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We present a method of solution of the Bartels-Kwiecinski-Praszalowicz (BKP) equation based on the
numerical integration of iterated integrals in transverse momentum and rapidity space. As an application,
our procedure, which makes use of Monte Carlo integration techniques, is applied to obtain the gluon
Green function in the Odderon case at leading order. The same approach can be used for more complicated
scenarios.
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I. BRIEF INTRODUCTION TO THE BKP
EQUATION

Two main actors rule the high energy behavior of
scattering amplitudes in quantum chromodynamics: the
Pomeron and the Odderon [1]. The former dominates at
asymptotic energies and the latter plays its role at lower
energies. In perturbation theory both are described as
compound states of Reggeized gluons, two for the
Pomeron and three in the Odderon case. These different
structures are dictated by their corresponding behavior
under charge conjugation: C ¼ þ for Pomeron and C ¼ −
for Odderon. The amount of work devoted to the study of
the Pomeron has been tantalizing. The investigation of the
Odderon is harder, both phenomenologically and theoreti-
cally. The experimental searches are complicated since the
Odderon generally corresponds to a subleading contribu-
tion to cross sections. From a theoretical point of view, it
turns out that the integral equation describing the t-channel
exchange of an Odderon via the coupling of three off-shell
Reggeized gluons is rather complicated. However, it enjoys
two-dimensional conformal invariance in the coordinate
representation, which allows for the application of tech-
niques previously developed for conformal field theory and
integrable systems [2,3].
In the present work we propose to take a route quite

different from previous approaches. We operate in trans-
verse momentum and rapidity space and solve the equation
governing the Odderon Green function, the so-called
Bartels-Kwiecinski-Praszalowicz (BKP) equation [4], by
iterating it. The final outcome is a set of nested integrations
that we evaluate using Monte Carlo integration techniques.
We focus in our work on the Odderon case but we would
like to emphasize that the techniques here described are
readily applicable to those processes where a larger number
of Reggeized gluons is exchanged in the t-channel either at
leading or higher orders.
Let us write the BKP equation for three Reggeons (the

generalization to a larger number corresponds to a

straightforward extension of this example) in the following
form,

ðω − ωðp1Þ − ωðp2Þ − ωðp3ÞÞfωðp1;p2;p3Þ
¼ δð2Þðp1 − p4Þδð2Þðp2 − p5Þδð2Þðp3 − p6Þ

þ
Z

d2kξðp1;p2;p3;kÞfωðp1 þ k;p2 − k;p3Þ

þ
Z

d2kξðp2;p3;p1;kÞfωðp1;p2 þ k;p3 − kÞ

þ
Z

d2kξðp1;p3;p2;kÞfωðp1 þ k;p2;p3 − kÞ;

ð1Þ

with the strong coupling being ᾱs ¼ αsNc=π, the square of
a Lipatov’s emission vertex

ξðp1;p2;p3;kÞ ¼
ᾱs
4

θðk2 − λ2Þ
πk2

×

�
1þ ðp1 þ kÞ2p2

2 − ðp1 þ p2Þ2k2

p2
1ðk − p2Þ2

�
;

ð2Þ

and the gluon Regge trajectory at leading order,

ωðpÞ ¼ −
ᾱs
2
ln
p2

λ2
: ð3Þ

We use the shorter notation fωðp1;p2;p3Þ for
fωðp1;p2;p3;p4;p5;p6Þ where pi are two-dimensional
transverse vectors. This Green function fω describes the
transition from three off-shell gluons with momenta pi¼1;2;3

and rapidity Y to three with momenta pi¼4;5;6 and rapidity 0
(in our normalization). The dependence on Y is hidden in
the variable ω, which we will remove later. λ is a regulator
of infrared divergencies whose influence is negligible as we
take λ → 0.
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A graphical representation of this equation is shown in
Fig. 1. The inner dashed circle corresponds to particles with
a rapidity Y and the outer one to those with rapidity 0. Let
us remark that the function ξðpi;pj;pk;kÞ corresponds to
the coupling of two Reggeized gluons with momenta pi and
pj via a normal gluon with transverse momentum k,
leaving the third Reggeized gluon, with momentum pk,
as a simple spectator. In the lhs of Eq. (1) there are three
terms proportional to the trajectory ωðpiÞ, which are
represented by the three contributions in the second line
of Fig. 1. The function ξ appears in the last three terms of
the same figure. The first term in the rhs of Eq. (1)
represents the initial condition for evolution in rapidity
with the three two-dimensional Dirac delta functions
δð2Þðp1 − p4Þδð2Þðp2 − p5Þδð2Þðp3 − p6Þ.
We will now explain in some detail our procedure to

solve Eq. (1). In a nutshell, we first iterate it in the ω
representation to then transform the result to get back to a
representation with only transverse momenta and rapidity.

II. SOLUTION IN TRANSVERSE MOMENTUM
AND RAPIDITY SPACE

In order to describe our method of solution we first
streamline the notation using the operator

OðkÞ ⊗ fðp1;p2;p3Þ
≡ ξðp1;p2;p3;kÞfðp1 þ k;p2 − k;p3Þ
þ ξðp2;p3;p1;kÞfðp1;p2 þ k;p3 − kÞ
þ ξðp1;p3;p2;kÞfðp1 þ k;p2;p3 − kÞ; ð4Þ

which allows us to write the BKP equation as

ðω − ωðp1Þ − ωðp2Þ − ωðp3ÞÞfωðp1;p2;p3Þ
¼ δð2Þðp1 − p4Þδð2Þðp2 − p5Þδð2Þðp3 − p6Þ

þ
Z

d2kOðkÞ ⊗ fωðp1;p2;p3Þ: ð5Þ

Moving the terms depending on ω and the gluon Regge
trajectories to the denominator of the rhs and iterating the
action of the integral operator, we can present the gluon
Green function as a sum over the number of rungs, n, joining
two Reggeized gluons, each of them carrying a function ξ:

fωðp1;p2;p3Þ¼
ð1þP∞

n¼1

Q
n
i¼1

R
d2kiOðkiÞ⊗Þ

ðω−ωðp1Þ−ωðp2Þ−ωðp3ÞÞ
×δð2Þðp1−p4Þδð2Þðp2−p5Þδð2Þðp3−p6Þ:

ð6Þ

FIG. 1. BKP equation for the gluon Green function fωðp1;p2;p3;p4;p5;p6Þ as in Eq. (1).
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In order to operate in rapidity space we use the Mellin
transform,

fðp1;p2;p3;YÞ¼
Z

aþi∞

a−i∞

dω
2πi

eωYfωðp1;p2;p3Þ; ð7Þ

and the relation for multiple poles,

Z
aþi∞

a−i∞

dω
2πi

eωY
Yn
i¼0

1

ðω−ωiÞ
¼ eω0Y

Yn
i¼1

Z
yi−1

0

dyieðωi−ωi−1Þyi ;

ð8Þ

with y0 ¼ Y and n > 0, to express the gluon Green function
as a sum over nested integrals in rapidity and integrals over
two-dimensional transverse momenta, i.e.,

fðp1;p2;p3; YÞ
¼ eðωðp1Þþωðp2Þþωðp3ÞÞYδð2Þðp1 − p4Þ

× δð2Þðp2 − p5Þδð2Þðp3 − p6Þ

þ
X∞
n¼1

�Yn
i¼1

Z
yi−1

0

dyi

Z
d2kieðωðp1Þþωðp2Þþωðp3ÞÞðyi−1−yiÞ

×OðkiÞ ⊗
�
eðωðp1Þþωðp2Þþωðp3ÞÞynδð2Þðp1 − p4Þ

× δð2Þðp2 − p5Þδð2Þðp3 − p6Þ: ð9Þ

It is now mandatory to explain an important point. This
solution is λ independent, in the λ → 0 limit, term by term
in a perturbative expansion in ᾱs (in the leading logarithmic
approximation it is really an expansion in ᾱsY). However,
this expansion is not convenient if our target is to obtain the
full Green function since it generates a huge number of
terms at each order in the coupling. The problem simplifies
greatly if we resum the diagrams with gluon Regge
trajectories using the notation explained in Fig. 2.
In this figure each blob at rapidity yi on a line with

transverse momentum pi represents a term of the form
eωðpiÞðyiþ1−yiÞ. For a line without any connections with other
lines through the function ξ we would have that the sum of
all trajectories contributes with the term eωðpiÞY . Let us
illustrate this with an example: with these effective
Feynman diagrams we now find that the graphical repre-
sentation of the first three iterations of the BKP equation
corresponds to the one shown in the 13 terms of Fig. 3.
To better understand how to work with these effective

Feynman diagrams, let us now discuss in more detail the
structure of some of them. As we already pointed out, our
initial condition, or first term of the iteration, corresponds
to three delta functions, one per t-channel gluon propagator.
Due to the action of those diagrams with Regge trajectories
in the BKP kernel, this initial condition transforms into a
first contribution to the BKP gluon Green function with
modified gluon propagators, each of them picking up a

pipj

Y0

pipj

Y0

pipj

Yy1y2
0

pipj

Yy1y2
0

pipj

Yy1y2
0

FIG. 2. Reggeized gluon propagator containing ordered-in-rapidity Regge trajectories (Y > yi > yiþ1 > 0).
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Regge factor in the form as it is shown in Fig. 4. The set of
momenta pi¼1;2;3 are associated to a rapidity Y and pi¼4;5;6

to a rapidity 0. This diagram corresponds to the first term in
the expansion of Eq. (9). The structure of our effective
Feynman diagrams in the high energy limit is richer when
calculating the next terms in this equation. Let us consider
now the case with one gluon rung as in the effective graph

of Fig. 5. We have to integrate over the phase space of the
exchanged gluon with transverse momentum k1 and
rapidity y1, which can lie between 0 and the total rapidity
Y. This integration is trivial due to the different delta
functions present in the integrand. The integration over
rapidity is a bit more complicated when we consider a
diagram with more than one rung since then, in the

p1

p2
p3

p4

p5

p6

p1

p2
p3

p4

p5

p6
p1

p2
p3

p4

p5

p6
p1

p2
p3

p4

p5

p6

p1

p2
p3

p4

p5

p6
p1

p2
p3

p4

p5

p6
p1

p2
p3

p4

p5

p6

p1

p2
p3

p4

p5

p6
p1

p2
p3

p4

p5

p6
p1

p2
p3

p4

p5

p6

p1

p2
p3

p4

p5

p6
p1

p2
p3

p4

p5

p6
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p2
p3

p4

p5

p6

FIG. 3. First 13 effective diagrams contributing to the BKP gluon Green function.
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integration limits, we should ensure rapidity ordering. This
is shown in Fig. 6 where we have to integrate over a two-
gluon phase space.
As we will see below, this way of rewriting the gluon

Green function is very useful from a numerical point of
view but each individual term with a fixed number of rungs
in our sum is not infrared finite (λ independent for small λ).
This is clear since the terms with gluon Regge trajectories
are exponentiated while the rungs are kept at a fixed order
and the cancellation takes place order by order in the
coupling. The full λ independence is only achieved after we
have summed over an infinite number of contributions.
Fortunately this is not needed since, for a finite value of the
coupling and Y, numerical convergence is achieved after
summing up to a large but finite number of terms. This will
be the subject of discussion in the coming section.

III. THE MONTE CARLO INTEGRATION
APPROACH AND NUMERICAL RESULTS

We will demonstrate the effectiveness of the approach
described before with a concrete example. We want to
evaluate Eq. (9) to obtain fðp1;p2;p3; YÞ for a given set of
p1, p2, p3, p4, p5, p6 and for different rapidities Y. For
concreteness, let us take the following two sets of values for
the different transverse momenta in the problem (all shown
in polar coordinates such that the first entry stands for the
modulus of the momentum and the second one for the
azimuthal angle):

q¼ ð4;0Þ q¼ ð31;0Þ
p1 ¼ ð10;0Þ p1 ¼ ð10;0Þ
p2 ¼ ð20;πÞ p2 ¼ ð20;πÞ
p3 ¼ ðq−p1Þ−p2 ¼ ð14;0Þ p3 ¼ ðq−p1Þ−p2 ¼ ð41;0Þ
p4 ¼ ð20;0Þ p4 ¼ ð20;0Þ
p5 ¼ ð25;πÞ p5 ¼ ð25;πÞ
p6 ¼ ðq−p4Þ−p5 ¼ ð9;0Þ p6 ¼ ðq−p4Þ−p5 ¼ ð36;0Þ:

ð10Þ

The momentum transfer q in the lhs column has a relatively
small value whereas in the rhs column it is much larger,
q ¼ ð4; 0Þ and q ¼ ð31; 0Þ, respectively. The moduli in the
two-vectors carry units of momentum, all of them being
expressed in GeV. We remind the reader that

p1 þ p2 þ p3 ¼ q ¼ p3 þ p4 þ p6: ð11Þ

FIG. 4. Contribution with three Reggeized propagators and no
Lipatov vertices ξ.

FIG. 5. Effective Feynman diagram with one exchanged rung.

FIG. 6. Effective Feynman diagram with two exchanged rungs.
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We will vary the rapidity Y in the range [1, 5.5] in steps of
half a unit.
Once we have set the values for the momenta and the

rapidity, we are ready to iterate and evaluate Eq. (9) for
n ¼ 1; 2; 3;…; nmax, where nmax is a number after which
numerical convergence is reached or, in other words,
fðp1;p2;p3; YÞ does not increase any more. To be more
precise, for any n > nmax there will always be a possible
further term to be considered but in reality its size gets smaller
and smaller with increasing n and their sum adds up to a tiny
value that is much smaller than the statistical uncertainty
accumulated for adding the contributions up to nmax.
After inspecting the momenta in Eq. (10), it is apparent

that there is no contribution to be added by considering
only one iteration. Indeed, with only one rung connecting

any two Reggeons, we cannot fulfil the Dirac delta
functions as one can verify from Fig. 5. Therefore, nonzero
contributions to fðp1;p2;p3; YÞ will appear only after the
second iteration once we consider two rungs. Moreover,
any given diagram with i rungs will generate three new
diagrams in the next iteration with iþ 1 rungs since there
are three pairs of Reggeons we can connect with the new
rung. This leads to a complete ternary tree structure. To be
more specific, in Fig. 6, if we name the rungs connecting
p1 and p2 as “left” or L rungs, the ones connecting p2

and p3 as “middle” or M rungs, and the ones connecting p1

and p3 as “right” or R rungs, we may represent the first 13
effective diagrams contributing to the BKP gluon Green
function after two iterations by the following equivalent
ternary tree structure:

where each node of the tree is labeled using the L, M, R
notation defined above. In a similar fashion, we will name
the individual effective diagrams using the ordered L, M, R
notation, e.g., DM, DMRRLML, etc.
For a given number of iterations i, it is obvious that we

will have 3i effective contributions. To be specific, for
n ¼ 2;…; 14 rungs we have

n rungs Number of diagrams

2 9

3 27

4 81

5 243

6 729

7 2187

8 6561

9 19683

10 59049

11 177147

12 531441

13 1594323

14 4782969:

ð12Þ

All these1 diagrams contribute to the gluon Green function.
The diagrams with equal number of rungs i have to be
summed up and integrated over the momenta of the
exchanged gluons kj and the rapidities yj with
j ¼ 1;…; i. One can see in Eq. (12) that considering
nmax ¼ 14 means that one is left with an integrand con-
taining more than 4.7 million diagrams and which needs to
be integrated over 14 momenta k1;…;14 and 14 rapidity
values y1;…;14. We perform the integrations using a
Monte Carlo computational approach for the needed
number of rungs in each case.
It is noteworthy to indicate that two of the momenta

integrations are trivial if we remember that we have to
fulfil the three Dirac delta functions, which still leaves
us, in the general case, with (n − 2) two-dimensional
nontrivial integrations regarding the momenta. To make
this last point more transparent, let us consider Fig. 7,
where the shaded regions in light red stand for an
arbitrary number of exchanged gluons between the three
Reggeons. With a slight abuse of notation, we will
denote the momenta of the three Reggeons in the inner
and outer above-mentioned shaded regions by p0

1;2;3 and
p0
3;4;5, respectively. Taking into account momentum

1Nevertheless, there are diagrams that are identically zero, as
we will show later on.
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conservation on the transverse plane in Fig. 7, we have the
following relations:

p0
4 ¼ p0

1 þ ki

p0
5 ¼ p0

2 − ki þ kiþ1

p0
6 ¼ p0

3 − kiþ1 ð13Þ

or equivalently

ki ¼ p0
4 − p0

1

p0
5 ¼ p0

2 − ki þ kiþ1

kiþ1 ¼ p0
3 − p0

6: ð14Þ

Substituting the values of ki and kiþ1 from the top and
bottom into the middle equation above gives

p0
5 ¼ p0

2 − ðp0
4 − p0

1Þ þ ðp0
3 − p0

6Þ or

p0
1 þ p0

2 þ p0
3 ¼ p0

4 þ p0
5 þ p0

6 ð15Þ

which is trivially fulfilled since Eq. (11) holds. It simply
states that at any rapidity, if we add all the Reggeon
momenta, we are bound to get the total momentum transfer
q in the t-channel. This is actually very important. It tells us
that for any effective diagram that contributes to
fðp1;p2;p3; YÞ, we can allow the exchanged momenta
to take any random value apart from where we have what
we call a “junction” (highlighted by the yellow region in

Fig. 7): a configuration of two subsequent rungs that can
have any of the LM, ML, LR, RL, MR, or RM labels and
which we denote, respectively, by J LM, JML, J LR, J RL,
JMR, and J RM. In other words, a junction is defined to be
that part of the effective diagram for which the exchanged
momenta cannot take any random value but need to be set
in a certain way such that the global initial condition is
fulfilled. In detail, the momenta of the exchanged gluons in
the six different junctions are chosen as follows:

J LM∶ ki ¼ p0
4 − p0

1

kiþ1 ¼ p0
3 − p0

6

JML∶ ki ¼ p0
3 − p0

6

kiþ1 ¼ p0
4 − p0

1

J LR∶ ki ¼ p0
2 − p0

5

kiþ1 ¼ p0
3 − p0

6

J RL∶ ki ¼ p0
3 − p0

6

kiþ1 ¼ p0
2 − p0

5

JMR∶ ki ¼ p0
5 − p0

2

kiþ1 ¼ p0
4 − p0

1

J RM∶ ki ¼ p0
4 − p0

1

kiþ1 ¼ p0
5 − p0

2: ð16Þ

Clearly, an effective diagram with a high enough number
of rungs may appear to have more than one junction. In that
case, we consider as junction the first occurrence of one of
J LM, JML, J LR, J RL, JMR, or J RM. For example, the
diagram DLLMRM has only one junction, J LM, whereas the
diagram DRRRRLLLR has only the junction J RL. Let us add
here on a much more technical level that in order to find
what the junction is in a given diagram, we have chosen to
evaluate the adjacency list for each diagram, which
corresponds to a set of unordered lists that can be used
to represent a finite graph. Defining the adjacency list will
be of service for future works where we will be interested in
studying topologically different effective diagrams or to
find ways to speed up the computation time of the gluon
Green function. To conclude with, any diagram with no
junction, that is, any diagram J Q, with Q being a sequence
of only L, only M, or only R, is identically zero since the
three Dirac delta functions of the initial condition cannot be
fulfilled. This is apparent if we note that all the p1;2;3;4;5;6 we
have chosen are different from one another.
Having the machinery described above at hand, we were

able to proceed to the numerical integration of all the
individual contributions in order to find numerical con-
vergence. We went up to 14 rungs, although for most of the
smaller rapidity values in the range [1, 5.5], 11 rungs were
enough. The first thing we noticed is that when we plot the

p1

kiL

ki 1

M

p

Y

yi

yj

0

p2

p3

p4

p5

p6

p'4

p'5

p'6

p'1

p'2

p'3

FIG. 7. A LM rungs configuration that can ensure the fulfilment
of the three Dirac delta functions of the initial condition. We will
call such a configuration of two rungs in a BKP diagram a
“junction.” There are in total six different junctions: LM, ML,
LR, RL, MR, and RM.
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contributions from each iteration for a given Y (what we
will loosely call a “multiplicity” plot), they seem to follow a
Poisson-like distribution. At some n they have a global
maximum and they fall as n increases. To make this feature
more apparent, we present here two figures for each value
of the total momentum transfer in the two configurations

chosen to illustrate our results in Eq. (10), that is, for q ¼
ð4; 0Þ (Figs. 8, 9) and for q ¼ ð31; 0Þ (Figs. 10, 11).
Figures 8, 10 are for Y in the range [1, 3] and Figs. 9,
11 are for Y taking values in [3.5, 5.5]. In all four
multiplicity plots, we show the data points along with an
interpolation to make more visible the Poisson-like features
of the distributions. In all these plots, we kept the vertical
axis range fixed to make comparisons easier.
From a first inspection of the four multiplicity plots, we

conclude that the gluon Green function is noticeably
smaller when the total momentum transfer is larger,
q ¼ ð31; 0Þ. This is connected to the fact that while p1;2

and p4;5 are unchanged when we change q, the momenta p3

and p6 do change and actually they get considerably larger;
see Eq. (10). The peak of the distribution moves similarly to
larger values of n for both values of q as we increase Y.
Moreover, the peak gets lower as the energy rises and the
distributions get much broader, while for q ¼ ð31; 0Þ the
peak is delayed (occurs at larger n) with respect to what
happens for q ¼ ð4; 0Þ.
It is very interesting to plot the rapidity dependence of

the gluon Green function for the two values of q; see
Fig. 12. What we observe is that both curves initially

Y 1

2 4 6 8 10
0

5. 10 7

1. 10 6

1.5 10 6

Number or rungs n

d

dn

q

Y 1.5

Y 2

Y 2.5

Y 3

FIG. 8. Multiplicity plot for q ¼ 4 GeV and smaller values of
rapidity Y.

2 4 6 8 10 12 14
0

5. 10 7

1. 10 6

1.5 10 6

Number or rungs n

d
dn

q

Y 3.5

Y 4

Y 4.5

Y 5

Y 5.5

FIG. 9. Multiplicity plot for q ¼ 4 GeV and larger values of
rapidity Y.

Y 1

Y 1.5

Y 2

Y 2.5

Y 3

2 4 6 8 10
0

5. 10 7

1. 10 6

1.5 10 6

Number or rungs n

d

dn

q

FIG. 10. Multiplicity plot for q ¼ 31 GeV and smaller values
of rapidity Y.

Y 3.5

Y 4

Y 4.5

Y 5

Y 5.5

2 4 6 8 10 12 14
0

5. 10 7

1. 10 6

1.5 10 6

Number or rungs n

d

dn

q

FIG. 11. Multiplicity plot for q ¼ 31 GeV and larger values of
rapidity Y.

1 2 3 4 5
0

2. 10 6

4. 10 6

6. 10 6
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Y

q 4 GeV

q 31 GeV

FIG. 12. Energy dependence of f for q ¼ 4 GeV (blue con-
tinuous line) and q ¼ 31 GeV (red dashed line).
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increase with Y, they reach a maximum, and then they start
falling. The maximum occurs later in Y for q ¼ ð4; 0Þ.
Since we are well below the asymptotic region, we cannot
say much about the large Y behavior of the gluon Green
function besides the fact that it reaches a maximum value at
a certain rapidity and then it drops monotonically. When
compared to the Balitsky-Fadin-Kuraev-Lipatov (BFKL)
Pomeron Green function [5], which grows rapidly with Y,
in the Odderon case we have a kernel where the ξ function
in Eq. (2) has an extra factor of 2 in the denominator. This is
because we operate, in each iteration of the kernel, with the
adjoint representation. In this representation the contribu-
tions from the Regge gluon trajectories, which tend to
lower the value of cross sections or the Green function in
this case, are then enhanced with respect to the “rung”
contributions, which typically “push upwards” in Y the
solution of the corresponding integral equation. This is the
mechanism driving the above-mentioned decrease with Y
of our Odderon solution. This feature of the BKP kernel
is of great help when applying our Monte Carlo integra-
tion techniques since it allows us to reach convergence
with fewer iterations of the kernel than in the BFKL case,
which carries a singlet representation in its kernel (we have
investigated this point by making use of the Monte Carlo
event generator BFKLex [6]).

IV. CONCLUSIONS AND OUTLOOK

A novel method of solution of the Bartels-Kwiecinski-
Praszalowicz (BKP) equation has been presented. This
approach relies on the numerical integration of iterated
integrals in transverse momentum and rapidity space. We
have applied it to the BKP equation with three Reggeized
gluons in the t-channel, the so-called Odderon case. We
have shown that numerical convergence of the solution is
achieved after applying the BKP ternary kernel on the
initial condition, corresponding to three off-shell gluon
propagators, a finite number of times for a given value of

the strong coupling and the total center-of-mass energy
encoded in the rapidity variable Y. We have shown that the
gluon Green function for Reggeized gluons grows with Y
for small values of this variable to then rapidly decrease at
higher Y. This is compatible with previous approaches
where the Odderon intercept has been argued to be ofOð1Þ
[7]. This stems from the competition between terms
holding the gluon Regge trajectory and those related to
iterations of the square of the so-called Lipatov’s vertex,
which in the adjoint representation, characteristic of the
BKP kernel, is won by the former. We have performed
some explicit calculations of the Odderon gluon Green
function for different values of the momentum transfer q,
finding a qualitatively very similar behavior at small and
large values of q in terms of growth with Y and distribution
in the number of needed iterations to reach numerical
convergence. The main difference lies in having smaller
values for the Green function in the latter case.
The formalism here described can be applied to the BKP

equation with a higher number of exchanged Reggeons. It
can also be used beyond the leading logarithmic approxi-
mation [8] and for cases with a total t-channel color
projection not being in the singlet but in the adjoint
representation. This is very important for the calculation
of scattering amplitudes in N ¼ 4 supersymmetric theories
in the Regge limit [9]. Our approach also has obvious
applications in the study of phenomenological cross sec-
tions devoted to the search of the elusive Odderon at hadron
colliders [10]. All of these lines of investigation are part of
our future plans for applications of this work.
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