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With Gaussian expansion method (GEM), realistic wave functions are used to calculate coupled-channel
effects for the bottomonium under the framework of 3P0 model. The simplicity and accuracy of GEM are
explained. We calculate the mass shifts, probabilities of the B meson continuum, S −D mixing angles,
strong and dielectric decay widths. Our calculation shows that both S −D mixing and the B meson
continuum can contribute to the suppression of the vector meson’s dielectric decay width. We suggest more
precise measurements on the radiative decays of ϒð10580Þ and ϒð11020Þ to distinguish these two effects.
The above quantities are also calculated with simple harmonic oscillator (SHO) wave function
approximation for comparison. The deviation between GEM and SHO indicates that it is essential to
treat the wave functions accurately for near threshold states.
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I. INTRODUCTION

Heavy quarkonium is a multiscale system covering all
regimes of quantum chromodynamics (QCD) which make
it an ideal place to study strong interactions [1]. Despite the
success of QCD in the high energy region, due to
asymptotic freedom, nonperturbative effect dominates at
low energies and brings problems to perturbative calcu-
lation. One tool to study this nonperturbative effect is lattice
QCD. However, due to its huge calculation work, it is still
unable to calculate all the physical quantities with the
current computation power. Another important approach is
to develop various phenomenological models. Among
these phenomenological models, the quark model is a
prominent one. Under the quark model framework, various
types of interactions have been suggested by various
groups, and they have achieved many impressive successes
(see e.g. Refs. [2–6]). However, these potential models
cannot be the whole story. One important missing ingre-
dient is the mechanism to generate quark-antiquark pairs
which enlarge the Fock space of the initial state, i.e., the
initial state contains multiquark components.
These multiquark components will change the

Hamiltonian of the potential model, causing mass shift
and mixing between states with the same quantum numbers
or directly contributing to open channel strong decay if the
initial state is above threshold. These consequences can be
summarized as unquenched effects or coupled-channel
effects. Coupled-channel effects have been considered at
least 30 years ago by Törnqvist et al. in Refs. [7–11];

they extended the quark model to be an unquenched
quark model.
Despite the fact that the underlying quark pair creation

mechanism is not fully understood up to now, still there are
different phenomenological models to decode the mystery,
such as 3P0 model [12–14], flux-tube breaking model
[15,16], microscopic decay models [4,17,18]. Among
these, the most simple and successful one is the 3P0 model,
where the generated light quark pair share the same
quantum number as a vacuum.
Even though 3P0 model is extensively studied by

many people, almost all the calculations are using SHO
wave function approximation to simplify the calculation
(see e.g. [18–26]). A simple yet powerful method to
handel the wave function precisely is still not widely
known. We propose using the Gaussian expansion method
(GEM) [27] to accurately evaluate the wave function
convolution.
There have been already some works related to GEM.

In Refs. [28–41], GEM is adopted to calculate the wave
functions under variational method approach. Coupled-
channel effects with GEM are only studied for some
specific cases, such as Xð3872Þ and P wave Ds mesons
[42,43]. In Refs. [44–46], the authors also use GEM to
calculate the spectrum and open channel strong decays of
light mesons and some specific charmonia, where the
coupled channel induced mass shift is not considered.
Even though the mass shifts can be partly absorbed by
redefining the potential, the potential model cannot
describe near-threshold effects [47]. We want to emphasize
that the mass shifts and open channel strong decays are
directly correlated by coupled-channel effects, so it is
essential to evaluate them under the same framework
and calculate them precisely.
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So far, a precise evaluation and a thorough discussion of
the coupled-channel effects are still missing, and the
validity of the SHO approximation is yet to be clarified.
In this paper, we fill these gaps by a thorough discussion of
coupled-channel effects for the bottomonium and we also
predict some important results on the dielectric and
radiative decays of vector mesons which are going to be
tested by experiments.
The paper is organized as follows. In Sec. II, we explain

the details of Cornell potential and 3P0 model, where we
deduce the formula of mass shift, open channel strong
decay width and S −D mixing. In Sec. III, we focus on the
calculation details and GEM, where the advantages of
GEM are elucidated and the procedure to fit the wave
function is explained. Section IV is devoted to discussing
the possible impacts of coupled-channel effects for the
bottomonium on the spectrum, open channel strong decays,
probabilities of the B meson continuum, the S −D mixing
and the vector meson’s dielectric and radiative decays. We
also explicitly show the deviation between GEM and SHO
approximation. Finally, we give a short summary of this
work in Sec. V.

II. THEORETICAL FRAMEWORK

A. Cornell potential model

As the quenched limit, the wave functions for the heavy
quarkonium are obtained by solving the Schrödinger
equation with the well-known Cornell potential [4,17]

VðrÞ ¼ −
4

3

α

r
þ λrþ c; ð1Þ

where α, λ, and c stand for the strength of color Coulomb
potential, the strength of linear confinement and mass
renormalization, respectively. To restore the hyperfine or
fine structures of the bottomonium, we use the following
form of the spin dependent interactions

VsðrÞ ¼
�

2α

m2
br

3
−

λ

2m2
br

�
~L · ~Sþ 32πα

9m2
b

~δðrÞ~Sb · ~Sb

þ 4α

m2
br

3

�~Sb · ~Sb
3

þ ð~Sb · ~rÞð~Sb · ~rÞ
r2

�
; ð2Þ

where ~L denotes relative orbital angular momentum, ~S ¼
~Sb þ ~Sb is the total spin of the b quark pairs, andmb is the b
quark mass. Since the nonrelativistic expansion will fail
if two composite quarks are very close to each other,
instead of the Dirac δ function in the second term, we
use the smeared delta function, which can be written as
~δðrÞ ¼ ðσ= ffiffiffi

π
p Þ3e−σ2r2 [47,48]. The Hamiltonian of the

Schrödinger equation in quenched limit is represented as

H0 ¼ 2mb þ
p2

mb
þ VðrÞ þ VsðrÞ: ð3Þ

We treat the spin dependent term as a perturbation and
the spatial wave functions are obtained by solving
Schrödinger equation numerically using Numerov’s
method [49].

B. 3P0 model and coupled-channel effects

For the coupled channel calculation, we adopt the widely
used 3P0 model or quark pair creation model, which is first
proposed by L. Micu [12] in 1969 and then extended by
A. Le Yaouanc et al. in the 1970s [13,14]. In this model, the
generated quark pairs have vacuum quantum number
JPC ¼ 0þþ. After simple arithmetic, one can conclude that
the relative orbital angular momentum and total spin are
both equal to 1. In the notation of 2Sþ1LJ, one should write
it as 3P0 which explains the model’s name.
The interaction Hamiltonian can be expressed as

HI ¼ 2mqγ

Z
d3xψqψq; ð4Þ

where mq is the produced quark mass, and γ is the
dimensionless coupling constant. Since the probability to
generate heavier quarks is suppressed, we use the effective
strength γs ¼ mq

ms
γ in the following calculation, wheremq ¼

mu ¼ md is the constituent quark mass of up (or down)
quark and ms is strange quark mass.
The 3P0 Hamiltonian induces not only open-flavor

strong decays of the heavy quarkonium above threshold,
but also coupled-channel effects. As sketched by Fig. 1, the
experimentally observed state should be a mixture of pure
quarkonium state (bare state) and B meson continuum. Put
it in to formula, the physical or experimentally observed
state jAi should be expressed as

jAi ¼ c0jψ0i þ
X
BC

Z
d3pcBCðpÞjBC;pi; ð5Þ

FIG. 1. Sketch of coupled-channel effects in 3P0 model. i and f
respectively denote the initial and final states with same JPC and
BB̄ stands for all possible B meson pairs.
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where c0 and cBC stand for the normalization constants of
the bare state and B meson continuum, respectively. jψ0i
is normalized to 1 and jAi is also normalized to 1 if it
lies below BB threshold. jBC;pi is normalized as
hBC;p1jB0C0;p2i ¼ δ3ðp1 − p2ÞδBB0δCC0 , where p is the
momentum of B meson in jAi’s rest frame. Combining the
Cornell potential and the dynamics of quark pair gener-
ation, we get the full Hamiltonian,

H ¼ H0 þHBC þHI; ð6Þ

with the following relations

H0jψ0i ¼ M0jψ0i ð7Þ

H0jBC;pi ¼ 0 ð8Þ

HBCjψ0i ¼ 0 ð9Þ

HBCjBC;pi ¼ EBCjBC;pi ð10Þ

HjAi ¼ MjAi; ð11Þ

where M0 is the bare mass of the bottomonium and can be
solved directly from the Schrödinger equation. The inter-
action between B mesons is neglected, so the energy of
meson continuum can be expressed as EBC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

B þ p2
p

þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

C þ p2
p

.
When Eq. (11) is projected onto each component, we

immediately get

hψ0jHjψi ¼ c0M ¼ c0M0 þ
Z

d3pcBCðpÞhψ0jHIjBC;pi;

ð12Þ

hBC;pjHjψi ¼ cBCðpÞM
¼ cBCðpÞEBC þ c0hBC;pjHIjψ0i: ð13Þ

Solve cBC from Eq. (13), substitute back to Eq. (12) and
eliminate the c0 on both sides, we get an integral equation

M ¼ M0 þ ΔM; ð14Þ

where

ΔM ¼
X
BC

Z
d3p

jhBC;pjHIjψ0ij2
M − EBC − iϵ

: ð15Þ

The sum of BC is restricted to the ground state BðsÞ mesons,
i.e. BB; BB� þ H:c:; B�B�; BsBs; BsB�

s þ H:c:; B�
sB�

s . Note
that the iϵ term is added to handle the situation when
mA > mB þmC. In this case, ΔM will pick up an imagi-
nary part

ImðΔMÞ ¼
X
BC

πPB
EBEC

mA
jhBC;PBjHIjψ0ij2; ð16Þ

which is equal to one half of the decay width. PB and EB
respectively denote the momentum and energy of the B
meson. The wave function overlap integration lies in the
term

hBC;PBjHIjψ0i¼
X

polarization

Z
d3kϕ0ð~kþ ~PBÞϕ�

Bð~kþxB ~PBÞ

×ϕ�
Cð~kþxC ~PBÞj~kjYm

1 ðθ~k;ϕ~kÞ; ð17Þ

where xB ¼ m4=ðm1 þm4Þ, xC ¼ m3=ðm2 þm3Þ and
m1 ¼ m2 ¼ mQ, m3 ¼ m4 respectively denote the b quark
and the light quark mass.
Once M is solved, the coefficient of different compo-

nents can be worked out as well. For states below threshold,
the normalization condition jAi can be rewritten as

jc0j2 þ
Z

d3pjcBCj2 ¼ 1 ð18Þ

after the substitution of cBC, we get the probability of the
bb component

Pbb ≔ jc0j2 ¼ 1

��
1þ

X
BCLS

Z
∞

0

dp
p2jMLSj2
ðM − EBCÞ2

�
; ð19Þ

where jMLSj2 is represented as

jMLSj2 ¼
Z

dΩBjhBC;PBjHIjψ0ij2: ð20Þ

C. Coupled channel induced S − D mixing

From the quark model’s perspective, the spatial wave
functions of JPC ¼ 1−− family can be both S andDwave. It
is natural to expect that the experimentally observed vector
states are the mixing of S and D waves. As in the case of
conventional meson coupling with BB continuum, we
rewrite it into a matrix form

�
M0

R
d3phψ0jHIjBCi

hBCjHIjψ0i EBC

��
c0
cBC

�
¼M

�
c0
cBC

�
;

ð21Þ

where the integration part should be understood as a formal
notation, and one needs to insert all the p dependent part
into the integral. For example, in the above case, one may
naively get the following form after diagonalization

ðM −M0ÞðM − EBCÞ ¼
Z

d3pjhψ0jHIjBCij2: ð22Þ
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However, the correct form should be understood as Eq. (15), where the ðM − EBCÞ term is in the integration.
The advantage of the matrix form is that one can easily see its structure and it can be easily generalized to the S −D

mixing case. Under the assumption that ðnþ 1ÞS mix only with nD, we have

0
BB@

M0
S HT

R
d3phψSjHIjBCi

HT M0
D

R
d3phψDjHIjBCi

hBCjHIjψSi hBCjHIjψDi EBC

1
CCA
0
B@

cS
cD
cBC

1
CA ¼ M

0
B@

cS
cD
cBC

1
CA: ð23Þ

The S −Dmixing induced by tensor part of the potential
is so small, typically around 0.8° in our calculation (see also
the Appendix A in Ref. [50]), so its quite reasonable to set
HT ¼ 0. After this approximation, one can reexpress cBC in
terms of cS, cD and easily get

�
M0

S þ ΔMS ΔMSD

ΔMDS M0
D þ ΔMD

��
cS
cD

�
¼ M

�
cS
cD

�
; ð24Þ

where

ΔMf ¼
Z

d3p
jhψfjHIjBCij2
M − EBC − iϵ

ðf ¼ S;DÞ; ð25Þ

ΔMSD ¼ ΔM�
DS ¼

Z
d3p

hψSjHIjBCihBCjHIjψDi
M − EBC − iϵ

:

ð26Þ

From the above equation, both the mass and the relative
ratio cS=cD can be worked out. For states below threshold,
the probability can be solved once the mass is known,
which is a generalization of Eq. (19)

jcSj2 þ jcDj2 þ
X
BC

Z
d3p

1

ðM − EBCÞ2

× ðjcSj2H2
S;BC þ jcDj2H2

D;BC þ 2Re½cSc�DHS;BCHBC;D�Þ
¼ 1; ð27Þ

where Hf;i stands for hfjHIjii.
One will get a complex solution of M ¼ MBW þ iΓ=2 if

MBW > mB þmB, whereMBW represents the Breit-Wigner
mass of the resonance, and Γ is the decay width after
considering S −D mixing. As a cross check, one can also
calculate the decay width directly with the following
formula,

ΓSD ¼ 2ðjcSj2ImðΔMSÞ þ jcDj2ImðΔMDÞ
þ 2Reðc�ScDImðΔMSDÞÞÞ: ð28Þ

Equation (24) is much more difficult to solve than
Eq. (15). The method we use to solve this equation will
be discussed in the next section.

III. PARAMETER SELECTION AND GAUSSIAN
EXPANSION METHOD

A. Parameter selection

As a first step, we tune the wave functions to be
consistent with the dielectric decay widths of ϒðnSÞ for
n ≤ 3. The parameters are given in Table I. Theoretically,
dielectric decay widths can be expressed as [51–54]

Γee ¼ β
4α2e2b
M2

nS
jcSRnSð0Þ þ cD

5

2
ffiffiffi
2

p
m2

b

R00
nDð0Þj2 ð29Þ

where β ¼ ð1 − 16αs=3πÞ is the QCD radiative correction,
and eb ¼ −1=3 is the b quark charge in the unit of electron
charge. RnSð0Þ denotes the radical S wave function at the
origin, and R00

nDð0Þ is the second derivative of the radical D
wave function at the origin. cS and cD respectively denote
the normalization coefficients before S and D wave. Note
that from the perspective of coupled channels, they are not
restricted to be real-valued and jcSj2 þ jcDj2 ≠ 1. For
below threshold states, the correct normalization is given
by Eq. (27). Nevertheless, if the imaginary part of the ΔM
are neglected in Eq. (24), the corresponding solutions will
be real, and one can easily get the feel of how big the
mixing is by defining tan θ ≔ jcS=cDj for S wave dominate
states and tan θ ≔ jcD=cSj for D wave dominate states.
There is also an argument for the above formula

that the QCD corrections of higher order may be important
[50], thus β has to be treat as an effective constant. So in
order to reduce the parameter’s uncertainty, we tune the
wave functions to reproduce ΓeeðnSÞ=Γeeð1SÞ, (n ¼ 2, 3)
(see Fig. 6).

B. Gaussian expansion method

There are at least two ways to solve Eq. (15). The first
one is the recursion method, which is based on the
observation that the mass shift is expected to be small
compared with the bare mass. i.e. set M ¼ m0 as the first
step and do the integration in Eq. (15) to get the mass shift,
then set M ¼ m0 þ Δm again and so on until the result
converges.
One can even make a further approximation and only do

the first step recursion. However, this method only applies
to the single channel mass shift formula (15). In S −D
mixing cases, such as Eq. (24), the mass difference between
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M0
S þ ΔMS, M0

D þ ΔMD is small, even a small error in the
off-diagonal term in Eq. (24) will ruin the prediction of the
S −D mixing angle.
The second way is to solve the equation by brute-force,

i.e., for the energy ranges we are interested in, work out all of
the integrations in Eq. (15) or Eq. (24) at a specific energy
point. We use this method despite its huge calculation work.
The benefit is that we can extract a lot of information about
the wave function’s impact on the mass shift. One can also
change the 3P0’s coupling constant γ or the mass renorm-
alization constant c to see the possible consequences.
The high precision work will not be convincing if there

is no way to precisely evaluate the integration, which has a
key ingredient—the wave function. One can indeed evalu-
ate the amplitude purely numerically as the authors do in
Refs. [47,55], however, we still want analytic expressions
which is more convenient if we want to change the
parameters and then repeat the calculations.
In order to achieve that, various groups approximate the

wave functions by simple harmonic oscillators (SHOs)
approximation (see e.g. [18–20,22,23]). The oscillator
parameters βs are usually settled down by requiring that
the root mean square radii to be equal to the initial states
[56–58] or maximizing its overlap with the numerical wave
function [18].
To improve the accuracy, people also expand the true

wave function in terms of SHOs (see e.g. Refs. [59,60]). As
a consequence, one will get a fairly complicated analytic
expression for highly excited states. For example, expres-
sion (2.12) in Ref. [59]. Due to the highly oscillated
behavior of the excited SHOs, one would need a large
number of SHOs to achieve an ideal precision.
We think that it is necessary to fully respect the wave

function and make a precise calculation of the transition
amplitude, which is shown to be essential for the states near
threshold. In this work, we get both the analytic expression
and the high precision by using the Gaussian expansion
method (GEM) proposed byHiyama et al. [27]. Thismethod
has the observation that bound state’s wave function can be
expanded in Gaussian bases as the following

ψNLMðrÞ ¼
�Xn

i¼1

ciβ
Lþ3

2

i e−
1
2
β2i r

2

rL
�
YM
L ðθ;φÞ; ð30Þ

where βis and cis denote oscillator parameters and corre-
sponding coefficients, respectively. n is the number of
Gaussian basis. In this work, n ¼ 5 ∼ 20 for initial states
and 5 for Bmesons, and βis lie in the range of 0.1 ∼ 5 GeV.
Compared with the SHO basis, the Gaussian basis is no

longer orthogonal. So a little trick is used to speed up the
fitting procedure. As explained in Ref. [27], βis are set to be
a geometric series. Instead of increasing the number of
SHO basis for fixed β, GEM can both increase the bases
number and change β to improve the fit. As shown in Fig. 2,
for the spatial wave function of ϒð4SÞ, the quality of GEM
fitting is quite impressive. In momentum space, the wave

functions of different fitting methods are shown in Fig. 3.
Note that the overall resemblance of wave functions does
not indicate a small deviation of decay width or mass shift
(see Table V and Fig. 4).
Because the 3P0 model calculation is easily done in

momentum space, we need to make a Fourier transforma-
tion of the position space wave function. One benefit of the
SHO wave function is that it is invariant after Fourier
transform apart from the substitution β → 1=β. Since
Gaussian basis is ground state SHO wave function, it
naturally keeps this property. That means, after fitting
position space wave functions, we can rebuild the momen-
tum space wave functions by

ψNLMðpÞ ¼
�Xn

i¼1

ciβ
−ðLþ3

2
Þ

i e
− p2

2β2
i pL

�
YM
L ðθ;φÞ: ð31Þ

FIG. 2. Comparison of ϒð4SÞ’s spatial wave function. Numeri-
cal values and GEM fit are denoted by black dots and red solid
curve, respectively. Black dashed and solid curve represent single
SHO approximation by matching hri and maximizing wave
function overlap, respectively.

FIG. 3. Comparison of ϒð4SÞ wave function in momentum
space. GEM fit, single SHO approximation by matching hri and
maximizing wave function overlap are denoted by red solid curve,
black dashed curve and black solid curve, respectively. Decay
momentum for BB̄ is shown as the vertical line.
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What makes GEM simple is that there are a minimum
number of polynomials in the integration which simplifies
the expression from the beginning. GEM is quite universal
and it is not limited to the wave functions obtained by
solving the nonrelativistic Schrödinger equation.
To work out the analytic expression, one has to deal

with the associated Laguerre polynomials if SHO wave
functions are involved and also the sophisticated angular
integration. Although in Ref. [61], Roberts and B.
Silvestre-Brac show us the general method to do the
integration, and there are analytical expressions [59],
however, these expressions are quite lengthy and they only
apply to 3P0 model.
The complexity can be bypassed if we transfer the

spherical harmonics into Cartesian form [62] from the
beginning. After this transformation, the general form of
the integration can be compactly expressed asZZZ

dpxdpydpz expð−pT:A:p − B:p − CÞfðpx; py; pzÞ;

ð32Þ
where p, A, B, and C in the exponent denote ðpx; py; pzÞT,
3 × 3 real symmetric matrix, three-vector and constant,
respectively. fðpx; py; pzÞ is nothing but polynomial, so
Eq. (32) is a standard form of Gaussian integration which
can be easily done even manually.
After the integration is done, we can easily transform

it back to spherical basis by the substitution Px ¼
P sin θ cosφ, Py ¼ P sin θ sinφ, Pz ¼ P cos θ. Another
benefit of this transformation is that it can easily handle
much more complicated polynomials fðpx; py; pzÞ which
may show up in other quark pair creation models.

IV. RESULT AND DISCUSSION

A. Mass shift and open channel strong decay

From Tables II and III, one can find that the mass shifts
are generally same between GEM and SHOs with a few
exceptions for near threshold states. The mass shifts in a
same multiplet are also almost equal simply because their
wave functions are identical and their bare masses are
approximately equal. This conclusion is consistent with the
loop theorem in Ref. [63].
For the states below threshold, ΔMs are all negative, and

closer to the threshold gets more deduction of the mass.

With GEM, this conclusion is true even for states slightly
above threshold. This conclusion differs with Refs. [22,23],
where SHO are used to calculate the mass shift. Take hb
family as an example, our mass shift grows with the mass
going higher no matter whether we use GEM or SHO,
however, in Ref. [22] and Ref. [23], the largest mass shift
happens to hbð1PÞ and hbð2PÞ, respectively.
For states above threshold, the mass shift behavior

becomes complicated (see Fig. 4) and it is not appropriate
to draw the conclusion that the mass shift of state above the
BB threshold is positive. This conclusion is only true for
asymptotically large mass, and in this case, ΔM ∝ 1=M.
We should also point out that this mathematical fact does
not mean it will definitely happen. The reason is that when
mass becomes bigger, more B meson channels will
contribute, and one cannot tell the sign of ΔM before
summing all possible channels’ contributions in Eq. (15).
In order to study this sensitivity, we also plot the

dependence on the initial state mass of ΔM and decay
width for the vector meson above threshold in Fig. 4
and Fig. 5, respectively. As a concrete example, one can
see this sensitivity by comparing ϒð4SÞ with ϒð6SÞ.
Compared with ϒð4SÞ, the wave function of ϒð6SÞ has
more nodes, however, basing on this fact one cannot
conclude that the ΔM’s behavior is more complicated.
The important reason is that the bare mass of ϒð6SÞ is also
farther from threshold, causing the average of the wave
function overlap integration in Eq. (17). Note also that
absolute value of the mass shift ofϒð6SÞ calculated in SHO
is larger than GEM, however, in ϒð4SÞ case, we have the
opposite conclusion if we choose the lowest intersection
point of ΔM and M −M0.
From Table II, one can find that the masses predicted in

Ref. [22] are generally closer to the experimental data.
However, we want to stress that the spectrum is an
important but not the only criterion to judge whose
parameters are better. As shown in Fig. 6, the dielectric
decay ratios Γee=Γeeð1SÞ calculated with the parameters
given in Ref. [22] are generally smaller than experimental
measurements before coupled-channel effects are taken
into account. As will be discussed in Sec. IV B, coupled-
channel effects will suppress rather than enhance these
ratios, so their parameters are difficult to explain the
dielectric decays of vector mesons despite of their success
in the spectrum.
The complicated structure of the mass shift of ϒð4SÞ

needs further discussion. Even though the curves of GEM
and SHO share some common features, the small difference
is sufficient to generate a large discrepancy of the mass
shift. Another interesting feature of this plot is that GEM
has three solutions, implying that more resonances may pop
up compared with potential model prediction.
This sensitivity can also be seen by the decay

width behavior in Fig. 5. Over a large energy range
10.58 ∼ 10.73 GeV, the decay width of ϒð4SÞ calculated

TABLE I. The parameters used in our calculation. These
parameters are chosen to reproduce the dielectric decay widths
of ϒðnSÞ, n ¼ 1, 2, 3, which are shown in Fig. 6. Due to the
implicit treatment of color and flavor degrees of freedom, these
factors do not show up in our calculations.

α ¼ 0.34 λ ¼ 0.22 GeV2 c ¼ 0.435 GeV
mb ¼ 4.5 GeV mu ¼ md ¼ 0.33 GeV ms ¼ 0.5 GeV
σ ¼ 3.838 GeV γ ¼ 0.205
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by GEM can be around two times as large as SHO. Our
decay width plot of ϒð4SÞ also shares some resemblance
with Fig. 2 in Ref. [65], where the prediction of SHO is not
calculated.
The deviations of mass shift and decay width tell us

that it is necessary to adopt the realistic wave functions
other than SHO approximation in the coupled channel
calculation.
Of course, one may argue that, since the bare mass is

140 MeV heavier than the experimental measurement, if
the bare mass is tuned closer to the BB threshold, the
difference between GEM and SHO would be small and we
will get one solution. However, we want to stress that the
bare mass is directly related to the wave function, in the
case where we have a smaller bare mass, the wave function
will also be different, thus causing different mass shift
behavior. This sensitivity also reminds us that taking only
one step approximation in the recursive method to solve

Eq. (15) may cause a large error, so an accurate treatment of
wave function and a precise method to solve Eq. (15) are
essential for near threshold states.
If ϒð10580Þ;ϒð10860Þ, and ϒð11020Þ are treated to be

pure S or D wave, we get the open channel decay width
shown in Table V. It is worthy to note that this assumption
is oversimplified, so the absolute value cannot be treated
too seriously.

B. S − D mixing and dielectric decay

As explained in Sec. II and sketched in Fig. 1, coupled-
channel effects will also induce mixing among states with
same JPC. In this paper, we focus on the mixing between
ϒðSÞ and ϒ1ðDÞ family. The Cornell potential model tells
us that the mass splitting between ϒððnþ 1ÞSÞ and
ϒ1ðnDÞ is smaller than other configurations, such as
ϒðnSÞ and ϒððnþ 1ÞSÞ or ϒ1ðnDÞ and ϒ1ððnþ 1ÞDÞ

TABLE II. Total mass shift (in MeV) induced by coupled-channel effects. M0 denotes the bare mass of the Cornell potential whose
parameters are shown in Table I.Mtheory is the mass after considering coupled-channel effects. The last two columns of −ΔM andMtheory
are taken from Ref. [22] and Ref. [23], whose parameters are different from ours. Mexp denotes the experimental measured value. For
simplicity, the experimentally measured ϒð10580Þ;ϒð10860Þ, and ϒð11020Þ are assumed to be ϒð4SÞ;ϒð5SÞ, and ϒð6SÞ,
respectively. The blank means that the corresponding value is not available.

States M0 −ΔM Mtheory Mexp

GEM SHO Ref. [22] Ref. [23] GEM SHO Ref. [22] Ref. [23]

ηbð11S0Þ 9416.5 22.0 22.0 55.5 64 9394.5 9394.5 9391.8 9391 9398.0
ηbð21S0Þ 10024.2 42.4 41.5 66.2 101 9981.8 9982.6 10004.9 9980 9999.0
ηbð31S0Þ 10410.0 57.4 51.4 66.4 129 10352.7 10358.6 10337.9 10338

ϒð13S1Þ 9482.0 22.8 22.8 58.2 69 9459.2 9459.2 9460.3 9489 9460.3
ϒð23S1Þ 10054.9 43.8 42.8 68.0 108 10011.2 10012.1 10026.2 10022 10023.3
ϒð33S1Þ 10433.4 60.0 53.5 68.2 146 10373.4 10379.9 10351.9 10358 10355.2
ϒð43S1Þ 10746.7 92.6 28.7 76.3 10654.2 10718.0 10602.7 10579.4
ϒð53S1Þ 11024.3 25.7 27.2 84.2 10998.6 10997.1 10819.9 10876.0
ϒð63S1Þ 11278.2 13.5 45.9 85.5 11264.8 11232.3 11022.6 11019.0

ϒ1ð13D1Þ 10181.9 46.1 49.1 96.8 159 10135.7 10132.8 10138.1 10112
ϒ1ð23D1Þ 10515.9 62.3 62.0 88.4 10453.6 10453.9 10420.4
ϒ1ð33D1Þ 10807.9 82.6 55.7 93.4 10725.2 10752.2 10650.9
ϒ1ð43D1Þ 11072.8 14.8 40.8 11057.9 11031.9
ϒ1ð53D1Þ 11318.2 30.4 49.3 11287.8 11268.9

hbð11P1Þ 9921.7 35.8 37.3 85.7 115 9885.9 9884.4 9915.5 9885 9899.3
hbð21P1Þ 10315.4 53.1 52.7 78.8 146 10262.3 10262.7 10259.1 10247 10259.8
hbð31P1Þ 10637.9 77.9 69.4 79.8 114 10560.1 10568.5 10523.2 10591

χb0ð13P0Þ 9886.1 34.6 36.0 81.8 108 9851.4 9850.0 9875.3 9879 9859.4
χb0ð23P0Þ 10284.2 50.9 50.6 75.0 137 10233.4 10233.6 10227.9 10226 10232.5
χb0ð33P0Þ 10608.7 76.1 68.6 75.7 186 10532.6 10540.2 10495.9 10495

χb1ð13P1Þ 9915.4 35.5 37.0 84.8 114 9879.9 9878.4 9906.8 9879 9892.8
χb1ð23P1Þ 10310.0 52.6 52.3 77.9 144 10257.4 10257.7 10252.4 10244 10255.5
χb1ð33P1Þ 10632.9 77.4 69.0 78.8 121 10555.6 10563.9 10517.3 10580 10512.1

χb2ð13P2Þ 9934.9 36.4 37.8 87.3 117 9898.5 9897.1 9929.6 9900 9912.21
χb2ð23P2Þ 10327.6 54.1 53.7 80.4 149 10273.5 10273.9 10270.1 10257 10268.7
χb2ð33P2Þ 10649.8 82.2 73.6 82.1 138 10567.6 10576.2 10532.4 10578
ϒ2ð13D2Þ 10187.8 46.6 49.5 97.7 161 10141.2 10138.3 10144.6 10121 10163.7
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states, so its quite reasonable to assume that the mixing
only happens toϒððnþ 1ÞSÞ andϒ1ðnDÞ. The masses and
corresponding mixing angles after considering S −D
mixing are listed in Table VI.
In Eq. (24), the overall phase before cS and cD is

nonphysical, so we are free to set the phase of cD to be
0, i.e., cD ≥ 0. Under this convention and the normalization
condition Eq. (27), the ratio cS=cD is adequate to fix the
value of cS and cD. If the imaginary part ofΔMf andΔMSD
in Eq. (24) are neglected, one would get real solutions both
forM and cS=cD. After this approximation, one can deduce
the mixing angles. However, the definition of cS and cD
does not exist for states above threshold [56,66]. Despite
this difficulty, we follow Ref. [7], assuming that these
open channels’ contribution are neglected. Under this
assumption, quantities related to S −D mixing are shown
in Table VI.
From Table VI, we found that the masses barely change

after considering S −D mixing for states below thresh-
old, indicating that the mixing angles are approximately

0. So it is reasonable to treat ϒð1SÞ;ϒð2SÞ, and ϒð3SÞ as
pure S wave states. This conclusion also agrees with the
loop theorem in Ref. [63]. From Eq. (29), we also learn
that the dielectric decay of ϒ1ðDÞ is suppressed by the b
quark mass mb, so the small mixing also provide a natural
explanation why these Dwave vector mesons are difficult
to find at eþe− collider. From Table VI, one can also read
off the open channel strong decay widths after consid-
ering S −D mixing for states above threshold. However,
one cannot compare the imaginary part of Mcomp directly
with experimental data because its real part (which is the
Breit-Wigner mass) does not equal the experimental
mass, thus their phase space for BB are different from
experiment.
A natural and direct consequence of non-negligible

S −D mixing is the suppression of ΓeeðSÞ or enhancement
of ΓeeðDÞ. As can be seen from Fig. 6, the dielectric decay
width of ϒð10580Þ and ϒð11020Þ is highly suppressed
experimentally. Under the assumption that ϒð10580Þ and
ϒð11020Þ are S wave dominate states, one may be tempted

TABLE III. The mass shift (in MeV) of every coupled channel. Coupled-channel induced S −Dmixing is not considered in this table.
0 represents that the contributions of some channels are forbidden. For simplicity, an overall negative sign has been omitted for all the
channels. Note that for a few channels, mass shifts are positive.

States BB̄ BB̄� þ H:c: B�B̄� BsB̄s BsB̄�
s þ H:c: B�

s B̄�
s

GEM SHO GEM SHO GEM SHO GEM SHO GEM SHO GEM SHO

ηbð11S0Þ 0 0 7.8 7.8 7.6 7.6 0 0 3.3 3.3 3.3 3.3
ηbð21S0Þ 0 0 16.5 16.1 15.7 15.4 0 0 5.2 5.1 5.0 4.9
ηbð31S0Þ 0 0 24.5 21.8 22.3 20.0 0 0 5.4 4.9 5.1 4.7

ϒð13S1Þ 1.4 1.4 5.4 5.4 9.2 9.2 0.6 0.6 2.3 2.3 3.9 3.9
ϒð23S1Þ 3.0 2.9 11.4 11.1 18.9 18.5 0.9 0.9 3.5 3.5 5.9 5.9
ϒð33S1Þ 4.8 4.2 17.2 15.2 27.1 24.3 1.0 0.9 3.7 3.4 6.1 5.6
ϒð43S1Þ −0.7 3.7 −2.4 16.0 85.4 −0.6 1.0 1.0 3.6 3.3 5.7 5.2
ϒð53S1Þ −0.5 2.8 2.8 6.8 17.8 10.1 0.8 0.7 1.7 2.7 3.1 4.0
ϒð63S1Þ 1.5 3.5 2.4 14.2 1.5 21.2 0.6 0.6 2.8 2.3 4.7 4.1

ϒ1ð13D1Þ 4.0 4.3 3.7 4.0 27.8 29.2 1.0 1.1 1.0 1.1 8.7 9.3
ϒ1ð23D1Þ 9.0 8.7 7.4 7.3 35.2 35.2 1.4 1.4 1.2 1.3 8.1 8.2
ϒ1ð33D1Þ 7.5 2.3 6.1 7.4 57.8 35.4 2.3 2.0 1.5 1.4 7.4 7.2
ϒ1ð43D1Þ 0.1 6.2 −1.6 3.6 6.8 22.5 1.2 1.0 1.3 1.1 7.0 6.4
ϒ1ð53D1Þ 3.3 5.6 1.8 6.5 19.1 30.0 0.5 0.9 0.8 0.8 5.0 5.5

hbð11P1Þ 0 0 13.5 14.0 13.0 13.4 0 0 4.8 5.0 4.6 4.8
hbð21P1Þ 0 0 21.9 21.6 20.3 20.2 0 0 5.6 5.6 5.3 5.3
hbð31P1Þ 0 0 38.0 33.5 29.5 26.3 0 0 5.4 5.0 5.0 4.6

χb0ð13P0Þ 4.1 4.3 0 0 21.4 22.2 1.3 1.4 0 0 7.8 8.1
χb0ð23P0Þ 9.3 9.0 0 0 31.1 31.0 2.1 2.1 0 0 8.4 8.5
χb0ð33P0Þ 25.5 22.4 0 0 40.7 36.9 2.3 2.0 0 0 7.6 7.2

χb1ð13P1Þ 0 0 10.8 11.2 15.5 16.0 0 0 3.7 3.9 5.6 5.9
χb1ð23P1Þ 0 0 19.7 19.4 22.1 22.0 0 0 4.8 4.8 6.0 6.0
χb1ð33P1Þ 0 0 37.4 32.6 29.7 26.9 0 0 4.8 4.4 5.4 5.2

χb2ð13P2Þ 3.4 3.5 9.8 10.1 13.6 14.2 1.2 1.3 3.5 3.7 4.7 5.0
χb2ð23P2Þ 5.3 5.2 14.6 14.4 23.2 23.0 1.3 1.3 3.8 3.8 5.8 5.9
χb2ð33P2Þ 12.3 11.2 23.3 20.7 36.2 32.0 1.3 1.2 3.6 3.3 5.6 5.2
ϒ2ð13D2Þ 0 0 16.0 17.0 19.8 20.9 0 0 4.6 5.0 6.2 6.6
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to introduce a large S −D mixing angle for these highly
excited states (see, e.g., Ref. [50]).
The unexpected large central value of Γeeðϒð10860ÞÞ

seems to favor a small S −Dmixing angle, however, due to
its large errors, a mixing angle as large as 27° can also
reproduce the data which gives the decay width lies at the
lower bound [50]. Of course, more precise measurement of
ϒð10860Þ’s dielectric decay will tell us whether the claim

of large S −D mixing is correct or not, if S −D mixing is
fully responsible for this suppression.
As can be seen fromTableVI, except for the4S − 3D case,

which will be discussed shortly, we get a rather small mixing
angle not only for below threshold states, but also for highly
excited states. It seems that the coupled channel formalism
cannot explain the suppression of Γee. However, we want to
point out that S −D mixing is not the only way to suppress

FIG. 4. The dependence of ΔM of ϒðnSÞ and ϒ1ðnDÞ family on the mass of the initial states. GEM and SHO results are denoted by
red solid curve and black dashed curve, respectively.M −M0 is shown by the solid black line. One can read theM (which are shown in
Table II) and corresponding ΔM from the intersection points of M −M0 and ΔM.
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ΓeeðSÞ. Even though the S −Dmixing angles are small, Γee
can still be suppressed by the B meson continuum.
The suppression due to B meson continuum is not

difficult to understand. If the conventional mesons have
non-negligible components of B meson pairs, these
meson pairs have to undergo one more 3P0 vertex before
annihilating into eþe− pairs. Since the Hamiltonian is
small compared with Cornell potential, it is reasonable to

discard the contribution of these meson pairs, then Γee is
suppressed. This suppression is universal both for S
and D wave vector mesons, in contrast to S −D mixing,
which enhances the ΓeeðDÞ.
We take into account both S −D mixing (see Table VI)

and Bmeson pair suppression mechanism (see Table IV) in
this work, and the results of Γee=Γeeð1SÞ are shown
in Fig. 6.
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FIG. 5. The dependence of the open channel strong decay widths of ϒðSÞ and ϒ1ðDÞ family on the mass of the initial states. GEM
and SHO results are denoted by red solid curve and black dashed curve, respectively. One can directly read the total decay width from
this plot.
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From Fig. 6, one can see that the coupled channel results
agree well with experiment except for ϒð11020Þ. The large
suppression of Γeeðϒð10580ÞÞ deserves more explanation.
From the quark model’s perspective, Γeeðϒð10580ÞÞ is

suggested to be a 4S or 3D state. If it is S wave dominate,
the mixing angle is about 9°, which is still not big enough to
reproduce Γee. In fact, according to our calculation, the
major suppression comes from the B meson pairs.
Even though ϒð10580Þ is above BB threshold, it is

still below and quite close to BB� threshold. As hbð3PÞ;
χb0ð3PÞ, and χb1ð3PÞ are shown to us in Table IV, closer to
the threshold means bigger probabilities of B meson
continuum. Like the authors did in Ref. [7], we neglect
BB’s probability and work out the probabilities of
other channels. The probabilities of BB� þ H:c:; B�B�;
BsBs; BsB�

s þ H:c:; B�
sB�

s are 20.06%, 11.7%, 0.125%,
0.37%, 0.51%, respectively, that means Pbb ¼ 67.2%.
So as an estimation, one will get only two thirds of the
decay width predicted by the potential model.
For 3D dominant states with Breit-Wigner mass

10.731 GeV in Table VI, its large mixing angle may
grasp one’s attention. Because it is more difficult to
generate at eþe− collider compared with 4S dominant
states, and its mass is 80 MeV heavier than 4S dominant
states, we do not consider it as ϒð10580Þ. In the 4S − 3D
mixing case, because of the oscillation behavior of
ΔMf and hψfjHIjψ ii, there is one more pair of solutions
of M in Eq. (24) with GEM. For 4S dominate state,

FIG. 6. Comparison of Γee=Γeeð1SÞ between different models.
Results of the Cornell potential with our parameters and
parameters of Ref. [22] are respectively represented by blue
regular and gray inverted triangles. Red dots and black rectangles
respectively denote the predictions of Eq. (24) with and without
neglecting the imaginary part. Black dots with error bars are
values taken from Particle Data Group (PDG) [64].

TABLE IV. Probabilities of every coupled channel and bb̄ component for states below threshold. The effect of S −D mixing is not
considered in this table. 0 represents that the contributions of some channels are forbidden. The overall % has been omitted for
simplicity. Note that despite mðhbð3PÞÞ calculated with GEM and SHO and mðχb1ð3PÞÞ calculated with SHO are above BB̄ threshold,
however, they are not coupled to BB̄ and their masses are still small than BB̄�, so the probabilities of B meson continuum are well
defined.

States BB̄ BB̄� þ H:c: B�B̄� BsB̄s BsB̄�
s þ H:c: B�

s B̄�
s Pbb̄

GEM SHO GEM SHO GEM SHO GEM SHO GEM SHO GEM SHO GEM SHO

ηbð1SÞ 0 0 0.45 0.44 0.43 0.42 0 0 0.17 0.17 0.16 0.16 98.79 98.81
ηbð2SÞ 0 0 1.81 1.65 1.62 1.49 0 0 0.43 0.4 0.4 0.37 95.74 96.08
ηbð3SÞ 0 0 5.01 4.02 3.98 3.24 0 0 0.63 0.51 0.55 0.45 89.83 91.78

ϒð1SÞ 0.09 0.08 0.33 0.32 0.54 0.53 0.03 0.03 0.12 0.12 0.2 0.2 98.69 98.72
ϒð2SÞ 0.37 0.33 1.29 1.18 2.02 1.86 0.08 0.08 0.31 0.28 0.49 0.45 95.44 95.82
ϒð3SÞ 1.25 0.99 3.71 2.98 5.07 4.12 0.13 0.1 0.45 0.36 0.67 0.55 88.71 90.89

ϒ1ð1DÞ 0.65 0.69 0.55 0.59 2.84 2.94 0.12 0.13 0.1 0.12 0.71 0.74 95.03 94.79
ϒ1ð2DÞ 3.76 3.36 2.36 2.15 6.21 5.84 0.24 0.22 0.19 0.18 0.83 0.8 86.41 87.45

hbð1PÞ 0 0 1.22 1.24 1.12 1.14 0 0 0.35 0.37 0.33 0.34 96.99 96.91
hbð2PÞ 0 0 3.51 3.24 2.96 2.76 0 0 0.59 0.56 0.52 0.5 92.43 92.94
hbð3PÞ 0 0 19.75 18.19 9.04 7.7 0 0 0.67 0.54 0.54 0.45 70.0 73.12

χb0ð1PÞ 0.45 0.46 0 0 1.74 1.77 0.11 0.12 0 0 0.52 0.55 97.18 97.1
χb0ð2PÞ 1.85 1.68 0 0 4.13 3.88 0.26 0.25 0 0 0.77 0.75 92.98 93.45
χb0ð3PÞ 34.08 38.84 0 0 8.07 6.21 0.31 0.22 0 0 0.62 0.48 56.92 54.26

χb1ð1PÞ 0 0 1.03 1.06 1.27 1.29 0 0 0.28 0.3 0.38 0.4 97.03 96.95
χb1ð2PÞ 0 0 3.38 3.11 3.0 2.81 0 0 0.53 0.51 0.56 0.54 92.53 93.04
χb1ð3PÞ 0 0 21.9 20.1 7.54 6.44 0 0 0.64 0.51 0.54 0.46 69.38 72.5

χb2ð1PÞ 0.31 0.31 0.85 0.87 1.24 1.27 0.09 0.09 0.25 0.26 0.35 0.37 96.91 96.83
χb2ð2PÞ 0.89 0.82 2.23 2.06 3.62 3.36 0.15 0.14 0.39 0.37 0.6 0.58 92.13 92.68
ϒ2ð1DÞ 0 0 2.0 2.1 2.08 2.16 0 0 0.44 0.47 0.51 0.54 94.98 94.74
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mcomp ¼ 10.673þ 0.0989i, mreal ¼ 10.675, θ ¼ 18.18°,
and for 3D dominate state, mcomp ¼ 10.718þ 0.0441i,
mreal ¼ 10.7233, θ ¼ 18.4°. With the same reasons we
also do not consider it as ϒð10580Þ.
Another interesting detail of the B meson continuum is

the slightly increased ratio of Γee=Γeeð1SÞ. The mixing
angles of 5S − 4D and 6S − 5D are so small that Γee barely
change, nevertheless, due to the small B meson continuum
component of ϒð1SÞ, Γeeð1SÞ will be suppressed about
0.013, as a consequence, the ratio Γee=Γeeð1SÞ becomes
slightly larger after considering coupled-channel effects.
For ϒð10860Þ and ϒð11020Þ, all the ground state B

meson channels are open. We can no longer deduce the

probabilities of these B meson pairs with Eq. (24). There is
no B meson continuum suppression in this work. This can
reproduce the dielectric decay width of ϒð10860Þ but
not ϒð11020Þ.
As shown in Fig. 6, there is a notable discrepancy

between our calculation and experiment on ϒð11020Þ
dielectric decay width. This issue may come from the
two assumptions we use to simplify the calculation. One is
that we only consider the mixing between 6S and 5D.
In fact, with the increase of radial quantum number, the
energy levels of S or D wave will become denser, so the
mixing may exist between several S and D wave states.
Another is the probabilities of excited B meson pairs are

TABLE V. Open channel strong decay widths (in MeV) of pure S andDwave vector bottomonia.ϒð10580Þ;ϒð10860Þ;ϒð11020Þ are
considered to be close to 4S ∼ 3D; 5S ∼ 4D; 6S ∼ 5D, respectively.

State

BB̄ BB̄� þ H:c: B�B̄� BsB̄s BsB̄�
s þ H:c: B�

s B̄�
s Γtheory

ΓexpGEM SHO GEM SHO GEM SHO GEM SHO GEM SHO GEM SHO GEM SHO

4S 21.1 12.5 0 0 0 0 0 0 0 0 0 0 21.1 12.5
20.5� 2.53D 34.1 24.2 0 0 0 0 0 0 0 0 0 0 34.1 24.2

5S 5.1 3.5 4.8 11.1 1.9 4.1 0.9 0.2 0.6 0.4 4.5 0.5 17.9 19.7
55� 284D 10.8 7.2 4.0 5.4 18.1 18.1 1.21 0.3 0.3 0.2 2.8 0.9 37.3 32.1

6S 2.9 1.3 3.4 6.4 0.1 6.5 0.3 0.0 1.0 0.1 0.2 0.2 7.8 14.5
79� 16

5D 6.5 3.0 2.9 3.3 9.2 10.1 0.4 0.0 0.4 0.1 1.1 0.2 20.4 16.8

TABLE VI. Mixing between ϒððnþ 1ÞSÞ and ϒ1ðnDÞ calculated with GEM and SHO. The unit of mass is GeV.M0 is the bare mass
calculated by potential model. Mpure is taken from column 7 in Table II, where S −D mixing is not considered. Mcomp and Mreal both
denote the masses after S −D mixing, the difference is that the latter is the solution when one neglects the imaginary part of Eq. (24),
while the former is the precise solution of Eq. (24), and its imaginary part equals to the one half of the decay width. cS=cDðcompÞ and
cS=cDðrealÞ denote the ratio cS=cD corresponding to Mcomp and Mreal, respectively. Note that after 3-digits approximation of the mass,
Mpure may be the same with Mreal, which is in fact different, and because cS=cD is too small to show for 1D case, we use 0.0 instead.

2S 1D 3S 2D 4S 3D 5S 4D 6S 5D

M0 10.055 10.182 10.433 10.516 10.747 10.808 11.024 11.073 11.278 11.318

GEM

Mpure 10.011 10.136 10.373 10.454 10.654 10.725 10.999 11.058 11.265 11.288

Mcomp 10.011 10.136 10.373 10.454 10.651 10.731 10.999 11.058 11.265 11.288
þ0.047i þ0.032i þ0.047i þ0.01i þ0.012i þ0.005i

Mreal 10.011 10.136 10.373 10.454 10.653 10.734 10.999 11.058 11.265 11.288

cS=cDðcompÞ 5482 0.0 524 −0.005 2.55 2.10 32.37 −0.03 10.55 −0.01
þ2.63i −1.16i þ12.65i −0.002i −40.41i þ0.02i

cS=cDðrealÞ 5482 0.0 524 −0.005 6.19 0.97 41.8 −0.03 77.2 −0.005
θ° 0.01 0.02 0.11 0.27 9.18 44.1 1.37 1.79 0.74 0.3

SHO

Mpure 10.012 10.133 10.38 10.454 10.718 10.752 10.997 11.032 11.232 11.269

Mcomp 10.012 10.133 10.38 10.454 10.716 10.754 10.997 11.032 11.232 11.269
þ0.021i þ0.055i þ0.011i þ0.002i þ0.009i þ0.021i

Mreal 10.012 10.133 10.38 10.454 10.717 10.754 10.997 11.032 11.232 11.269

cS=cDðcompÞ −5750 0.0 −584 0.004 0.52 −0.046 −19.32 0.007 37.81 −0.021
þ2.73i þ0.065i þ20.87i −0.037i þ23.61i þ0.004i

cS=cDðrealÞ −5750 0.0 −584 0.004 3.58 −0.085 −36.6 0.005 49.9 −0.02
θ° 0.01 0.02 0.1 0.24 15.6 4.8 1.56 0.28 1.15 1.21
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neglected. This may also cause problems. For example, the
ϒð11020Þ is only 26 MeV lighter than mB� þmB1

, so a
large suppression of Pbb is naturally expected, causing a
large suppression of the dielectric decay width.
It is possible to distinguish S −D mixing and B meson

pairs suppression mechanism by the measurement of the
radiative decay. Theoretically, the E1 transition can be
represented by [54,67,68]

Γðn2Sþ1LJ → n02S0þ1L0
J0 þ γÞ ¼ 4

3
CfiδSS0e2bαjhfjrjiij2E3

γ ;

ð33Þ

where eb ¼ − 1
3
. α and Eγ respectively denote the fine

structure constant and the energy of the emitted photon.
hfjrjii and Cfi are represented by

hfjrjii ¼
Z

∞

0

RfðrÞRiðrÞr3dr; ð34Þ

Cfi ¼ maxðL;L0Þð2J0 þ 1Þ
�
L0 J0 S

J L 1

�
2

: ð35Þ

From Eq. (33), we have

rγðSÞ ≔
ΓðϒðSÞ → χb2ð1PÞ þ γÞ
ΓðϒðSÞ → χb0ð1PÞ þ γÞ ¼ 5

�
Eγ2

Eγ0

�
3

; ð36Þ

rγðDÞ ≔ Γðϒ1ðDÞ → χb2ð1PÞ þ γÞ
Γðϒ1ðDÞ → χb0ð1PÞ þ γÞ ¼

1

20

�
Eγ2

Eγ0

�
3

; ð37Þ

where Eγ2 and Eγ0 respectively represent the photon energy
of V → χb2 þ γ and V → χb0 þ γ. (V stands for initial
vector state.)
From PDG data [64], we have rγð2SÞ ¼ 1.91� 0.29 and

rγð3SÞ ¼ 3.82� 1.05, and the theoretical predictions of
Eq. (36) and Eq. (37) are rγð2SÞ ¼ 1.57, rγð3SÞ ¼ 3.6,
rγð1DÞ ¼ 0.0157, and rγð2DÞ ¼ 0.036. So it is reasonable
to treat ϒð2SÞ and ϒð3SÞ as pure S wave, and our
conclusion of a small S −D mixing angle is consistent
with experiment for vector bottomonia below threshold.
If the all vector bottomonia observed are S wave

dominant, the small Γee of ϒð10580Þ and ϒð11020Þ
naturally requires a large mixing angle under S −Dmixing
mechanism, causing a large suppression of rγðSÞ. On the
contrary, B meson continuum suppresses Pbb, leaving the
ratio rγ unchanged. Given that the deduced S −D mixing
angle is small, we expect a large rγ. Unfortunately, the data
on the radiative decay widths of ϒð10580Þ;ϒð10860Þ, and
ϒð11020Þ is still not available so far. A precise measure-
ment of radiative decay will definitely tell us more about
their internal structures.
For states above threshold, the predicted spectra and

decay widths agree not very well with experimental data.
There are two reasons to cause this issue. As with most

work, the meson loops of excited B mesons are ignored,
however, this assumption may be not appropriate for highly
excited states. For example, ϒð11020Þ is already 20 MeV
heavier than B1B threshold. The second reason comes from
the nonrelativistic approximation of our bare mass. In
principle, relativistic corrections will be more important
when the binding energy goes high, so both the wave
functions and the bare masses will change accordingly.
However, including contributions of excited B mesons and
refitting the spectrum and decay widths involves much
more work, which lies beyond this work. It still remains a
challenge to reproduce the spectra and dielectric or had-
ronic decay patterns.

V. SUMMARY

In this paper, we make a thorough and precise calculation
of coupled-channel effects in the framework of 3P0 model
with GEM for the bottomonium. The results of the
spectrum, open channel strong decays, probabilities of
the B meson continuum, the S −D mixing and the vector
meson’s dielectric decays are explicitly shown. In order to
study the near threshold effects, we also plot the mass
dependence of the mass shift and open channel decay
widths for pure S and D wave vector mesons.
For ϒð4SÞ, the decay width of GEM can be two times as

large as SHO over a wide energy range, and the mass shift
is around three times as large. These big deviations indicate
that SHO is not a good approximation for near threshold
states, even though the oscillator parameters are carefully
selected to reproduce the root mean square radius of the
corresponding mesons.
With the consideration of coupled-channel effects, we

get small S −D mixing angles except for ϒð4SÞ. We point
it out that, for Swave dominant vector states, S −Dmixing
is not the only mechanism to suppress their dielectric
decay widths, B meson continuum can also lead to the
suppression. With this BB suppression mechanism at
hand, we still succeed to reproduce the dielectric decays
of vector bottomonia except for ϒð11020Þ. The deviation
of the spectrum and decays between our predictions and
experimental measurements may be due to the neglect of
excited B meson continuum in coupled-channel effects
or the nonrelativistic approximation in the quenched
limit.
S −D mixing will cause the suppression of the ratio in

Eq. (36) for S wave dominant state, on the contrary, the B
meson continuum does not change this ratio. We suggest
BABAR and Belle to make precise measurements on the
radiative decays of ϒð10580Þ;ϒð10860Þ, and ϒð11020Þ to
distinguish these two effects.

ACKNOWLEDGMENTS

The authors are grateful to Meng Ce, Gui-Jun Ding,
David R. Entem, Feng-Kun Guo, Yu. S. Kalashnikova,

COUPLED-CHANNEL EFFECTS FOR THE BOTTOMONIUM … PHYSICAL REVIEW D 94, 034021 (2016)

034021-13



Bilal Masud, Jia-Lun Ping and E. Santopinto for useful
discussions and suggestions. This work is supported by the
National Natural Science Foundation of China under

Grants No. 11261130311 (CRC110 by DFG and NSFC).
M. Naeem Anwar is supported by CAS-TWAS President’s
Fellowship for International Ph.D Students.

[1] N. Brambilla et al., Eur. Phys. J. C 71, 1534 (2011).
[2] A. Martin, Phys. Lett. 100B, 511 (1981).
[3] R. A. Bertlmann and A. Martin, Nucl. Phys. B168, 111

(1980).
[4] E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T.-M.

Yan, Phys. Rev. D 17, 3090 (1978); 21, 313(E) (1980).
[5] W. Buchmuller and S. H. H. Tye, Phys. Rev. D 24, 132

(1981).
[6] S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985).
[7] K. Heikkila, S. Ono, and N. A. Tornqvist, Phys. Rev. D 29,

110 (1984); 29, 2136(E) (1984).
[8] S. Ono and N. A. Tornqvist, Z. Phys. C 23, 59 (1984).
[9] N. A. Tornqvist and P. Zenczykowski, Phys. Rev. D 29,

2139 (1984).
[10] S. Ono, A. I. Sanda, and N. A. Tornqvist, Phys. Rev. D 34,

186 (1986).
[11] S. Ono, A. I. Sanda, N. A. Tornqvist, and J. Lee-Franzini,

Phys. Rev. Lett. 55, 2938 (1985).
[12] L. Micu, Nucl. Phys. B10, 521 (1969).
[13] A. Le Yaouanc, L. Oliver, O. Pene, and J. C. Raynal, Phys.

Rev. D 8, 2223 (1973).
[14] A. Le Yaouanc, L. Oliver, O. Pene, and J. C. Raynal, Phys.

Rev. D 9, 1415 (1974).
[15] R. Kokoski and N. Isgur, Phys. Rev. D 35, 907 (1987).
[16] F. E. Close and P. R. Page, Nucl. Phys. B443, 233 (1995).
[17] E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T.-M.

Yan, Phys. Rev. D 21, 203 (1980).
[18] E. S. Ackleh, T. Barnes, and E. S. Swanson, Phys. Rev. D

54, 6811 (1996).
[19] T. Barnes, N. Black, and P. R. Page, Phys. Rev. D 68,

054014 (2003).
[20] T. Barnes, F. E. Close, P. R. Page, and E. S. Swanson, Phys.

Rev. D 55, 4157 (1997).
[21] Y.-c. Yang, Z. Xia, and J. Ping, Phys. Rev. D 81, 094003

(2010).
[22] J.-F. Liu and G.-J. Ding, Eur. Phys. J. C 72, 1981 (2012).
[23] J. Ferretti and E. Santopinto, Phys. Rev. D 90, 094022

(2014).
[24] C. Chen, X.-L. Chen, X. Liu, W.-Z. Deng, and S.-L. Zhu,

Phys. Rev. D 75, 094017 (2007).
[25] C. S. An and B. Saghai, Phys. Rev. C 85, 055203 (2012).
[26] C. S. An, B. C. Metsch, and B. S. Zou, Phys. Rev. C 87,

065207 (2013).
[27] E. Hiyama, Y. Kino, and M. Kamimura, Prog. Part. Nucl.

Phys. 51, 223 (2003).
[28] J. Segovia, A. M. Yasser, D. R. Entem, and F. Fernandez,

Phys. Rev. D 78, 114033 (2008).
[29] J. Segovia, C. Albertus, D. R. Entem, F. Fernandez, E.

Hernandez, and M. A. Perez-Garcia, Phys. Rev. D 84,
094029 (2011).

[30] J. Segovia, D. R. Entem, and F. Fernandez, Phys. Lett. B
715, 322 (2012).

[31] J. Segovia, D. R. Entem, F. Fernandez, and E. Hernandez,
Int. J. Mod. Phys. E 22, 1330026 (2013).

[32] J. Segovia, D. R. Entem, and F. Fernandez, Nucl. Phys.
A915, 125 (2013).

[33] Y. Yang and J. Ping, Phys. Rev. D 81, 114025 (2010).
[34] C. Deng, J. Ping, F. Wang, and T. Goldman, Phys. Rev. D

82, 074001 (2010).
[35] Y. Yang, J. Ping, C. Deng, and H.-S. Zong, J. Phys. G 39,

105001 (2012).
[36] C. Deng, J. Ping, H. Wang, P. Zhou, and F.Wang, Phys. Rev.

D 86, 114035 (2012).
[37] Q.-X. Gao, Y.-C. Yang, and J. Ping, J. Phys. G 39, 045001

(2012).
[38] C. Deng, J. Ping, Y. Yang, and F. Wang, Phys. Rev. D 86,

014008 (2012).
[39] C. Deng, J. Ping, Y. Yang, and F. Wang, Phys. Rev. D 88,

074007 (2013).
[40] J. Segovia, D. R. Entem, and F. Fernandez, Phys. Rev. D 91,

094020 (2015).
[41] J. Segovia, P. G. Ortega, D. R. Entem, and F. Fernndez,

Phys. Rev. D 93, 074027 (2016).
[42] P. G. Ortega, J. Segovia, D. R. Entem, and F. Fernandez,

Phys. Rev. D 81, 054023 (2010).
[43] P. G. Ortega, J. Segovia, D. R. Entem, and F. Fernandez,

arXiv:1603.07000.
[44] H. Wang, Z. Yan, and J. Ping, Eur. Phys. J. C 75, 196

(2015).
[45] H. Wang, Y. Yang, and J. Ping, Eur. Phys. J. A 50, 76

(2014).
[46] X. Chen, Z. Yan, and J. Ping, Int. J. Mod. Phys. A 29,

1450175 (2014).
[47] B.-Q. Li, C. Meng, and K.-T. Chao, Phys. Rev. D 80,

014012 (2009).
[48] T. Barnes, S. Godfrey, and E. S. Swanson, Phys. Rev. D 72,

054026 (2005).
[49] B. Numerov, Astron. Nachr. 230, 359 (1927).
[50] A. M. Badalian, B. L. G. Bakker, and I. V. Danilkin, Phys.

At. Nucl. 73, 138 (2010).
[51] R. Van Royen and V. F. Weisskopf, Nuovo Cimento 50A,

617 (1967); 51A, 583 (1967).
[52] P. Moxhay and J. L. Rosner, Phys. Rev. D 28, 1132

(1983).
[53] R. Barbieri, E. d’Emilio, G. Curci, and E. Remiddi, Nucl.

Phys. B154, 535 (1979).
[54] J. L. Rosner, Phys. Rev. D 64, 094002 (2001).
[55] S. Ono, Z. Phys. C 8, 7 (1981).
[56] Yu. S. Kalashnikova, Phys. Rev. D 72, 034010 (2005).
[57] S. Godfrey and K. Moats, Phys. Rev. D 92, 054034 (2015).

LU, ANWAR, and ZOU PHYSICAL REVIEW D 94, 034021 (2016)

034021-14

http://dx.doi.org/10.1140/epjc/s10052-010-1534-9
http://dx.doi.org/10.1016/0370-2693(81)90617-1
http://dx.doi.org/10.1016/0550-3213(80)90279-5
http://dx.doi.org/10.1016/0550-3213(80)90279-5
http://dx.doi.org/10.1103/PhysRevD.17.3090
http://dx.doi.org/10.1103/PhysRevD.21.313.2
http://dx.doi.org/10.1103/PhysRevD.24.132
http://dx.doi.org/10.1103/PhysRevD.24.132
http://dx.doi.org/10.1103/PhysRevD.32.189
http://dx.doi.org/10.1103/PhysRevD.29.110
http://dx.doi.org/10.1103/PhysRevD.29.110
http://dx.doi.org/10.1103/PhysRevD.29.2136
http://dx.doi.org/10.1007/BF01558041
http://dx.doi.org/10.1103/PhysRevD.29.2139
http://dx.doi.org/10.1103/PhysRevD.29.2139
http://dx.doi.org/10.1103/PhysRevD.34.186
http://dx.doi.org/10.1103/PhysRevD.34.186
http://dx.doi.org/10.1103/PhysRevLett.55.2938
http://dx.doi.org/10.1016/0550-3213(69)90039-X
http://dx.doi.org/10.1103/PhysRevD.8.2223
http://dx.doi.org/10.1103/PhysRevD.8.2223
http://dx.doi.org/10.1103/PhysRevD.9.1415
http://dx.doi.org/10.1103/PhysRevD.9.1415
http://dx.doi.org/10.1103/PhysRevD.35.907
http://dx.doi.org/10.1016/0550-3213(95)00085-7
http://dx.doi.org/10.1103/PhysRevD.21.203
http://dx.doi.org/10.1103/PhysRevD.54.6811
http://dx.doi.org/10.1103/PhysRevD.54.6811
http://dx.doi.org/10.1103/PhysRevD.68.054014
http://dx.doi.org/10.1103/PhysRevD.68.054014
http://dx.doi.org/10.1103/PhysRevD.55.4157
http://dx.doi.org/10.1103/PhysRevD.55.4157
http://dx.doi.org/10.1103/PhysRevD.81.094003
http://dx.doi.org/10.1103/PhysRevD.81.094003
http://dx.doi.org/10.1140/epjc/s10052-012-1981-6
http://dx.doi.org/10.1103/PhysRevD.90.094022
http://dx.doi.org/10.1103/PhysRevD.90.094022
http://dx.doi.org/10.1103/PhysRevD.75.094017
http://dx.doi.org/10.1103/PhysRevC.85.055203
http://dx.doi.org/10.1103/PhysRevC.87.065207
http://dx.doi.org/10.1103/PhysRevC.87.065207
http://dx.doi.org/10.1016/S0146-6410(03)90015-9
http://dx.doi.org/10.1016/S0146-6410(03)90015-9
http://dx.doi.org/10.1103/PhysRevD.78.114033
http://dx.doi.org/10.1103/PhysRevD.84.094029
http://dx.doi.org/10.1103/PhysRevD.84.094029
http://dx.doi.org/10.1016/j.physletb.2012.08.005
http://dx.doi.org/10.1016/j.physletb.2012.08.005
http://dx.doi.org/10.1142/S0218301313300269
http://dx.doi.org/10.1016/j.nuclphysa.2013.07.004
http://dx.doi.org/10.1016/j.nuclphysa.2013.07.004
http://dx.doi.org/10.1103/PhysRevD.81.114025
http://dx.doi.org/10.1103/PhysRevD.82.074001
http://dx.doi.org/10.1103/PhysRevD.82.074001
http://dx.doi.org/10.1088/0954-3899/39/10/105001
http://dx.doi.org/10.1088/0954-3899/39/10/105001
http://dx.doi.org/10.1103/PhysRevD.86.114035
http://dx.doi.org/10.1103/PhysRevD.86.114035
http://dx.doi.org/10.1088/0954-3899/39/4/045001
http://dx.doi.org/10.1088/0954-3899/39/4/045001
http://dx.doi.org/10.1103/PhysRevD.86.014008
http://dx.doi.org/10.1103/PhysRevD.86.014008
http://dx.doi.org/10.1103/PhysRevD.88.074007
http://dx.doi.org/10.1103/PhysRevD.88.074007
http://dx.doi.org/10.1103/PhysRevD.91.094020
http://dx.doi.org/10.1103/PhysRevD.91.094020
http://dx.doi.org/10.1103/PhysRevD.93.074027
http://dx.doi.org/10.1103/PhysRevD.81.054023
http://arXiv.org/abs/1603.07000
http://dx.doi.org/10.1140/epjc/s10052-015-3418-5
http://dx.doi.org/10.1140/epjc/s10052-015-3418-5
http://dx.doi.org/10.1140/epja/i2014-14076-y
http://dx.doi.org/10.1140/epja/i2014-14076-y
http://dx.doi.org/10.1142/S0217751X14501759
http://dx.doi.org/10.1142/S0217751X14501759
http://dx.doi.org/10.1103/PhysRevD.80.014012
http://dx.doi.org/10.1103/PhysRevD.80.014012
http://dx.doi.org/10.1103/PhysRevD.72.054026
http://dx.doi.org/10.1103/PhysRevD.72.054026
http://dx.doi.org/10.1002/asna.19272301903
http://dx.doi.org/10.1134/S1063778810010163
http://dx.doi.org/10.1134/S1063778810010163
http://dx.doi.org/10.1007/BF02823542
http://dx.doi.org/10.1007/BF02823542
http://dx.doi.org/10.1007/BF02902203
http://dx.doi.org/10.1103/PhysRevD.28.1132
http://dx.doi.org/10.1103/PhysRevD.28.1132
http://dx.doi.org/10.1016/0550-3213(79)90047-6
http://dx.doi.org/10.1016/0550-3213(79)90047-6
http://dx.doi.org/10.1103/PhysRevD.64.094002
http://dx.doi.org/10.1007/BF01429823
http://dx.doi.org/10.1103/PhysRevD.72.034010
http://dx.doi.org/10.1103/PhysRevD.92.054034


[58] Z.-Y. Zhou and Z. Xiao, Eur. Phys. J. A 50, 165 (2014).
[59] H. G. Blundell, Ph.D. thesis, Carleton University, 1996;

arXiv:hep-ph/9608473.
[60] I. V. Danilkin and Yu. A. Simonov, Phys. Rev. D 81, 074027

(2010).
[61] W. Roberts and B. Silvestre-Brac, Few-Body Syst. 11, 171

(1992).
[62] H. B. Schlegel and M. J. Frisch, Int. J. Quantum Chem. 54,

83 (1995).

[63] T. Barnes and E. S. Swanson, Phys. Rev. C 77, 055206
(2008).

[64] K. A. Olive et al. (Particle Data Group Collaboration), Chin.
Phys. C 38, 090001 (2014).

[65] S. Ono, Phys. Rev. D 23, 1118 (1981).
[66] V. Baru, C. Hanhart, Yu. S. Kalashnikova, A. E. Kudryavtsev,

and A. V. Nefediev, Eur. Phys. J. A 44, 93 (2010).
[67] W. Kwong and J. L. Rosner, Phys. Rev. D 38, 279 (1988).
[68] B.-Q. Li and K.-T. Chao, Phys. Rev. D 79, 094004 (2009).

COUPLED-CHANNEL EFFECTS FOR THE BOTTOMONIUM … PHYSICAL REVIEW D 94, 034021 (2016)

034021-15

http://dx.doi.org/10.1140/epja/i2014-14165-y
http://arXiv.org/abs/hep-ph/9608473
http://dx.doi.org/10.1103/PhysRevD.81.074027
http://dx.doi.org/10.1103/PhysRevD.81.074027
http://dx.doi.org/10.1007/BF01641821
http://dx.doi.org/10.1007/BF01641821
http://dx.doi.org/10.1002/qua.560540202
http://dx.doi.org/10.1002/qua.560540202
http://dx.doi.org/10.1103/PhysRevC.77.055206
http://dx.doi.org/10.1103/PhysRevC.77.055206
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1103/PhysRevD.23.1118
http://dx.doi.org/10.1140/epja/i2010-10929-7
http://dx.doi.org/10.1103/PhysRevD.38.279
http://dx.doi.org/10.1103/PhysRevD.79.094004

