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We compute the perturbative corrections to the heavy quark effective theory sum rules for the matrix
element of theΔB ¼ 2 operator that determines the mass difference of B0, B̄0 states. Technically, we obtain
analytically the nonfactorizable contributions at order αs to the bag parameter that first appear at the three-
loop level. Together with the known nonperturbative corrections due to vacuum condensates and 1=mb

corrections, the full next-to-leading order result is now available. We present a numerical value for the
renormalization group invariant bag parameter that is phenomenologically relevant and compare it with
recent lattice determinations.
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I. INTRODUCTION

The mixing of states in the systems of neutral flavored
mesons belongs to the most sensitive probes for effects
from physics beyond the standard model (SM). While the
mixing in the kaon and the charmed-meson systems has
significant or even dominant long distance effect contri-
bution, the mixing for the neutralBmesons is dominated by
the top-quark contribution and hence is dominated by
short-distance physics. Technically, this fact means that
the still necessary nonperturbative input is given by a
matrix element of a local operator with ΔB ¼ 2, even if
physics beyond the SM is present.
Within the SM, the mixing frequency Δm of the B0 − B̄0

oscillations is determined by the following expression:

Δm ¼ G2
F

8π2
ðV�

tdVtbÞ2FðxtÞm2
t ηQCDðμÞhB0jQðμÞjB̄0i ð1:1Þ

where xt ¼ m2
t =m2

W , and

FðxÞ ¼ 1

4

�
1þ 9

1 − x
−

6

ð1 − xÞ2 −
6x2

ð1 − xÞ3 log x
�

is the Inami-Lim function [1] (as a review, see, e.g. [2–4]).
The mass difference Δm depends on the matrix element

hB0jQðμÞjB̄0i of the local four-quark operator

Q ¼ JμJμ ¼ ZðαðnfÞs ðμÞÞQðμÞ; Jμ ¼ d̄LγμbL; ð1:2Þ

where bL, dL are the left-handed bare quark fields
(see, e.g., [5,6]). The short-distance coefficient ηQCDðμÞ
in (1.1) accounts for contributions of scales larger than the
b-quark mass mb. The dependence of ηQCDðμÞ on the

renormalization point μ compensates the μ-dependence of
the matrix element hB0jQðμÞjB̄0i that is the main object of
low energy (for the scales down of mb) QCD analysis. The
matrix element of the four quark operator is traditionally
written as

hB0jQðμÞjB̄0i ¼ 2

�
1þ 1

Nc

�
hB0jJμj0i

·h0jJμjB̄0iBðμÞ ¼ 2

�
1þ 1

Nc

�
f2BM

2
BBðμÞ; ð1:3Þ

where Nc is the number of colors, Nc ¼ 3 in QCD, BðμÞ is
the bag parameter, and

h0jJμjB̄0ðpÞi ¼ −
i
2
fBpμ ð1:4Þ

is given by the B meson decay constant fB. Note that the
decay constant fB is a physical quantity which is inde-
pendent of the renormalization point, and its numerical
value is rather well known (as recent reviews, see, e.g.
[7,8]). Hence the full μ dependence enters the bag param-
eter BðμÞ.
Setting BðμÞ ¼ 1 corresponds to the naive factorization

prescription for the matrix element (1.3) which would
be true for the bare operatorQ at tree level but is spoiled by
the strong interactions for the “dressed” operatorQðμÞ. The
hadronic parameter BðμÞ can only be obtained by using
some nonperturbative method, such as lattice simulations
(see, e. g., [8–13]) or QCD sum rules [14–18]. While the
naive factorization estimate BðmBÞ ¼ 1 is rather satisfac-
tory even quantitatively, it is a kind of a model assumption,
and a key issue in the precision phenomenological analysis
of the processes of mixing is the determination of the
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deviation of BðμÞ from unity. The matrix element appearing
in (1.1) still depends onmb which is a scale large compared
to ΛQCD. To evaluate this matrix element further, we
perform a heavy quark expansion (HQE) for this quantity,
resulting in a combined expansion in powers of αsðmbÞ and
ΛQCD=mb. The remaining matrix elements appearing in this
expansion are defined in heavy quark effective theory
(HQET) and may be estimated in an HQET sum rule.
In a previous paper [17], we have estimated the sub-

leading terms of order ΛQCD=mb in such an expansion with
a sum rule. However, in order to obtain the full next-to-
leading order (NLO) result, we also need to estimate the
perturbative contributions of order αs. Within the frame-
work of HQET sum rules this requires a calculation of
three-loop diagrams. The relevant master integrals have
been found in [19]. In the present paper we give the results

of the calculation for the bag parameter. With this calcu-
lation the complete NLO terms are now known.
In the next section we collect some known perturbative

results which are needed to set up the sum rule
calculation discussed in Sec. III. Finally, we present a
complete NLO result and discuss its implications for
B0 − B̄0 mixing.

II. PERTURBATIVE CONTRIBUTIONS TO THE
BAG PARAMETER

In this section we collect some perturbation theory
results relevant for the analysis of mixing.
The μ dependence of the bag parameter at scales above

the b quark mass is known to two loops [20]; the
result reads

BðμÞ ¼ Bðμ0Þ
�
α
ðnfÞ
s ðμÞ

α
ðnfÞ
s ðμ0Þ

�γ0=ð2β
ðnf Þ
0

Þ�
1þ γ0

2β
ðnfÞ
0

�
γ1
γ0

−
β
ðnfÞ
1

β
ðnfÞ
0

�
α
ðnfÞ
s ðμÞ − α

ðnfÞ
s ðμ0Þ

4π
þOðα2sÞ

�

¼ B̂ðαðnfÞs ðμÞÞγ0=ð2β
ðnf Þ
0

Þ
�
1þ γ0

2β
ðnfÞ
0

�
γ1
γ0

−
β
ðnfÞ
1

β
ðnfÞ
0

�
α
ðnfÞ
s ðμÞ
4π

þOðα2sÞ
�
; ð2:1Þ

where the anomalous dimension of the operator Q in (1.2) is

γðαsÞ ¼
d logZðαsðμÞÞ

d log μ
¼ γ0

αs
4π

þ γ1

�
αs
4π

�
2

þOðα3sÞ;

γ0 ¼ 6
Nc − 1

Nc
; γ1 ¼ −

Nc − 1

2Nc

�
19

3
Nc þ 21 −

57

Nc
−
4

3
nf

�
ð2:2Þ

where nf is the number of flavors including the b quark.
The β-function coefficients are

β0 ¼
11

3
Nc −

2

3
nf; β1 ¼

34

3
N2

c −
�
13

3
Nc −

1

Nc

�
nf:

ð2:3Þ

In the physical quantity Δm (1.1), the μ dependence of
BðμÞ is compensated by the μ dependence of the Wilson
coefficient FðxtÞηQCDðμÞ.
At scales μ below the b quark mass the QCD operators

are expanded into a series in ΛQCD=mb by employing
HQET; see e. g. [21–23]. In particular, the operator Q in
(1.2) becomes [24,25]

QðμÞ ¼ 2
X2
i¼1

CiðμÞ ~QiðμÞ þO
�

1

mb

�
; ð2:4Þ

where the 1=mb contributions have been discussed in [26].
The leading order part is

~Q1 ¼ ~J1μ ~J
μ
2; ~Jμ1 ¼ d̄Lγμhþ; ~Jμ2 ¼ d̄Lγμh−; ð2:5Þ

~Q2 ¼ ~Q0
2 þ

1

4
~Q1; ~Q0

2 ¼ ~J1 ~J2;

~J1 ¼ d̄Lhþ; ~J2 ¼ d̄Lh−: ð2:6Þ
The bare field hþ annihilates the HQET heavy quark
(moving with the four velocity v), and h− creates the
heavy antiquark (again moving with the four velocity v),
which is a completely separate particle in HQET frame-
work. The factor two in (2.4) comes from the fact that there
are two b fields inQ, one of them becomes hþ and the other
one h−. The HQET operators ~Q1; ~Q2 have opposite Fierz
parities and hence do not mix under renormalization which
is designed so to preserve Fierz transformations.
The matrix elements of the leading HQET operators in

(2.5), (2.6) can be written as

hB0j ~Q1ðμÞjB̄0i ¼
�
1þ 1

Nc

�
hB0j ~J2μðμÞj0i

× h0j ~Jμ1ðμÞjB̄0i ~B1ðμÞ; ð2:7Þ
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hB0j ~Q0
2ðμÞjB̄0i ¼

�
1 −

1

2Nc

�
hB0j ~J2ðμÞj0ih0j ~J1ðμÞjB̄0i ~B0

2ðμÞ; ð2:8Þ

where the B meson states with a static b quark jBi are normalized nonrelativistically

hBðp0ÞjBðpÞi ¼ ð2πÞ3δð~p0 − ~pÞ; jBðpÞi ¼
ffiffiffiffiffiffiffiffi
2p0

q
jBðpÞi þOð1=mbÞ;

and

h0j ~Jμ1ðμÞjB̄0i ¼ −
1

2
h0j~|1ðμÞjB̄0ivμ; h0j ~J1ðμÞjB̄0i ¼ −

1

2
h0j~|1ðμÞjB̄0i;

hB0j ~Jμ2ðμÞj0i ¼
1

2
hB0j~|2ðμÞj0ivμ; hB0j ~J2ðμÞj0i ¼ −

1

2
hB0j~|2ðμÞj0i;

~|1 ¼ d̄γ5hþ; ~|2 ¼ d̄γ5h−;

h0j~|1ðμÞjB̄0i ¼ iFðμÞ; hB0j~|2ðμÞj0i ¼ iFðμÞ:

The B meson decay constant h0jjμjB̄0i ¼ ifBp
μ
B (where jμ ¼ d̄γ5γμb) is

fB ¼
ffiffiffiffiffiffiffi
2

mB

s
CðμÞFðμÞ þO

�
1

mb

�
; ð2:9Þ

where [27]

jμvμ ¼ CðμÞ~|1ðμÞ þO
�

1

mb

�
; CðmbÞ ¼ 1 − 2CF

αsðmbÞ
4π

þOðα2sÞ ð2:10Þ

[CF ¼ ðN2
c − 1Þ=ð2NcÞ]. The anomalous dimension of the operators ~|1;2 is [28–30]1

~γðαsÞ ¼ −3CF
αs
4π

þ CF

�
2

3
π2ðCA − 4CFÞ þ

1

2

�
5CF −

49

3
CA

�
þ 5

3
nl

��
αs
4π

�
2

þOðα3sÞ; ð2:11Þ

where nl ¼ nf − 1 is the number of light flavors (now excluding b quark), and CA ¼ Nc ¼ 3. In terms of these parameters,

the anomalous dimension of the operator ~Q1 in (2.5) [32] can be written as

~γ1ðαsÞ − 2~γðαsÞ ¼ δ11

�
αs
4π

�
2

þOðα3sÞ;

δ11 ¼
Nc − 1

3Nc

�
2π2

�
3Nc − 2 −

6

Nc

�
− 11N2

c − 15Nc − 12þ 18

Nc
þ 2ðNc þ 3Þnl

�
: ð2:12Þ

Vanishing of the leading (linear in αs) term in (2.12) reflects the (accidental) fact that at one loop and for scales
below the b quark mass, the naive factorization of the four quark operator ~Q1 into a product of two bilinear operators
is scale independent, i.e. ~γ1 ¼ 2~γ [33,34]. Therefore the μ dependence of ~B1ðμÞ is weak and contains no leading
logarithms:

~B1ðμÞ ¼ ~B1ðμ0Þ
�
1þ δ11

2βðnlÞ0

αðnlÞs ðμÞ − αðnlÞs ðμ0Þ
4π

þOðα2sÞ
�
: ð2:13Þ

The anomalous dimension of ~Q2 is only known up to one-loop order [24,25]:

1The three-loop term is also known [31], but we do not need it.
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~γ2ðαsÞ − 2~γðαsÞ ¼ δ20
αs
4π

þOðα2sÞ; δ20 ¼ 4
Nc þ 1

Nc
;

ð2:14Þ

and therefore

~B2ðμÞ≡ −
�
1 −

1

2Nc

�
~B0
2ðμÞ þ

1

4

�
1þ 1

Nc

�
~B1ðμÞ

¼ ~B2ðμ0Þ
�
αðnlÞs ðμÞ
αðnlÞs ðμ0Þ

�δ20=ð2βðnlÞ0
Þ
½1þOðαsÞ�: ð2:15Þ

The matching to HQET is most conveniently performed
at μ ¼ mb, such that the matching coefficients contain
no large logarithms:

QðmbÞ ¼ 2ðC1ðmbÞ ~Q1ðmbÞ þ C2ðmbÞ ~Q0
2ðmbÞÞ

þO
�

1

mb

�
; ð2:16Þ

where [24,25,35]

C1ðmbÞ ¼ 1 −
8N2

c þ 9Nc − 15

2Nc

α
ðnfÞ
s ðmbÞ
4π

þOðα2sÞ;

C2ðmbÞ ¼ −2ðNc þ 1Þ α
ðnfÞ
s ðmbÞ
4π

þOðα2sÞ: ð2:17Þ

Taking the matrix element of (2.16), using (1.3), (2.7),
(2.8), and reexpressing fB via FðmbÞ (2.9), we obtain

BðmbÞ ¼
C1ðmbÞ
C2ðmbÞ

~B1ðmbÞ −
Nc − 1

2

Nc þ 1

C2ðmbÞ
C2ðmbÞ

~B0
2ðmbÞ:

ð2:18Þ

Substituting C1;2ðmbÞ (2.17) and CðmbÞ (2.10), we
arrive at

BðmbÞ ¼
�
1 −

4N2
c þ 9Nc − 11

2Nc

α
ðnfÞ
s ðmbÞ
4π

�
~B1ðmbÞ

þ ð2Nc − 1Þ α
ðnfÞ
s ðmbÞ
4π

~B2ðmbÞ

þO
�
α2s ;

1

mb

�
ð2:19Þ

where within the needed accuracy α
ðnfÞ
s ðmbÞ ¼ αðnlÞs ðmbÞ.

Consequently, in order to obtain the QCD bag parameter
BðμÞ with the NLO precision, we only need the leading
order ~B2; in particular, we do not need the two-loop
anomalous dimension of the operator ~Q2.

Dependence of ~B1ðμÞ on μ is weak. ~B1ðmbÞ is related to
~B1ðμÞ (where μ is a low normalization point used in the sum
rules) by (2.13). Neglecting factorization breaking in the
terms suppressed by αs, i. e. setting ~B1ðμÞ ¼ ~B0

2ðμÞ ¼ 1 in
these terms, we obtain

BðmbÞ ¼ ~B1ðmbÞ −
11

2

�
1 −

1

Nc

�
αsðmbÞ
4π

: ð2:20Þ

There are two sources of factorization violation in the QCD
bag parameter BðmbÞ: the HQET bag parameter ~B1 of the
matrix element of the HQET operator ~Q1 (which will be
considered in Secs. III, IV) and the matching contribution
(2.20). As expected, they are suppressed as 1=Nc in the
large Nc limit.
This concludes the collection of necessary results con-

cerning the renormalization of the matrix element of the
four-quark operator and its matching to HQET at scales
below the b quark mass. The remaining task is to evaluate
the hadronic matrix element of the operator ~Q1 in HQET,
or the HQET bag parameter ~B1, for which we perform
a sum-rule analysis in HQET using operator product
expansion (OPE).

III. OPE IN HQET FOR SUM RULES

In the following subsections we evaluate the matrix
element of the four-quark operator ~Q1 with HQET sum
rules. We first consider the perturbative part of the sum rule,
which requires a three-loop calculation of a suitably chosen
correlator, and in a second step we study the quark-
condensate contribution to the HQET sum rule.

A. Leading perturbative part

To evaluate the matrix element, we use a vertex
(three-point) correlation function that has been first
proposed for the analysis of the kaon mixing in [36].
This correlator reveals the factorizable structure of the
matrix element more clearly than the two-point function
but is significantly more difficult to compute at NLO in
QCD compared to the calculation of the two-point
function [37]. For the present analysis we however
set up a three-point sum rule in HQET where the
computational difficulties have been solved [19]. We
consider the correlator

K ¼
Z

ddx1ddx2eip1x1−ip2x2h0jT ~|2ðx2Þ ~Q1ð0Þ~|1ðx1Þj0i

ð3:1Þ

of the operator ~Q1 given in (2.5). Here we compute in
dimensional regularization with d ¼ 4 − 2ε dimensions.
The currents
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~|1 ¼ h̄þγ5d; ~|2 ¼ h̄−γ5d ð3:2Þ

interpolate the ground state of a static B meson.
Both the HQET quark and the HQET antiquark propa-

gate only forward in time x · v, so that the product in (3.1) is
nonzero only at x1 · v < 0, x2 · v > 0 and thus the time-
ordered product coincides with the product.
The correlator K depends on two scalar quantities

ω1;2 ¼ p1;2 · v, K ¼ Kðω1;ω2Þ which correspond to the
residual energies of the b quark and the anti-b quark
respectively.
The perturbative diagrams for the correlator K

can be subdivided into two classes. The factorizable
diagrams include the leading contributions (Fig. 1) and
those diagrams which contain corrections to the left
loop and to the right one separately (e.g., Fig. 2).
The right diagrams in Figs. 1 and 2 are equal to the
corresponding left diagrams times the factor
ðd − 2Þ=ð2NcÞ. This factor is obviously color sup-
pressed 1=Nc at d ¼ 4: there is one color loop (Nc)
less, and the Dirac structures can be reduced to
products (as in the left diagrams) by Fierz rearrange-
ment. At d ≠ 4 there is a contraction γμ…γμ within the
same γ-matrix string in each right diagram, and it
produces the factor d − 2.
Nonfactorizable diagrams contain gluon exchanges

between the left loop and the right one. They first appear
at three loops (Fig. 3). Up to three loops, the results for the
correlators Kðω1;ω2Þ can be written as

Kðω1;ω2Þ ¼
�
1þ d − 2

2Nc

�
Πðω1ÞΠðω2Þ þ ΔKðω1;ω2Þ;

ð3:3Þ

where

ΠðωÞ ¼ Ncð−2ωÞ2−2ε
ð4πÞd=2

�
I1 − 2CF

g20ð−2ωÞ−2ε
ð4πÞd=2

d − 2

d − 4

×

�
I21 −

dð2d − 5Þ
d − 4

I2

��
ð3:4Þ

is the correlator of ~|1 and ~J1 [38–40], and

In ¼ Γð2nþ 1 − ndÞΓn

�
d
2
− 1

�
ð3:5Þ

are the integrals corresponding to the “sunset” diagrams
in HQET. The three-loop nonfactorizable contribution
is

ΔKðω1;ω2Þ ¼ NcCF
g20

ð4πÞ3d=2 Rðω1;ω2Þ: ð3:6Þ

We have reduced Rðω1;ω2Þ to the master integrals
investigated in [19] using the integration-by-parts
program [41]

FIG. 2. Some diagrams with corrections to the left loop. Of course, similar corrections to the right loop exist.

FIG. 1. The leading perturbative contributions. The currents ~J1, ~J2 are shown slightly split.

FIG. 3. Nonfactorizable diagrams.

B0-B̄0 MIXING AT NEXT-TO-LEADING ORDER PHYSICAL REVIEW D 94, 034024 (2016)

034024-5



R ¼ −
ðd − 2Þð3d − 7Þðd2 − 16dþ 40Þðω1 − 2ω2Þ

2ðd − 4Þð3d − 8Þω1ðω1 − ω2Þ
I3ð−2ω1Þ3d−5 þ ðω1 ↔ ω2Þ

þ ðd − 2Þ½ðd − 4Þð3d − 8Þω1 − ðd − 2Þð2d − 5Þω2�
ðd − 3Þðd − 4Þω1

I1I2ð−2ω1Þ2d−4ð−2ω2Þd−3 þ ðω1 ↔ ω2Þ

−
ðd − 2Þ½ð3d − 8Þð5d − 14Þω1 − 2ðd − 4Þðd2 − 7dþ 11Þω2�

ðd − 4Þð3d − 8Þðω1 − ω2Þ
M1ðω1;ω2Þ þ ðω1 ↔ ω2Þ

þ ðd − 2Þð2d2 − 15dþ 26Þ
2ðd − 3Þ M2ðω1;ω2Þ þ

ðd − 2Þ2ω1ω2

ðd − 3Þ2 M0
2ðω1;ω2Þ

þ 4ðd − 2Þðd − 3Þðd2 − 16dþ 40Þω1ω2

ðd − 4Þð3d − 8Þ M3ðω1;ω2Þ

−
2ðd − 2Þ2ω1

d − 4
M4ðω1;ω2Þ þ ðω1 ↔ ω2Þ: ð3:7Þ

The next step is to expand the master integrals around d ¼ 4, i.e. in ε. The relevant technicalities are discussed in [19] and
in the Appendix. We obtain

ΔKðω1;ω2Þ ¼ NcCF
g20

ð4πÞ3d=2 ½Γð1þ 2εÞΓð1 − εÞ�3ð−2ω1Þ2−3εð−2ω2Þ2−3εSðxÞ; ð3:8Þ

where

x ¼ ω2

ω1

; ð3:9Þ

and SðxÞ ¼ Sðx−1Þ is

SðxÞ ¼
�
1

48
ðx2 þ x−2Þ − π2

3
þ 5

4

�
1

3ε2

þ
�
−

1

16
ðx2 − x−2Þ log xþ 61

288
ðx2 þ x−2Þ þ xþ x−1 − 4ζ3 −

4

3
π2 þ 41

4

�
1

3ε

þ 1

2

�
1

16
ðx2 þ x−2Þ þ π2

3
−
5

4

�
log2x −

�
61

288
ðxþ x−1Þ þ 1

�
ðx − x−1Þ log x

þ 1

216

�
π2 þ 2519

24

�
ðx2 þ x−2Þ − 1

3

�
4

9
π2 −

67

4

�
ðxþ x−1Þ

−
1

3

�
16ζ3 þ

4

45
π4 þ 25

6
π2 −

193

4

�
: ð3:10Þ

The correlator Kðω1;ω2Þ is analytic at ω1;2 < 0. It has a cut in ω1 from 0 to þ∞ with the discontinuity

ρ1ðω1;ω2Þ ¼
1

2πi
½Kðω1 þ i0;ω2Þ − Kðω1 − i0;ω2Þ� ð3:11Þ

if we keep ω2 < 0. The discontinuity ρ1ðω1;ω2Þ as a function of ω2 (at some ω1 > 0) has a cut from 0 to þ∞ with the
discontinuity in ω2

ρðω1;ω2Þ ¼
1

2πi
½ρ1ðω1;ω2 þ i0Þ − ρ1ðω1;ω2 − i0Þ�: ð3:12Þ

On dimensional grounds, the correlator at three loops has the form

Kðω1;ω2Þ ¼ ð−2ω1Þ2−3εð−2ω2Þ2−3εfðxÞ; ð3:13Þ
where the function f can be gathered from the formulas given above. Looking at the spectral function ρ1ðω1;ω2Þ, we first
rotate ω1: we set ω1 ¼ −ν1e−iα (ν1 > 0) and vary α from 0 to π − 0 or −π þ 0 (keeping ω2 < 0); this gives
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ρ1ðν1;ω2Þ ¼
ð2ν1Þ2−3εð−2ω2Þ2−3ε

2πi

×

�
e3πiεf

�
−
ω2

ν1
eπi

�
− e−3πiεf

�
−
ω2

ν1
e−πi

��
;

ð3:14Þ

where π means π − 0. Now we set ω2 ¼ −ν2e−iα (ν2 > 0)
and vary α from 0 to π − 0 or −π þ 0:

ρðν1; ν2Þ ¼
ð2ν1Þ2−3εð2ν2Þ2−3ε

ð2πiÞ2
× ½ðe6πiε þ e−6πiεÞfðxÞ − fðxe2πiÞ − fðxe−2πiÞ�;

x ¼ ν2
ν1

; ð3:15Þ

where xe�2πi are at the Riemann sheets of the function fðxÞ
reached after crossing the cut in x from 0 to −∞.
The bare double spectral density is

ρðω1;ω2Þ ¼
�
1þ 1 − ε

Nc

�
ρðω1Þρðω2Þ þ Δρðω1;ω2Þ;

ð3:16Þ
where [38–40]

ρðωÞ ¼ Ncð2ωÞ2−2ε
ð4πÞd=2

Γð1þ 2εÞΓð1 − εÞ
1 − 2ε

×

�
1þ CF

g20ð2ωÞ−2ε
ð4πÞd=2 Γð1þ 2εÞΓð1 − εÞ

×

�
3

ε
þ 4

3
π2 þ 17

��
; ð3:17Þ

and

Δρðω1;ω2Þ ¼ NcCF
g20

ð4πÞ3d=2 ½Γð1þ 2εÞΓð1 − εÞ�3

× ð2ω1Þ2−3εð2ω2Þ2−3εrðxÞ; ð3:18Þ
where rðxÞ ¼ rðx−1Þ. In the case of the operator ~Q1 we
have found that rðxÞ does not, in fact, depend on x

rðxÞ ¼ −
�
4

3
π2 − 5

�
: ð3:19Þ

The expression for rðxÞ is a key computational result of
our paper.
The renormalized double spectral density ρrðω1;ω2Þ ¼

~Z−1
1

~Z−2
j ρðω1;ω2Þ is finite at the limit ε → 0. This fact may

be seen explicitly by using (with αs accuracy) the relation
~Z1 ¼ ~Z2

j [see (2.12)]. Multiplying the factorizable part of
(3.16) by ~Z−1

1
~Z−2
j ¼ ~Z−4

j makes it finite separately.
Therefore, also the nonfactorizable part has to become

finite separately. At the limit ε → 0 we obtain

ρrðω1;ω2Þ ¼
�
1þ 1

Nc

�
ρrðω1Þρrðω2Þ þ Δρrðω1;ω2Þ;

ð3:20Þ
where [38–40]

ρrðωÞ ¼
Ncð2ωÞ2
ð4πÞ2

�
1þ CF

αs
4π

�
−6 log

2ω

μ
þ 4

3
π2 þ 17

��
ð3:21Þ

and

Δρrðω1;ω2Þ ¼ −NcCF
αs

ð4πÞ5 ð2ω1Þ2ð2ω2Þ2
�
4

3
π2 − 5

�
:

ð3:22Þ
We note again, that for the operator ~Q1 as given in (2.5),
rðxÞ does not depend on x, i.e. on ω1;2; for other operators
this is not necessarily so.
It is useful to rewrite the presentation (3.22) in the form

Δρrðω1;ω2Þ ¼ −
1

Nc
CF

αs
4π

ρrðω1Þρrðω2Þ
�
4

3
π2 − 5

�
ð3:23Þ

which is valid with OðasÞ accuracy. This form shows
immediately the deviation from the factorization with
correct relative normalization and can be used for the
computation of corrections to the B parameter. Modifying
the representation (3.23) even further one finds for the
spectral density of three point correlator at NLO

ρrðω1;ω2Þ ¼
�
1þ 1

Nc

�
ρrðω1Þρrðω2Þ þ Δρrðω1;ω2Þ

¼
�
1þ 1

Nc

�
ρrðω1Þρrðω2Þ

×

�
1 −

αs
4π

Nc − 1

2Nc

�
4

3
π2 − 5

��
ð3:24Þ

that is a master relation for the sum rules computation of
“direct” contribution to ΔB.
In the next subsection we compute the contributions of

the quark condensate to the correlator (3.1).

B. Quark condensate contribution

The power corrections to the sum rule discussed above
are given in terms of quark and gluon condensates. The
leading term is given by the quark condensate contributions
to the correlator K. The diagrams contributing to these
power corrections are shown in Figs. 4–6.
The leading order quark condensate contribution (Fig. 4)

as well as some of the two-loop contributions (Fig. 5) are
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factorizable. They are contained in the product in (3.3), if
we add the quark-condensate term [38]

ΠqðωÞ ¼
1

2

hd̄di
−2ω

�
1þ 2CF

g20ð−2ωÞ−2ε
ð4πÞd=2 ðd − 1Þðd − 4ÞI1

�
ð3:25Þ

to the perturbative one (3.4).

The first nonfactorizable contributions due to quark
condensate appear at the two-loop level as shown in
Fig. 6. The contribution of these diagrams to the correlator
becomes

ΔKqðω1;ω2Þ ¼ CF
g20hd̄di
ð4πÞd Rqðω1;ω2Þ; ð3:26Þ

where

Rq ¼
4ðω1 þ ω2Þ½ðd − 2Þðd − 5Þðω2

1 þ ω2
2Þ − ðd3 − 10d2 þ 30d − 30Þω1ω2�

ðd − 4Þð−2ω1Þ5−dð−2ω2Þ5−d
I21

þ 2d − 5

2ðd − 3Þðd − 4Þðd − 5Þω2
2ðω1 − ω2Þ

× ½ðd − 2Þðd − 5Þ2ω3
1 þ 2ðd − 2Þðd − 5Þð2d − 5Þω2

1ω2 − ðd − 3Þðd2 − 11dþ 6Þω1ω
2
2

− 4ðd − 2Þðd − 3Þω3
2�I2ð−2ω1Þ2d−7 þ ðω1 ↔ ω2Þ

þ −ðd − 2Þðd − 5Þω3
1 − dω2

1ω2 þ ðd − 3Þðd − 8Þω1ω
2
2 þ ðd − 2Þω3

2

4ðd − 4Þω1ω
2
2ðω1 − ω2Þ

Mðω1;ω2Þ þ ðω1 ↔ ω2Þ ð3:27Þ

FIG. 5. Some of the factorizable contributions.

FIG. 6. Nonfactorizable contributions (the mirror-symmetric diagrams also exist).

FIG. 4. The leading quark condensate contributions. Of course, the mirror-symmetric diagrams also exist.
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where Mðω1;ω2Þ is defined in (A1). Expanding in ε we obtain

ΔKqðω1;ω2Þ ¼ CF
g20hd̄di
ð4πÞd ½Γð1þ 2εÞΓð1 − εÞ�2ð−2ω1Þ12−2εð−2ω2Þ12−2εSqðxÞ; ð3:28Þ

where

SqðxÞ ¼ Sqðx−1Þ ¼ −
7

16

x1=2 þ x−1=2

ε2

þ
�
7

2
ðx1=2 − x−1=2Þ log xþ ðx1=2 þ x−1=2Þðxþ x−1 − 3Þ π

2

3

−
1

4
ðx1=2 þ x−1=2Þð5xþ 5x−1 þ 14Þ

�
1

4ε

þ ðx1=2 þ x−1=2Þðxþ x−1 − 3Þ½3Li3ð1 − xÞ þ 3Li3ð1 − x−1Þ − 2LðxÞ log x − 2ζ3�

þ ðx1=2 − x−1=2Þðxþ x−1ÞLðxÞ þ 1

8
ðx1=2 þ x−1=2Þð2xþ 2x−1 − 7Þlog2x

þ ðx1=2 þ x−1=2Þð10xþ 10x−1 − 27Þ π
2

24

þ 1

8
ðx1=2 − x−1=2Þð5xþ 5x−1 þ 32Þ log x − 1

4
ðx1=2 þ x−1=2Þð9xþ 9x−1 þ 11Þ: ð3:29Þ

Here the special function LðxÞ is

LðxÞ ¼ −Lðx−1Þ ¼ Li2ð1 − xÞ þ 1

4
log2x:

Some useful properties of this function and relevant polylogarithms (Li2, Li3) are given in the Appendix.
Finally, the double discontinuity of the function Rqðω1;ω2Þ across the cuts ω1;2 > 0 reads

disc2Rqðω1;ω2Þ ¼ 2

��
π2

3
−
5

4

�
ω2
2δðω1Þ

− ðω2 þ ω1Þ
�
ω2

ω1

þ ω1

ω2

− 3

�
log

�
1 −

ω1

ω2

��
θðω2 − ω1Þ

þ ðω2 ↔ ω1Þ: ð3:30Þ

Note that the coefficient of the δðω1Þ is related (up to a proportionality factor) to that of a nonfactorizable perturbative
correction in Eq. (3.19).
The spectral density of quark condensate contribution now reads

Δρqðω1;ω2Þ ¼ CF
αshd̄di
4π

2

16π2

���
π2

3
−
5

4

�
ω2
2δðω1Þ − ðω2 þ ω1Þ

�
ω2

ω1

þ ω1

ω2

− 3

�
log

�
1 −

ω1

ω2

��
θðω2 − ω1Þ

þ ðω2 ↔ ω1Þ
�
: ð3:31Þ

The two-point correlator with the quark-condensate correction is given in (3.25).

IV. SUM RULES IN HQET

The sum rule is now set up by comparing the perturbatively computed correlator (3.24) with its hadronic representation.
The hadronic spectral function is given by

ρHðω1;ω2Þ ¼ F2hBj ~Q1jB̄iδðω1 − Λ̄Þδðω2 − Λ̄Þ þ ρcontðω1;ω2Þ ð4:1Þ
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where

hB̄j ~Q1jBi ¼
�
1þ 1

Nc

�
1

4
FðμÞ2 ~B1

¼ ð1þ 1=NcÞ
1

4
FðμÞ2ð1þ Δ ~B1Þ ð4:2Þ

and

ρcontðω1;ω2Þ ¼ ρPTðω1;ω2Þ½1 − θðωc − ω1Þθðωc − ω2Þ�:
ð4:3Þ

Here Λ̄ is the B meson residual energy, MB −mb ¼ Λ̄ and
ωc is the continuum threshold. One sees that if one
considers also the sum rules for two point correlators then
the factorizable part of the matrix element disappears and
one has the direct prediction for Δ ~B1.
The simplest way to extract Δ ~B1 is to use the finite

energy sum rules (FESR) that equate the integrals over
the square 0 < ω1;2 < ωc of hadronic and OPE spectra.
One obtains for the perturbation theory contribution the
following expression

Δ ~B1ðμÞ ¼ −
Nc − 1

2Nc

�
4

3
π2 − 5

�
αðnlÞs ðμÞ
4π

≈ −0.68
αðnlÞs ðμÞ

π
¼ −2.72

αðnlÞs ðμÞ
4π

: ð4:4Þ

Here nl ¼ 4. Eq. (4.4) gives a direct contribution to the
violation of factorization.
One can consider a more sophisticated analysis that

controls power corrections as in the Borel modification of
dispersion sum rules. In HQET, however, there is a nice
way of solving the problem of controlling power correc-
tions suggested by the structure of dispersion representa-
tion for the correlators in configuration space. Indeed, in
coordinate-space, the renormalized correlator (3.1) at the
parton level for Euclidean times τ1;2 (τ ¼ it) becomes

Krðτ1; τ2Þ ¼
Z

∞

0

dω1dω2e−ω1τ1−ω2τ2ρrðω1;ω2Þ þ ðp:c:Þ;

ð4:5Þ

where (p.c.) represents the power corrections proportional
to vacuum condensates. The power corrections are impor-
tant mainly for fixing the continuum threshold. We are not
interested in the sum rules analysis on its own but in precise
determination of Δ ~B1. Therefore we fix ωc from all known
sources [like FðμÞ or fB eventually] and use the knowledge
about two-point sum rules where the main power correction
is the quark condensate contribution.
The sum rule for the matrix element of the four-quark

operator is obtained now from equating the OPE result to

the hadronic expression for the correlator K with the
spectral density (4.1)

Khadðτ1; τ2Þ ¼
Z

∞

0

dω1dω2e−ω1τ1−ω2τ2ρhadðω1;ω2Þ ð4:6Þ

which contains the desired matrix element (4.2). With the
usual duality assumption for the excited states, we obtain
the sum rule

F2ðμÞhB0j ~Q1ðμÞjB̄0ie−Λ̄ðτ1þτ2Þ

¼
Z

ωc

0

dω1

Z
ωc

0

dω2e−ω1τ1−ω2τ2ρrðω1;ω2Þ þ ðp:c:Þ;

ð4:7Þ

with the same parameters Λ̄, MB −mb ¼ Λ̄ and the
continuum threshold ωc. The Euclidean times τ1;2
(τ ¼ it) play the role of suppressing-higher-states param-
eters (1=τ1;2 are the Borel parameters of the double Borel
transform in ω1;2). One can study the stability of the result
with respect to varying τ1;2. The version of sum rules in
coordinate space in HQET is the most similar to the lattice
treatment of the problem.
Dividing the sum rule (4.7) by two copies (product) of

the two-point sum rules [38–40]

1

2
F2ðμÞe−Λ̄τ ¼

Z
ωc

0

dωe−ωτρrðωÞ þ ðp:c:Þ; ð4:8Þ

we finally obtain the result for the bag factor

~B1ðμÞ ¼ 1 −
Nc − 1

2Nc

�
4

3
π2 − 5

�
αðnlÞs ðμÞ
4π

þ ðp:c:Þ

≈ 1 − 0.68
αðnlÞs ðμÞ

π
þ ðp:c:Þ ð4:9Þ

which coincides with that of the FESR approach. This
result is valid at a low normalization scale μ ∼ 1=τ1;2 or, in
fact, μ ∼ ωc. Also it assumes the same ωc for both the two-
point and three-point correlators [this is the reason why
~B1ðμÞ is not explicitly dependent on ωc]. Thus, Eq. (4.9)
gives the most complicated contribution to the bag param-
eter directly coming from the three-loop correlation func-
tion [a “direct” violation of factorization to be contrasted
with the violation in matching given in Eq. (2.20)].
There are still contributions originated from matching as

given in Eq. (2.20) that should be added. Let us add them
first neglecting higher order corrections due to different
normalization points (running with NLO anomalous
dimensions). They give the total violation of factorization
in the form
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−
Nc − 1

2Nc

�
11

αsðmbÞ
4π

þ
�
4

3
π2 − 5

�
αsðμÞ
4π

�

≈ −ð3.67þ 2.72Þ αs
4π

: ð4:10Þ

where in the left-hand side we have still distinguished
between the different scales of αs which appear on the one
hand in the matching and on the other hand in the QCD sum
rule. However, μ is not fixed and can be chosen somewhere
in the vicinity of ωc such that μ > ωc. In our numerical
analysis below we choose the scale to bemb and include the
difference which is formally of order αsðmbÞ2 logðmb=ωcÞ
in the uncertainty. Nevertheless, one sees that the direct
violation [2.72 in Eq. (4.10)] is quantitatively important
and is comparable in magnitude with the violation in
matching [3.67 in Eq. (4.10)].
The deviation of ~B1ðμÞ from unity that we have found so

far measures the deviation from the naive factorization
estimate due to perturbation theory contribution to the
OPE. Now we account for the contribution of quark
condensate that violates factorization. It can be important
as its contribution to the two-point sum rule that determines
FðμÞ and eventually fB is not small.
After integrating the ρqðω1;ω2Þ within the finite energy

sum rules one finds

Z
ρqðω1;ω2Þdω1dω2 ¼ CF

αshq̄qi
4π

2

3

ω3
c

ð4πÞ2
�
π2 −

149

18

�
:

ð4:11Þ

The two-point function sum rule (4.8) at τ ¼ 0 (the finite-
energy sum rule) gives

mBf2B ¼ 2F2 ¼ Nc
ω3
c

3π2
− hq̄qi;

we obtain

Δ ~B1jq ¼
Nc − 1

Nc

hq̄qi
mBf2B

αs
4π

�
1þ hq̄qi

mBf2B

��
π2 −

149

18

�
:

ð4:12Þ

Numerically one has

Nc − 1

Nc

�
π2 −

149

18

�
≈ 1.06

and

hq̄qi
mBf2B

¼ −0.07

for

hq̄qi ¼ −ð0.25 GeVÞ3; mB ¼ 5.3 GeV; fB ¼ 200 MeV

that are typical values for the parameters. In our numerical
analysis we neglect the quark condensate contribution in
the square bracket in (4.12). One finds literally

Δ ~B1jq ¼ −0.08
αsðmbÞ
4π

ð4:13Þ

and after adding uncertainties we finally write

Δ ~B1jq ¼ −ð0.10� 0.04Þ αsðmbÞ
4π

: ð4:14Þ

The contribution is rather small. Note that this is, in fact, a
numerical smallness. Indeed, the result is a difference of
two large numbers (of order 10) ðπ2− 149

18
Þ≈9.9−8.3¼ 1.6

that happens to be small (of order 1). Let us emphasize
again that our estimates for the phenomenological param-
eters have very generous uncertainties. It is safe doing so
because the contribution is rather small.
The non-PT terms (power corrections) have been ana-

lyzed in [14] and then extended and updated in [17]. The
FESR estimate from the latter is

ΔBcond ¼ −
3π2

64

�
1

ω4
c

	
αs
π
GG



−

1

ω5
c
hq̄Gqi

�

¼ −
3

64
ð0.06þ 0.1Þ ¼ −0.008 ð4:15Þ

for standard values of gluon condensate hαsπ GGi [42] and
mixed quark-gluon condensates hq̄Gqi (e.g., see [43,44]).
The final result after an accurate Borel SR analysis in
HQET reads for the Bs meson [17]

ΔBcond ¼ −0.006� 0.005; ð4:16Þ

and we use this estimate also for the Bd meson.
Because the values are very small they can be analyzed in

linear approximation that means that the consideration of
sum rules with included power corrections does not change
the result for the parton part (no mutual influence).
Nonfactorizable 1=mb corrections can only emerge in the

αs=mb order (LO loops are completely factorized in QCD
and this feature is reproduced in HQET as well). Therefore
they are by factor Λ=mb ¼ ð0.5 GeVÞ=ð5 GeVÞ ¼ 1=10
smaller than those analyzed here and we simply include
them in the uncertainty.
We discuss the final result in the next section where the

comparison with lattice is also given.

V. RESULTS AND DISCUSSION

The main result of our analysis is the deviation ΔB from
the value B ¼ 1 in factorization. In this section we collect
all contributions and discuss the result.
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The partonic result (i.e. the purely perturbative contri-
bution) consists of three pieces originating from the
matching, from the QCD sum rule analysis and from the
running:

ΔBjPT ¼ −
Nc − 1

2Nc

�
11

αsðmbÞ
4π

þ
�
4

3
π2 − 5

�
αsðμÞ
4π

�

þ δ11

2βðnlÞ0

αsðmbÞ − αsðμÞ
4π

≈ −
�
4

9
π2 þ 2

�
αs
4π

:

As discussed after Eq. (4.10) we set for our numerical
evaluation μ ¼ mb in the last step. Higher orders of
α2s logðmb=ωcÞ can be taken through NLO anomalous
dimension but they are small and included as uncertainty
in our analysis. To this end, we write

ΔBjPT ¼ −6.4
αsðmbÞ
4π

�
�
X
αsðmbÞ
4π

�
αsðmbÞ
4π

where X accounts for higher order terms. In order to
estimate the uncertainty induced by such terms, we take a
sizable value X ¼ 20 for this parameter, and we obtain

ΔBjPT¼−6.4
αsðmbÞ
4π

�0.3
αsðmbÞ
4π

¼−ð6.4�0.3ÞαsðmbÞ
4π

:

The choice of the value for the coupling constant is
important for the absolute estimate. For the lattice estimates
the reference value αsðMZÞ ¼ 0.1184 from [45] is usually
used [8]. Note that the estimate from the low energy τ decay
data gives a close value [46]

αsðMZÞ ¼ 0.1184� 0.0007jexp � 0.0006jhq mass:

We stick, therefore, to the standard value

αsðmbÞ ¼ 0.20� 0.02 ð5:1Þ

with rather generous uncertainty to account for possible
systematic errors.
With the numerical value from (5.1) we obtain including

systematic errors at the level of 30%

ΔBPT ¼ −0.10� 0.02� 0.03:

We now turn to the nonperturbative condensate terms.
The quark-condensate term computed in this paper at order
αs gives

ΔBq ¼ −ð0.10� 0.05Þ α
ðnlÞ
s ðmbÞ
4π

¼ −0.002� 0.001:

ð5:2Þ

In [17] the nonperturbative condensate terms that appear
at tree level have been computed; see (4.15). Their
numerical value is [17]

ΔBnonPT ¼ −0.006� 0.005:

Including everything, we obtain the estimate

ΔB ¼ −0.11� 0.04 ð5:3Þ

where we summed errors in quadrature.
In order to compare this to other calculations, it is useful

to employ the translation factor to the renormalization
group invariant parameter B̂ ¼ ẐBðmbÞ is,

Ẑ ¼ αsðmbÞ−
γ0
2β0

�
1þ αsðmbÞ

4π

�
β1γ0 − β0γ1

2β20

��

with

γ0 ¼ 4; γ1 ¼ −7þ 4

9
nf; nf ¼ 5;

which numerically is

Ẑ ¼ 1.51

at αsðmbÞ ¼ 0.2 [12].
Applying this factor to our result

BðmbÞjthis paper ¼ 1 − ð0.11� 0.04Þ ð5:4Þ

we obtain

B̂jthis paper ¼ 1.51f1 − ð0.11� 0.04Þg ¼ 1.34� 0.06:

ð5:5Þ

The main uncertainty comes from the choice of scale for
αsðμÞ between μ ∼ ωc andmb, higher orders in αsðmbÞ, and
the value of αsðmbÞ. The uncertainties due to other sources
(like NNLO matching, or systematics of sum rules) is
difficult to quantify. For them we add some typical values
known from the experience with similar correlation func-
tions (see, e.g. [39,40]). More recent examples of uncer-
tainty analysis within sum rules approach can be found
in [7,17].
We note that the sum rule yields a quite precise

prediction. This is due to the fact that the actual sum-rule
calculation is performed for the deviation ΔB of the bag
factor from unity. Although the calculation of ΔB suffers
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from the typical sum-rule uncertainty of tens of percents,
the value obtained for B̂ is quite precise since ΔB is small
compared to unity.
This value has to be compared to lattice value results.

The recent review [8] quotes the average

B̂latt ¼ 1.26ð9Þ

for nf ¼ 2þ 1 flavors based on [9,10] and

B̂latt ¼ 1.30ð6Þ

for nf ¼ 2 [11]. The recent result [12] is

B̂latt ¼ 1.38ð12Þð6Þ: ð5:6Þ

The parameter B itself normalized at the b quark mass is
given earlier as [13]

BlattðmbÞ ¼ 0.8� 0.1

(unfortunately, the number is not given explicitly and the
result is extracted from the figure only). At present, the
progress in lattice computations is pretty fast and the results
are going to further improve. Nevertheless, currently our
sum rule estimate is competitive with the lattice calcula-
tions for the reasons discussed above.
A comment on the QCD computation of the bag

parameter with the moments of the spectral density at
the finite b-quark mass used in the analysis of Ref. [16] is in
order here. The subtraction of divergences for the operator
Q has been done in a way that is different from the scheme
adopted for the computation of the coefficient functions
of ΔB ¼ 2 Hamiltonian in [20]. Thus, the renormalized
operator QðμÞ of [16] differs from the one given in [20]
(and used in the present paper) by a finite amount of order
αs. We are going to convert the results of [16] to the
canonical basis in a separate paper.

VI. SUMMARY

We have computed nonfactorizable corrections to the
bag parameter for the B0

d − B̄0
d mixing. The most

complicated part is a “direct” contribution that requires
an account for three-loop diagrams in HQET. The main
result of phenomenological analysis is that these correc-
tions are small, and factorization approximation is quanti-
tatively valid. We have found

BðmbÞ − 1 ¼ −ð0.11� 0.04Þ ð6:1Þ

and

B̂jQCD ¼ 1.34� 0.06 ð6:2Þ

for the Bd meson bag parameter.
The main advantage of our approach is that we classify

the contributions (diagrams) at the level of OPE such that
we can explicitly single out contributions that completely
factorize. In that sense they can only produce unity in the
bag parameter and do not require any computation if
properly marked. Subtracting these terms at the level of
OPE we keep only terms that explicitly violate factorization
and use the sum rules for them. It happens that those terms
are numerically small and even rather large uncertainties in
their estimate still produce rather precise result for the
matrix element itself.
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APPENDIX: MASTER INTEGRALS

Expansions of the master integrals in ε up to finite terms
have been obtained in [19] Appendix A. However, we have
found that the coefficients of M3;4 in the correlator are
Oð1=εÞ, and we need one more term in their expansions.
The expansion of M3 is given by (A.4) in [19]; the new
additional term in the braces is

þ
�
144ð2x log x − 1þ 19x − 3x2ÞLi3ð1 − xÞ − 144ð2x log xþ 3 − 19xþ x2ÞLi3ð1 − x−1Þ

þ 288L2ðxÞ þ 216ð1 − 7xþ x2ÞLðxÞ log xþ 252ð1 − x2ÞLðxÞ

þ 81

4
xlog4xþ 9

2
ð1 − x2Þlog3x − 9

4
ð19þ 70xþ 19x2Þlog2xþ 18ð1 − x2Þ log x

− 8

�
630ζ3 þ

71

15
π4 þ 18π2

�
xþ 3ð11 − 120xþ 11x2Þ

�
ε4:

The expansion of M4 is given by (A.5) in [19]; the new additional term in the braces is
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−2

�
144x2L4ðxÞ−12xð2x logxþ3þ18x−3x2ÞLi3ð1−xÞ

þ12xð2x logx−1−18xþx2ÞLi3ð1−x−1Þ
−24x2L2ðxÞþ6x½4xlog2xþ18x logx−5ð1−x2Þ�LðxÞ
þ3xð1−x2Þlog3xþx½8π2xþ3ð5−9x−5x2Þ�log2x
þ3x½4ð8ζ3þ3π2Þx−1þx2� logx

þ2

�
270ζ3þ

28

15
π4þ9π2

�
x2þ2xð7þ2x−x2Þ

�
ε4;

where the function

L4ðxÞ ¼ −L4ðx−1Þ ¼ Li4ðxÞ þ
1

6
log3x logð1 − xÞ

−
1

16
log4x −

π2

12
log2x −

π4

90

is analytical in ð0;þ∞Þ (no branching singularity at x ¼ 1).
We have also checked that the expansions (A.2) and (A.3)
of M2, M0

2 in [19] satisfy the identity

M0
2 ¼

d − 3

ðd − 4Þω2
1ω2

×

�
ðω2

1 − ω2
2Þ
∂M2

∂ω2

þ 1

2
ð3d − 8Þðω1 þ 2ω2ÞM2

�

following from IBP.
For the calculation of two-loop diagrams in Sec. III B we

need Feynman integrals shown in Fig. 7. Using LiteRed
[41] we reduce them to 3 trivial master integrals
I21ð−2ω1Þd−3ð−2ω2Þd−3, I2ð−2ω1Þ2d−5, I2ð−2ω2Þ2d−5 and
2 nontrivial ones,

ðA1Þ

and Mðω2;ω1Þ. Expansion of Mðω1;ω2Þ in ε is

Mðω1;ω2Þ ¼ −
Γ2ð1 − εÞΓð1þ 4εÞ

16ε2ð1 − 2εÞð1 − 4εÞð3 − 4εÞ
�
xðx − 1Þ − ð4x2 − 6xþ 1Þε

− 2½xðx − 1Þð4LðxÞ þ log2xÞ − 2ð2x − 1Þ log x�ε2

þ 8

�
xðx − 1Þ

�
4Li3ð1 − xÞ þ 2Li3ð1 − x−1Þ − 4LðxÞ log x − 1

3
log3xþ 4LðxÞ

�

þ ðx2 þ x − 1Þlog2x
�
ε3 þ � � �

� ð−2ω2Þ2−4ε
x2

:

For calculations of spectral densities we used

Li2ð1 − xe�2πiÞ ¼ Li2ð1 − xÞ∓2πi½log jx − 1j � πiθðx − 1Þ�;
Li3ð1 − xe�2πiÞ ¼ Li3ð1 − xÞ∓πi½log jx − 1j � πiθðx − 1Þ�2;

Linðxþ i0Þ − Linðx − i0Þ ¼ 2πi
ΓðnÞ log

n−1x where x > 0

(where 1 − xe�2πi are on the Riemann sheets reached after crossing the cut). We also used the identity

Li3ðxÞ þ Li3ð1 − xÞ þ Li3ð1 − x−1Þ ¼ 1

6
log3x −

1

2
log2x logð1 − xÞ þ π2

6
log xþ ζ3:

FIG. 7. Topology of two-loop integrals.
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