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We present an analysis of the dynamics of two-flavor QCD in the vacuum. Special attention is paid to
the transition from the high-energy quark-gluon regime to the low-energy regime governed by hadron
dynamics. This is done within a functional renormalization group approach to QCD amended by dynamical
hadronization techniques. These techniques allow us to describe conveniently the transition from the
perturbative high-energy regime to the nonperturbative low-energy limit without suffering from a fine-
tuning of model parameters. In the present work, we apply these techniques to two-flavor QCD with
physical quark masses and show how the dynamics of the dominant low-energy degrees of freedom emerge
from the underlying quark-gluon dynamics.
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I. INTRODUCTION

For an accurate first-principles description of the dynam-
ics of QCD, a reliable inclusion of hadronic states is of
great importance. This holds in particular for an approach
aiming at the hadron spectrum or the phase structure of
QCD at finite density. In the present work on two-flavor
QCD we develop a theoretical framework for taking into
account the fluctuation dynamics of quarks, gluon and
hadrons. This approach is based on previous functional
renormalization group studies [1,2] and a related quanti-
tative study in the quenched limit [3]. The present work and
[3] are first works within a collaboration (fQCD) aiming at
a quantitative functional renormalization group framework
for QCD [4]. This framework allows us to dynamically
include hadronic states as they emerge from the micro-
scopic quark and gluon degrees of freedom.
We use the functional renormalization group (FRG)

approach for QCD; for reviews see [5–14], and [15–21]
for reviews on related work. In order to describe the
transition from quarks and gluons to hadrons, we extend
the dynamical hadronization technique (or rebosonization),
introduced in Refs. [7,22–24]. For the first time, this
technique is applied here to dynamical two-flavor QCD
with physical quark masses. It is shown how the dominant
hadronic low-energy degrees of freedom and their dynam-
ics emerge from the underlying quark-gluon dynamics. The
hadronization technique, as further developed in the present
work, was already applied in Ref. [3] in a quantitative study
of quenched QCD. In [3], a large number of interaction
channels were taken into account, aimed at full quantitative
precision. Here, we exploit the results from [3] as well as

results on the scale-dependent glue sector of Yang-Mills
theory from Refs. [18,25,26]. This enables us to concen-
trate on the RG flows of the most relevant couplings from a
more phenomenological point of view, paying special
attention to unquenching effects.
In summary, the aim of this work is threefold: firstly, we

aim at a detailed understanding of the fluctuation physics in
the transition region between the high-energy quark-gluon
regime to the low-energy hadronic regime. Secondly, we
want to initiate the quest for the minimal set of composite
operators that has to be taken into account for reaching
(semi)quantitative precision, while keeping the study ana-
lytic. This deepens the understanding of the fluctuation
physics by only taking into account the relevant operators.
Moreover, it is also of great interest for low-energy
effective models. Thirdly, we discuss full unquenching
effects in terms of the matter back-coupling to the glue
sector that is important for QCD regimes with dominant
quark fluctuations such as QCD at high densities or many
flavors.
The paper is organized as follows: in Sec. II we introduce

the ansatz for the quantum effective action which we are
considering in the present work. The general framework of
dynamical hadronization is then discussed in detail in
Sec. III, where we also give a discussion of the RG flow
in the gauge sector and the role of the quark-gluon vertex.
Our results for two-flavor QCD are then presented in
Sec. IV. While our analysis suggests that the use of
dynamical hadronization techniques only yields mild
quantitative corrections in low-energy model studies, its
use is indispensable from both a qualitative and a quanti-
tative point of view for a unified description of the
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dynamics of QCD on all scales. Our conclusions are given
in Sec. V. Some technical details as well as a brief
discussion about the effect of dynamical hadronization
on low-energy models are discussed in the appendixes.

II. THE EFFECTIVE ACTION

Our aim is to describe two-flavor QCD in d ¼ 4
Euclidean dimensions at vanishing temperature and density
in a vertex expansion. The starting point is the microscopic
gauge-fixed QCD action. Thus, we include the quark-
gluon, three- and four-gluon vertices as well as the ghost-
gluon vertex and the corresponding momentum-dependent
propagators. Four-quark interactions are dynamically gen-
erated at lower scales and we therefore take the scalar-
pseudoscalar channel into account in our truncation. This is
by far the dominant four-quark channel, as it exhibits quark
condensation; see [3].
On even lower energy scales, bound state degrees of

freedom appear and eventually become dynamical. To
properly take this into account, we introduce a scale-
dependent effective potential Vk which includes arbitrary
orders of mesonic self-interactions. Since the dynamics in
this sector is dominated by the lightest mesons, we restrict
our analysis to pions and the sigma-meson and their
corresponding momentum-dependent propagators. We
therefore assume a strong axial anomaly; i.e. Uð1ÞA is
maximally broken. As a consequence, the meson sector
in the chiral limit exhibits an Oð4Þ flavor symmetry. Note
that this is also reflected in the four-quark interaction:
the scalar-pseudoscalar channel ∼λq;k is invariant under
SUð2ÞV × SUð2ÞA but violates Uð1ÞA symmetry; see (1).
Explicit chiral symmetry breaking is included via a source
term −cσ. It is directly related to a finite current quark mass
and, as a consequence, nonzero pion masses. This implies
that we have a chiral crossover transition rather than a
second order phase transition. The meson sector is coupled
to the quark sector by a field-dependent Yukawa coupling
hkðϕ2Þ. That way, arbitrarily high orders of quark-antiquark
multimeson correlators are included [27]. We elaborate on
the physics picture in Sec. IV.
The key mechanism to consistently describe the dynami-

cal generation of bound state degrees of freedom in this
work is dynamical hadronization, and is discussed in
Sec. III A. In summary, this yields the following scale-
dependent effective action,

Γk ¼
Z
x

�
1

4
Fa
μνFa

μν þ Zc;kc̄a∂μDab
μ cb þ 1

2ξ
ð∂μAa

μÞ2

þ Zq;kq̄ðγμDμÞq − λq;k½ðq̄T0qÞ2 − ðq̄γ5 ~TqÞ2�

þ hkðϕ2Þ½q̄ðiγ5 ~T ~πþT0σÞq� þ 1

2
Zϕ;kð∂μϕÞ2

þ VkðρÞ − cσ

�
þ ΔΓglue; ð1Þ

with the Oð4Þ meson field ϕ ¼ ðσ; ~πÞ and ρ ¼ ϕ2=2. Dμ ¼
∂μ − iZ1=2

A;k gkA
a
μta is the Dirac operator, with the strong

coupling gk ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4παs;k

p
and the gluonic wave-function

renormalization ZA;k. With this definition the covariant
derivative Dμ is renormalization group invariant. The last
term in the first line, ΔΓglue, stands for the nontrivial ghost-
gluon, three-gluon and four-gluon vertex corrections; for
further details see Sec. III C and in particular Eq. (70). The
full momentum dependence of the pure gauge sector is
taken into account in the gluon and ghost dressing
functions ZA;k and Zc;k. This is crucial for the correct IR
behavior of the gauge sector.
Due to asymptotic freedom the effective action at the

initial cutoff scale Λ relates to the classical (gauge-fixed)
QCD action,

Γk→Λ ≃
Z
x

�
1

4
Fa
μνFa

μν þ q̄ðγμDμ þmUV
q Þq

þ c̄a∂μDab
μ cb þ 1

2ξ
ð∂μAa

μÞ2
�
: ð2Þ

The quark massmUV
q at the UV scale Λ is directly related to

the coupling c in Eq. (1). The other couplings appearing in
our ansatz (1) for the effective action are generated
dynamically in the RG flow.
In this work, we use Hermitian gamma matrices so that

fγμ; γνg ¼ 2δμν1: ð3Þ

The commutator for the SUðNcÞ generators reads ½ta; tb� ¼
ifabctc and, hence, the trace is positive, Trtatb ¼ 1

2
δab. ~T

are the SUðNfÞ generators and T0 ¼ 1ffiffiffiffiffiffi
2Nf

p 1Nf×Nf
. For the

field strength tensor we use the relation

Fμν ¼
i

Z1=2
A;k gk

½Dμ; Dν�

¼ Z1=2
A;k t

að∂μAa
ν − ∂νAa

μ þ Z1=2
A;k gkf

abcAb
μAc

νÞ: ð4Þ

For more details on the gauge part of our truncation see
Sec. III C. All masses, wave-function renormalizations and
couplings are scale dependent. The scalar potential and the
Yukawa coupling are expanded about a scale-independent
point κ, ∂tκ ¼ 0. As shown in [27] this yields a rapid
convergence of the expansion

VkðρÞ ¼
XNV

n¼1

vn;k
n!

ðρ − κÞn;

hkðρÞ ¼
XNh

n¼0

hn;k
n!

ðρ − κÞn: ð5Þ

Note that the quark and meson mass functions (two-point
functions at vanishing momentum) depend on the meson
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fields. The masses are given by the mass functions
evaluated at the physical minimum ρ0;k ¼ σ20=2 of
VkðρÞ − cσ,

m2
q;k ¼

1

2
h2kðρ0;kÞρ0;k;

m2
π;k ¼ V 0ðρ0;kÞ;

m2
σ;k ¼ V 0ðρ0;kÞ þ 2ρ0;kV 00ðρ0;kÞ; ð6Þ

wheremq;k is the constituent quark mass. The current quark
mass mUV

q is related to the symmetry breaking source c via
the mass function at the ultraviolet scale,

mUV
q ¼ hΛ

2v1;Λ
c; ð7Þ

while c does not occur explicitly in the flow equation as it is
the coefficient of a one-point function. This entails that the
flows of the effective action in the chiral limit and that in
QCD with nonvanishing current quark masses agree; see
also [27]. The difference solely relates to the solution of the
equation of motion for the σ-field,

δΓk¼0

δσ

����
σ¼σEoM

¼ 0: ð8Þ

If expanding the flow in powers of the mesonic fields as
done in the present work, the expansion point has to be
close to σEoM, such that it is within the radius of con-
vergence of the expansion.

III. QUANTUM FLUCTUATIONS

Quantum fluctuations are computed with the functional
renormalization group. For QCD related reviews and
corresponding low-energy models, we refer the reader to
Refs. [5–14]. A consistent description of the dynamical
transition from quark-gluon degrees of freedom to hadronic
degrees of freedom is achieved by the dynamical hadro-
nization technique. Loosely speaking, it is a way of storing
four-quark interaction channels, which are resonant at the
chiral phase transition, in mesonic degrees of freedom and
therefore allows for a unified description of the different
degrees of freedom governing the dynamics at different
momentum scales.

A. Functional RG and dynamical hadronization

The starting point of the functional renormalization
group is the scale-dependent effective action ΓΛ at a
UV-cutoff scale Λ. In the case of QCD, Λ is a large,
perturbative energy scale and correspondingly ΓΛ is the
microscopic QCD action with the strong coupling constant
and the current quark masses as the only free parameters
of the theory. From there, quantum fluctuations are

successively included by integrating out momentum shells
down to the RG scale k. This yields the scale-dependent
effective action Γk, which includes all fluctuations from
momentum modes with momenta larger than k. By low-
ering kwe resolve the macroscopic properties of the system
and eventually arrive at the full quantum effective action
Γ ¼ Γk¼0. The RG evolution of the scale-dependent effec-
tive action is given by the Wetterich equation [28], which in
the case of QCD with Φ ¼ ðA; q; q̄; c; c̄;ϕÞ reads

∂tΓk½Φ� ¼
1

2
TrðGAA;k½Φ�∂tRA

k Þ − TrðGcc̄;k½Φ�∂tRc
kÞ

− TrðGqq̄;k½Φ�∂tR
q
kÞ þ

1

2
TrðGϕϕ;k½Φ�∂tR

ϕ
k Þ:

ð9Þ

Here, the regulator functions RΦi
k ðpÞ can be understood as

momentum-dependent masses that introduce the suppres-
sion of infrared modes of the respective field Φi, and are
detailed in Appendix C. The derivative ∂t is the total
derivative with respect to the RG scale t ¼ lnðk=ΛÞ with
some reference scale Λ. The traces sum over discrete and
continuous indices of the fields, including momenta and
species of fields. The first line on the right-hand side of (9)
is the flow in the pure glue sector; the second line creates
the matter fluctuations. Gk½Φ� denote the scale and field-
dependent full propagators of the respective fields, e.g. for
the quarks:

Gqq̄;k½Φ� ¼
�

δ2Γk½Φ�
δqð−pÞδq̄ðpÞ þ Rq

k

�−1
: ð10Þ

In the following, we will not encounter mixed two-point
functions. Hence, it is sufficient to define these expressions
for the combinations quark-antiquark, meson-meson,
gluon-gluon (both transverse) and ghost-antighost. For
the rest of the manuscript, we drop the redundant second
field index for the two-point functions and the propagators.
In a slight abuse of notation we define the scalar parts of
the two-point functions of the quark, meson, gluon and
ghost as

Γð2Þ
q;kðpÞ≡ δ2Γk½Φ�

δqð−pÞδq̄ðpÞ ; Γð2Þ
ϕ;kðpÞ≡ δ2Γk½Φ�

δϕð−pÞδϕðpÞ ;

Γð2Þ
A;kðpÞ≡ δ2Γk½Φ�

δAð−pÞδAðpÞ ; Γð2Þ
c;kðpÞ≡ δ2Γk½Φ�

δcð−pÞδc̄ðpÞ :

ð11Þ

With this we define the corresponding wave-function
renormalizations and (scalar parts of the) propagators

ZΦi;kðpÞ ¼ ΔΓð2Þ
Φi;k

ðpÞ=ΔSð2ÞΦi
ðpÞjscalar part;

GΦi;kðpÞ ¼ ðZΦi;kðpÞΔSð2ÞΦi
þ RΦi

k ðpÞÞ−1jscalar part; ð12Þ
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with Φi ¼ q;ϕ; A or c. The scalar part is the coefficient of
the tensor structure of the expressions above. In (12) we

have ΔΓð2Þ
Φi;k

ðpÞ ¼ Γð2Þ
Φi;k

ðpÞ − Γð2Þ
Φi;k

ð0Þ for all fields except

for the gluon, where ΔΓð2Þ
A;kðpÞ ¼ Γð2Þ

A;kðpÞ. The same holds

true for ΔSð2ÞΦi
. At k ¼ 0 and the fields set to their vacuum

expectation value, GΦi;k¼0ðpÞ is the full propagator. The
above definitions are exemplified with the full gluon
propagator,

Gab
A;kðpÞ ¼

1

ZA;kðpÞp2 þ RA
k

Π⊥δab; ð13Þ

with the transversal projection operator Π⊥; see (C2). For
our calculations, we use four-dimensional Litim regulators
Rk [29]; for details see Appendix C.
In the infrared regime of QCD, the dynamical degrees of

freedom are hadrons, while quarks and gluons are confined
inside hadrons. This entails that a formulation in terms of
local composite fields with hadronic quantum numbers is
more efficient in this regime. Note that these composite
fields are directly related to hadronic observables at
their poles.
Let us illustrate this at the relevant example of the scalar-

pseudoscalar mesonic multiplet at a given cutoff scale k. At
a fixed large cutoff scale, where the mesonic potential
VkðρÞ is assumed to be Gaussian, we can resort to the
conventional Hubbard-Stratonovich bosonization: the local
part of the scalar-pseudoscalar channel of the four-quark
interaction with coupling λq;k [see the second line in (1)]
can be rewritten as a quark-meson term [see the third line
in (1)] on the equations of motion for ϕ, that is ϕEoM. This
leads to

λq;k ¼
h2k

2v1;k
; ϕj;EoM ¼ hk

v1;k
q̄τjq; ð14Þ

where v1 is the curvature mass of the mesonic field
and τ ¼ ðγ5 ~T; iT0Þ, j ∈ f1; 2; 3; 4g. Note that (14) is only
valid for Zϕ ≡ 0 and a Gaussian potential VkðρÞ ¼ v1ρ.
Moreover, miscounting of degrees of freedom may occur
from an inconsistent distribution of the original four-fermi
interaction strength to the Yukawa coupling and the four-
fermi coupling. The dynamical hadronization technique
used in the present work, and explained below, resolves
these potential problems.
One advantage of the bosonized formulation concerns

the direct access to spontaneous chiral symmetry breaking
via the order parameter potential VkðρÞ: spontaneous
symmetry breaking is signaled by v1 ¼ 0 at the symmetry
breaking scale kχ which relates to a resonant four-quark
interaction. It also facilitates the access to the symmetry-
broken infrared regime.
Let us now assume that we have performed the above

complete bosonization at some momentum scale k ≫ kχ .

There, the above conditions for the bosonization in (14) are
valid. Hence, we can remove the four-fermi term com-
pletely in favor of the mesonic Yukawa sector. However,
four-quark interactions are dynamically regenerated from
the RG flow via quark-gluon and quark-meson interactions;
see Fig. 1.
Indeed, these dynamically generated contributions domi-

nate due to the increase of the strong coupling αs;k for a
large momentum regime, leading to a quasifixed point
running of the Yukawa coupling; see Refs. [3,22,23] and
Sec. IV. Thus, even though λq;k was exactly replaced by
mϕ;k and hk at a scale k ≫ kχ , there is still a nonvanishing
RG flow of λq;k at lower scales. Note, however, that we
have explicitly checked that this is only a minor quanti-
tative effect as long as one considers low-energy effective
models; see Appendix A.
In summary, it is not possible to capture the full

dynamics of the system in the quark-gluon regime with
the conventional Hubbard-Stratonovich bosonization. As a
consequence, with the conventional bosonization, the scale
where composite fields take over the dynamics from
fundamental quarks and gluons is not an emergent scale
generated by the dynamics of QCD, but is fixed by hand by
the scale where the Hubbard-Stratonovich transformation is
performed.
In the present approach we employ dynamical hadroni-

zation instead of the conventional bosonization. It is a
formal tool that allows for a unified description of dynami-
cally changing degrees of freedom and consequently is not
plagued by the shortcomings of conventional bosonization
discussed above. It has been introduced in [22] and was
further developed in [7,23,24]. The construction works for
general potentials VkðρÞ (more precisely general Γk½Φ�),
and implements the idea of bosonizing multifermion
interactions at every scale k rather just at the initial scale.
Consequently, the resulting fields of this bosonization
procedure, i.e. the mesons, become scale dependent and
can be viewed as hybrid fields: while they act as conven-
tional mesons at low energies, they encode pure quark
dynamics at large energy scales.
Here we follow the dynamical hadronization setup put

forward in [7] and outline the derivation of the flow
equation in the presence of scale-dependent meson fields.
The starting point is the functional integral representation
of the scale-dependent effective action Γk with scale-
dependent meson fields. To this end, we define the
dynamical superfield Φ̂k ¼ ðφ̂; ϕ̂kÞ, where the microscopic
fields are combined in φ̂ ¼ ðÂμ; q̂; ˆ̄q; ĉ; ˆ̄cÞ and the scale-
dependent meson fields, in our case pions and the sigma

FIG. 1. Regeneration of four-quark interactions from the RG
flow.
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meson, are represented by the Oð4Þ field ϕ̂k ¼ ð~̂πk; σ̂kÞ.
The path integral representation of Γk reads

e−Γk½Φk� ¼
Z

Dφ̂ exp

�
−S½φ̂� − ΔSk½Φ̂k�

þ δðΓk þ ΔSkÞ
δΦk

ðΦ̂k − ΦkÞ þ ΔSk½Φk�
�
; ð15Þ

where we defined the expectation value of the fields
Φk ¼ hΦ̂ki and used

J ¼ δðΓk þ ΔSkÞ
δΦk

and ΔSk½Φk� ¼
1

2
ΦkRkΦk: ð16Þ

Note that the functional integral in (15) contains only the
fundamental fields φ̂ of QCD. Composite operators such
as the (scale-dependent) mesons are introduced via corre-
sponding source terms in the Schwinger functional; see [7].
To arrive at the evolution equation for Γk½Φk�, we take the

scale derivative ∂t ¼ k d
dk of Eq. (15). The RG evolution of

the scale-dependent composite meson fields is of the form

∂tϕ̂k ¼ _Akq̄τqþ _Bkϕ̂k: ð17Þ

The first part of this equations reflects the bound state
nature of the mesons. The second part corresponds to a
general rescaling of the fields. The coefficients _Ak and _Bk,
which we call hadronization functions, are specified below.
Note that the right-hand side of (17) only involves the quark
mean fields q ¼ hq̂i, q̄ ¼ h ˆ̄qi. An explicit solution to this
equation is given by

ϕ̂k ¼ CkeBkq̄τq; ð18Þ

with _Ak ¼ _CkeBk . This reflects the quark-antiquark nature
of the meson. Equation (17) leads to the following identity
for the flow of the hadronization field,

h∂tϕ̂ki ¼ _Akq̄τqþ _Bkϕk; ð19Þ

and furthermore h∂tϕ̂ki ¼ ∂tϕk. Taking (17) into account,
the scale derivative of (15) gives a modified version of the
flow equation (9). While the gauge and quark parts of the
equation remain unchanged, the mesonic part now reads

∂tjϕΓk½Φk� ¼
1

2
Tr½Gϕϕ;k½Φ� · ð∂tR

ϕ
k þ 2Rϕ

k
_BkÞ�

− Tr

�
δΓk½Φ�
δϕi

ð _Akq̄τiqþ _BkϕiÞ
	
: ð20Þ

The first line of (20) corresponds to the mesonic part of the
flow equation (9) with a shift in the scale derivative of the
regulator owing to the part of ∂tϕk which is proportional to

ϕk itself. Note that (20) remains valid for the more general
flow of the superfield [7]

∂tΦ̂i;k ¼ _Aij;k · Fj;k½Φk� þ _Bij;k½Φk�Φ̂j;k; ð21Þ

where F½Φk� is any functional of the mean superfield Φk.
We emphasize that the 1-loop nature of the flow equation is
not spoiled as long as ∂tΦ̂i;k is at most linear in the quantum
field Φ̂i;k. It can, in fact, be an arbitrary function of the
mean fields Φi;k without altering the properties of the
flow equation. The meson regulator has the form (see
Appendix C)

Rϕ
k ðp2Þ ¼ Zϕ;kp2rBðp2=k2Þ; ð22Þ

and its corresponding scale derivative can conveniently be
written as

∂tR
ϕ
k ðp2Þ ¼ ð∂tjZ − ηϕ;kÞRϕ

k ðp2Þ; ð23Þ

with the anomalous dimension of the scale-dependent
mesons,

ηϕ;k ¼ −
∂tZϕ;k

Zϕ;k
: ð24Þ

This choice of the regulator functions implies that the flow
equations of RG-invariant quantities only contain the
anomalous dimension which stems from the scale deriva-
tive of the regulator whereas the wave-function renormal-
izations drop out completely. With this, we can rewrite (20)
into

∂tjϕΓk½Φk� ¼
1

2
Tr½Gϕϕ;k½Φ� · ð∂tjZ − ðηϕ;k − 2 _BkÞÞRϕ

k �

− Tr

�
δΓk½Φ�
δϕi

ð _Akq̄τiqþ _BkϕiÞ
	
: ð25Þ

It is now obvious that the first line of the modified flow
equation above gives the original flow equations without
scale-dependent fields, but with a shifted meson anomalous
dimension:

ηϕ;k → ηϕ;k − 2 _Bk: ð26Þ

The other coefficient, _Bk, in (17) is at our disposal, and we
may use it to improve our truncation.
The second line of (20) induces additional contributions

in particular to the flows of the four-quark and the Yukawa
coupling, owing to the particular ansatz we made for ∂tϕk.
This allows us to specify the hadronization procedure: we
choose the coefficient _Ak such that the flow of the four-
quark interaction λq;k vanishes within our truncation,
∂tλq;k ¼ 0. This way, all information about the multiquark
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correlations are stored in the flow of the Yukawa coupling.
Thus, hk encodes the multiquark correlations in the quark-
gluon regime and the meson-constituent-quark correlations
in the hadronic regime, including a dynamical transition
between these different regimes.

B. Hadronized flow equations

In the following we specify the hadronization procedure
and give the resulting modified flow equations of the scale-
dependent parameters of the truncation (1). These mod-
ifications are given by explicitly evaluating the second line
of (20). Note that the explicit form of the modified flow
equations depends on the details of our projection proce-
dures; see also Appendix B.
In the following, we rescale all fields with their respec-

tive wave-function renormalization, Φ̄ ¼ ffiffiffiffiffiffiffiffiffi
ZΦ;k

p
Φ, and

introduce the RG-invariant parameters

ḡk ¼
gk

Zq;kZ
1=2
A;k

; λ̄q;k ¼
λq;k
Z2
q;k

; c̄k ¼
c

Zϕ;k
;

λ̄n;k ¼
λn;k
Zn
ϕ;k

; h̄n;k ¼
hn;k

Zq;kZ
ð2nþ1Þ=2
ϕ;k

; κ̄k ¼ Zϕ;kκ: ð27Þ

Note that the parameters defined in (27) do scale with the
infrared cutoff scale k, but are invariant under general RG
transformations (reparametrizations) of QCD. For example,
ḡk is nothing but the running strong coupling. The RG-
invariant dimensionless masses are defined accordingly as

m̄q;k ¼
mq;k

kZq;k
and m̄π=σ;k ¼

mπ=σ;k

kZ1=2
ϕ;k

: ð28Þ

Note that we rescale mesonic parameters with the wave-
function renormalization Zϕ;k of the scale-dependent mes-
ons ϕk. The constant source c as well as the expansion
point κ have only canonical running after rescaling, given
only by the running of Zϕ;k; see Eq. (B3). Consequently, we
also rescale the hadronization functions and, in addition,
define them to be dimensionless:

_̄Ak ¼ k2Z1=2
ϕ;kZ

−1
q;k

_Ak;
_̄Bk ¼ _Bk: ð29Þ

With this, we proceed now to the modified flow equations
of these RG-invariant quantities.
For the flow of the four-quark interaction λ̄q;k we find

∂tjϕλ̄q;k ¼ 2ηq;kλ̄q;k þ ∂tλ̄q;kjηϕ;k→~ηϕ;k−2 _̄Bk

þ
�
h̄kðρ̄Þ þ 2ρ̄h̄0kðρ̄Þ

4NfNc − 1

2NfNc þ 1

�
_̄Ak: ð30Þ

Here, ∂tλ̄q;k denotes the flow without dynamical
hadronization which is specified in Appendix B. As

already discussed above, this contribution is subject to a
shift in the meson anomalous dimension, indicated by

ηϕ;k → ηϕ;k − 2 _̄Bk.
Following the discussion in the previous section, we

choose _̄Ak such that the flow of λ̄q;k vanishes. This is
achieved by the following choice:

_̄Ak ¼ −
�
h̄kðρ̄Þ þ 2ρ̄h̄0kðρ̄Þ

4NfNc − 1

2NfNc þ 1

�
−1

× ∂tλ̄q;kjηϕ;k→ηϕ;k−2 _̄Bk
: ð31Þ

Together with the initial condition λ̄q;Λ ¼ 0, this yields

∂tjϕλ̄q;k ¼ 0: ð32Þ

The flow of the Yukawa coupling assumes the following
form:

∂tjϕh̄k ¼
�
ηq;k þ

1

2
ηϕ;k

�
h̄k þ ∂th̄kjηϕ;k→~ηϕ;k−2 _̄Bk

−
1

k2
ðp2 þ V̄ 0

kðρ̄ÞÞ _̄Ak − ðh̄k þ 2ρ̄h̄0kÞ _̄Bk; ð33Þ

where h̄k ¼ h̄kðρ̄Þ is implied and ∂th̄k is specified in
Appendix B. From Eq. (31), it is now clear that the flow
of the quark interaction and, therefore, all information
about the multiquark correlations within our truncation is
incorporated into the flow of the hadronized Yukawa
coupling.
It is left to specify the hadronization function _̄Bk, which

also enters (33). We see from Eq. (18) that it corresponds to
a phase factor of the hadronization field. It can be used to
improve the current approximation by absorbing a part of
the momentum dependence of the mesonic wave-function
renormalization and the Yukawa coupling. This will be
discussed elsewhere. Here, we use

_Bk ≡ 0; ð34Þ

for the sake of simplicity. We see that our hadronization
procedure enforces a vanishing four-quark interaction.
The effect of four-quark correlations is then stored in the
Yukawa coupling, which now serves a dual purpose: while
it captures the current-quark self-interactions in the quark-
gluon regime, it describes the meson-constituent-quark in
the hadronic regime.

C. Gauge sector

In this section, we discuss the gauge sector of the
truncation given in (1). Most importantly, this permits us
to distinguish the quark-gluon coupling from pure gluody-
namics. This directly signals the transition from the
perturbative quark-gluon regime at large momenta, where
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all couplings scale canonically, to the hadronic regime
where nonperturbative effects are dominant.
The couplings induced from three-point functions play a

dominant role in the description of interactions. Hence, we
solve the flow equations for all three-point functions in
QCD, the quark-gluon, three-gluon and ghost-gluon ver-
tices. In addition, the effects from the four-gluon vertex are
important [18,25,26]. Thus, we employ an ansatz which has
proven to be accurate in previous studies [25,26]. For the
computation presented here, we take the gluon and ghost
propagators from pure gauge theory as input [18,25,26] and
augment them by unquenching effects. In the perturbative
domain this procedure is accurate, as the error is order α2s;k.
At scales below the confinement transition the gluon is
gapped and therefore decouples from the dynamics.
Perturbation theory gives a direct relation between

the number of gluon legs m attached to the vertex ΓðnÞ

and the order in the strong coupling, ΓðnÞ ∼ ð4παs;kÞm=2.
Nevertheless, the RG running is different, although purely
induced by the external legs attached. Their wave-function
renormalizations cancel exactly those from the propagators;
see (38) below. As a result of this truncation, the flow
equations for couplings depend on the anomalous dimen-
sions only.
In this analysis we restrict ourselves to classical tensor

structures of the gauge action S½Φ�. Omitting color and
Lorentz indices for clarity, we parametrize the quark-gluon,
three- and four-gluon and the ghost-gluon vertices as

Γðq̄AqÞ
k ¼ Z

1
2

A;kZq;kgq̄Aq;kS
ð3Þ
q̄Aq;

ΓðA3Þ
k ¼ Z

3
2

A;kgA3;kS
ð3Þ
A3 ;

ΓðA4Þ
k ¼ Z2

A;kg
2
A4;kS

ð4Þ
A4 ;

Γðc̄AcÞ
k ¼ Z

1
2

A;kZc;kgc̄Ac;kS
ð3Þ
c̄Ac: ð35Þ

The classical tensor structures SðnÞΦ1…Φn
are obtained from (2)

by

SðnÞΦ1…Φn
¼ δnΓΛ

δΦ1…δΦn

����
gk¼1

; ð36Þ

where we have omitted indices for clarity. In this work, we

use as input the gluon/ghost two-point functions Γð2Þ;YM
A=c;k ðpÞ

computed in [18,25,26] for pure Yang-Mills theory,

Γð2Þ;YM
A;k ¼ ZYM

A;k ðpÞp2Π⊥;

Γð2Þ;YM
c;k ¼ ZYM

c;k ðpÞp2; ð37Þ

where the identity matrix in adjoint color space is
implied. In Figs. 2 and 3 we show this input as a
function of the momentum p for various k. Note that
we show the regulated gluon propagator and ghost

dressing function with optimized regulators RA=c
k ¼

ðZYM
A=c;kðkÞk2 − ZYM

A=c;kðpÞp2Þθðk2 − p2Þ.
We want to emphasize that a particular strength of the

approach presented here is that it is independent of the
specific form of the input in the sense that Yang-Mills
propagators from any given method can be used. We
have explicitly checked that our results are not altered if
we use e.g. lattice input. In this case, the input dressing
functions are of the form ZYM

A=cðpÞ ¼ ZYM
A=c;k¼0ðpÞ and

the RG-scale dependence can be introduced by the iden-
tification p ¼ k.
In order to make full use of the nontrivial input we

use here, we expand the flow equation for the gluon
propagator in QCD about that in Yang-Mills theory. We
use the freedom in defining the cutoff function RA

k to
simplify the analysis. This is done by choosing the same
prefactor ZA;k for the gluon regulator as for the vertex
parametrizations in (35); see Eq. (C1). Note that the
gluon propagator enters in loop integrals with momenta
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k 0.5 GeV
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k 2 GeV

FIG. 2. The regulated gluon propagator from pure Yang-Mills
theory as a function of the momentum for various k. We use this
as an external input for our QCD computations.
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FIG. 3. The regulated ghost dressing function from pure Yang-
Mills theory as a function of the momentum for various k. We use
this as an external input for our QCD computations. The labeling
is the same as in Fig. 2.
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p2 ≲ k2. If we estimate the full gluon propagator (13)
with the simple expression (with the tensor structure
omitted for clarity)

GA;kðpÞ ≈
1

ZA;kp2 þ RA
k

¼ 1

ZA;k

1

p2ð1þ rBðp2=k2ÞÞ ð38Þ

[i.e. we only consider the fully p-dependent ZA;kðpÞ
evaluated at p ¼ k], the system of flow equations
considered is tremendously simplified. The error of
such a simple estimate relates to

p3

�
1

ZA;kðpÞp2 þ RA
k

−
1

ZA;kp2 þ RA
k

�
n

¼ p3þ2n

�
ZA;k − ZA;kðpÞ

ðZA;kðpÞp2 þ RA
k ÞðZA;kp2 þ RA

k Þ
�

n
; ð39Þ

where the factor p3 stems from the momentum inte-
gration ∼dpp3. The expression in (39) occurs with
powers n ≥ 1 in the difference of the full flow equations
and the approximated flows with (38), and is evaluated
for momenta p2 ≲ k2. For small momenta it tends
towards zero while its value for maximal momenta p2 ≈
k2 is proportional to the difference ZA;k − ZA;kðkÞ.
Consequently, we choose

ZA;k ¼ ZA;kðkÞ: ð40Þ

We have checked that the difference between full flows
and approximated flows is less than 5% for all k.
Within approximations (35) and (38), the gluon propa-

gator enters flow equations only via the anomalous dimen-
sion ηA;k with

ηA;k ¼ −
∂tZA;k

ZA;k
: ð41Þ

As a consequence of (40), ηA;k has two contributions from
the full dressing function ZA;kðpÞ,

∂tZA;k ¼ ∂tZA;kðpÞjp2¼k2 þ k
∂ZA;kðpÞ

∂p
����
p2¼k2

: ð42Þ

The first term stems from the genuine k-dependence of
the dressing function, while the second term results
from its momentum dependence. As is the case for any
flow of a coupling in a gapped theory (away from
potential fixed points), the first term of (42) vanishes in
the limit k → 0,

lim
k→0

∂tZA;kðpÞjp2¼k2 ¼ 0: ð43Þ

The second term of (42) carries the information about
the momentum dependence of the dressing function and

in particular of the (bare) mass gap mgap at small
momenta. The gluon propagator exhibits a gap at small
momentum scales and hence the dressing function of the
full quantum theory, ZA;k¼0ðpÞ, is of the form

lim
p2→0

ZA;k¼0ðpÞ ∝
m2

gap

p2
: ð44Þ

This implies for the second term in (42)

lim
k→0

k∂p ln ðZA;kðpÞÞjp2¼k2 ¼ −2: ð45Þ

Thus, the second term of (42) generates a nonvanishing
gluon anomalous dimension ηA;k, as defined in (41)
for k → 0.
We note that this difference between the pure k-

dependence and the momentum dependence of the gluon
dressing function is both highly nontrivial and indis-
pensable in any satisfactory truncation, even on a
qualitative level. The RG-scale dependence alone does
not suffice to capture the nonperturbative physics of YM
theory or QCD in the gauge sector, as it misses the
confining properties of the theory. Being of primary
importance, the gluon mass gap emerges from the
nontrivial momentum dependence of the propagator.
We remark that this is in contrast to the chiral properties
of the matter sector of QCD, where approximations
based on solely k-dependent parameters at least quali-
tatively capture all the relevant physics.
It is crucial that ZA;k does not appear explicitly, and

hence flows do only depend on ηA;k, the vertex couplings
g, masses and further couplings. Note that this is only
partially due to the approximation in (38). It mainly relates
to the parametrizations (35) of the vertices which store most
of the nontrivial information in the associated vertex
couplings

αi ¼
g2i
4π

; with i ¼ c̄Ac; A3; A4; q̄Aq: ð46Þ

This freedom directly relates to the reparametrization
invariance of the theory and hence to RG invariance.
The above discussion in particular applies to the anomalous
dimension itself. First, we note that the glue part ηglue;k of
the anomalous dimension ηA;k only depends on the vertex
couplings:

ηglue;k ¼ ηglue;kðαc̄Ac; αA3 ; αA4Þ: ð47Þ

In the semiperturbative regime these couplings agree due to
the (RG-)modified Slavnov-Taylor identities [7,30–32],
which themselves do not restrict the couplings in the
nonperturbative transition regime; see Ref. [3]. In turn,
in the nonperturbative regime the couplings differ already
due to their different scalings with the gluonic dressing
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ZA;k. For small cutoff scales k → 0, this dressing diverges
proportional to the QCD mass gap,

lim
k→0

ZA;k ∝ m̄2
gap ¼

m2
gap

k2
: ð48Þ

This is a slight abuse of notation since m̄2
gap in (48) is not

renormalized as the other dimensionless mass ratios m̄2.
Here it simply relates to the wave-function renormali-
zation ZA;k defined in (40). Hence, it is not RG invariant
and should not be confused with the physical mass gap
of QCD. It is related with the latter upon an appropriate
renormalization.
As a consequence, while we expect αc̄Ac ≈ αq̄Aq down to

small scales, the purely gluonic couplings should be
suppressed to compensate the higher powers of diverging
ZA;k present in the vertex dressing in (35). This also entails
that we may parametrize the right-hand side with powers
of 1=αi. For i ¼ c̄Ac; q̄Aq, for example, we expect 1=αi.
In accordance with this observation, we parametrize the
difference of the various vertex couplings in ηglue with the
gap parameter m̄gap defined in (48) and conclude for
the gluon anomalous dimension of QCD

ηA;k ¼ ηglue;kðαs; m̄gapÞ þ ΔηA;kðαq̄Aq; m̄qÞ; ð49Þ

where αs stands for either αc̄Ac or αA3. We shall check that
our results do not depend on this choice which justifies
the identification of the couplings in (49). Note that this
does not entail that the couplings agree but that they differ
only in the regime where the glue fluctuations decouple.
Moreover, in the present approximation αA4 is not com-
puted separately but identified with αA3 .
A simple reduction of (49) is given by

ηA;k ¼ ηYMA;k þ ΔηA;kðαq̄Aq; m̄qÞ: ð50Þ

This amounts to a gluon propagator, where the vacuum
polarization is simply added to the Yang-Mills propagator.
This approximation has been used in an earlier work,
[1,2,10], and subsequently in related Dyson-Schwinger
works; see e.g. [33–36].
The term ΔηA;k is the quark contribution to the gluon

anomalous dimension, and is computed with

ð51Þ

Here, p is the modulus of the external momentum and Π⊥
is the transversal projection operator defined in (C2). Note
that the dots represent full vertices and the lines stand for
full propagators. The crossed circle represents the regulator
insertion. For Nf ¼ 2 and Nc ¼ 3 we find

ΔηA;k ¼
1

24π2
g2q̄Aq;kð1þ m̄2

q;kÞ−4

× ½4 − ηq;k þ 4m̄2
q;k − ð1 − ηq;kÞm̄4

q;k�: ð52Þ

The approximation (51) works well as long as the
quark contribution has only a mild momentum dependence.
This is the case due to the gapping of the quarks via
spontaneous chiral symmetry breaking, and has been
checked explicitly. A necessary check for the validity of
this equation is that it reduces to the perturbative result
in the corresponding limit, i.e. ηq;k; m̄q;k → 0. Indeed,
(52) reduces to 1-loop perturbation theory in this case,
ΔηA;k ¼ g2q̄Aq;k=ð6π2Þ.
This leaves us with the task of determining

ηglue;kðαs; m̄2
gapÞ, the pure glue contribution to ηA;k. The

loop expression for ηglue only consists of Yang-Mills
diagrams. As it depends solely on the value of the coupling
αs we arrive at

ηglueðαs; m̄QCD
gap Þ ¼ ηYMA ðαs; m̄QCD

gap Þ; ð53Þ

i.e. the pure gauge part of the gluon anomalous dimension
of QCD is identical to the gluon anomalous dimension of
pure Yang-Mills theory except it is driven by the QCD
couplings. ηYMA can be determined in Yang-Mills theory or
in quenched QCD as a function of αs and m̄gap.
For using (53), a trackable form of ηYMA as well as m̄QCD

gap

is required. To this end, we first note that ηðαs;kÞ is a
multivalued function in both Yang-Mills theory/quenched
QCD and QCD; see Fig. 4. The two branches meet at
k ¼ kpeak (peak of the coupling) with

∂tαs;kjk¼kpeak
¼ 0: ð54Þ

We have a UV branch ηþðαs; m̄gapÞ for k > kpeak and an
IR branch η−ðαs; m̄gapÞ for k < kpeak. In Fig. 4 we show ηYMA
as a function of the coupling. Interestingly, ηþðαs;kÞ is well
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s,
k C

FIG. 4. The UV and IR branches of ηYMA , ηþ and η−, as a
function of the strong coupling.
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described by a quadratic fit in αs up to couplings close to
αs;kpeak . In turn, η−ðαs;kÞ is well described as a function of
the cutoff scale as indicated by (48). In the deep IR the
gluon dressing function is determined by the bare gap,
ZA;k→0 ∝ m2

gap=k2; see also the discussion around (45).
Hence we have

lim
k→0

ηA;k ¼ 2: ð55Þ

This is seen in Fig. 4. We also see in this figure that the
whole IR branch η− is almost constant. This implies that the
mass gap which suppresses αs;k develops quickly around
k ≈ kpeak and remains roughly constant for the rest of the
flow for k≲ kpeak. This allows us to parametrize the IR-
branch in terms of the RG scale,

η− ¼ 2 − c−k2; with c− ¼ 2 − ηYMA ðαpeakÞ
k2peak

; ð56Þ

where the mass gap m̄2
gap relates to ηYMA ðαpeakÞ. Note that the

quality of these simple fits entails that the transition from
the semiperturbative regime to the nonperturbative IR
regime happens quite rapidly and asymptotic fits in both
areas work very well. In summary we arrive at the final
representation of ηYMA with

ηYMA;k ðαs;kÞ ¼ ηþðαs;kÞθðαs;k − αs;peakÞ
þ η−ðkÞθðαs;peak − αs;kÞ: ð57Þ

Inserting (57) on the right-hand side of (53) gives us a
closed equation for ηA;k in (49). Its integration also provides
us with the QCD mass gap.
The same analysis as for ηA;k can be applied to the ghost

anomalous dimension ηc;k leading to a similar representa-
tion with the only difference that ηc;k¼0 ¼ 0. It turns out
that an even simpler global linear fit gives quantitatively
reliable results for matter correlations,

ηc;kðαs;kÞ ¼
αs;k
αηYMc;k

ðαÞ; ð58Þ

where αs;k ¼ αc̄Ac;k; see Fig. 4. This modification is
used in the equation for the ghost-gluon vertex. Note
that this overestimates ghost-gluon correlations in the
deep infrared where the glue sector has decoupled from
the matter sector. Hence this is of no relevance for the
physics of chiral symmetry breaking discussed in the
present work.
We are now in a position to finally determine the

ghost and gluon propagators at vanishing cutoff scale in
dynamical QCD. Again, we could use the α; m̄gap
representation for extracting the full dressing function
ZA;kðpÞ on the basis of the results. To that end, the

momentum-dependent flows as functions of α; m̄gap are
required:

ηYMA;k ðpÞ ¼ −
∂tZYM

A;k ðpÞ
ZYM
A;k ðpÞ

; ∂tΔηA;kðpÞ; ð59Þ

where ΔηA;kðpÞ stands for the momentum-dependent
flow of the vacuum polarization. The first term in
(59) again is well approximated in terms of a low
order polynomial in αs. This is expected because it
relates directly to the standard anomalous dimension of
the gluon. In Fig. 5 it is shown for momentum p ¼ k as
a function of αs;k. The definition of ηYMA;k ðpÞ implies that
only the first term in (42) contributes here. Thus, for
vanishing k (44) holds and hence limk→0η

YM
A;k ðkÞ ¼ 0 as

observed in Fig. 5.
An already very good estimate for the dressing

function is

ZA;k¼0ðpÞ≃ ZA;k¼pðpÞ ¼ ZA;k¼p; ð60Þ

as the flow of the propagators decays rapidly for
momenta larger than the cutoff scale, p≳ k. Moreover,
the momentum derivative of the dressing is only large in
the UV-IR transition regime. In Fig. 6, the inverse
dressing 1=ZA;0ðpÞ and its approximation 1=ZA;p are
shown. Clearly, there are only minor deviations in the
UV-IR transition regime. The same argument holds true
to an even better degree for the quark contribution, and
we have checked the smoothness of the flow ΔΓA;kðpÞ.
This leads to a very simple, but quantitative estimate for
the full dressing function with

Zglue
A=c;k¼0ðpÞ≃

ZYM
A=c;k¼0ðkαÞ
ZYM
A=c;kα

Zglue
A=c;k¼p; ð61Þ

with

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.3

0.2

0.1

0.0

0.1

0.2

s,k

Y
M

k

YM

YM

FIG. 5. The UVand IR branches of ηYMA;k ðkÞ, which is defined in
(59).

BRAUN, FISTER, PAWLOWSKI, and RENNECKE PHYSICAL REVIEW D 94, 034016 (2016)

034016-10



Zglue
A=c;k ¼ exp

�
−
Z

p

Λ

dk
k
ηglueA=c;k

�
; ð62Þ

where ZA=c;Λ ¼ 1, and kα ¼ kðαs;kÞ is the YM-cutoff
value that belongs to a given coupling αs.
In summary we conclude that, based on Fig. 6, an

already quantitative approximation to the fully unquenched
propagator is achieved by setting the ratio in (61) to unity.
This leads to

ZA=cðpÞ≃ exp

�
−
Z

p

Λ

dk
k
ηA=c;k

�
; ð63Þ

with ηA=c;k defined in (49). In the nonperturbative
regime diagrams involving an internal gluon are sup-
pressed with the generated gluon mass. Hence, albeit the
approximation by itself may get less quantitative in the
infrared, the error propagation in the computation
is small.
In summary this leaves us with relatively simple

analytic flow equations for the fully back-coupled
unquenching effects of glue and ghost propagators. A
full error analysis of the analytic approximations here
will be published elsewhere, and is very important for the
reliable application of the present procedure to finite
temperature and density.
In the following, we will outline the definition and

derivation of the gluonic vertices we use. First of all, we
only take into account the classical tensor structure of the
vertices. Moreover, throughout this work, we define the
running coupling at vanishing external momentum.
Together with our choice for the regulators, this has
the advantage that the flow equations are analytical
equations. In particular, loop-momentum integrations
can be performed analytically. This approximation is
semiquantitative as long as the dressing of the classical
tensor structures does not show a significant momentum
dependence, and the other tensor structures are
suppressed.

This approximation is motivated by results on purely
gluonic vertices (see Refs. [25,37–44]), which show
nontrivial momentum dependencies only in the momen-
tum region where the gluon sector already starts to
decouple from the system. In turn, the tensor structures
and momentum dependencies of the quark-gluon vertex
are important; see the Dyson Schwinger equations
studies [45–47] and the recent fully quantitative FRG
study [3]. To take this effectively into account, we
introduce an infrared-strength function for the strong
couplings, which is discussed at the end of this section
and in Appendix D.
To extract the flow of the quark-gluon coupling gq̄Aq, we

use the following projection procedure,

∂tgq̄Aq ¼
1

8NfðN2
c − 1Þ

× lim
p→0

Tr

�
γμta

∂tΓk

δqδAa
μδq̄

�����
Φ¼Φ0

; ð64Þ

which leads to the equation

∂tgq̄Aq;k ¼
1

2
ðηA;k þ 2ηq;kÞgq̄Aq;k

− vðdÞgq̄Aq;kh̄2kfN ðmÞ
2;1 ðm̄2

q;k; m̄
2
σ;k; ηq;k; ηϕ;kÞ

þ ðN2
f − 1ÞN ðmÞ

2;1 ðm̄2
q;k; m̄

2
π;k; ηq;k; ηϕ;kÞg

þ g3q̄Aq;k
12vðdÞ
Nc

N ðgÞ
2;1ðm̄2

q;k; ηq;k; ηA;kÞ

þ g2q̄Aq;kgA3;k3vðdÞNcN
ðgÞ
1;2ðm̄2

q;k; ηq;k; ηA;kÞ:
ð65Þ

The threshold functions appearing on the right-hand side
can be found in Appendix C. For the quark-gluon vertex,
no ghost diagrams are present. Furthermore, the mesonic
contributions dominate in the infrared. These contribu-
tions have the same sign as the gluonic ones and
therefore lead to an effective infrared enhancement of
the quark-gluon vertex. The three-gluon vertex gA3;k is
defined via

∂tgA3;k ¼
i

12NcðN2
c − 1Þ limp→0

∂2

∂p2

× Tr

�
δμνpσfabc

∂tΓk

δAðpÞaμδAð−pÞbνδAc
σð0Þ

�����
Φ¼Φ0

:

ð66Þ

Note that in the limit of vanishing external momentum
the flow is independent of the kinematic configuration in
the projection procedure. Thus, we find for the flow
equation for Nc ¼ 3 and Nf ¼ 2
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FIG. 6. Comparison of the momentum-dependent gluon dress-
ing function ZA;0ðpÞ and ZA;k¼p.
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∂tgA3;k ¼
3

2
ηA;kgA3;k

−
1

6π2
g3q̄Aq;k

�
1 −

ηq;k
4

� ð1þ 2m̄2
q;kÞ

ð1þ 2m̄2
q;kÞ4

þ 3

64π2
g3A3;kð11 − 2ηAÞ

þ 1

64π2
g3c̄Ac;k

�
1 −

ηC;k
8

�
; ð67Þ

with the ghost anomalous dimension ηC;k ¼
−ð∂tZC;kðk2ÞÞ=ZC;kðk2Þ. The second line in (67) corre-
sponds to the quark-triangle diagram and the third and
fourth lines are the gluon- and ghost-triangle diagrams,
respectively. Note that the third line also includes the
contribution from the diagram containing the four-gluon
vertex, which we approximate as explained below.
Within our approximation, the ghost-gluon vertex gc̄Ac;k

has only canonical running since the diagrams that con-
tribute to the flow of gc̄Ac;k are proportional to the external
momentum. Thus, at vanishing external momentum they
vanish and we are left with

∂tgc̄Ac;k ¼
�
1

2
ηA;k þ ηC;k

�
gc̄Ac;k: ð68Þ

Lastly, we comment on our approximation for the four-
gluon vertex gA4;k. For the sake of simplicity, we restrict
here to a semiperturbative ansatz for this vertex, which
ensures that gA4;k has the correct perturbative running. To
this end, we set

g2A4;k ¼ g2A3;k: ð69Þ

This approximation is valid for k≳ 1.5 GeV. For smaller
scales, nonperturbative effects potentially lead to a different
running.
This leads to an explicit expression for ΔΓglue in (1):

ΔΓglue ¼
Z
x

�
1

4
ðF2jgk¼gA3 ;k

− F2jgkÞ

þ c̄a∂μðDab
μ jgk¼gc̄Ac;k −Dab

μ jgkÞcb

þ Zq;kq̄γμðDμjgk¼gq̄Aq;k −DμjgkÞq
�
; ð70Þ

where we used the abbreviation F2 ¼ Fa
μνFa

μν. We see that
ΔΓglue corrects for distinctive coupling strengths for inter-
action terms. While perturbation theory ensures that all
couplings agree in the UV, nonperturbative effects lead to
differing behavior in the midmomentum and IR regime.
The result for the different running couplings discussed

here is shown in Fig. 7. While they all agree with each other
and follow the perturbative running at scales k≳ 3 GeV,

nonperturbative effects induce different runnings at lower
scales. In particular, the former statement is a highly
nontrivial consistency check of the approximation we make
here.
As discussed above, in the present study we focus on

the RG flows of the most relevant couplings from a
phenomenological point of view. In particular, we concen-
trate on the effects of fluctuations on the relevant and
marginal parameters of the classical gauge action in (1).
Consequently, nonclassical interactions which are poten-
tially relevant are not taken into account here. Furthermore,
we only consider vertices at vanishing external momenta,
although momentum dependencies may play an important
quantitative role. As an example, this becomes apparent in
the flow of the ghost-gluon vertex (68): while the diagrams
driving the flow of gc̄Ac;k vanish within our approximation,
they give finite contributions at nonvanishing momenta.
This was studied in more detail in the case of quenched
QCD [3]. Indeed, it turned out that both momentum
dependencies and the inclusion of nonclassical vertices
lead to large quantitative effects. It was shown there that
within an extended truncation the approach put forward in
the present work leads to excellent quantitative agreement
with lattice QCD studies.
We take the findings in [3] as a guideline for a phenom-

enological modification of the gauge couplings. Effectively
this provides additional infrared strength to the gauge
couplings in the nonperturbative regime with k≲ 2 GeV.
This additional strength is adjusted with the current quark
mass at vanishing momentum. This is reminiscent of similar
procedures within Dyson-Schwinger studies (see e.g.
[16,17]); the details are given in Appendix D.

IV. RESULTS

First we summarize the system of flow equations used in
the present work. The effective potential V̄kðρ̄Þ and the
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FIG. 7. The running of the different strong couplings in
comparison to the 1-loop running. Since perturbation theory
breaks down at the scale where the strong couplings start to
deviate from each other, we show the 1-loop running only down
to 1 GeV.
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Yukawa coupling h̄kðρ̄Þ are expanded about a fixed bare
field as shown in (5). These expansions are already fully
converged for NV ¼ 5 and Nh ¼ 3; for a detailed discus-
sion see [27]. The flow equations for the effective potential
and its expansion coefficients are given by (B1) and (B2).
For the Yukawa coupling they are given by (B6) and (B7) in
the case of scale-independent meson fields. The latter are
modified by dynamical hadronization which results in (33)
for the final flow of the Yukawa coupling. The flows of the
renormalized expansion point κ̄k and the explicit symmetry
breaking c̄k are purely canonical and given by (B3). In
order to accurately capture the physics in the IR, we choose
the expansion point such that it matches the minimum of
the renormalized effective potential at k ¼ 0, κ̄k¼0 ¼
ρ̄0;k¼0; cf. [27] for details. Owing to dynamical hadroniza-
tion, the flow of the four-quark interaction λ̄q;k for scale-
independent fields enters through the flow of the Yukawa
coupling and is given by (B8). Following our construction
discussed in Sec. III B, the flow of λ̄q;k vanishes in the
presence of the scale-dependent mesons. The RG flows of
the quark-gluon, the three-gluon and the ghost-gluon
couplings are given by (65), (67) and (68). Owing to
our construction of the vertices [see (35)], nontrivial
momentum dependencies of the propagators enter solely
through the corresponding anomalous dimensions ηΦ;k. For
the mesons and quarks they are given by (B11) and (B13).
The parametrization of the gluon and ghost anomalous
dimensions is discussed in Sec. III C. The gluon anomalous
dimension ηA;k is defined by (49) and contains the pure
gauge part and the vacuum polarization. The vacuum
polarization is given by (52). The pure gauge part is
constructed from the full gluon anomalous dimension of
pure Yang-Mills theory, which we use as an input. It is
computed from (53) and (57) with αs;k ¼ αc̄Ac;k. The ghost
anomalous dimension of QCD is computed from (58),
where we also augment the input from pure Yang-Mills
theory by correcting for the differences between the strong
couplings of YM and QCD, which, in turn, are computed
here. Together with the fact that we evaluate all flows at
vanishing external momentum, this leads to a set of
ordinary differential equations in the RG scale k which
can easily be solved.
The starting point of the present analysis is the micro-

scopic action of QCD. We therefore initiate the RG flow at
large scales, deep in the perturbative regime. The initial
values for the strong couplings are fixed by the value of the
strong coupling obtained from 1-loop perturbation theory.
Since the different strong couplings we use here [see
Eq. (46)] need to be identical in the perturbative regime,
they consequently have the same initial value αs. It is
shown in Fig. 7 that indeed the different strong couplings
agree to a high degree of accuracy with the 1-loop running
of the strong coupling for scales k > 3 GeV. This is a very
important benchmark for the consistency of the approx-
imations we use. Note that the value of αs implicitly

determines the absolute physical scale. Here we choose
αs;Λ ¼ 0.163, which relates to Λ ≈ 20 GeV. A quantitative
determination requires the determination of the RG con-
dition in relation to standard ones such as the MS scheme as
well as the extraction of αs;k¼0ðp ¼ ΛÞ, using Λ as the
renormalization point. This goes beyond the scope of the
present paper and we shall restrict ourselves to observables
that are ratios of scales; our absolute scales are determined
in terms of Λ ¼ 20 GeV. The other microscopic parameter
of QCD, the current quark mass, is in our case fixed by
fixing the symmetry breaking parameter c. We choose
c̄Λ ¼ 3.6 GeV3 which yields an infrared pion mass of
Mπ;0 ¼ 137 MeV; Mk ¼ km̄k is the renormalized dimen-
sionful mass.
Note that the masses defined in Eq. (6), and hence in

particular Mπ;0, are curvature masses, i.e. the Euclidean
two-point functions evaluated at vanishing momentum.
However, it is the pole masses, defined via the poles of
the propagators, that are measured in the experiments.
Moreover, curvature and pole masses do not necessarily
agree. In the present work, this difference is potentially of
importance for the accurate determination of the pion mass.
Now we use that curvature and pole masses are close for
weakly momentum-dependent wave-function renormaliza-
tions; for a detailed discussion see [48]. There it also has
been shown that the pion wave-function renormalization is
indeed weakly momentum dependent, and pion curvature
and pole mass deviate by less than 1%. It has been also
shown in [48] that the large deviation of pion pole and
curvature masses seen in previous works, [49], originates in
the local potential approximation (LPA). Moreover, a scale-
dependent, but momentum-independent, wave-function
renormalization already removes the discrepancies seen
in LPA, and the results agree well within the 1% level. In
summary, curvature and pole mass of the pion agree on the
1% level. The inclusion of momentum-independent run-
ning wave-function renormalizations, as in the present
work, guarantees quantitative reliability for this issue.
Since mesons are not present in the perturbative regime,

we only have to make sure that this sector is decoupled at
the initial scale. We therefore chooseM2

π;Λ¼M2
σ;Λ¼104Λ2.

Our results are independent of the choice of the initial
masses and the Yukawa coupling as long as the initial four-
fermi coupling related to it is far smaller than α2s . This is
demonstrated for the Yukawa coupling in Fig. 8, where we
see that, with initial values that differ by many orders of
magnitude, we always get the same solution in the IR.
Loosely speaking, the memory of the initial conditions is
lost in the RG flow towards the IR regime due to the
presence to a pseudofixed point on intermediate scales; see
also Ref. [23].
In the present work we have studied the unquenching

effects due to the full back-coupling of the matter dynamics
to the glue sector. In earlier work [2,10], we directly
identified ηglue;k ¼ ηYMA;k at the same cutoff scale k; see
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Eq. (50). This simply adds the vacuum polarization to the
Yang-Mills propagator without feedback. It is well adapted
for taking into account qualitatively even relatively large
matter contributions to the gluonic flow: the main effect
of the matter back-coupling is the modification of scales,
most importantly ΛQCD, which is already captured well in
(1-loop) perturbation theory, if the initial scale is not chosen
to be too large. This approximation has also been sub-
sequently used in related Dyson-Schwinger works (see e.g.
[33–36]), extending the analysis also to finite density. Here,
we improve these approximations by taking into account
the backreaction of matter fluctuations on the pure gauge
sector. Furthermore, the gluon vacuum polarization was
based on a 1-loop improved approximation in previous
FRG studies. Here, we compute the full vacuum polariza-
tion self-consistently.
In Fig. 9 we show the quenched and unquenched gluon

propagators. The quenched gluon propagator is a FRG
input from [18,26]. We clearly see that the screening effects

of dynamical quarks decrease the strength of the gluon
propagator. Figure 9 also shows the partially unquenched
results [denoted by “QCD (reduced)” in Fig. 9] for the
propagator. Here, partially unquenched refers to an
approximation, where the gluon propagator is a direct
sum of Yang-Mills propagator and vacuum polarization;
see Eq. (50). It shows deviations from the fully unquenched
computation. This is seemingly surprising as it is well
tested that partial unquenching works well even at finite
temperature; see e.g. [2,10,33–36]. However, we first
notice that the importance of quark fluctuations is
decreased at finite temperature due to the Matsubara
gapping of the quarks relative to the gluons. This improves
the reliability of the partial unquenching results. Moreover,
in these works the infrared strength is phenomenologically
adjusted with the constituent quark mass in the vacuum.
This effectively accounts for the difference between
unquenching and partial unquenching. Note that this
finding rather supports the stability and predictive power
of functional approaches.
On the other hand this also entails that the full

unquenching potentially is relevant in situations where
the vacuum balance between pure glue fluctuations and
quark fluctuations is changed due to an enhancement of the
quark fluctuations. Prominent cases are QCD with a large
number of flavors, and in particular QCD at finite density.
Indeed, (49) even shows the self-amplifying effect at large
quark fluctuations: the sign of the correction by ΔηA;k is
such that when it grows large, the ratio αs;QCD=αs;YM
decreases as does ηglue and the importance of the matter
fluctuations is further increased. A more detailed study of
this dynamics in the above-mentioned situations has been
deferred to a subsequent publication.
Using the same parameters as in Ref. [3], we compare the

quenched and unquenched quark propagators in Fig. 10. As
for the gluon propagator, Fig. 9, we see large unquenching
effects. Unquenching results in smaller quark masses (blue
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lines) and larger wave-function renormalizations Zq;k,
and, therefore, enhanced quark fluctuations, as expected.
Furthermore, we see that the generation of constituent
quark masses takes place at smaller scales in the
unquenched case. This can again be traced back to screen-
ing effects: the effects of gauge fluctuations are suppressed
in the presence of dynamical quarks and lead to weaker
gauge couplings. Since the strength of the gauge couplings
triggers chiral symmetry breaking, criticality of the four-
quark interactions is reached later in the flow for weaker
gauge couplings. Hence, chiral symmetry breaking takes
place at smaller scales in the presence of dynamical quarks.
The results for the different running gauge couplings

αq̄Aq, αc̄Ac and αA3 discussed in Sec. III C are shown in
Fig. 7. At scales k≳ 3 GeV they agree with the perturba-
tive running. This constitutes a nontrivial consistency of
the present computation. At lower scales, nonperturbative
effects induce different runnings.
The different strengths of the gauge couplings in the

nonperturbative regime are a direct consequence of the
mass gap that develops in the gluon dressing function ZA;k.
Owing to our construction for the vertices and the gluon
propagator, (35) and (38), all nontrivial information about
the gauge sector is encoded in the gauge couplings. In
particular, they genuinely involve powers of Z1=2

A;k that
correspond to the number of external gluon legs attached
to them. Hence, the more external gluonic legs the coupling
has, the more its strength is suppressed by the emerging
gluon mass gap. This explains why the three-gluon vertex
αA3 is much weaker in the nonperturbative regime than αq̄Aq
and αc̄Ac: it is suppressed by Z3=2

A;k, while the quark-gluon

and ghost-gluon couplings are only suppressed by Z1=2
A;k.

The gluon dressing function as we defined it here diverges
for k → 0, and, thus, all gauge couplings become zero in
this limit.
The fact that αc̄Ac is weaker than αq̄Aq can be attributed to

the neglected momentum dependencies in this sector. Since
all diagrams that drive the flow of the ghost-gluon vertex
are proportional to the external momentum, they vanish for
our approximation and αc̄Ac only runs canonically; see (68).
If these momentum dependencies were taken into account,
the ghost-gluon vertex would even be stronger than the
quark-gluon vertex, at least in the quenched case [3].
The present approach allows easy access to the relative

importance of quantum fluctuations of the respective fields:
we find that for the renormalized, dimensionless mass
being larger than one,

m̄2
Φ ¼ m2

Φ

ZΦk2
≥ 1; ð71Þ

all threshold functions that depend on the propagator of the
respective field mode are suppressed with powers of 1=m̄2

Φ.
This entails that the dynamics of the system is not sensitive

to fluctuations of this field. In turn, for m̄2
Φ ≤ 1 the field

mode is dynamical. Note that, of course, m̄2
Φ ¼ 1 is not a

strict boundary for the relevance of the dynamics. In
Figs. 11 and 12 we show m̄2

Φ for the matter fields. In
the shaded area the condition (71) applies, and the
respective matter fields do not contribute to the dynamics.
This already leads to the important observation that the
resonant mesonic fluctuations are only important for the
dynamics in a small momentum regime with momenta
p2 ≲ 800 MeV; see also Fig. 12. While the σ and quark
modes decouple rather quickly at about 300–400 MeV, the
~π as a pseudo-Goldstone mode decouples at its mass scale
of about 140 MeV.
In turn, in the ultraviolet regime, the mesonic modes

decouple very rapidly; see Fig. 12 for the size of the
propagator measured in units of the cutoff. At about
800 MeV this ratio is already 0.1. Above this scale the
mesonic modes are not important, and QCD quickly is
well described by quark-gluon dynamics without resonant
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interactions. This observation is complementary to the fact
that the initial condition of the Yukawa coupling does not
play a role for the physics at vanishing coupling; see Fig. 8.
For all initial cutoff scales Λ≳ 5 GeV, its initial value is
washed out rapidly, leading to a universal infrared regime
with the prediction of h̄ at k ¼ 0.
We add that the Yukawa coupling relates to the ratio

between constituent quark mass and the vacuum expect-
ation value of the field σ̄,

h̄ ¼ m̄q

σ̄0
: ð72Þ

Note that it cannot be tuned and is a prediction of the
theory. On the other hand, in low-energy model studies,
the (renormalized) quantities m̄q and σ̄0 corresponding to
physical observables are related to model parameters, and
have to be tuned such that m̄q and σ̄0 assume their physical
values.
The decoupling of meson degrees of freedom is also

reflected in the behavior of the meson wave-function
renormalization Zϕ;k shown in Fig. 13. Starting at scales
k > 500 MeV, Zϕ;k decreases very rapidly towards the UV.
There, it is about seven orders of magnitude smaller than in
the hadronic regime, where it is Oð1Þ. Furthermore, the

masses m2
π=σ;k ¼ Γð2Þ

σ=πðp2 ¼ 0Þ ¼ Zϕ;kM2
π=σ;k become scale

independent for k > 800 MeV as shown in Fig. 14. This
implies that the meson sector becomes trivial beyond this
scale. We see that the drastic decrease of the meson wave-
function renormalization triggers the large renormalized
meson masses M2

π=σ;k ¼ m2
π=σ;k=Zϕ;k shown in Fig. 11,

which are responsible for the suppression of the dynamics
of the meson sector at scales k > 800 MeV. In turn, this
implies that if we start with decoupled mesons in the UVas
in the present case, i.e. initial meson masses much larger
than the cutoff, the running of Zϕ;k drives the meson masses
to their small values in the IR. Without this peculiar
behavior of the meson wave-function renormalization,
the meson masses would never become smaller than the

cutoff scale and hence meson dynamics could not be
generated dynamically. The fact that our results are
independent of the exact value of the initial renormalized
meson mass Mϕ;Λ ≳ Λ implies that the running of Zϕ;k

depends on the initial value Mϕ;Λ. Indeed, if we choose an
initial meson mass that is one order of magnitude smaller
(larger), Zϕ;k falls off by two orders of magnitude less
(more). This is a direct consequence of the definition of the
renormalized mass [cf. (28) with Mk ¼ km̄k] and the
observation that the running of the meson masses is
exclusively driven by Zϕ;k in the UV (cf. Fig. 14). Note
that this behavior of Zϕ;k has consequences also for low-
energy models in the local potential approximation, since
for scales larger than about 800 MeV, the effect of running
wave-function renormalizations cannot be neglected.
Finally, we discuss further consequences of our findings

for low-energy effective models. To that end we note that
the gluon modes decouple at momenta below 500–
700 MeV. This is seen from the plot of the gluon dressing
functions, Fig. 9, as well as that of the gluonic couplings in
Fig. 7. This overlaps with the scale regime where the
mesonic degrees of freedom start to dominate the
dynamics.
Consequently, low-energy effective models aiming at

quantitative precision that do not take into account any glue
fluctuations should be initiated at a UV scale of about
500 MeV. In this regime, however, the quark-meson sector
of QCD carries already some fluctuation information in
nontrivial mesonic and quark-meson couplings. In other
words, the standard initial effective Lagrangian of these
models has to be amended by additional couplings. These
couplings, however, can be computed from QCD flows.
It has been shown in [48] that in these low-energy

effective models thermal fluctuations affect the physics at
surprisingly large scales; for thermodynamical conse-
quences, see Ref. [50]. This occurs even more so for
density fluctuations that lack the exponential suppression
present for thermal fluctuations. Thus, we conclude that the
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low UV cutoff scale for quantitatively reliable low-energy
effective models enforces the computation of temperature-
and density-dependent initial conditions. Indeed the same
argument holds true for other external parameters such as
the magnetic field.

V. CONCLUSIONS AND OUTLOOK

In the present work, we have set up a nonperturbative
FRG approach to QCD, concentrating on the effects of a
full unquenching of the glue sector. We also provided a
detailed study of the fluctuation physics in the transition
region from the quark-gluon regime to the hadronic regime.
This includes a discussion of the relative importance of
the fluctuations of quark, meson and glue fluctuations. A
detailed discussion is found in the previous section.
Here we simply summarize the main results. Firstly, we

have shown that the full back-coupling of the matter
fluctuations in the glue sector also plays a quantitative
role in the vacuum. In the present two-flavor case, it
accounts for about 10%–15% of fluctuation strength in
the strongly correlated regime at about 1 GeV. This hints
strongly at the importance of these effects in particular at
finite density, where the importance of quark fluctuations is
further increased and the effect is amplified.
Secondly, the still qualitative nature of the present

approximation necessitates the adjustment of the infrared
coupling strength, fixed with the constituent quark mass.
However, the inclusion of dynamical hadronization which
reenforces the four-fermion running, this phenomenological
tuning is much reduced. In future work we plan to utilize the
findings of the quantitative study [3] in quenched QCD for
improving our current approximation towards quantitative
precision, while still keeping its relative simplicity.
Finally, we have also discussed how low-energy effective

models emerge dynamically within the present setup due to
the decoupling of the glue sector: the present results and
their extensions can be used to systematically improve the
reliability of low-energy effective models by simply com-
puting the effective Lagrangian of these models at their
physical UV cutoff scale of about 500–700 MeV.
Moreover, the temperature and density dependence of
the model parameters at this UV scale can be computed
within the present setup.
Future work aims at a fully quantitative unquenched

study by also utilizing the results of [3], as well as studying
the dynamics at finite temperature and density.

ACKNOWLEDGMENTS

We are grateful to Lisa M. Haas for many discussions
and collaboration in an early stage of the project. We thank
Tina Herbst, Mario Mitter and Nils Strodthoff for discus-
sions and collaboration on related projects. J. B. acknowl-
edges support by HIC for FAIR within the LOEWE
program of the State of Hesse. Moreover, this work is

supported by the Helmholtz Alliance HA216/EMMI and
by ERC-AdG-290623. L. F. is supported by the European
Research Council under the Advanced Investigator Grant
No. ERC-AD-267258.

APPENDIX A: DYNAMICAL HADRONIZATION
AND LOW-ENERGY EFFECTIVE MODELS

In low-energy models of QCD, such as (Polyakov-loop
enhanced) Nambu-Jona-Lasinio models or quark-meson
models, gluons are considered to be integrated out and one
is left with effective four-quark interactions, either explic-
itly or in a bosonized formulation. The latter is particularly
convenient as the phase with spontaneous broken chiral
symmetry is easily accessible. There, the formulation of
the effective theory is usually based on the conventional
Hubbard-Stratonovich bosonization rather than dynamical
hadronization. Following our arguments given in Sec. III A,
the question arises whether dynamical hadronization leads
to quantitative and/or qualitative corrections in the context
of a low-energy effective model.
Since the matter part of our truncation (1) is that of a

quark-meson model, we will consider here the special case
of the quark-meson model defined by switching off all
gluon contributions in (1). To see the effect of dynamical
hadronization, we look at the ratios of IR observables
obtained with and without dynamical hadronization. To this
end, we choose ΛLE ¼ 1 GeV as a typical UV-cutoff scale
and use the same set of initial conditions in both cases. For
results see Table I.
We see that the effect of dynamical hadronization on

physical observables of a low-energy quark-meson model
(without gluons) is negligible, since it only gives correc-
tions of less than 1%. This does not change if we vary
the UV-cutoff within the range of typical values for these
types of models, i.e. ΛLE ∈ ½0.5; 1.5� GeV. Furthermore, it
implies in particular that the miscounting problem dis-
cussed in Sec. III A is less severe in low-energy models.
This observation can be understood by looking at the

flow of the four-quark interaction λq;k; see Eq. (B8). In the
case of the quark-meson model, only the meson box
diagrams ∼h4k contribute to the flow (see also Fig. 1),
while the gluon box diagrams are neglected. In the chirally
symmetric regime, the mesons are decoupled and the
corresponding contributions to the flow are therefore sup-
pressed. Furthermore, in the hadronic regime, the quarks
acquire a large constituent mass and, in addition, the pions

TABLE I. Effect of dynamical hadronization on a quark-meson
model: the quantities with/without a tilde are the results obtained
from a solution of the flow equations of the quark-meson model
with/without dynamical hadronization techniques.

fπ= ~fπ Mq= ~Mq Mπ= ~Mπ Mσ= ~Mσ

0.995 0.997 1.003 0.990
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become light. Therefore, the contribution from dynami-
cal hadronization to the flow of the Yukawa coupling
(33), ∼m̄2

π;k∂tλ̄q;k, is suppressed by these two effects in
the broken regime. Thus, following our present results,
in particular Fig. 11, the only regime where dynamical
hadronization can play a role in a low-energy model is
in the vicinity of the chiral symmetry breaking scale.
However, since this region is small compared to the
range of scales considered even in low-energy models,
only very small corrections related to the regeneration
of four-quark interactions are accumulated from the
RG flow.
Note, however, that we checked this statement only in

vacuum and it might not be true in medium, especially at
large chemical potential where quark fluctuations are
enhanced. This can potentially lead to larger, non-
negligible corrections from dynamical hadronization. We
also emphasize that we used the same initial conditions for
our comparison of the RG flow of the quark-meson model
with and without dynamical hadronization techniques.
However, usually the parameters of low-energy models
are fixed in the vacuum, independent of the model
truncation. Once the parameters are fixed, these models
are then used to compute, e.g., the phase diagram of QCD
at finite temperature and chemical potential. In this case, it
may still very well be that the use of dynamical hadroniza-
tion techniques yield significant corrections.

APPENDIX B: FLOW EQUATIONS
OF THE COUPLINGS

In this appendix, we briefly discuss the derivation of the
flow equations of the couplings before dynamical hadro-
nization techniques are applied.
We expand the effective potential and the Yukawa

coupling about a fixed expansion point κ; see (5). The
advantage of such an expansion is that it is numerically
stable, inexpensive and it converges rapidly [27]. This
allows us to take the full field-dependent effective potential
VkðρÞ and Yukawa coupling hkðρÞ into account in the
present analysis.
The flow equation of the effective potential including

the symmetry breaking source, VkðρÞ − cσ, is obtained by
evaluating (9) for constant meson fields, ϕðxÞ → ϕ and
vanishing gluon, quark and ghost fields. In this case, the
effective action reduces to Γk ¼ Ω−1ðVkðρÞ − cσÞ, where

Ω is the space-time volume. The flow of the effective
potential V̄kðρ̄Þ ¼ VkðρÞ is then given by

∂tjρV̄ðρ̄Þ ¼ 2k4vðdÞf½ðN2
f − 1ÞlB0 ðm̄2

π;k; ηϕ;kÞ
þ lB0 ðm̄2

σ;k; ηϕ;kÞ� − 4NfNclF1 ðm̄2
q;k; ηq;kÞg;

ðB1Þ

where vðdÞ ¼ ð2dþ1πd=2Γðd=2ÞÞ−1 and the threshold
functions lB1 and lF1 are given in Eq. (C4). The flows of
the couplings in (5) can be derived from the above equation
via

∂n
ρ̄∂tjρV̄ðρ̄Þjρ̄¼κ̄k

¼ ð∂t − nηϕ;kÞλ̄n;k − λ̄nþ1;kð∂t þ ηϕ;kÞκ̄k:
ðB2Þ

Rescaling the expansion point and the symmetry breaking
source in order to formulate RG-invariant flows introduces
a canonical running for these parameters:

∂tκ̄k ¼ −ηϕκ̄k;

∂tc̄ ¼ 1

2
ηϕc̄: ðB3Þ

The renormalized minimum of the effective potential
ρ̄0;k ¼ σ̄20;k=2, which determines the pion decay constant
at vanishing IR cutoff, σ̄0;k¼0 ¼ fπ , and serves as an order
parameter for the chiral phase transition, is obtained from

∂ ρ̄½V̄kðρ̄Þ − c̄kσ̄�jρ̄0;k ¼ 0: ðB4Þ

All physical observables such as fπ and the masses are
defined at vanishing cutoff scale k ¼ 0 and at the minimum
of the effective potential ρ̄ ¼ ρ̄0;k¼0.
We define the field-dependent Yukawa coupling via the

relationmq;kðρÞ ¼ σhkðρÞ at vanishing external momentum
and constant meson fields, leading to the following
projection:

∂thkðρÞ ¼ −
1

σ

i
4NcNf

lim
p→0

Tr

�
δ2∂tΓk

δqð−pÞδq̄ðpÞ
�����

ρðxÞ¼ρ

:

ðB5Þ

The resulting flow is given by

∂tjρ̄h̄ðρ̄Þ ¼
�
ηq;k þ

1

2
ηϕ;k

�
h̄kðρ̄Þ − vðdÞh̄kðρ̄Þ3½ðN2

f − 1ÞLðFBÞ
1;1 ðM̄2

q;k; m̄
2
π;k; ηq;k; ηϕ;kÞ − LðFBÞ

1;1 ðm̄2
q;k; m̄

2
σ;k; ηq;k; ηϕ;kÞ�

þ 8vðdÞh̄kðρ̄Þh̄0kðρ̄Þρ̄½h̄kðρ̄Þ þ 2ρ̄h̄0kðρ̄Þ� × LðFBÞ
1;1 ðm̄2

q;k; m̄
2
σ;k; ηq;k; ηϕ;kÞ

− 2vðdÞk2½ð3h̄0kðρ̄Þ þ 2ρ̄h̄00kðρ̄ÞÞlB1 ðm̄2
σ;k; ηϕ;kÞ þ 3h̄0kðρ̄ÞlB1 ðm̄2

π;k; ηϕ;kÞ�
− 8ð3þ ξÞC2ðNcÞvðdÞg2q̄Aq;kh̄kðρ̄Þ × LðFBÞ

1;1 ðm̄2
q;k; 0; ηq;k; ηA;kÞ: ðB6Þ
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ξ is the gauge-fixing parameter, which we set to zero since

we use the Landau gauge in this work. The function LðFBÞ
1;1

is given in Eq. (C5). The flows of the renormalized
couplings in (5) are

∂n
ρ̄∂tjρh̄ðρ̄Þjρ̄¼κ̄k

¼ ð∂t − nηϕ;kÞh̄n;k − h̄nþ1;kð∂t þ ηϕ;kÞκ̄k:
ðB7Þ

It was shown in Ref. [27] already that a ϕ4 expansion of the
effective potential, corresponding to NV ¼ 2 in (5), gives
quantitatively precise results for small temperatures and
densities. On the other hand, a leading order expansion of
the Yukawa coupling, i.e.Nh ¼ 0, is not sufficient since the
expansion has not yet converged. Here, we choose Nh ¼ 3
to ensure that we take the effect of the full field-dependent
Yukawa coupling into account. Note that we have to choose
NV ≥ Nh for numerical stability and therefore choose
NV ¼ 5.
For the flow of the four-quark coupling we choose the

projections in [12]. This yields

∂tλ̄q;k ¼ −g4q̄Aq;k

�
2N2

c − 3

Nc

�
vðdÞLðFBÞ

1;2 ðm̄2
q;k; ηq;k; ηA;kÞ

þ h̄kðκ̄kÞ4
�

2

Nc
þ 1

�
vðdÞ

× LðFBÞ
1;1;1ðm̄2

q;k; m̄
2
π;k; m̄

2
σ;k; ηq;k; ηϕ;kÞ: ðB8Þ

The threshold functions LðFBÞ
1;2 and LðFBÞ

1;1;1 are shown in
Eq. (C5). In Eq. (B8), we anticipate full dynamical
hadronization for the four-fermi interaction. This leads to
a vanishing four-quark coupling λ̄q;k ¼ 0 on the right-hand
side: the self-coupling diagram proportional to λ̄2q;k is
dropped. Furthermore, we neglect contributions from
higher order quark-meson vertices related to field deriva-
tives of h̄kðρ̄Þ, since they are subleading.
The anomalous dimensions are related to the flow of the

wave-function renormalizations, η ¼ −∂tZ=Z. The Z’s on
the other hand encode the nontrivial momentum depend-
ence of the propagators. Here, as already discussed above,
we approximate the full momentum, scale and field
dependence of the anomalous dimensions by only scale-
dependent ones in the leading order expansion in the fields
in analogy to (5):

Zϕ;kðp2;ρÞ¼Zϕ;kðκÞ and Zq;kðp2;ρÞ¼Zq;kðκÞ: ðB9Þ

For the meson anomalous dimension, we therefore use the
following projection:

ηϕ;k ¼ −
1

2Zϕ;k
lim
p→0

∂2

∂jpj2 Tr
�

δ2∂tΓk

δπið−pÞδπiðpÞ
�����

ρ¼κ

; ðB10Þ

where the choice of i ¼ 1, 2, 3 does not matter, owing to the
Oð3Þ symmetry of the pions. This yields

ηϕ;k ¼ 8vðdÞk−2κ̄kŪ00
kðκ̄kÞ2M2;2ðm̄2

π;k; m̄
2
σ;kÞ

þ 2NcNfvðdÞh̄kðκ̄kÞ2½M4ðm̄2
q;k; ηq;kÞ

þ 1

2
k−2κ̄kh̄kðκ̄kÞ2M2ðm̄2

q;k; ηq;kÞ�: ðB11Þ

The functionsM2;2 andM2=4 are defined in Eq. (C6). Note
that it is crucial that the functional derivatives in (B10) are
with respect to the pions, since sigma-derivatives would
contaminate the flow with contributions proportional
to σZ0

ϕ;kðρÞ.
For the anomalous dimension of quarks, we use the

projection

ηq;k ¼ −
1

8NfNcZq;k

× lim
p→0

∂2

∂jpj2 Tr
�
γμpμ

δ2∂tΓk

δqð−pÞδq̄ðpÞ
�����

ρ¼κ

; ðB12Þ

which yields

ηq ¼ 2vðdÞC2ðNcÞg2q̄Aq½ð3 − ξÞM1;2ðm̄2
q;k; 0; ηA;kÞ

− 3ð1 − ξÞ ~M1;1ðm̄2
q;k; 0; ηq;k; ηA;kÞ�

þ 1

2
vðdÞ½ðh̄kðκ̄kÞ þ 2κ̄kh̄0kðκ̄kÞÞ2

×M1;2ðm̄2
q;k; m̄

2
σ;k; ηϕ;kÞ

þ ðN2
f − 1Þh̄kðκ̄kÞ2M1;2ðm̄2

q;k; m̄
2
π;k; ηϕ;kÞ�: ðB13Þ

The corresponding threshold functions can be in Eq. (C6).
Some of the flow equations in this work were derived

with the aid of an extension of DoFun [51] which utilizes
Form [52] and FormLink [53]. It was developed and first
used by the authors of [3].

APPENDIX C: THRESHOLD FUNCTIONS

Here, we collect the threshold functions which enter the
flow equations and encode the regulator and momentum
dependence of the flows. Note that it is here that the
substitution ηϕ;k → ηϕ;k − 2 _̄Bk has to be made according
to (26).
Throughout this work, we use 4d regulator functions of

the form

Rϕ
k ðp2Þ ¼ Zϕ;kp2rBðp2=k2Þ;

Rq
kðp2Þ ¼ Zq;kγμpμrFðp2=k2Þ;

RA;μν
k ðp2Þ ¼ ZA;kp2rBðp2=k2ÞΠ⊥

μνðpÞ; ðC1Þ

with the transverse projector

FROM QUARKS AND GLUONS TO HADRONS: CHIRAL … PHYSICAL REVIEW D 94, 034016 (2016)

034016-19



Π⊥
μνðpÞ ¼ δμν −

pμpν

p2
: ðC2Þ

Note that in the approximation at hand the ghost regulator
does not enter. The optimized regulator shape functions
rB=FðxÞ are given by [29]

rBðxÞ ¼
�
1

x
− 1

�
Θð1 − xÞ;

rFðxÞ ¼
�

1ffiffiffi
x

p − 1

�
Θð1 − xÞ: ðC3Þ

The threshold functions for the effective potential are

lBn ðm̄2
B; ηBÞ ¼

2ðδn;0 þ nÞ
d

�
1 −

ηB
dþ 2

�
ð1þ m̄2

BÞ−ðnþ1Þ;

lFn ðm̄2
F; ηFÞ ¼

2ðδn;0 þ nÞ
d

�
1 −

ηF
dþ 1

�
ð1þ m̄2

FÞ−ðnþ1Þ;

ðC4Þ

and that for the Yukawa coupling and the four-quark
coupling are

LðFBÞ
1;1 ðm̄2

F; m̄
2
B; ηF; ηBÞ ¼

2

d
ð1þ m̄2

FÞ−1ð1þ m̄2
BÞ−1

��
1 −

ηF
dþ 1

�
ð1þ m̄2

FÞ−1 þ
�
1 −

ηB
dþ 2

�
ð1þ m̄2

BÞ−1
�
;

LðFBÞ
1;2 ðm̄2

F; ηF; ηBÞ ¼
2

d
ð1þ m̄2

FÞ−2
�
2

�
1 −

2ηB
dþ 2

�
−
�
1 −

ηF
dþ 1

�
þ 2ð1þ m̄2

FÞ−1
�
1 −

ηF
dþ 1

��
;

LðFBÞ
1;1;1ðm̄2

F; m̄
2
B1; m̄

2
B2; ηF; ηBÞ ¼

2

d
ð1þ m̄2

FÞ−2ð1þ m̄2
B1Þ−1ð1þ m̄2

B2Þ−1
�
½ð1þ m̄2

B1Þ−1 þ ð1þ m̄2
B2Þ−1�

×

�
1 −

ηB
dþ 2

�
þ ½2ð1þ m̄2

FÞ−1 − 1�
�
1 −

ηF
dþ 1

��
: ðC5Þ

For the anomalous dimensions, we have

M2ðm̄2
F; ηFÞ ¼ ð1þ m̄2

FÞ−4;
M2;2ðm̄2

B1; m̄
2
B2; ηBÞ ¼ ð1þ m̄2

B1Þ−2ð1þ m̄2
B2Þ−2

M1;2ðm̄2
F; m̄

2
B; ηF; ηBÞ ¼

�
1 −

ηB
dþ 1

�
ð1þ m̄2

FÞ−1ð1þ m̄2
BÞ−2

M4ðm̄2
F; ηFÞ ¼ ð1þ m̄2

FÞ−4 þ
1 − ηF
d − 2

ð1þ m̄2
FÞ−3 −

�
1

4
þ 1 − ηF
2d − 4

�
ð1þ m̄2

FÞ−2

~M1;1ðm̄2
F; ηF; ηBÞ ¼

2

d − 1
ð1þ m̄2

FÞ−1
�
1

2

�
2ηF
d

− 1

�
þ
�
1 −

ηB
dþ 1

�
þ
�
1 −

2ηF
d

�
ð1þ m̄2

FÞ−1
�
: ðC6Þ

Finally, for the flow of zq̄Aq we use

N ðmÞ
2;1 ðm̄2

F; m̄
2
B; ηF; ηBÞ ¼

1

d

�
1 −

ηF
dþ 1

�
ð1þ m̄2

BÞ−1f2m̄2
Fð1þ m̄2

FÞ−3 þ ð1þ m̄2
FÞ−2g

þ 1

d

�
1 −

ηB
dþ 2

�
ð1þ m̄2

BÞ−2fm̄2
Fð1þ m̄2

FÞ−2 þ ð1þ m̄2
FÞ−1g;

N ðgÞ
2;1ðm̄2

F; ηF; ηAÞ ¼
1

d

�
1 −

ηF
dþ 1

�
m̄2

Fð1þ m̄2
FÞ−3 þ

1

2d

�
1 −

ηA
dþ 2

�
m̄2

Fð1þ m̄2
FÞ−2;

N ðgÞ
1;2ðm̄2

F; ηF; ηAÞ ¼
1

dþ 1

�
1 −

ηF
dþ 2

�
f2m̄2

Fð1þ m̄2
FÞ−2 − ð1þ m̄2

FÞ−1g

þ 4

dþ 1

�
1 −

ηA
dþ 3

�
ð1þ m̄2

FÞ−1: ðC7Þ
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APPENDIX D: INFRARED PARAMETER

In our study, we introduced an “infrared-strength”
function ςa;bðkÞ which we define as

ςa;bðkÞ ¼ 1þ a
ðk=bÞδ

eðk=bÞδ − 1
; ðD1Þ

with b > 0 and δ > 1. Note that the specific form of ςa;bðkÞ
is irrelevant for our result as long as it has the properties
specified below. It defines a smooth step function centered
around b which interpolates smoothly between

ςa;bðk ≫ bÞ ¼ 1 and ςa;bðk ≪ bÞ ¼ 1þ a: ðD2Þ

Thus, for b ¼ Oð1 GeVÞ, ςa;bðkÞ gives an IR enhancement,
while it leaves the perturbative regime unaffected. We then
modify the gauge couplings as

gs;k → ςa;bðkÞgs;k; ðD3Þ

where gs;k ¼ gq̄Aq;k, gA3;k, gc̄Ac;k. We choose the same
parameters a and b for every gauge coupling.
Accordingly, the flow equations of the gauge couplings
then are

∂tgs;k → gs;k∂tςa;bðkÞ þ ςa;bðkÞ∂tgs;k: ðD4Þ

We have found that our results do not depend strongly on
the precise value of b as long as it is Oð1 GeVÞ. To be
specific, we choose b ¼ 1.3 GeV for δ ¼ 3 in the
following.
The parameter a is adjusted such that we get physical

constituent quark masses in the infrared. Here, a ¼ 0.29
yields Mq;0 ¼ 299.5 MeV, where Mq;k ¼ km̄q;k is the
renormalized quark mass.
Since the results in Ref. [3] demonstrate that the largest

source for systematic errors of our truncation is rooted in
the approximations that enter the flows of the gauge
couplings, a procedure as discussed above is well justified.
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