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The response of electromagnetic (EM) fields that are produced in noncentral heavy-ion collisions to
electromagnetically charged quark gluon plasma can be understood in terms of charge transport and charge
diffusion in the hot QCD medium. This article presents a perspective on these processes by investigating the
temperature behavior of the related transport coefficients, viz. electrical conductivity and the charge diffusion
coefficients along with charge susceptibility. In the process of estimating them, thermal relaxation times for
quarks and gluons have been determined first. These transport coefficients have been studied by solving the
relativistic transport equation in the Chapman-Enskog method. For the analysis, 2 → 2, quark-quark, quark-
gluon and gluon-gluon scattering processes are taken into account along with an effective description of hot
QCD equations of state (EOSs) in terms of temperature dependent effective fugacities of quasiquarks
(antiquarks) andquasigluons.Both improvedperturbative hotQCDEOSsat high temperature anda latticeQCD
EOS are included for the analysis. The hot QCDmedium effects entering through the quasiparticle momentum
distributions alongwith an effective coupling, are seen to have significant impact on the temperature behavior of
these transport parameters along with the thermal relaxation times for the quasigluons and quasiquarks.
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I. INTRODUCTION

Quantum chromodynamics (QCD)—the underlying
theory of strong interaction in nature—predicts a decon-
fined state of the nuclear matter at high temperature (higher
than QCD transition temperature Tc). Relativistic heavy-
ion collision experiments at RHIC, BNL and LHC, CERN
have reported the presence of near perfect liquid like hot
nuclear matter [1,2] which turns out to be strongly coupled
quark-gluon plasma (QGP). The QGP possesses a very tiny
value of the shear viscosity to entropy density ratio, η=S
(a few times the KSS bound [3]). The η=S has a lower
bound near the transition temperature Tc as shown by
several studies on QCDmatter based on various approaches
and the shear viscosity to entropy density ratio for the QGP
is found to be lowest among all the known fluids [4,5]. In
contrast, the bulk viscosity to entropy density ratio, ζ=S
shows an upper bound with large values [6].
There has been growing interest in understanding the

impact of strong electromagnetic (EM) fields that are
produced during the initial stages of the noncentral heavy
ion collisions [7], while investigating the hadronic observ-
ables at the later stages of the collisions. The impact of the
EM field will be certainly dependent on the strength of the
fields at the later stages as they are seen to decay quite
rapidly [8]. The response of such EM fields (electrical) to
the electromagnetically charged QGP can be understood in
terms of the electrical conductivity, σel which characterizes
the transport of the Uð1Þ conserved charge in the presence

of the gradient of a charge chemical potential. There are
several recent attempts to understand the σel in the context
of EM field in RHIC [8–11]. The electrical conductivity in
the context of charge fluctuations in heavy-ion collisions is
investigated in [12]. Moreover, there are recent proposals to
extract the electrical conductivity from the flow parameters
in heavy ion collisions [13].
The other relevant, associated physical process is the

charge diffusion, that is being quantified by the charge
diffusion coefficient,D. The electrical conductivity, σel and
the diffusion coefficient D are related by the famous
Einstein relation through the charge susceptibility, χ.
The prime focus of this work is to estimate all these

quantities for a hot QCD/QGP medium (their temperature
dependence) which is characterized by an effective quasi-
particle model. At this juncture, one needs to demarcate
between the comoving frames while modeling expanding
QGP medium, one with moving charge density and the
other one with energy density. This requires the introduc-
tion of thermal conductivity which characterizes the flow
associated with the transport of energy in response to the
temperature gradient relative to locally comoving frames
with the charge density. There are some recent attempts in
the direction [14,15], however, our work in this manuscript
does not involve any such investigation. As there are two
equivalent approaches to estimate the transport coefficients
of the hot QCD/QGP medium, viz., the linear response
theory where one could relate them to the current-current
spectral functions in thermal equilibrium through the
Green-Kubo formulas [16], the other one is to solve a
linearized transport equation in the presence of electric field
along with an appropriate collision term (again linearized)
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and invoke pertinent equations of motion (for example
Maxwell’s equations in the case of electrical conductivity
and electrical permittivities). The former approach best
suited to lattice QCD estimations of the electrical conduc-
tivity and charge diffusion coefficient. There are several
attempts from lattice QCD side to obtain the temperature
dependence of the conductivity and charge diffusion
coefficient [17–20,22–24] along with charge susceptibility
[21]. The present work follows the latter approach based on
the linearized transport equation.
There are a number of estimations of electrical conduc-

tivity (σel) by different approaches available in current
literatures. In Refs. [25–27] the electrical conductivity has
been estimated by solving the relativistic transport equa-
tion. In Refs. [28,29] the σel has been studied using off-
shell parton-hadron string dynamics transport approach for
an interacting system. In Ref. [30] σel as a function of
temperature has been estimated using the maximum
entropy method (MEM). Electrical conductivity along with
diffusion coefficient and charge susceptibility has been
estimated employing holographic technique in Ref. [31].
Recently the electrical conductivity has been studied
including the momentum space anisotropy also [32]. In
the hadronic sector also these quantities have been inves-
tigated lately. In Ref. [33] the electrical conductivity has
been evaluated for a pion gas where in Ref. [34] the same
has been studied for hot hadron gas.
While setting up an appropriate transport equation with a

collision term for the determination of σel and D for the
QGP medium, one must have a reliable modeling of the
equilibrium state of the medium. To that end, quasiparticle
descriptions of hot QCD medium play an important role.
We employ such a model which is based on mapping the
hot QCDmedium effects encoded in the equation of state to
the noninteracting/weakly interacting quasiparton degrees
of freedom with temperature dependent effective fugacity
parameter [35,36]. Further, the model can be understood in
terms of renormalization of charges of quasipartons in the
hot QCD medium. This enables us to define an effective
coupling constant in hot QCD medium. The effective
coupling thus obtained is employed in our analysis.
The manuscript is organized as follows. Section II offers

mathematical formalism to determine thermal relaxation
times for quasipartons (quasiquarks/antiquarks and quasi-
gluons) followed by the analytical estimations of the
transport coefficients, σel, D and χ. Section III deals with
important predictions of the transport coefficients men-
tioned and related discussions. Finally, in Section IV, the
conclusions and outlook of the work are presented.

II. FORMALISM

A. Quasiparticle description of hot QCD medium

Realization of hot QCD medium effects in terms of
effective quasiparticle models has been there since the last

few decades. In fact, there are various quasiparticle descrip-
tions viz., effective mass models [37,38], effective mass
models with Polyakov loop [39], NJL and PNJL based
effective models [40], and effective fugacity quasiparticle
model (EQPM) description of hot QCD [35,36]. The present
analysis considers the EQPM for the investigations on the
properties of hot and dense medium in RHIC.
There are a number of estimations for different transport

coefficients available in current literature which employ
various quasiparticle models [41–43]. In Ref. [41], η and ζ
have been evaluated for pure gluon plasma employing the
effective mass quasiparticle model. On the other hand, in
Refs. [42,43], η and ζ are obtained in gluonic aswell asmatter
sector. References [44,45] presented the quasiparticle theory
of η and ζ and their estimations for the hadronic sector. The
thermal conductivity has also been studied, in addition to the
viscosity parameters [45], within the effectivemass model. In
Ref. [46], the ratio of electrical conductivity to shear viscosity
has been investigated within the framework of quasiparticle
approach as well. However, these model calculations are not
able to exactly reproduce the shear and bulk viscosities
phenomenologically extracted from the hydrodynamic sim-
ulations of the QGP [47,48], consistently agreeing with
different experimental observables measured like the multi-
plicity, transverse momentum spectra and the integrated flow
harmonics of charged hadrons. Nevertheless, these quasipar-
ticle approached could be useful in the equilibriummodeling
of the hot QCD/QGP. The predictions based on these models
are still useful in the sense of estimating some possible values
these transport coefficients from some theoretical models that
can considerably describe the interacting system created in
heavy ion collisions.

1. The EQPM

The EQPM employed here, models the hot QCD in terms
of effective quasipartons (quasigluons, quasiquarks/
antiquarks). The model is based on the idea of mapping
the hot QCD medium effects present in the equations of
state (EOSs) either computed within improved perturba-
tive QCD or lattice QCD simulations, into the effective
equilibrium distribution functions for the quasipartons.
The EQPM for the QCD EOS at Oðg5Þ (EOS1) and
Oðg6 lnð1=gÞ þ δÞ (EOS2) have been considered here.
Additionally, the EQPM for the recent (2þ 1)-flavor lattice
QCD EoS [49] at physical quark masses (LEOS), has been
employed for our analysis. There are more recent lattice
results with the improved actions and refined lattices [50],
for which we need to relook at the model with specific set
of lattice data specially to define the effective gluonic
degrees of freedom. Therefore, we will stick to the set of
lattice data utilized in the model described in Ref. [36].
In either of the cases of above mentioned EOSs, the form

of the quasiparton equilibrium distribution functions, feq ≡
ffg; fqg (describing the strong interaction effects in terms
of effective fugacities zg;q) can be written as.
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fg=q ¼
zg=q exp½−βEp�

ð1 ∓ zg=q exp½−βEp�Þ
ð1Þ

where Ep ¼ j~pj for the gluons and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~pj2 þm2

q

q
for the

quark degrees of freedom (mq denotes the mass of the
quarks), and β ¼ T−1 denotes inverse of the temperature.
We use the notation νg ¼ 2ðN2

c − 1Þ for gluonic degrees of
freedom, νq ¼ 4NcNf for SUðNcÞ with Nf number of
flavors. As we are working at zero baryon chemical
potential, therefore quark and antiquark distribution func-
tions are the same. Since the model is valid in the
deconfined phase of QCD (beyond Tc), therefore, the mass
of the light quarks can be neglected as compared to the
temperature. As QCD is a SUð3Þ gauge theory so Nc ¼ 3
for our analysis. Noteworthily, the EOS1 which is fully
perturbative, is proposed by Arnold and Zhai [51] and Zhai
and Kastening [52]. On the other hand, EOS2 which is at
Oðg6 lnð1=gÞ þ δÞ is determined by Kajantie et al. [53]
while incorporating contributions from nonperturbative
scales such as gT and g2T. Notably, these effective
fugacities (zg=q) are not merely temperature dependent
parameters that encode the hot QCD medium effects; they
lead to nontrivial dispersion relation both in the gluonic and
quark sectors as,

ωg=q ¼ Ep þ T2∂Tlnðzg=qÞ; ð2Þ

where ωg;q denote the quasigluon and quasiquark disper-
sions (single particle energy), respectively. The second term
in the right-hand side of Eq. (2), encodes the effects from
collective excitations of the quasipartons.
The effective fugacities, zg, zq are not related with any

conserved number current in the hot QCD medium. They
have been merely introduced to encode the hot QCD
medium effects in the EQPM. The physical interpretation
of zg and zq emerges from the above mentioned nontrivial
dispersion relations. The modified part of the energy
dispersions in Eq. ((2) leads to the trace anomaly (inter-
action measure) in hot QCD and takes care of the
thermodynamic consistency condition. It is straightforward
to compute gluon and quark number densities and all the
thermodynamic quantities such as energy density, entropy,
enthalpy etc. by realizing hot QCD medium in terms of an
effective grand canonical system [35,36]. Furthermore,
these effective fugacities lead to a very simple interpreta-
tion of hot QCD medium effects in terms of an effective
virial expansion. Note that zg;q scales with T=Tc, where Tc

is the QCD transition temperature.
The number densities, ng (for gluons), nq (for quarks,

antiquarks) are obtained from Eq. (1) as,

ng ¼
νg

ð2πÞ3
Z

d3~pfgð~pÞ

¼ νgT3

π2
PolyLog½3; zg�; ð3Þ

nq ¼
νq

ð2πÞ3
Z

d3 ~pfqð~pÞ

¼ −νqT3

π2
PolyLog½3;−zq�: ð4Þ

The number densities approach to their Stefan-Boltzmann
(SB) limit only asymptotically (i.e zg;q → 1). On the
other hand, the pressure, P≡ Pg þ Pq, Energy density, ϵ ¼
ϵg þ ϵq can be obtained from the relation:

Pg;q ¼∓ νg;q

Z
d3p
ð2πÞ3 lnð1 ∓ zg;q expð−βEpÞÞ

¼ � νg;qT4

π2
PolyLog½4;�zg;q�; ð5Þ

ϵg;q ¼ νg;q

Z
d3p
ð2πÞ3 ωg;qfg;q

¼ � 3νg;qT4

π2
PolyLog½4;�zg;q�

� T4νg;q
π2

T∂T lnðzg;qÞPolyLog½3;�zg;q�: ð6Þ

The first term in the right-hand side of Eq. (6) is nothing but
the 3Pg;q, while second term leads to nonvanishing inter-
action measure in hot QCD. The entropy density and
enthalpy can be read off from the expressions of ϵ and P
using well known thermodynamic relations. The energy
density and enthalpy density per particle can easily
obtained employing results from Eqs. (3)–(6).

2. Charge renormalization and effective coupling

In contrast to the effective mass models where the
effective mass is motivated from the mass renormalization
in the hot QCD medium, the EQPM is based on the charge
renormalization in high temperature QCD.
To investigate how the quasi partonic charges modify in

the presence of hot QCD medium, we consider the
expression for the Debye mass derived in semi-classical
transport theory [54–56] as,

m2
D ¼ 4παsðTÞ

�
−2Nc

Z
d3p
ð2πÞ3 ∂pfgð~pÞ

þ 2Nf

Z
d3p
ð2πÞ3 ∂pfqð~pÞ

�
; ð7Þ

where, αsðTÞ is the QCD running coupling constant at
finite temperature [57].
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After performing the momentum integral after substitut-
ing the quasiparton distribution function from Eq. (1) to
Eq. (7), we obtain,

m2
D ¼ 4παsðTÞT2

�
2Nc

π2
PolyLog½2; zg�

−
2Nf

π2
PolyLog½2;−zq�

�
: ð8Þ

The Debye mass here reduces to the leading order HTL
expression in the limit zg;q ¼ 1 (ideal EoS: noninteracting
of ultra relativistic quarks and gluons),

m2
DðHTLÞ ¼ αsðTÞT2

�
Nc

3
þ Nf

6

�
: ð9Þ

Equation (8) can be rewritten as,

m2
D ¼ m2

DðHTLÞ

×
2Nc
π2

PolyLog½2; zg� − 2Nf

π2
PolyLog½2;−zq�

Nc
3
þ Nf

6

: ð10Þ

We can now define the effective coupling, αeff≡
αsðTÞgðzg; zqÞ, so that the m2

D ¼ 4παeffðTÞT2ðNc=3þ
Nf=6Þ. The function gðzg; zqÞ reads,

gðzg;zqÞ¼
2Nc
π2

PolyLog½2;zg�− 2Nf

π2
PolyLog½2;−zq�

Nc
3
þNf

6

: ð11Þ

Notably, the EQPM employed here has been remarkably
useful in understanding the bulk and the transport proper-
ties of the QGP in heavy-ion collisions [42,43,58–60].
The behavior of the ratio αeff=αs ≡ gðzg; zqÞ as a

function of temperature (T=Tc) for various EOSs is
depicted in Fig. 1. The flavor dependence is also shown

in Fig. 1. Clearly the ratio will approach its value with ideal
EOS (zg;q → 1) which is unity, only asymptotically. The
EOS dependence can clearly be visualized from the
temperature dependence of the relative coupling in
Fig. 1. For example the LEOS result is closest to the
running αs among all the cases. Similiary, other EOS
dependent predictions can also be explicated.
There are only two free functions (zg, and zq) in the

EQPM employed here which depend on the chosen EOS. In
the case of EOS1 and EOS2 employed in the present case,
these functions are obtained in [35] and are continuous
functions of T=Tc. On the other hand, for LEOS they are
defined in terms of eight parameters obtained in Ref. [36]
(See Table I of Ref. [36]). Apart from that effective
coupling mentioned above depends on them and the
QCD running coupling constant gðTÞ, that explicitly
depends upon how we fix the QCD renormalization scale
at finite temperature and up to what order we define gðTÞ.
Henceforth, these are the three quantities that need to be
supplied throughout the analysis here.

B. Thermal relaxation times

In order to estimate the relaxation times of particles due
to their mutual interactions we start with the Boltzmann
transport equation for an out of equilibrium system that
describes the binary elastic process pk þ pl → p0

k þ p0
l,

dfkðx; pkÞ
dt

¼ −C½fk�: ð12Þ

Here fk is the single particle distribution function for the
kth species in a multicomponent system, that depends upon
the particle 4-momentum pk and 4-space-time coordinates
x. C½fk� denotes the collision term that quantifies the rate of
change of fk given in the following manner [61],

C½fk� ¼
1

2
νl
XN
l¼1

1

2ωk

Z
dΓpl

dΓp0
k
dΓp0

l
ð2πÞ4

× δ4ðpk þ pl − p0
k − p0

lÞhjMkþl→kþlj2i
× ½fkðpkÞflðplÞf1� fkðp0

kÞgf1� flðp0
lÞg

− fkðp0
kÞflðp0

lÞf1� fkðpkÞgf1� flðplÞg�
k ¼ 1; 2;…; N: ð13Þ

The phase space factor is expressed by the notation

dΓpi
¼ d3 ~pi

ð2πÞ32ωi
, as ωk is the energy of the scattered particle

which is of kth species. The overall 1
2
factor is appearing due

to the symmetry in order to compensate for the double
counting of final states that occurs by interchanging p0

k and
p0
l. νl is the degeneracy of 2nd particle that belongs to lth

species. It is considered next that the out of equilibrium
distribution function of the 1st particle, which is being
scattered is given by,

2 4 6 8 10
T/Tc

0.5

0.6

0.7

0.8

0.9

1

α ef
f/α

s

Nf=2, EOS1

Nf=2, EOS2

Nf=3, EOS1

Nf=3, EOS2

Nf=3, LEOS

Nf=0, EOS1

Nf=0, EOS2

FIG. 1. Effective coupling constant using various EOS as a
function of T=Tc.
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fk ¼ f0k þ δfk ¼ f0k þ f0kð1� f0kÞϕk; ð14Þ

where the nonequilibrium part δfk of the distribution
function is quantified by the deviation function ϕk. The
collision term can now be expressed as the distribution
deviation over the relaxation time τk, which is needed by
the out of equilibrium distribution function to restore its
equilibrium value,

C½fk� ¼
δfk
τk

¼ f0kð1� f0kÞϕk

τk
: ð15Þ

Putting (14) into the right-hand side of (13) by keeping
the distribution functions of the particles other than
the scattered one vanishingly close to equilibrium and
comparing with (15), the relaxation time finally becomes as
the inverse of the reaction rate Γk of the respective
processes [62],

τ−1k ≡ Γk

¼ νl
2

1

2ωk

Z
dΓpl

dΓp0
k
dΓp0

l
ð2πÞ4δ4ðpk þ pl − p0

k − p0
lÞ

× hjMkþl→kþlj2i
f00l ð1� f00k Þð1� f0l Þ

ð1� f0kÞ
: ð16Þ

Clearly the distribution function of final state particles are
given by primed notation.
Simplifying τk utilizing the δ-function we finally

obtain τk in the center of momentum frame of particle
interaction as,

τ−1k ¼Γk¼νl

Z
d3 ~pl

ð2πÞ3dðcosθÞ
dσ

dðcosθÞ
f00l ð1�f00k Þð1�f0l Þ

ð1�f0kÞ
;

ð17Þ

where θ is the scattering angle in the center of momentum
frame and σ is the interaction cross section for the
respective scattering processes. Now in terms of the
Mandelstam variables s, t, and u the expression for τk
can be reduced simply as,

τ−1k ¼ Γk ¼ νl

Z
d3 ~pl

ð2πÞ3 dt
dσ
dt

f00l ð1� f00k Þð1� f0l Þ
ð1� f0kÞ

: ð18Þ

The differential cross section relates the scattering

amplitudes as dσ
dt ¼ hjMj2i

16πs2 . The quark-gluon scattering ampli-
tudes for 2 → 2 processes are taken from [63], that are
averaged over the spin and color degrees of freedom of the
initial states and summed over the final states.
Now in order to take into account the small-angle

scattering scenario that results into divergent contributions
from t-channel diagrams of QCD interactions, a transport
weigh factor ð1 − cos θÞ ¼ 2tu

s2 have been introduced in the

interaction rate [64,65]. Furthermore considering the

momentum transfer q ¼ j ~pk − ~p0
kj ¼ j ~pl − ~p0

lj is not too
large we can make the following assumptions, f0k ≅ f00k and
f0l ≅ f00l [64] to finally obtain,

τ−1k ¼ Γk ¼ νl

Z
d3 ~pl

ð2πÞ3 f
0
l ð1� f0l Þ

Z
dt

dσ
dt

2tu
s2

: ð19Þ

In the integration involving t-channel diagrams from
where the infrared logarithmic singularity appears, the limit
of integration is restricted from −s to −k2 in order to avoid
those divergent results using the cutoff k2 ¼ g2T2 as
infrared regulator. Here g2 ¼ 4παs with αs being the
coupling constant of strong interaction as already men-
tioned in Sec. A.
Now in the QGPmedium the quark and gluon interaction

rates result from the following interactions respectively,

Γg ¼ Γgg þ Γgq; Γq ¼ Γqg þ Γqq; ð20Þ

where Γgg, Γgq, Γqg and Γqq are the interaction rates
between gluon-gluon, gluon-quark, quark-gluon and
quark-quark, respectively.
Finally after pursuing the angular integration in (19) we

are left with the thermal relaxation times of the quark and
gluon components in a QGP system in the following way,

τ−1g ¼
�
νg

Z
d3 ~pl

ð2πÞ3 f
0
gð1þ f0gÞ

�

×

�
9g4

16πhsigg

�
ln

hsigg
k2

− 1.267

��

þ
�
νq

Z
d3 ~pl

ð2πÞ3 f
0
qð1 − f0qÞ

�

×

�
g4

4πhsigq

�
ln

hsigq
k2

− 1.287

��
; ð21Þ

τ−1q ¼
�
νg

Z
d3 ~pl

ð2πÞ3 f
0
gð1þ f0gÞ

�

×

�
g4

4πhsiqg

�
ln

hsiqg
k2

− 1.287

��

þ
�
νq

Z
d3 ~pl

ð2πÞ3 f
0
qð1 − f0qÞ

�

×

�
g4

9πhsiqq

�
ln

hsiqq
k2

− 1.417

��
; ð22Þ

where hsikl ¼ 2hpkihpli is the thermal average value of s

with hpki ¼
R

d3 ~pk
ð2πÞ3j ~pkjf0kR

d3 ~pk
ð2πÞ3f

0
k

. Clearly in order to account for a hot

QCD medium the quasiparticle effects must be invoked in
the expressions of these thermal relaxation times obtained
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far. As discussed in Sec. A, the distribution functions of
quarks and gluons and the coupling g will carry the
quasiparticle descriptions accordingly. Since the cutoff
parameter k also depends upon g and the thermal average
of s includes f0g=q, they will reflect the hot QCD equation of
state effect as well. Following the definition of equilibrium
distribution function of quarks and gluons from Eq. (1),
within the quasiparticle framework, the thermal averages of
gluon and quark momenta respectively are obtained as,

hpgi ¼ 3T
PolyLog½4; zg�
PolyLog½3; zg�

; ð23Þ

hpqi ¼ 3T
PolyLog½4;−zq�
PolyLog½3;−zq�

: ð24Þ

C. Electrical conductivity

In this work, we have adopted the kinetic theory
approach for evaluating the analytical expression of elec-
trical conductivity, based on solving the relativistic trans-
port equation for a charged QGP system.
Before proceeding for the solution of a transport equa-

tion, we introduce here some of the thermodynamic
quantities needed for developing the required framework.
We start with particle 4-flow for the kth species of particle
in a multicomponent system [66],

Nμ
kðxÞ ¼

Z
d3 ~pk

ð2πÞ3p0
k

pμ
kfkðx; pkÞ: ð25Þ

Next the total particle 4-flow and the energy momentum
tensor of the system are defined, respectively, as the
following,

NμðxÞ ¼
XN
k¼1

Nμ
kðxÞ ¼

XN
k¼1

Z
d3 ~pk

ð2πÞ3p0
k

pμ
kfkðx; pkÞ; ð26Þ

TμνðxÞ ¼
XN
k¼1

Z
d3 ~pk

ð2πÞ3p0
k

pμ
kp

ν
kfkðx; pÞ: ð27Þ

With the help of the above quantities we define the
diffusion flow of the kth component as [66],

Iμk ¼ Nμ
k − xkNμ; ð28Þ

where xk ¼ nk
n is the particle fraction corresponding to kth

species, nk and n are the particle number density for kth
species and total particle number density of the multi-
component system respectively, which are related by
n ¼ P

N
k¼1 nk. We can readily notice

P
N
k¼1 Ik ¼ 0, i.e.,

sum of the diffusion flows vanishes.
The total electric current density of such a system is

given by [67],

JμðxÞ ¼
XN
k¼1

qkI
μ
k ¼

XN−1

k¼1

ðqk − qNÞIμk; ð29Þ

where qk is the electric charge associated with the kth
species.
A realistic description of nonequilibrium phenomena in

relativistic systems must take reactive processes into
account which incorporates all kinds of inelastic collisions
beside elastic ones. In such a case the systemmust include a
number of conserved quantum numbers and the diffusion
flow in such situations will become,

Iμa ¼
XN
k¼1

qakIk; ½a ¼ 1; 2;…N0� ð30Þ

¼
XN
k¼1

qakfNμ
k − xkNμg: ð31Þ

Here a stands for the index of conserved quantum number
and qak is the ath conserved quantum number associated
with kth component. Following the prescription we are able
to define the particle number density of the independent
components as, na ¼

P
N
k¼1 qaknk.

After defining these basic thermodynamic quantities let
us present the relativistic transport equation (12) in covar-
iant form with the force term present in it [25],

pμ
k∂μfk þ qkFαβpβ

∂fk
∂pα

k
¼ −C½fk�: ð32Þ

Here Fμν ¼ f−uμEν þ uνEμg is the electromagnetic field
tensor with electric field Eμ, in the absence of any magnetic
field in the medium. We identify uμ as hydrodynamic
4-velocity. Throughout this paper we will use the metric
system gμν ¼ f1;−1;−1;−1g.
Now using the Chapman-Enskog (CE) method the

transport equation is linearized around a local equilibrium
distribution function f0kðx; pkÞ and finally the CE hierarchy
reduces the left-hand side of the transport equation in terms
of f0k. The collision term is simplified using (15) giving
rise to,

pμ
k∂μf0k þ

1

T
f0kð1� f0kÞqkEμp

μ
k ¼ −

ωk

τk
f0kð1� f0kÞϕk:

ð33Þ

To proceed further the distribution functions of constituent
particles is needed to be provided in covariant notations. In
a comoving frame and involving the quasiparticle descrip-
tion discussed in Sec. A, it can be given in the following
way,
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f0kðx; pkÞ ¼
zkexp½− pμ

kuμ
T þ μk

T �
1 ∓ zkexp½− pμ

kuμ
T þ μk

T �
; ð34Þ

where we have introduced ωk as the energy per particle of
the kth species and μk is the chemical potential for the
same. Within the quasiparticle framework, for quarks and
gluons ωk is defined by Eq. (2).
In order to retrieve the transport equation in terms of the

thermodynamic forces, the first term on the left-hand side
of Eq. (33) is needed to be reduced by decomposing the
derivative over the distribution function into a timelike and
a spacelike part as ∂μ ¼ uμDþ∇μ, with the covariant time
derivative D ¼ uμ∂μ and the spatial gradient ∇μ ¼ Δμν∂ν,
expressed in terms of hydrodynamic 4-velocity uμ and
projection operator Δμν ¼ gμν − uμuν. Whence the spatial
gradients over velocity, temperature, and chemical poten-
tials directly link with the viscous flow, heat flow and the
diffusion flow of the fluid, respectively, the time derivatives
are needed to be eliminated using a number of thermody-
namic identities so that they contribute in the expressions of
the thermodynamic forces as well. The time derivative over
particle number density and the time derivative over energy
per particle however follow the equation of continuity and
equation of energy as in the case of a system without the
influence of electric field,

Dnk ¼ −nk∂ · u; ð35Þ
XN
k¼1

xkDωk ¼ −
P

N
k¼1 PkP
N
k¼1 nk

∂ · u; ð36Þ

where Pk is the partial pressure attributed to kth species.
But the equation of motion in the presence of the electric
field will be different from the one without electric field. In
a multicomponent system in the presence of an electric field
the equation of motion takes the following form,

Duμ ¼ ∇μPP
N
k¼1 nkhk

þ
P

N
k¼1 qknkP
N
k¼1 hknk

Eμ: ð37Þ

Clearly even the pressure gradient is zero, the Lorentz force
acting on the particle produces nonzero acceleration. By
utilizing these identities and retaining the thermodynamic
forces involving thermal and diffusion terms only, (shear
and bulk viscous part not considered in this work), the
transport equation becomes,

1

T

�
pν
kfðpk:uÞ−hkgXqkþpν

k

XN0−1

a¼1

ðqak−xaÞXaν

�
¼−

ωk

τk
ϕk;

ð38Þ
where Xqμ and Xaμ are the thermal and diffusion forces
respectively given by,

Xqμ ¼
�∇μT

T
−
∇μP

nh

�
þ
�
−
1

h

XN
k¼1

xkqkEμ

�
; ð39Þ

Xkμ ¼
�
ð∇μμaÞP;T −

hk
nh

∇μP
�

þ
�
qk − qN −

hk − hN
h

XN
l¼1

xlql

�
Eμ: ð40Þ

The detail of the computation in offered in Appendix A.
We identify hk and h as the enthalpy per particle for

species k and for total system, respectively, and ð∇μμaÞP;T¼P
N0−1
b¼1 f∂μa∂xbgP;T;fxag∇μxb. Here xa and μa are the particle

fraction and chemical potential associated with ath quan-
tum number respectively. Clearly in the expressions of
thermal and diffusion driving forces, terms proportional to
electric field give rise to electrical conductivity. Now in
order to be a solution of this equation the deviation function
ϕk must be a linear combination of the thermodynamic
forces,

ϕk ¼ BkμX
μ
q þ 1

T

XN0−1

a¼1

Bμ
akXaμ; ð41Þ

with, Bμ
k ¼ BkhΠμ

ki and Bμ
ak ¼ BakhΠμ

ki where hΠμ
ki ¼

ðΠkÞνΔμν and Πk ¼ pk=T.
Putting (41) into the right-hand side of (38) and

comparing both sides of (38) (noting thermodynamic forces
are independent) we finally obtain,

Bμ
k ¼ hΠμ

ki
ωk − hk
f− ωk

τk
g ; Bμ

ak ¼ hΠμ
ki
qak − xa
f− ωk

τkT
g ; ð42Þ

from which the complete structure of ϕk can be obtained.
Now going back to Eq. (31) we notice for equilibrium
distribution function f0k the I

μ
a clearly vanishes, while with

fk ¼ f0kð1� f0kÞϕk it gives a finite diffusion flow as
follows,

Iμa ¼
XN
k¼1

ðqak − xaÞ
Z

d3 ~pk

ð2πÞ3p0
k

pμ
kf

0
kð1� f0kÞϕk: ð43Þ

Putting the value of ϕk from (41) with the help of Eqs. (42)
into (43) we get the linear law of diffusion flow,

Iμa ¼ laqX
μ
q þ

XN0−1

b¼1

labX
μ
b; a ¼ 1;…:; ðN0 − 1Þ; ð44Þ

where the coefficients are now expressed in terms of the
relaxation time τ,
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laq ¼
XN
k¼1

ðqak − xaÞ
1

T

Z
d3 ~pk

ð2πÞ3 f
0
kð1� f0kÞτk

× ðωk − hkÞ; ð45Þ

lab ¼
XN
k¼1

ðqak − xaÞðqbk − xbÞ
1

T

Z
d3 ~pk

ð2πÞ3 f
0
kð1� f0kÞτk:

ð46Þ
Now substituting the expression of diffusion flow into

Eq. (29), and pertaining the terms proportional to electric
field only we finally reach the expression for the electric
current density,

Jμ ¼
XN−1

k¼1

ðqk − qNÞ
�XN−1

l¼1

lkl

�
ql − qN −

hl − hN
h

XN
n¼1

xnqn

�

−
lkq
h

XN
n¼1

xnqn

�
Eμ: ð47Þ

We also know the current density relates with the electric
field by the linear relation via the electrical conductivity as,

Jμ ¼ σelEμ: ð48Þ
By comparing (47) and (48) we finally obtain the detailed
expression of electrical conductivity in the following
manner,

σel ¼
XN−1

k¼1

ðqk − qNÞ
�XN−1

l¼1

lkl

�
ql − qN

−
hl − hN

h

XN
n¼1

xnqn

�
−
lkq
h

XN
n¼1

xnqn

�
: ð49Þ

Now for a quark-gluon system the expression of the electric
conductivity boils down to,

σel ¼ q2q
l11hg − l1qxq

h
: ð50Þ

The subscript q and g stands for quarks and gluons
respectively. So finally we are left with the coefficients as,

l1q ¼
1

T

�
−xqτg

Z
d3pg

ð2πÞ3 f
0
gð1þ f0gÞðωg − hgÞ

þ xgτq

Z
d3pq

ð2πÞ3 f
0
qð1 − f0qÞðωq − hqÞ

�
; ð51Þ

l11 ¼
1

T

�
x2qτg

Z
d3pg

ð2πÞ3 f
0
gð1þ f0gÞ

þ x2gτq

Z
d3pq

ð2πÞ3 f
0
qð1 − f0qÞ

�
: ð52Þ

The q2q ¼
P

kνkq
2
qk is simply the square of the fractional

quark charges taking sum over quark degeneracies. For up,
down, and strange quarks the fractions quark charge is
taken to be 2=3, −1=3, and −1=3, respectively.

D. Charge diffusion

We recall Eq. (44), where the diffusion flow is linearly
expressed in terms of thermal and diffusion driving forces
respectively. The diffusion driving force does not include
the terms containing a ¼ N0 because diffusion flow van-
ishes for those values of a. Since presently we are dealing
with a quark-gluon plasma which incorporates binary
elastic collisions that conserve particle numbers, in such
case the distinction between the independent particle
fractions xa; a ¼ 1;…; N0 and the particle fraction of
separate components xk; k ¼ 1;…; N vanishes. So in the
present situation the diffusion flow rather follows the
relation

P
N
k¼1 Ik ¼ 0, as mentioned earlier. In such sce-

nario the original diffusion driving forces (not containing
the electric field) conjugate to (N-1) independent diffusion
flows is given by [66],

Xμ
k ¼ ½ð∇μμkÞP;T − ð∇μμNÞP;T � −

hk − hN
hn

∇μP;

k ¼ 1; 2;…ðN − 1Þ: ð53Þ

It is straightforward to prove that ð∇μμkÞP;T ¼ T
xk
∇μxk.

Thus, in the absence of any electric field in Xμ
k, the flow

becomes purely diffusive that encodes the spacial variation
of the fractional particle density corresponding to different
species. Finally, for a two component quark-gluon system
at mechanical equilibrium, i.e., at vanishing pressure
gradient we obtain the diffusion flow in the following way,

Iμ1 ¼ nxqxgDT∇μT þ nD∇μxq: ð54Þ

So we are able to identify the diffusion coefficient as

D ¼ Tl11
nxqxg

; ð55Þ

and the thermal diffusion coefficient as,

DT ¼ l1q
nxqxgT

: ð56Þ

Taking the value of l11 from (52) and incorporating the
sum over all flavors and helicities of the quarks, interacting
among themselves and gluons, we are finally able to
estimate the charge diffusion coefficient of the system.

E. Charge susceptibility

In previous sections, we obtained both the expressions of
electrical conductivity and flavor diffusion. In the absence
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of any electric field, the out of equilibrium particle
distribution function relaxes pure diffusively, whereas, in
the presence of an electric field the restoration of equilib-
rium is affected by the electric conductivity. These two
quantities are linearly related by Einstein’s relation,

σel ¼ χD; ð57Þ

where the proportionality constant is termed as charge
susceptibility. Clearly this term is independent of the
relaxation time τ and particle interactions. It depends upon
the fractional quark charges and thermodynamic parame-
ters describing the system. In transport theory this quantity
is also of significant interest and hence studied in the
present work.

III. RESULTS AND DISCUSSIONS

In this section, we initiate our discussions with the
temperature dependence of the thermal relaxation times of
quarks and gluons considering 3-flavors of quarks (up,
down, and strange). Following from Eqs. (21) and (22), τg
and τq have been plotted as a function of T=Tc for different
αs in Fig. 2 and Fig. 3, respectively. Both τg and τq exhibit
the expected decreasing trend with increasing temperature.
This observation reveals that at higher temperature, the
increased interaction rates make the quarks and gluons to
restore their equilibrium faster. The order of magnitude of
τg and τq and the fact that τq is larger than τg agree with the
work in [68]. The thermal relaxation times for both the
cases have been estimated for different values of the QCD
couplings.
First, we consider the situation where ideal EOS has

been used in the definition of the distribution functions to
be implemented in the expressions of τ’s. In this case both a
fixed value of coupling, αs ¼ 0.3 (indicated by the black
circles) and the temperature dependent running coupling

αsðTÞ (indicated by the orange squares) have been used.
The large values of τg and τq at lower temperatures indicate
the higher values of αsðTÞ as compared to fixed, αs ¼ 0.3,
at those range of temperatures. However, at higher temper-
atures, the much lower values of αsðTÞ (∼0.18 at
T=Tc ≳ 5), modulate the value of thermal relaxation times
as compared to the fixed coupling. Clearly, the logarithmic
term, containing αs, playing the key role in determining the
behavior of τ’s while plotted as a function of temperature.
Second, in order to visualize the EOS effects in the
relaxation times, we introduced the quasiparticle distribu-
tion functions from Eq. (1) in the expressions of τg and τq
along with effective couplings discussed in Sec. II. Both
hard thermal loop (HTL) pQCD EOS for order Oðg5Þ and
Oðg6 lnð1=gÞ þ δÞ (EOS1 and EOS2) and the 3-flavor
lattice QCD EOS (LEOS) have been considered while
implementing the quasiparticle properties in the QGP.
Finally, We have observed that at higher temperatures,
where the effective couplings (αeff ) using the HTL and
lattice EOS becomes comparable to αsðTÞ, the respective
plots of τ’s almost merge with each other. However, since at
T=Tc ∼ 8 − 10, αeff becomes much smaller (∼0.15), the α2s
term in the expression of τ’s becomes somewhat predomi-
nant to keep the values of τ’s a little above the running
αsðTÞ case. At lower temperatures, the values remain closer
to fixed αs case as the effective coupling becomes closer to
0.3. Therefore, it is crucial to mention that throughout the
range of temperatures, the logarithmic term containing αs
in the denominator is playing a predominant role as well as
the temperature behavior of the thermal relaxation times of
quarks and gluons.
Before presenting the results of electrical conductivity

using the thermal relaxation times including the leading log
terms discussed so far, we present σel using the pQCD
cross-section taken from Ref. [69]. The infrared singularity
here regularized by the Debye mass mD to obtain the cross

section as dσ
dt ¼ dσ

dq2⊥
≃ α2s

ðq2⊥þm2
DÞ2
, where q⊥ is the transverse
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FIG. 2. Temperature dependence of thermal relaxation times for
gluons for 3- flavor case.
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FIG. 3. Temperature dependence of thermal relaxation times for
quarks for 3-flavor case.
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component of momentum transfer which for small angle
scattering q2⊥ ≈ −t. In a number of recent works, this cross
section has been used in order to determine the σel and
other transport coefficients as well [26,27]. We see that the
effect of coupling entering in the expression of differential
scattering cross section as α2s [the predominant logarithmic
term lnð1=αsÞ is absent there]. Employing this cross section
we have plotted σel=T as a function of T in Fig. 4 for a
number of EOSs and compare them with some other
estimations of electrical conductivity too. We observe that
for ideal EOS and constant αs, the ratio of electrical
conductivity over temperature σel=T, is a constant over
T. This is not unexpected as the there is no other temper-
ature dependence due to the ideal EOS (the numerical value
is close to ∼0.06 as indicated by the red dasher line).
Implementing the running αsðTÞ for ideal EOS, we observe
that the larger values of αs at lower temperatures are
decreasing σel=T. This is due to the α2s term in the cross
section, that is appearing in the denominator of the
expression of the σel. At lower temperatures, the above
mentioned trend agrees with the results of Boltzmann
Approach for Multi-Parton Scattering [25] and Greco et al.
[26]. However, the smaller values of αsðTÞ at larger
temperatures are making σel=T enhanced with respect to
fixed αs case. Next, we have implemented the effects of
EOS in both the distribution functions and in couplings
while determining σel. At lower temperatures since αeff is
smaller than αsðTÞ, σel=T exhibits larger values demon-
strating the equation of state effects on electrical conduc-
tivity. At larger temperatures we can see that these plots
almost merges with the one using ideal EOS and running
αsðTÞ, since in those ranges of temperatures αeff=αs
approaches to unity. Up to T=Tc ∼ 2 we plotted lattice
results from Aarts et al. [19]. The quantitative estimations
of σel=T with quasiparticle EOSs agrees with the order of
magnitude of the lattice results.

Next, we present the results of electrical conductivity
using the thermal relaxation times from Eqs. (21) and (22)
including the leading log cross sections in Figs. 5 and 6.
Due to the predominant contribution from the logarithmic
term over coupling the magnitude of σel=T becomes quite
larger than the pQCD case. In this case we have plotted
σel=T both for 2- and 3-flavors individually for different
EOSs and the 3-flavor case appears to be slightly greater
since the quark charge q2Q in Eq. (50) contains the fractional
quark charge of strange quark also. The values of electrical
conductivity with quasiparticle EOS and including αeff as
the coupling show smaller values with respect to the one
with ideal EOS and running αsðTÞ at lower values of
temperature due to the leading log effect. However at
higher temperatures the two sets of curves merge with each
other due to the fact that at large T, αeff approaches to
running αsðTÞ. Although in this case at lower T=Tc the
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BAMPS, 2<=>2 pQCD, fixed α =0.3

BAMPS, 2<=>2 pQCD, running α
Greco - pQCD RTA
Greco - QP model - RTA
This work, running α
This work + EQPM + EOS1
This work + EQPM + EOS2
This work + EQPM + LEOS
Arts et al. (2015)

FIG. 4. The electrical conductivity scaled with temperature,
σel=T for 3-flavor pQCD cross section as a function of T=Tc
employing different EOSs.
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FIG. 6. The electrical conductivity scaled with temperature,
σel=T for 3-flavor leading-log cross section as a function of T=Tc
employing different EOSs.
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FIG. 5. The electrical conductivity scaled with temperature,
σel=T for 2-flavor leading-log cross section as a function of T=Tc
employing different EOSs.
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lattice data from [19] quite underpredicts the results, the
quenched lattice measurement of electrical conductivity
from Gupta et al. [20] up to T=Tc ∼ 3 remarkably agrees
with the current estimation of σel. For 3-flavor case beyond
T=Tc ∼ 3, the estimations of σel is observed to match with
the trend given in Cassing et al. [28] and agrees with their
statement that above T ∼ 5Tc the dimensionless ratio σel=T
becomes approximately constant (≈0.3). In all the above
estimations of σel the electronic charges are explicitly
multiplied using e2

4π ¼ 1
137

.
The diffusion coefficient D estimated from Eq. (55)

multiplied with 2πT, has been plotted for 2 and 3-flavor
cases as a function of temperature in Figs. 7 and 8
respectively. In both the cases the values of diffusion
coefficients have been compared with the lattice results
provided by Aarts et al. [19]. Although in this case, the q2Q
term containing the flavor sum over fractional quark charges
are absent, the flavor information is embedded in the thermal
relaxation times in l11 term. Since for larger quark degen-
eracy, τq decreases, therefore, for 3-flavor case the values of
D appear to be smaller than the 2-flavor case. Similar to
the case of electrical conductivity, the leading log results for
the diffusion coefficient turn out to bemuch higher due to the
logarithmic term as compare to situation where only α2s is
present. The pQCD results are however closer to the lattice
results. The quasiparticle model including the HTL and the
lattice EOSs is observed to effect the values of D in a
significant way. In the 3-flavor case, we also compare our
resultswith the estimations ofD using the holographicmodel
from [31],which are in the range of temperature 0.2–0.4GeV
and agree well in the order of magnitude with our pQCD
results. Finally, we have plotted the charge susceptibility as a
function of temperature including ideal EOS and the EOSs
described by EQPM in Fig. 9. In lower temperature region,
ranging from 0.2–0.35 GeV, our results show good agree-
ment with the lattice data from [21]. Different EOSs within

EQPMshowdiscrete effects on χ. Interestingly, the oneswith
LEOS are closer to the lattice data the most. However, like
any other quasiparticle model predictions, the EQPM pre-
dictions on the transport coefficients obtained here, show
poor matching. This can perhaps be improved a bit while
updating the temperature dependence of effective fugacities
in our EQPMwithmore recent lattice results. Let us enlist the
possible route causes of this discrepancy, specifically, in the
context of our results on EM transport coefficients against
the lattice results of Aarts et al. [19]. The first and foremost
reason is the very philosophy to map hot QCD medium
effects in terms of noninteracting/weakly interacting quasi-
particle models for the temperatures closer to Tc where the
interaction measure has a peak (although, at the level of
fitting with the quasiparticle models and yields hot QCD
thermodynamics, the matching the reasonably better, how-
ever, the very existence of the quasiparticle picture is in
serious doubt). Another aspect is clearly the presence of the
leading log term in the interaction cross section that follows
from the infrared shielding discussed in Sec. II B. We have
observed that this term is having the most significant
contribution in controlling the temperature behavior of the
relaxation times as well as transport parameters. The result-
ing enhancement of the temperature dependence of σel andD
over the leading order pQCD results shown, is also respon-
sible for the discrepancies of the current results with the
lattice results provided by Aarts et al. [19].
There are more recent lattice data with the refined lattices

both from HOT QCD collaboration [70] and Budapest-
Marseille-Wuppertal Collaboration [71]. In fact, there are
significant differences on the QCD trace anomaly near Tc
between these two collaborations and also on Tc itself.
Interpreting them in terms of EQPM and comparing the EM
responses studied in this work and other transport coeffi-
cients of the QGPwould be amatter of future investigations.
Notably, at the level of EQPM, one requires to have lattice
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FIG. 7. Scaled charge diffusion coefficient, 2πDT for 2-flavor
using pQCD and leading-log cross sections as a function of T
employing various EOSs.
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FIG. 8. Scaled diffusion coefficient, 2πDT for 3-flavor using
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results on trace anomaly for the pure glue sector (needed for
defining zg). Once the EQPM description is obtained for
above mentioned lattice results, comparison with the pre-
dictions from direct lattice QCD method would prevail
better understanding on the predictive power of the model.

IV. CONCLUSION AND OUTLOOK

The estimation of the transport coefficients that charac-
terize the response of EM field to the electromagnetically
charged QGP in the heavy-ion collisions, with realistic hot
QCD/QGP equations of state (via their quasiparticle under-
standing), has led us to very interesting outcomes high-
lighting the impact of hot QCD medium effects. We have
investigated the charge transport by determining the elec-
trical conductivity of the QGP along with a related
phenomenon of charge diffusion in the QGP medium by
analyzing the charge diffusion coefficient.
The hot QCD medium effects have been included

through the effective quasiparton distribution functions
along with the effective coupling in QCD at high temper-
ature. All the transport coefficients that have been inves-
tigated in this work, are influenced significantly in the
presence of hot QCD medium effects coming from the
various equations of state under consideration, as compared
to the case of ideal equation of state for the QGP. The
results obtained here are seen to be consistent with the
outcomes of other approaches such as lattice QCD,
dynamical quasiparticle models, holographic model based
on AdS-CFT, transport theory and pQCD based studies
discussed in the Introduction section.
The transport coefficients determined in this work and

their temperature dependence could affect the quantitative
estimates of the signals for the QGP from heavy ion
collisions, particularly, where hydrodynamic simulations
are involved. For example in Refs. [72–74], the soft photon
emission rate is shown to be linearly dependent upon
electrical conductivity. As a result the hydrodynamic

description of the pT spectra and elliptic flow of thermal
photon and dileptons could be improved by including a
realistic temperature dependence of the electrical conduc-
tivity. In that spirit relating the electrical conductivity and
charge diffusion coefficients to the electromagnetic probes
such as dilepton and photon production in relativistic heavy-
ion collisions, and obtaining the spectra and collective flows
would be a matter of immediate future investigations.
To achieve deeper understanding, the connections to the

charge fluctuations and directed flow of charged hadrons in
HIC would be another interesting aspect to explore in near
future. In addition, extensions of the present analysis to
estimate the other transport parameters such as shear and bulk
viscosities, thermal conductivity along with generalizations
in the case of anisotropic (momentum) hot QCD medium
would be another directionwherewe shall intend to focus on.
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APPENDIX: CALCULATIONAL DETAILS OF
CHAPMAN-ENSKOG METHOD

Starting from Eqs. (33) and utilizing the thermodynamic
identities provided in Eq. (35), (36) and (37) and avoiding
the terms containing velocity gradients that gives rise to
viscous phenomena, we land in the following structure of
transport equation,

1

T

�
pν
k

XN0−1

a¼1

ðqak − xaÞ
�
ð∇μμaÞP;T −

ha
nh

∇μP

�

þ pν
kfðpk:uÞ − hkg

�∇μT

T
−
∇μP

nh

�

þ
�
−ðpk · uÞðpk · EÞ

P
N
k¼1 qknkP
N
k¼1 hknk

þ qkðpk · EÞ
��

¼ −
ωk

τk
ϕk: ðA1Þ

The first two terms in the left-hand side of Eq. (A1)
contribute to the diffusion driving force and thermal driving
forces respectively for a system without the electric field
effects. The third term purely arises from the effects of the
electric field influencing the system. Now for generality it
is desirable to express the electric filed driven terms in a
manner, such that it resembles the thermal and diffusion
driving terms. In this spirit we can decompose the third
term in the following way,
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FIG. 9. Susceptibility, χ for 3-flavor using pQCD and leading-
log cross sections as a function of T employing various EOSs.
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�
−ðpk · uÞðpk · EÞ

P
N
k¼1 qknkP
N
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þ qkðpk · EÞ
�

¼ pν
kfðpk:uÞ − hkgXE

qν þ pν
k

XN0−1

a¼1

ðqak − xaÞXE
aν: ðA2Þ

Here we have,

XE
qμ ¼ −

1

h

XN
k¼1

xkqkEμ; ðA3Þ

XE
kμ ¼

�
qk − qN −

hk − hN
h

XN
l¼1

xlql

�
Eμ; ðA4Þ

as the thermal and diffusion driving forces only due to the
influence of the electric field.
Applying the decomposition in Eq. (A1) we are finally

able to get Eq. (38) with the complete expression of thermal
and diffusion driving forces given in Eq. (39) and (40),
respectively.
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