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In the symmetric string fragmentation recipe adopted by PYTHIA for jet simulations, the transverse
momenta of successive quarks are uncorrelated. This is a simplification but has no theoretical basis.
Transverse momentum correlations are naturally expected, for instance, in a covariant multiperipheral
model of quark hadronization. We propose a simple recipe of string fragmentation which leads to such
correlations. The definition of the jet axis and its relation with the primordial transverse momentum of the
quark is also discussed.

DOI: 10.1103/PhysRevD.94.034034

I. INTRODUCTION

Most popular simulation models of quark jets are based
on the recursive fragmentation

q1 → h1 þ q2;…; qr → hr þ qrþ1;… ð1Þ
where r is the rank of the hadron hr. To allow baryon
production, a quark qr can be replaced by an antidiquark
ðq̄ q̄Þr. At a step q → hþ q0, we have k ¼ pþ k0, with k
denoting the 4-momenta of quark q and p denoting that of
hadron h. The momentum is shared following a splitting
distribution,

dZd2pTFh;qðp; kÞ; ð2Þ
with the normalization condition

X
h

Z
1

0

dZ
Z

d2pTFh;qðp; kÞ ¼ 1; ð3Þ

where pT ≡ ðpx; pyÞ, Z≡ pþ=kþ, X� ≡ X0 � Xz. We
place ourself in the final hadronic center-of-mass frame,
define temporarily the jet axis to be along k1, and take it as
the z axis. F depends on the flavor q ¼ u, d, s of the quark
and the species h of the hadron, whence the subscripts h, q.
Recursive fragmentation was first introduced in soft

high-energy hadron-hadron collisions [1,2], inspired by
the multiperipheral model (MPM) [3] and its multi-Regge
version [4]. These models yield the basic properties of jets
in soft collisions, including the following:

(i) leading particle effect,
(ii) limiting fragmentation,
(iii) cutoff in pT,
(iv) central plateau in rapidity,

(v) short range order (in rapidity)
(vi) local compensation of charges [5] and transverse

momenta [6].
The quark diagram representing the hadronization of a
high-energy quark-antiquark pair looks like a multiper-
ipheral diagram where the exchanged particles are quarks
instead of hadrons. It suggests [7] a quark multiperipheral
model (QMPM) of hadronization (see Fig. 3). Such a model
could explain why the properties listed above are also met
in hard collisions. The leading particle effect becomes
quark charge retention and the limiting fragmentation
becomes Feynman scaling.
The above properties can also be explained by the string

fragmentation model (SFM) [8–10], in which a massive
string stretching between the initial quark and antiquark
(or diquark) decays into small mass strings representing
hadrons or resonances. In fact the SFM can be considered
as a special type of QMPM. In particular it can be treated in
a recursive way [9,10]. The Lund group [10] found that in
order to satisfy the following assumptions,

1. symmetry under quark chain reversal,1

2. invariance of Fh;qðk; pÞ under a boost along ẑ, a
rotation about ẑ or a reflection about the ðz; xÞ or
ðz; yÞ plane,

3. independence of Fh;qðk; pÞ on k−, for fixed kþ
and kT,

the splitting function should be of the form

Fh;qðk; pÞ ¼ Z−1 expð−bLϵ2=ZÞ
× ðZ−1 − 1Þaq0 ðk0

T
2ÞðZ=ϵ2Þaqðk2

TÞ

× wq0;h;qðk02
T;pT

2;kT
2Þ=uqðkT

2Þ: ð4Þ
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1called “left-right symmetry” in [10]. It comes, in fact, from
charge conjugation symmetry.
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This form is referred to as the Lund symmetric splitting
function (LSSF). ϵ ¼ ðpþp−Þ1=2 ¼ ðm2

h þ p2
TÞ1=2 is the

hadron transverse energy. w is symmetrical under
fq;k2

Tg⇌fq0;k02
Tg together with h→ h̄. uqðkT

2Þ is fixed
by Eq. (3). Thus, the input of the model consists in the
functions aqðk2

TÞ and wq0;h;qðk02
T;pT

2;kT
2Þ.

The behavior of the LSSF at Z → 1 resembles that of a
QMPM model with “Reggeized” quarks [11]. Assumption
3 is related to a factorization property the SFM (see
Eqs. (6)–(9) of [12] or Eqs. (3.10)–(3.11) of [11]): in
Fig. 2, the hadronic states generated between two breaking

points Q and Q0 only depend on the vector QQ0��!
. It comes

from causality in the classical 1þ 1 dimensional
string model.
The Z dependence of the LSSF is much constrained,

particularly due to the assumption 3. However, there is a
large freedom in the choice of the functions aq and wq0;h;q.
In this paper, we take aqðk2

TÞ ¼ constant parameter, like in
the PYTHIA code, and consider several choices for w. We
compare them concerning the transverse momentum cor-
relations between successive hadrons. It is important to
know these correlations, which do not depend on quark
spin, to disentangle them from those coming from quark
spin, which we will study in a future paper.
The paper is organized as follows. Section II analyzes the

PYTHIA Monte-Carlo recipe for generating the transverse
momenta, writes down the corresponding splitting function
and discusses the predicted ðpT;p0

TÞ correlations.
Section III makes the comparison with a more natural
choice of splitting function. Section IV starts from the most
general QMPM and looks at a locally covariant QMPM,
built with a covariant vertex function. Section V discusses
the choice of the jet axis, more precisely the jet hyperplane,
and the effect of the primordial kT. For simplicity, we will
forget from now on the dependence on the quark flavors q,
q0 and on the hadron species h. Thus, the subscripts q, q0,
and h will be removed.

II. THE PYTHIA SPLITTING FUNCTION

In the widely used Monte-Carlo simulation code
PYTHIA, wðk02

T;pT
2;kT

2Þ is not given explicitly. Instead,
the input is the function uðk2

TÞ of Eq. (4), normalized to

Z
d2k0

Tuðk02
TÞ ¼ 1: ð5Þ

For instance, neglecting a large-kT tail,

uðk02
TÞ ¼ ðbT=πÞ expð−bTk02

TÞ: ð6Þ

The splitting q → hþ q0 is generated in two steps:
(1) The subroutine PYPT draws k0

T following the
distribution uðk02

TÞd2k0
T.

(2) The subroutine PYZDIS draws Z following the
distribution

N−1ðϵ2ÞZ−1dZð1 − ZÞa expð−bLϵ2=ZÞ; ð7Þ

where N−1ðϵ2Þ is the normalization factor given by

Nðϵ2Þ ¼
Z

Z−1dZð1 − ZÞa expð−bLϵ2=ZÞ: ð8Þ

Thus, the PYTHIA splitting function is

Fh;qðk; pÞ ¼ N−1ðϵ2Þuðk02
TÞ

× Z−1ð1 − ZÞa expð−bLϵ2=ZÞ; ð9Þ

corresponding to

wðk02
T;pT

2;kT
2Þ¼uðk2

TÞuðk02
TÞϵ2a=Nðϵ2Þ: ð10Þ

Since k0
T is drawn first and without reference to kT,

the Z-integrated splitting distribution is a function
of k0

T only. Thus there is no ðkT;k0
TÞ correlation in

PYTHIA after integration over Z. In particular,
hkT · k0

Ti ¼ 0, from which

hp2
1;Ti ¼ hk2

Ti; hp2
r;Ti ¼ 2hk2

Ti for r > 1;

hpT · p0
Ti ¼ −hk2

Ti; hpT · p00
Ti ¼ 0; ð11Þ

for ranks r0 ¼ rþ 1 and r00 ≥ rþ 2. The compen-
sation of transverse momenta is very local: it is
achieved by the adjacent particles. Note that hp2

Ti of
the first-rank hadron is half that of the other ones.

III. A SPLITTING FUNCTION WITH
ðkT;k0

TÞ CORRELATION

The presence of the factor N−1ðϵ2Þ in the function
wðk02

T;pT
2;kT

2Þ looks rather artificial, and there is no
physical reason to exclude a ðkT;k0

TÞ correlation. Let us
consider another input function,

wq0;h;qðk02
T;pT

2;k2
TÞ

¼ ϵ2a expf−bTðk2
T þ k02

TÞ þ cbLϵ2g; ð12Þ

where c is a new parameter, the meaning of which is given
later. We will take c ∈ ½0; 1�. The splitting function is then

Fh;qðk; pÞ ¼
1

ZMðk2
TÞ

expð−bTk02
TÞ

× ð1 − ZÞa exp f−bLϵ2ðZ−1 − cÞg; ð13Þ

with 1=M being the normalization factor given by
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Mðk2
TÞ ¼

Z
d2k0

T expð−bTk02
TÞ

× Nðϵ2Þ expðcbLϵ2Þ; ð14Þ

with Mðk2
TÞ expð−bTk2

TÞ ¼ uðk2
TÞ of Eq. (4).

Figure 1 compares the shapes of the splitting function
(13) and the PYTHIA one, Eqs. (6), (8), and (9). The main
difference is that the barycenter of (13) is on the side of kT,
whereas it stays at k0

T ¼ 0 for Eq. (9). The ðkT;k0
TÞ

correlation in Eq. (13) is due to the last exponential which
is a decreasing function of jpTj ¼ jk0

T − kTj for all Z. In
Eq. (9), this effect is exactly compensated by the factor
1=Nðϵ2Þ when we average over Z.
The Monte Carlo drawing of Z and k0

T from Eq. (13)
proceeds in two steps:
(1) draw Z according to the k0

T-integrated distribution

πdZð1 − ZÞa
Z½bT þ bZ�

exp

�
−bZm2

h −
kT

2

b−1T þ b−1Z

�
ð15Þ

with bZ ≡ bLðZ−1 − cÞ,
(2) draw k0

T according to the fixed-Z distribution

bT þ bZ
π

exp

�
−½bT þ bZ�

�
k0
T −

kT

1þ bT=bZ

�
2
�
;

ð16Þ
which is a translated Gaussian. At fixed Z,

hk0
Ti ¼

kT

1þ bT=bZ
≡ λðZÞkT; ð17Þ

with λðZÞ ∈ ½0; 1�, λð0Þ ¼ 1, and dλ=dZ < 0. After
integration over Z, we have, for r ≥ 2,

hkT · k0
Ti > 0; hp2

Ti < 2hk2
Ti: ð18Þ

The kT correlation spreads over several ranks, while
decreasing:

hkT · k0
Ti > hkr;T · krþ2;Ti > � � � > 0; ð19Þ

from which

−hk2
Ti þ hkT · k0

Ti < hpr;T · prþ1;Ti
< hpr;T · prþ2;Ti < � � � < 0:

ð20Þ

Equations (18)–(20) are at variance with Eq. (11).
The compensation of transverse momenta needs
more than the adjacent hadrons. Table I shows results
from Monte Carlo simulations with our splitting
function, Eq. (13), and the PYTHIA splitting
function, Eqs. (6), (8), and (9). In the first column,
hlnð1 − ZÞi is the average rapidity step per splitting.
It gives the particle density in rapidity space,

dN=dY ¼ −hlnð1 − ZÞi−1: ð21Þ

Note that an increase of c brings our splitting function
closer to the PYTHIA one.

Both PYTHIA [see Eq. (11)] and the present model
predict

hp2
1;Ti < hp2

r;Ti for r > 1; ð22Þ

because k1;T ¼ 0. This is confirmed by computer simu-
lations by A. Kerbizi [13] and us. However, this result does
not take into account the primordial transverse momentum
(see Sec. V).
An equation similar to (17) has been proposed in [14],

but with a constant λ. In their notations, ki, pi−1, and γ
correspond to our p, k and 1 − λ, respectively.
The inclusion of the quark spin degree of freedom may

reverse the inequalities (18). Indeed, the 3P0 model would

FIG. 1. Comparison of the splitting functions of Eq. (13) and
Eqs. (6), (8), and (9) in the ðZ; k0xÞ plane, for k0y¼ky¼0. Vertical
scales: k0x in fm−1. Upper figures: kx¼0; lower figures: kx¼2 fm−1.
Left figures: Eq. (13) with c ¼ 0; middle figures: Eq. (13) with
c ¼ 1; right figures: Eqs. (6), (8), and (9). The other parameters are
a¼ 1, bT ¼ 1 fm2, bL ¼ 0.25 fm2, mh ¼ mπ ¼ 0.7 fm−1.

TABLE I. Results from Monte Carlo simulations. First two
lines: our splitting function (13) with c ¼ 0 and 1. Third line:
PYTHIA splitting function, Eqs. (6), (8), and (9). The statistics
are comprised of 100 jets, each one containing 1000 particles (no
lower cutoff in energy was imposed), so the observables are those
of the rapidity plateau. pT and kT are in GeV units. Primed
quantities refer to a particle of adjacent rank. The parameters are
the same as in Fig. 1.

Model hlnð1 − ZÞi hk2
Ti

1
2

hkT·k0
Ti

hk2
Ti

hp2
Ti

1
2

hpT·p0
Ti

hp2
Ti

c ¼ 0 −0.562 0.167 0.430 0.179 −0.287
c ¼ 1 −0.598 0.176 0.302 0.207 −0.352
PYT. −0.998 0.200 0 0.283 −1=2
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predict hkT · k0
Ti < 0 and hp2

Ti > 2hk2
Ti for h ¼

pseudoscalar meson [15] if the natural ðkT;k0
TÞ correla-

tions studied here were absent. This is a “hidden spin”
effect, independent of the initial quark polarization.
Meaning of the parameter c. The product of the factors

exp ð−bLϵ2=ZÞ of Eq. (4) for the successive splittings is
equal to expð−PAÞ, where A is the total area shown in
Fig. 2, P ¼ −2ImðκCÞ ¼ 2jκCj2bL and κC is the complex
string tension. A is the space-time area of the string world
sheet which is still unaffected by the splittings and P can be
called “string fragility”. One may ask why the light-grey
rectangles like C2Q2H2Q3 should be included in A.
Indeed, if h2 is a stable hadron, a string cutting in this
rectangle is kinematically forbidden. Therefore it seems
theoretically preferable not to include such rectangles inA,
keeping only the dark-gray area. It amounts to replace
exp ð−bLϵ2=ZÞ by exp ð−bLϵ2ð1=Z − 1ÞÞ. To keep the two
possibilities open, we introduced the parameter c in
Eqs. (12)–(13). With c ¼ 0 the rectangles are included,
with c ¼ 1 they are excluded. We also allow admit
c ∈ ½0; 1�. Note that the extra factor exp ðcbLϵ2Þ does not
break the symmetry under quark chain reversal. It can indeed
be absorbed in the functionwq0;h;qðk02

T;pT
2;kT

2Þ of Eq. (4),
as we did in Eq. (12).

IV. LOCAL VERSUS GLOBAL COVARIANCE

A. The general quark multiperipheral model

Let us consider the hadronization of a quark-antiquark
pair q̄−1q1 of high center-of-mass energy squared,
s ¼ k−−1k

þ
1 . The most general QMPM for this reaction

can be defined by the distribution of q → hþ q0 vertices in
the 8-dimensional fk; k0g space,

d4kd4k02δðp2 −m2
hÞWq0;h;qðk; k0Þ

× σq̄−1;q0 ðk̄−1; k0Þσq̄;q1ðk̄; k1Þ
× 1=σq̄−1;q1ðk̄−1; k1Þ: ð23Þ

This equation is suggested by Fig. 3. k̄≡ −k;Wq0;h;qðk; k0Þ
is a vertex function which includes the adjacent quark
propagators. It is symmetrical under fq; kg⇌fq0; k0g,
h → h̄;

σB̄;Aðk̄B; kAÞ≡
X
X

σfB̄þ A → Xg ð24Þ

is the total “cross section” between a quark A of the chain
and the line-reverse of a quark B of higher rank. At large
ðk̄B þ kAÞ2, the QMPM predicts the Regge behavior:

σB̄;Aðk̄B; kAÞ≃ βBðkBÞβAðkAÞjk−BkþAjα: ð25Þ

We will omit the Regge residues β because they can be
incorporated in Wq0;h;qðk; k0Þ. The splitting function is

Fh;qðp; kÞ ¼ N −1
q ðkÞZ−1ð1 − ZÞαWq0;h;qðk; k0Þ ð26Þ

with

N qðkÞ ¼
X
h

Z
1

0

dZ
ð1 − ZÞα

Z

Z
d2pTWq0;h;qðk; k0Þ;

ð27Þ

and the recurrent quark density in the central region (large
jk−kþ1 j and jk−−1kþj) is

UqðkÞ ¼ jkþk−jαN qðkÞ: ð28Þ

The LSSF [Eq. (4)] is obtained with α ¼ 0 and the vertex
function

Wq0;h;qðk0;kÞ¼
�
k0þ

pþ

�
aq0 ðk02

TÞ
���� k

−

p−

����aqðk
2
TÞ

×expðbLk0−kþÞwq0;h;qðk02
T;pT

2;kT
2Þ ð29Þ

(equivalent to Eq. (3.2) of [11]). W of Eq. (29) is not
invariant under the full Lorentz group, due to assumption 3
of Sec. I, so we say that the model is not locally covariant.
In fact, the quark pairs qrq̄r are not created in vacuum but in
the string thickness, which is an oriented medium. The
SFM is, however, globally covariant if the initial quarks q̄−1
and q1 are generated in a covariant way.

FIG. 2. Space-time picture of the string fragmentation model.
The string breaks at points Q2 � � �Q4. Hadrons are liberated at
points H1 � � �H4 (choice c ¼ 0), but they can be considered as
really “born” at points C1 � � �C4 (choice c ¼ 1).

FIG. 3. Multiperipheral diagram illustrating Eq. (23).
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B. A locally covariant model

Let us consider a QMPM based on the old-fashioned
mutiperipheral model [3] for spinless particles, with covar-
iant vertices and propagators. Assumption 3 is abandoned
and

Wq0;h;qðk; k0Þ ¼ Wq0;h;qðk2; k02Þ; ð30Þ

with Wq0;h;qðk2; k02Þ decreasing rapidly at large jk2j and
jk02j. This model predicts a ðkT;k0

TÞ correlation. Indeed,
the kinematical relation

k02 ¼ ð1 − ZÞðk2 −m2
h=ZÞ − p2⊥k=Z; ð31Þ

with p⊥k ≡ pT − ZkT, leads to

hpTi ¼ ZkT; hk0
Ti ¼ ð1 − ZÞkT: ð32Þ

This relation is to be compared to Eq. (17). It comes from
the possibility to reorient the z axis after each splitting
along the new quark momentum. It also assumed in the
model of Ref. [16].
Equation (32) also occurs for c ¼ 1 and bL ¼ bT in

the model of Sec. III, according to Eq. (17). For these
parameters, Eqs. (12) and (29) give

Wq0;h;qðk; k0Þ ¼ jk0þk−ja expfbTðk02 þ k2 − k0þk−Þg:
ð33Þ

Owing to k0þk− ¼ ð1 − ZÞkþk−, the k0 dependance in
Eq. (33) at fixed Z and k is only through the covariant
variable k02. However, the model is not fully covariant since
a redefinition of the z axis changes kþk−, therefore
changing the Z distribution.

V. JET HYPERPLANE AND PRIMORDIAL kT

The pT’s, kT’s, and their correlations depend on the
precise definition of the jet axis, represented by the unit
vector ẑ. Indeed, a change Δẑ of ẑ induces a change ΔpT ≃
−jpjΔẑ of pT. In Sec. I, we temporarily defined the jet axis
to be along k1 in the final hadronic center-of-mass frame.
This definition involves two 4-vectors, k1, and the total
hadronic 4-momentum P. The jet properties listed in Sec. I
are invariant under a boost along the axis, i.e., under a
Lorentz transformation in the two-dimensional hyperplane
ðk1; PÞ spanned by k1 and P, so one should rather speak of
a jet hyperplane. This hyperplane can equally be defined by
k1 and k̄−1 ¼ −k−1 ¼ P − k1. In the SFM, it contains the
string world sheet. In deep inelastic lepton scattering (DIS),
k̄−1 is the 4-momentum of the target remnant.
The choice of the ðk1; PÞ hyperplane is somewhat arbi-

trary: in DIS, one may prefer the hyperplane ðptarget; k1Þ.
From the experimental point of view, only the ðptarget; pγ�Þ
hyperplane iswell defined (γ� is the virtual photon). Besides,

in any jet producing reaction (DIS, high-pT jets, eþe−
annihilation, etc.) k1 is not well defined theoretically. It is
an internal momentum in a loop diagram (see Fig. 1 of [15])
and must be integrated over, therefore the cross section is a
double integral: in k1 for the amplitude and in k01 for the
complex conjugate amplitude. The loop topology is imposed
by confinement. All recursive simulation models are
classical in that they ignore the difference k01 − k1.
Handling the primordial kT. In DIS there is a primordial

transverse momentum kTprim with respect to the
ðptarget; pγ�Þ hyperplane. In simulations, it is generated
randomly and can be taken into account in two ways:

(a) choose ðptarget; pγ�Þ as a jet hyperplane, from
which kT1 ¼ kTprim

(b) choose a jet hyperplane containing k1, from
which kT1 ¼ 0.

These two choices are equivalent for a locally covariant
model, but not for the string fragmentation model, which
makes the choice (b). Choice (a) would mean that the quark
q1 is not drawing a rectilinear string. The other side of the
string, however, is attached to the target remnant which has
a transverse size. For this side, choice (a) is not worse
than (b).
The inequality (22) holds if pT is defined relative to k1.

Relative to pγ�, it may be attenuated or even reversed,
due to the primordial kT, which adds ðpþ=kþ1 Þ2hk2

Tiprim
to hp2

Ti.

VI. CONCLUSION

We have shown that a ðkT;k0
TÞ correlation with kT ·

k0
T > 0 is naturally expected in a quark multiperipheral

model of hadronization, whereas PYTHIA assumes no
correlation. We have underlined the difference between
the string fragmentation models based on assumption 3
of Sec. I and a locally covariant QMPM, where this
assumption is replaced by the full covariance of the vertex
function. In the latter, the jet axis can be redefined after
each splitting so that the new kT is vanishing. It implies the
ðkT;k0

TÞ correlation (32). The re-orientation of the jet axis
cannot be done in the string fragmentation model because
the string is supposed to maintain its direction.
We have also pointed out theoretical ambiguities in

defining the jet axis and compared two ways of handling
the primordial transverse momentum in DIS. It would be
interesting to find an experimental trace of the inequality
(22) (where pT is defined relative to k1), in spite of the
kTprim effect.
We must keep in mind that the pT correlations studied

here should be a background under the resonance effects,
the Bose-Einstein correlations and the spin-induced corre-
lations like the di-hadron Collins asymmetry observed by
the COMPASS Collaboration [17] and the “hidden spin”
effects suggested in [15].
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