3 5–20 0.5036(9) 1.36 17
3 d 3 5–17 0.574(1) 0.38 96
4 d 3 3–13 0.676(1) 0.37 94

226 (0, 0, 0) 1.0 1 d 3 3–15 0.4598(15) 0.82 61
2 d 3 3–12 0.6184(15) 0.09 99
3 d 3 3–8 0.820(8) 0.08 97

(Table continued)
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