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We study kaon-nucleon systems in the Skyrme model in a method based on the bound state approach of
Callan-Klebanov but with the kaon around the physical nucleon of the rotating hedgehog. This corresponds
to the variation after projection, reversing the order of semiclassical quantization of 1=Nc expansion.
The method, however, is considered to be suited to the study of weakly interacting kaon-nucleon systems
including loosely KN bound states such as Λð1405Þ. We have found a bound state with binding energy of
order 10 MeV, consistent with the observed state. We also discuss the KN interaction and find that it
consists of an attraction in the middle range and a repulsion in the short range.
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I. INTRODUCTION

Recently, kaon and nucleon systems have been receiving
a lot of attention in hadron and nuclear physics. In
particular, the antikaon and nucleon ðKNÞ interaction is
expected to be strongly attractive and it is considered that
they form a bound state which eventually becomes a
resonance by the coupling to the open channel of πΣ.
The resulting Feshbach resonance state is identified with
Λð1405Þ [1,2], which is the state that cannot be easily
explained by a three quark state. Based on the basic features
of the KN properties, there have been large number of
discussions in a few body nuclear systems with the kaon as
deeply bound states [3–7]. Detailed properties of these few-
body systems, however, are yet under debate. A possible
reason for that is that the kaon-nucleon interaction is not
well understood.
Several kaon-nucleon interaction have been derived by a

phenomenological method and by chiral theories [8–12].
Akaishi and Yamazaki proposed a KN potential with a
strong attraction [8,9]. Their potential is phenomenological
with several model parameters. The chiral approach is
based on the low energy theorem of spontaneously broken
chiral symmetry, that is the Weinberg-Tomozawa interac-
tion [13,14]. It gives the correct T-matrix at low energies,
but for resonances it needs unitarization which necessarily
requires a parameter to regularize the divergence associated
with the pointlike nature of the interaction in the three-
dimensional space. Furthermore, in the latter approach the
concept of potential is not required as long as observed
quantities are calculated from the T-matrix. In the calcu-
lations of few-body systems, however, the interaction in the
form of potential is more convenient.
In this article, we derive the kaon-nucleon interaction in

the bound state approach of the Skyrme model. Due to the
extended structure of the nucleon as a soliton, the resulting
interaction can be expressed as a potential. In the Skyrme
model, the nucleon emerges as a soliton of a nonlinear field

theory of the pion and then describes the extended structure
of the nucleon [15–17]. The model contains parameters
which are, however, determined by the properties of the
nucleon itself or inputs other than the kaon dynamics.
In this sense, our approach is free from parameters.
Our bound state approach is based on the one proposed by

Callan and Klebanov [18,19], where kaons are introduced as
fluctuations around the Skyrmion. Their original method
followed precisely the 1=Nc counting for the quantization of
the kaon fluctuations and Skyrmion rotations. Kaons are
moving around the hedgehog solitonwith a fixed orientation.
Due to the strong attraction of the Wess-Zumino term
[20–22], bound states are generated for the K-hedgehog
systems. Because of the coupling of the spin and isospin of
the hedgehog configuration, after the quantization, the bound
K carries spin rather than isospin as the original one does.
Moreover, parity of the kaon flips in the presence of the
hedgehog soliton [23–25]. Thus, the bound K is regarded as
the strange quark. This method provides an interesting
picture of the KN bound system but it is not suited to the
description of the physical kaon and the nucleon. As an
application of this method, however, Ref. [26] studied the
zero-point energy due to the kaon fluctuations.
In the present paper, we propose an alternative method;

we first quantize the hedgehog Skyrmion to generate the
physical nucleon and then introduce the physical kaon
around it. Our method, however, does not obey strictly the
1=Nc counting rule, because the hedgehog rotation is of
higher order than the kaon fluctuation. For the physical
situation, however, we consider it reasonable, as long as we
discuss weakly bound states with binging energy of order
10 MeV, which is a typical energy of hadronic scale. In
such a situation, motion of the kaon is expected to be
slower than the motion of the hedgehog rotation. Our
method is justified if this condition is well satisfied, and
corresponds to the variation after projection in many-body
physics [27].
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We organize the paper as follows. In Sec. II, we explain
our method with some review on the original bound state
approach of Callan-Klebanov. The difference between their
and our methods is explained in detail. In Sec. III, we
present results of our method for the KN bound states.
Then we analyze theKN potential. Several properties of the
resulting potential are investigated. In Sec. IV, we sum-
marize the present work and discuss some further studies.

II. METHOD

A. Skyrme Lagrangian and the new ansatz

Let us start with the Skyrme Lagrangian [15–17],

L ¼ 1

16
F2
πtrð∂μU∂μU†Þ þ 1

32e2
tr½ð∂μUÞU†;

ð∂νUÞU†�2 þ LWZ þ LSB; ð1Þ

where U is the SU(3)-valued chiral field,

U ¼ exp

�
i
2

Fπ
λaϕa

�
; a ¼ 1; 2; 3;…; 8; ð2Þ

ϕ ¼ 1ffiffiffi
2

p
X8
a¼1

λaϕa

¼

0
BBB@

1ffiffi
2

p π0 þ 1ffiffi
6

p η πþ Kþ

π− − 1ffiffi
2

p π0 þ 1ffiffi
6

p η K0

K− K0 − 2ffiffi
6

p η

1
CCCA; ð3Þ

and λa are the Gell-Mann matrices. The Wess-Zumino term
LWZ is given by [20–22]

LWZ ¼ −
iNc

240π2

Z
d5xεμναβγtr½ðU†∂μUÞðU†∂νUÞ

× ðU†∂αUÞðU†∂βUÞðU†∂γUÞ�; ð4Þ

where Nc is the number of colors. In this paper, we set
Nc ¼ 3. The last term in Eq. (1) LSB is the explicit
symmetry breaking term due to the finite masses of
pseudoscalar mesons [28,29]

LSB ¼ 1

48
F2
πðm2

π þ 2m2
KÞtrðU þU† − 2Þ

þ
ffiffiffi
3

p

24
ðm2

π −m2
KÞtr½λ8ðU þU†Þ�: ð5Þ

In the present paper, we consider the chiral limit for the u, d
sector, mu ¼ md ¼ 0, ms ≠ 0. This means to set mπ ¼ 0,
mK ≠ 0. There are three model parameters, the pion decay
constant Fπ , the Skyrme parameter e, and the mass of the
kaon mK . Their actual values will be discussed in Sec. III.

Callan and Klebanov introduced the following ansatz
(CK ansatz) [18,19]

UCK ¼
ffiffiffiffi
N

p
UK

ffiffiffiffi
N

p
; ð6Þ

where

N ¼
�
ξ2 0

0 1

�
; ξ2 ¼ Uπ ¼ exp

�
2i
Fπ

τ · π

�
; ð7Þ

UK ¼ exp

�
2

ffiffiffi
2

p
i

Fπ

�
0 K

K† 0

��
; K ¼

�
Kþ

K0

�
: ð8Þ

They followed the 1=Nc expansion scheme when con-
structing the kaon-nucleon system; the hedgehog nucleon is
formed in the leading order of N1

c, kaon fluctuations are
introduced in the next-to-leading order of N0

c, and finally
the hedgehog-kaon system is rotated in spin-isospin space.
This is to rewrite the ansatz Eq. (6) as

UCK → AðtÞ
ffiffiffiffiffiffiffi
NH

p
UK

ffiffiffiffiffiffiffi
NH

p
A†ðtÞ; ð9Þ

where NH denotes the hedgehog configuration

NH ¼
�
ξ2 0

0 1

�
; ξ2 ¼ UH ¼ exp ½iFðrÞτ · r̂� ð10Þ

with FðrÞ being the soliton profile function, and AðtÞ is a
time-dependent SU(2) rotation matrix.
By quantizing the rotating system with kaon fluctua-

tions, they have generated the physical hyperons such as Λ,
Σ baryons [18,19]. A unique feature of their method is that
there occurs a transmutation between the spin and isospin
quantum numbers of the kaon due to the background field
of the hedgehog configuration; the antikaon ðsuÞ behaves
as a strange quark and the kaon ðsuÞ behaves as an
antistrange quark. One of the purposes of the present paper
is to study the interaction between the kaon and the
nucleon. Due to the feature as explained above, the CK
ansatz is not convenient for this purpose. To do that, here,
we would like to propose an alternatively ansatz. First we
construct the physical nucleon and then introduce the kaon
fluctuations. This amounts to writing the ansatz

U ¼ AðtÞ
ffiffiffiffiffiffiffi
NH

p
A†ðtÞUKAðtÞ

ffiffiffiffiffiffiffi
NH

p
A†ðtÞ; ð11Þ

where NH is and UK is given by Eq. (10) and Eq. (8),
respectively, and AðtÞ is a time-dependent SU(2) matrix as
we mention above.
We comment the differences of our ansatz from the CK

one. In the CK ansatz, the kaon is the fluctuation around the
hedgehog soliton. Their quantization method Eq. (9) is
based on the picture that the kaon is strongly bound to it.
Contrary, in our ansatz, the kaon is introduced as the
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fluctuation around the physical nucleon. Thus, the hedge-
hog soliton is first rotated in our ansatz Eq. (11). This is
based on the picture that the kaon is weakly bound to the
nucleon as expected to hadronic molecules. This corre-
sponds to the variation after projection in the many-body
physics [27].

B. Kaon fluctuations around the physical nucleon

To describe the kaon fluctuations around the physical
nucleon, let us first decompose the kaon field as

�
Kþ

K0

�
¼ ψ IKðt; rÞ → ψ IKðrÞ exp ð−iEtÞ; ð12Þ

where ψ I is the two component isospinor, and the spatial
wave function KðrÞ is expanded by the spherical harmonics
Ylmðr̂Þ

KðrÞ ¼
X
αlm

ClmαYlmðr̂Þkαl ðrÞ ð13Þ

with the expansion coefficients Clmα and the radial wave
function kαl ðrÞ.
Substituting Eq. (11) for the Lagrangian Eq. (1), we take

into account the terms up to second order of the kaon fields.
Taking a variation with respect to the kaon fields, we obtain
the equation of motion for the kaon radial wave function
kαl ðrÞ

−
1

r2
d
dr

�
r2hðrÞ dk

α
l ðrÞ
dr

�
− E2fðrÞkαl ðrÞ

þ ðm2
K þ VðrÞÞkαl ðrÞ ¼ 0; ð14Þ

where

hðrÞ ¼ 1þ 1

ðeFπÞ2
2

r2
sin2 F; ð15Þ

fðrÞ ¼ 1þ 1

ðeFπÞ2
�
2

r2
sin2 F þ F02

�
; ð16Þ

VðrÞ ¼ Vc
0ðrÞ þ Vc

τðrÞIKN þ VLS
0 ðrÞJKN

þ VLS
τ ðrÞJKNIKN; ð17Þ

and

IKN ¼ IK · IN; JKN ¼ LK · JN: ð18Þ

In Eq. (18), the nucleon spin and isospin operators, JN

and IN , are given by [30]

JN ¼ iΛtr½τ _A†ðtÞAðtÞ�; ð19Þ

IN ¼ iΛtr½τ _AðtÞA†ðtÞ�; ð20Þ

where _AðtÞ is the time derivative of AðtÞ, τ is the 2 × 2 Pauli
matrices, and Λ is the soliton moment of inertia which is
given by [31]

Λ ¼ 2π

3
F2
π

Z
drr2sin2F

�
1þ 4

ðeFπÞ2
�
F02 þ sin2F

r2

��
:

ð21Þ
The kaon isospin operator, IK , is given by the 2 × 2 Pauli
matrices

IK ¼ τ
2
: ð22Þ

Lastly, LK in Eq. (18) is the orbital angular momentum
operator for the kaon

LK ¼ r × pK: ð23Þ
Using the present ansatz Eq. (11), the resulting

Lagrangian and equation of motion Eq. (14) contain the
rotation matrix AðtÞ in several places. In other words, in
these equations, terms of different order of 1=Nc exist
simultaneously, indicating the violation of 1=Nc expansion.
This, however, is the feature of the present approach which
we consider suited to the study of the physical kaon and
nucleon interaction.
We note that the potential Eq. (17) has four components;

the isospin independent and dependent central forces,Vc
0 and

Vc
τ , respectively, and similarly for the spin-orbit forces VLS

0

andVLS
τ . In fact, these terms complete thegeneral structure of

the potential between the isospinor-pseudoscalar kaon and
isospinor-spinor nucleon. In the Appendix, we write down
the explicit expressions of VðrÞ.

III. RESULTS AND DISCUSSIONS

In this section, we consider kaon and nucleon bound
states and their potential. In our approach, there are three
parameters: the pion decay constant Fπ , the Skyrme
parameter e, and the mass of the kaon mK . We keep
mK ¼ 495 MeV, and we consider three parameter sets
for Fπ and e. The parameter set 1 is ðFπ; eÞ ¼
ð129 MeV; 5.45Þ, which is adjusted to fit the masses of
the nucleon and the delta [31]. The parameter set 2 is
ðFπ; eÞ ¼ ð186 MeV; 5.45Þ, where the pion decay con-
stant Fπ is fixed at the experimental value while e is
unchanged from the set 1. The last parameter set 3 is
ðFπ; eÞ ¼ ð186 MeV; 4.82Þ, which is adjusted to fit the
mass difference of nucleon and delta with Fπ ¼ 186 MeV.

A. Bound states

As discussed by Callan and Klebanov [18,19], the bound
state properties differ for the kaon (K) and the antikaon
ðKÞ. The difference is due to the Wess-Zumino term
which provides an attractive interaction for the K while
repulsive one for the K, allowing bound states only for the
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antikaon-nucleon ðKNÞ systems. This feature still holds in
our present approach. In the following, we consider only
the KN systems.
To investigate KN states, we have solved numerically the

equation of motion Eq. (14) for various partial waves
and isospin. The kaon and nucleon systems take isospin 0
and 1, and each of them allows total spin and parity
JP ¼ 1=2�; 3=2�;…. We have studied several low-lying
states, and found that bound states exist for
JP ¼ 1=2−ðl ¼ 0Þ. In fact, this is the lowest bound state
as we naively expect, in contrast with the result of Callan and
Klebanov. The numerical results are summarized in Table I.
For the parameter set 1, we found one bound state both

for I ¼ 0 and 1, with the binding energies (B.E.) 82.9 and
43.1 MeV, respectively. The former may be identified with
the Λð1405Þ, whose binding energy is, however, too strong.
This is due to the use of the small pion decay constant as
compared to the experimental value. As we will discuss
later, the important contribution to the interaction is
proportional to 1=F2

π . The second bound state may be
identified with a Σ hyperon. Experimentally, there are
several low lying Σ resonances but with only weak
significance [32]. By considering the mass difference of
the two bound states, one candidate would be Σð1480Þ.
For the parameter set 2, we have found one bound state

only for I ¼ 0 with the binding energy 27.2 MeV. This is
significantly weaker than the result of set 1 and leads to the
total mass closer to the experimentally observed one of
Λð1405Þ. As mentioned above, the difference is due to the
change in the pion decay constant. It seems that the use of
the experimental value of Fπ is important to reproduce
numerically the properties of the kaon and nucleon sys-
tems. For the parameter set 3, the binding energy is
32.9 MeV which is slightly larger, but in the similar order
of magnitude to the result of set 2.
To understand better the bound state properties, in

Table I, we show root mean square radii hr2i1=2 for the
baryon number distribution of the nucleon and for the kaon
radial function. They are defined by

hr2Ni ¼
Z

∞

0

drr2ρBðrÞ; ð24Þ

hr2Ki ¼
Z

∞

0

drr4k2ðrÞ; ð25Þ

where ρBðrÞ is the baryon charge density and is given
by [31]

ρBðrÞ ¼ −
2

π
sin2 FF0: ð26Þ

The baryon number radii are about 0.5 fm corresponding to
the nucleon core size, while the kaon wave function extends
up to 1 fm, indicating that the kaon is moving around the
nucleon with weak binding. To see a bit more detail of
Table I, we observe that as the binding energy increases, in
the order of set 2, set 3, and set 1, the hedgehog (baryon
number) distribution increases, while the kaon distribution
decreases. The fact that the bound state extends less for a
larger binding energy is consistent with the general
property of bound states.
In Fig. 1, we have shown the normalized kaon wave

functions jkðrÞj for the three parameter sets. It is interesting
to see that the wave function vanishes at the origin,
although it is the s-wave. This is due to the presence of
the repulsive core in the potential as we will see in the next
subsection. In the large r region, wave functions extends
further for smaller binding energies, which explains the
behavior of hr2Ki1=2 depending on the binding energy. The
peak position of the wave function, however, is correlated
with the attractive minima of the potential (as shown in the
next subsection). Finally, we would like to emphasize that
bound states exist with a binding energy of order 10 MeV
which is the typical order of hadronic interaction. This
contrasts with the Callan-Klebanov’s result [18,19,33], as
we will discuss in the subsection III C in detail.

B. Potential

In this subsection, we study the potential for the
kaon nucleon system. It already has been defined in the
Klein-Gordon-like equation (14) by VðrÞ in Eq. (17). Thus,
the potential VðrÞ carries the dimension of MeV2. Now it is
convenient to define an alternative one in units of MeV
which is used in a Schrödinger-like equation. To do that, we
first rewrite Eq. (14) in the following form,

TABLE I. The properties of the K̄NðI ¼ 0Þ bound states.

Fπ

[MeV] e
B.E.
[MeV]

hr2Ni1=2
[fm]

hr2Ki1=2
[fm]

Parameter set 1 129 5.45 82.9 0.59 0.99
Parameter set 2 186 5.45 27.2 0.41 1.19
Parameter set 3 186 4.82 32.9 0.46 1.18
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FIG. 1. The wave functions of K̄N bound states (I ¼ 0) for
three parameter sets in units of 1=fm3=2.
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−
1

mK þ E
1

r2
d
dr

�
r2
dkαl ðrÞ
dr

�
þUðrÞkαl ðrÞ ¼ εkαl ðrÞ;

ð27Þ

where

E ¼ mK þ ε; ð28Þ

and

UðrÞ ¼ −
1

mK þ E

�
hðrÞ − 1

r2
d
dr

�
r2

d
dr

�
þ dhðrÞ

dr
d
dr

�

−
ðfðrÞ − 1ÞE2

mK þ E
þ VðrÞ
mK þ E

: ð29Þ

In Eq. (29), hðrÞ, fðrÞ, and VðrÞ are given by Eq. (15),
Eq. (16), and Eq. (17), respectively. This potentialUðrÞ has
the following properties. First, it is nonlocal and depends
on the kaon energy. Second, it contains four components of
the isospin independent and dependent, central and LS
terms as we mentioned in subsection II B. Third, near the
origin, this potential behaves as a repulsive or an attractive
force proportional to 1=r2 depending on the total isospin
and total spin. Details of this behavior are discussed in the
Appendix.
Because the potential UðrÞ formally contains derivative,

we make the following equivalent quantity:

~UðrÞ≡UðrÞkαl ðrÞ
kαl ðrÞ

: ð30Þ

In this paper, we computed it by using the bound state wave
function. Therefore, strictly speaking the potential derived
here is for l ¼ 0 bound state. In principle, it is also possible
to calculate ~UðrÞ for other l’s by using scattering wave
functions. The study of the scattering states will be
discussed elsewhere.
The resulting ~UðrÞ is plotted in Fig. 2 for the three

parameter sets as used in the previous subsection. In the
ordering of 1, 3, and 2, the potential minimum moves from
outside to inside, and with the potential depth increasing. In
accordance with this change, the shapes of the kaon wave
functions have been explained in the previous subsection.
Now, it is instructive to investigate further properties in

comparison with what we expect in the chiral theory. In the
chiral theory, KN interaction is derived from the Weinberg-
Tomozawa interaction (WT interaction) and is given by the
following Lagrangian [13,14],

LWT ¼ 2

F2
π
fNINγμN · ð∂μK†IKK − K†IK∂μKÞg; ð31Þ

where IN and IK are the nucleon and the kaon isospin
operators, respectively.
A feature of Eq. (31) is that the interaction strength is

proportional to 1=F2
π. Therefore, the interaction becomes

stronger for smaller Fπ and vice versa. To see this relation
in the present approach, we have computed the volume
integral of the potential

W ≡ 4π

Z
r2dr ~UðrÞ ð32Þ

and taken the ratios of W ’s with different Fπ’s. In our
parameter sets 1 and 2 with Fπ ¼ 129 and 186 MeV, we
find the ratio

WðFπ ¼ 129 MeVÞ
WðFπ ¼ 186 MeVÞ ∼

5

2
∼ 2.5; ð33Þ

which is compatible with ð186=129Þ2 ∼ 15=7 ∼ 2.1.
A small difference is considered due to the violation of
SU(3) in the present ansatz of the bound state approach.
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FIG. 2. The equivalent potentials ~U defined in Eq. (30) for the
K̄NðI ¼ 0Þ bound states.

TABLE II. Comparisons between the CK and our approaches.

Callan-Klebanov approach Our approach Physical state

l leff B.E. [MeV] hr2Ki1=2 [fm] l B.E. [MeV] hr2Ki1=2 [fm]
0 1 61.7 0.93 0 32.9 1.18 Λð1405Þ
1 0 326.6 0.54 — — — Λð1116Þ
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C. Comparisons with the Callan-Klebanov approach

In this subsection, we compare our results with those of
Callan-Klevanov (CK). In their approach for the hedgehog
kaon system, the lowest bound state appears in the p-wave
rather than s-wave with a strong binding energy of order
hundred MeV [18,19,33]. We show the some results for
parameter set 3 in Table II, where l is the kaon orbital
angular momentum and leff is the effective angular momen-
tum defined by [18,19]

leffðleff þ 1Þ ¼ lðlþ 1Þ þ 4I · Lþ 2: ð34Þ

The p-wave bound state corresponds to Λð1116Þ and the
s-wave to Λð1405Þ in the CK approach [18,19,34]. From
Table II, we find that the kaon radii, hr2Ki1=2, are about 0.5 fm
for the p-wave and 0.9 fm for the s-wave in the CK approach
[35],which are substantially smaller than those of our present
approach. These results for small radii seem consistent with
their interpretation of the kaon hedgehog system as the
strange quark and diquark system for hyperons.
In Fig. 3, we show the potentials for the s- and p-wave

bound states in the CK approach, which are defined
similarly to the one of Eq. (30). For p-wave, the potential
has a strong attraction at the origin. This causes the strong
bound state as the ground state in the p-wave. For s-wave,
we see a repulsive component toward the origin. This is
caused by the centrifugal-like component due to the
effective angular momentum leff . A similar structure is
seen in our potential in Fig. 2. We consider that the
presence of the centrifugal-like potential in the CK
approach is related to the presence of the repulsive core
in our approach.

IV. SUMMARY

In this paper, we have constructed a new method for the
study of kaon-nucleon systems and their interactions in the
Skyrme model based on the bound state approach which
Callan and Klebanov proposed [18,19]. In our approach,

we first quantize the hedgehog ansatz to generate the
physical nucleon and introduce kaon fluctuations around
it. This is the different point from the Callan-Klebanov
approach, where they first introduce the kaon fluctuations
around the hedgehog, and then the kaon-hedgehog system
is quantized for hyperons. In Ref. [26], the kaon vacuum
fluctuations were also taken into account. Although our
method does not obey 1=Nc expansion systematically, we
consider it suitable for a kaon bound system of small
binding energy of order 10 MeV or less.
As a general structure of interaction between isoscalar-

pseudoscalar kaon and isospinor-spinor nucleon, the
obtained potential contains central and spin-orbit terms
with and without isospin dependence. A nontrivial finding
is that there is either repulsion or attraction proportional
to 1=r2 for small r, depending on the kaon partial wave.
For l ¼ 0, the resulting potential turns out to contain the
short range repulsion and the middle range attraction.
Consequently, the kaon bound states obtain a weak binding
energy. The presence of the repulsion should have an
influence for the properties of high density kaonic nuclear
matter. When 1=r2 term gives an attraction (I ¼ 0, l ¼ 1, 2,
3, 4, Jtotal ¼ l − 1=2), the system becomes unstable. The
present method, however, should not be applied to such a
situation, where we need more microscopic approach.
In the present paper, we have focused our discussion on

possible bound states. An extension to continuum states for
kaon nucleon scattering is rather straightforward. There are
several works which investigate pion scatterings from the
Skyrmion [36–40]. There pion fluctuations were intro-
duced around the hedgehog soliton which corresponds to
the CK method. We plan to study scattering states from
lower to higher partial waves. So far we have considered
only kaon-nucleon channel, but it is well known that πΣ
channel is also important especially for the discussion of
Λð1405Þ. It is another interesting extension of the present
study, which we hope to report elsewhere.
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APPENDIX DERIVATION OF THE POTENTIAL

In this appendix, we show an outline to derive the
potential Eq. (17). Substituting our ansatz Eq. (11) for the
Lagrangian Eq. (1), and expanding it up to second order of
the kaon fields, we obtain the following Lagrangian,

L ¼ LSUð2Þ þ LKN; ðA1Þ
where

LSUð2Þ ¼
1

16
Fπ

2tr½∂μ
~U†∂μ ~U� þ 1

32e2
tr½∂μ

~U ~U†; ∂ν
~U ~U†�2;

ðA2Þ
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FIG. 3. The K̄N potentials obtained from the CK approach.
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and

LKN ¼ ðDμKÞ†DμK − K†a†μaμK −m2
KK

†K þ 1

ðeFπÞ2
f−K†Ktr½∂μ

~U ~U†; ∂ν
~U ~U†�2

− 2ðDμKÞ†DνKtrðaμaνÞ − 1

2
ðDμKÞ†DμKtrð∂ν

~U†∂ν ~UÞ þ 6ðDνKÞ†½aν; aμ�DμKg

þ 3i
F2
π
Bμ½ðDμKÞ†K − K†ðDμKÞ�: ðA3Þ

In these equations, we have defined

~U ¼ AðtÞUHA†ðtÞ; ~ξ ¼ AðtÞξA†ðtÞ; ðA4Þ

DμK ¼ ∂μK þ vμK; ðA5Þ

vμ ¼
1

2
ð~ξ†∂μ

~ξþ ~ξ∂μ
~ξ†Þ; ðA6Þ

aμ ¼
1

2
ð~ξ†∂μ

~ξ − ~ξ∂μ
~ξ†Þ; ðA7Þ

where the hedgehog ansatz UH and ξ are given by Eq. (10),
and Bμ is the baryon current which is given by [31]

Bμ ¼ −
εμναβ

24π2
tr½ðU†

H∂νUHÞðU†
H∂αUHÞðU†

H∂βUHÞ�: ðA8Þ

From Eq. (A3), we derive the equation of motion for the
kaon Eq. (14) and the potential Eq. (17) with each term
given by

Vc
0ðrÞ ¼ −

1

4

�
2
sin2F
r2

þ ðF0Þ2
�
þ 2

s4

r2
þ
�
1þ 1

ðeFπÞ2
�
F02 þ sin2F

r2

��
lðlþ 1Þ

r2

−
1

ðeFπÞ2
�
2
sin2F
r2

�
sin2F
r2

− 2ðF0Þ2
�
− 2

s4

r2

�
F02 þ sin2F

r2

��

þ 1

ðeFπÞ2
6

r2

�
s4sin2F

r2
−

d
dr

fs2 sinFF0g
�
þ 2E

Λ
s2
�
1þ 1

ðeFπÞ2
�
F02 þ 5

r2
sin2F

��

þ 3

ðeFπÞ2
1

r2
d
dr

�
r2
�
EF0 sinF

Λ

��
� 3

π2F2
π

sin2F
r2

F0
�
E −

s2

Λ

�
; ðA9Þ

Vc
τðrÞ ¼

8E
3Λ

s2
�
1þ 1

ðeFπÞ2
�
F02 þ 4

r2
sin2F

��

þ 4

ðeFπÞ2
1

r2
d
dr

�
r2
�
EF0 sinF

Λ

��
; ðA10Þ

VLS
0 ðrÞ ¼ 1

ðeFπÞ2
2Esin2F
Λr2

� 3

F2
ππ

2

sin2F
Λr2

F0; ðA11Þ

and

VLS
τ ðrÞ ¼ −

�
1þ 1

ðeFπÞ2
�
F02 þ 4

sin2F
r2

��
16s2

3r2

−
1

ðeFπÞ2
8

r2

�
d
dr

ðsinFF0Þ
�
; ðA12Þ

where

s ¼ sin ðFðrÞ=2Þ; ðA13Þ

and

F0 ¼ dFðrÞ=dr: ðA14Þ

The moment of inertia Λ is given by

Λ ¼ 2π

3
F2
π

Z
drr2sin2F

�
1þ 4

ðeFπÞ2
�
F02 þ sin2F

r2

��
:

ðA15Þ

The last terms of Eq. (A9) and Eq. (A11) are derived from
the Wess-Zumino term, which is attractive for the KN
potential and repulsive for the KN potential. These equa-
tions are general for any partial waves of the kaon. For
instance, the s-wave potential is obtained by setting l ¼ 0
and removing the terms including JKN in Eq. (17).
Now we discuss two features of the potential, the relation

with the Weinberg-Tomozawa interaction (WT interaction)
[13,14] and the short range behaviors. To see the essential
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aspect of the WT interaction for the kaon-nucleon inter-
action, let us look at the leading contribution from the pion
fields, derived from the kinetic term where the covariant
derivative in the Lagrangian Eq. (A3) is given by

DμK ¼ ∂μK þ vμK; ðA16Þ

with

vμ ¼
1

2
ðξ†∂μξþ ξ∂μξ

†Þ; Uπ ¼ ξ2; ðA17Þ

and Uπ given by Eq. (7). Picking up the terms of order
Oðπ2Þ, we find

LWT ¼ 2i
F2
π

�
∂μK† τ

2
K − K† τ

2
∂μK

�
· ðπ × ∂μπÞ

¼ 1

2F2
π
ð∂μK†½π; ∂μπ�K − K†½π; ∂μπ�∂μKÞ; ðA18Þ

where we have defined π ¼ τ · π. We note that the first line
of Eq. (A18) takes the form of the product of the isospin
vector currents of the kaon and the pion fields.
For the kaon and nucleon interaction, we first substitute

the hedgehog ansatz for the pion field,

π ¼ τ · π ¼ Fπ

2
FðrÞτ · r̂: ðA19Þ

Then, we rotate the hedgehog ansatz in SU(2) space:

FðrÞτ · r̂ → FðrÞAðtÞτ · r̂A†ðtÞ; AðtÞ ∈ SUð2Þ: ðA20Þ

Substituting Eq. (A19) and Eq. (A20) for Eq. (A18), the
leading contribution of the WT interaction is

LWT ≃ i
12Λ

F2ðrÞ½∂0K†ðτK · τNÞK − K†ðτK · τNÞ∂0K�;
ðA21Þ

where Λ is given by Eq. (A15).

On the other hand, in our approach, we obtain the
following contributions from the kinetic term in the
Lagrangian Eq. (A3) using our ansatz:

i
3Λ

sin2
�
FðrÞ
2

�
½∂0K†ðτK · τNÞK − K†ðτK · τNÞ∂0K�

≃ i
12Λ

F2ðrÞ½∂0K†ðτK · τNÞK − K†ðτK · τNÞ∂0K�:
ðA22Þ

Comparing Eq. (A21) with Eq. (A22), we find that they
coincide with each other up to the leading order of F2ðrÞ.
Next, we consider how the potential behaves near the

origin. From the equation of motion for FðrÞ [31], the
behavior of FðrÞ near the origin is given by

Fðr≃ 0Þ ¼ π − ar; ðA23Þ

where a is a constant which is determined by the soliton
profile function FðrÞ. Using Eq. (A23), the potential
reduces to

Vðr≃ 0Þ ¼ 2

r2
þ a2

ðeFπÞ2
4

r2
þ
�
1þ 2a2

ðeFπÞ2
�
lðlþ 1Þ

r2

−
�
1þ 5a2

ðeFπÞ2
�
16

3r2
JKNIKN

−
a2

ðeFπÞ2
8

r2
JKNIKN: ðA24Þ

Whether this potential becomes attractive or repulsive
depends on the total isospin Itot and the total spin Jtot,
as shown in Table III.
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