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Previously, a matrix model of the region near the transition temperature, in the “semi”quark gluon
plasma, was developed for the theory of SUð3Þ gluons without quarks. In this paper we develop a chiral
matrix model applicable to QCD by including dynamical quarks with 2þ 1 flavors. This requires adding a
nonet of scalar fields, with both parities, and coupling these to quarks through a Yukawa coupling, y.
Treating the scalar fields in mean field approximation, the effective Lagrangian is computed by integrating
out quarks to one loop order. As is standard, the potential for the scalar fields is chosen to be symmetric
under the flavor symmetry of SUð3ÞL × SUð3ÞR × Zð3ÞA, except for a term linear in the current quark
mass, mqk. In addition, at a nonzero temperature T it is necessary to add a new term, ∼mqkT2. The
parameters of the gluon part of the matrix model are identical to those for the pure glue theory without
quarks. The parameters in the chiral matrix model are fixed by the values, at zero temperature, of the pion
decay constant and the masses of the pions, kaons, η, and η0. The temperature for the chiral crossover at
Tχ ¼ 155 MeV is determined by adjusting the Yukawa coupling y. We find reasonable agreement with the
results of numerical simulations on the lattice for the pressure and related quantities. In the chiral limit,
besides the divergence in the chiral susceptibility there is also a milder divergence in the susceptibility
between the Polyakov loop and the chiral order parameter, with critical exponent β − 1. We compute
derivatives with respect to a quark chemical potential to determine the susceptibilities for baryon number,
the χ2n. Especially sensitive tests are provided by χ4 − χ2 and by χ6, which changes in sign about Tχ . The
behavior of the susceptibilities in the chiral matrix model strongly suggests that as the temperature
increases from Tχ , that the transition to deconfinement is significantly quicker than indicated by the
measurements of the (renormalized) Polyakov loop on the lattice.
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I. INTRODUCTION

Our understanding of the behavior of the collisions of
heavy nuclei at ultrarelativistic energies rests upon the
bedrock provided by numerical simulations of lattice QCD.
At present, for QCD with 2þ 1 light flavors, these
simulations provide us with results, near the continuum
limit, for the behavior of QCD in thermodynamic equilib-
rium [1–13]. Most notably, that there is a chiral crossover at
a temperature of Tχ ∼ 155� 9 MeV.
While this understanding is essential, there are many

quantities of experimental interest which are much more
difficult to obtain from numerical simulations of lattice
QCD. This includes all quantities which enter when QCD is
out of but near thermal equilibrium, such as transport
coefficients, the production of dileptons and photons, and
energy loss.
For this reason, it is most useful to have phenomeno-

logical models which would allow us to estimate such
quantities. Lattice simulations demonstrate that in

equilibrium, a noninteracting gas of hadrons works well
up to rather high temperatures, about ∼130 MeV [1,2,
6–13]. Similarly, resummations of perturbation theory, such
as using hard thermal loops (HTL’s) at next to-next-to-
leading order (NNLO), work down to about ∼300 or
∼400 MeV [14]. What is difficult to treat is the region
between ∼130 and ∼300–400 MeV, which has been
termed the “sQGP,” or strong quark-gluon plasma. This
name was suggested by T. D. Lee, because analysis of
heavy experiments appears to show that the ratio of the
shear viscosity to the entropy density, η=s, is very small.
For QCD, in perturbation theory η=s ∼ 1=g4, and so a small
value of η=s suggests that the QCD coupling constant, g,
is large.
There is another way of obtaining a small value of η=s

without assuming strong coupling [15,16]. At high temper-
ature, the quarks and gluons are deconfined, and their
density can be estimated perturbatively. At low temper-
atures, confinement implies that the density of particles
with color charge vanishes as T → 0. Numerical simula-
tions demonstrate that even with dynamical quarks, the
density of color charge, as measured by the expectation
value of the Polyakov loop, is rather small at Tχ , with
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hli ∼ 0.1. This presumes that the Polyakov loop is nor-
malized so that its expectation value approaches one at
infinite temperature, hli → 1 as T → ∞.
Because of the decrease in the density of color charge,

the region about Tχ can be termed not as a strong, but as a
“semi”-QGP. In this view, the dominant physics is assumed
to be the partial deconfinement of color charge, analogous
to partial ionization in Abelian plasmas [17].
This partial deconfinement can be modeled in a matrix

model of the semi-QGP. In such a matrix model, both the
shear viscosity and the entropy density decrease as the
density of color charges decreases. It is not obvious, but
calculation shows that the shear viscosity vanishes quicker
than the entropy density, so that the ratio η=s ∼ hli2 [17].
Thus in a matrix model, it is possible to obtain a small shear
viscosity not because of strong coupling, but because the
density of color charge is small.
A matrix model of the semi-QGP has been developed for

the pure gauge theory [18–22]. The fundamental variables
are the eigenvalues of the thermal Wilson line, and it is
based upon the relationship between deconfinement and the
spontaneous breaking of the global ZðNcÞ symmetry of a
SUðNcÞ gauge theory. This model is soluble in the limit for
a large number of colors, and exhibits a novel “critical first
order” phase transition [23]. With heavy quarks, it has been
used to compute the critical endpoint for deconfinement
[24] and properties of the Roberge-Weiss transition [25].
The production of dileptons and photons has also been
computed [26]; the suppression of photon production in the
semi-QGP may help to understand the experimentally
measured azimuthal anisotropy of photons. In a matrix
model, collisional energy loss behaves like the shear
viscosity, and is suppressed as the density of color charges
decreases [27].
In this paper we develop a chiral matrix model by

including light, dynamical quarks, as is relevant for QCD
with 2þ 1 light flavors. Our basic assumption is the
following. The global Zð3Þ symmetry of a pure SUð3Þ
gauge theory is broken by the presence of dynamical
quarks. That is, at nonzero temperature dynamical quark
loops break the global Zð3Þ symmetry, and generate a
nonzero expectation value for the Polyakov loop, hli ≠ 0

when T ≠ 0. As noted above, however, this expectation
value is remarkably small at the chiral transition, with
hli ∼ 0.1. Thus in QCD, the breaking of the global Zð3Þ
symmetry by dynamical quarks is surprisingly weak near
Tχ . This is a nontrivial result of the lattice: it is related to the
fact that in the pure gauge theory, the deconfining phase
transition occurs at Td ∼ 270 MeV, which is much higher
than Tχ ∼ 155 MeV. We do not presume that this holds for
arbitrary numbers of colors and flavors. In QCD, though, it
suggests that treating the global Zð3Þ symmetry breaking as
weak, and the matrix degrees of freedom as “relevant,” is a
reasonable approximation.

Other than that, while the technical details are involved,
the basic physics is simple. We start with a standard chiral
Lagrangian for the nonet of light pseudo-Goldstone mes-
ons: pions, kaons, η, and the η0. Because we wish to analyze
the chirally symmetric phase, we add a nonet of mesons
with positive parity, given by the sigma meson and its
associated partners [28–33]. The field for the mesons, Φ,
couples to itself through a Lagrangian which includes
terms which are invariant under the flavor symmetry
of SUð3ÞL × SUð3ÞR ×UAð1Þ.
For the meson field Φ we take a linear sigma model, as

then it is easy to treat the chirally symmetric phase (this is
possible, but more awkward, with a nonlinear sigma
model). We include a chirally symmetric Yukawa coupling
between Φ and the quarks, with a Yukawa coupling
constant y. The quarks are integrated out to one loop order,
while the meson fields are treated in the mean field
approximation, neglecting their fluctuations entirely.
Dropping mesonic fluctuations is clearly a drastic approxi-
mation, but should be sufficient for an initial study of the
matrix model.
To make the pions and kaons massive, we add a term

which is linear in the current quark mass, mqk. We
demonstrate that in order for the constituent mass of the
quarks to approach the current quark mass at high temper-
ature, it is also necessary to add an additional term ∼mqk:
this new term vanishes at zero temperature, but dominates
at high temperature. This new term has not arisen pre-
viously, because typically linear sigma models do not
include fluctuations of the quarks.
The meson potential includes chirally symmetric terms

for Φ at quadratic, cubic, and quartic order. For three
flavors, the cubic term represents the effect of the axial
anomaly. The parameters of the model are fixed by
comparing to the meson masses at zero temperature, for
the masses of the pion, kaon, η, and η0, and the pion decay
constant. This fitting is typical of models at zero temper-
ature. The quartic term includes a novel logarithmic term
from the fluctations of the quarks, but this does not
markedly change the parameters of the potential for Φ.
The chiral matrix model can be considered as a gener-

alization of Polyakov loop models, as first proposed by
Fukushima [34–40]; see also [41]. In a Polyakov loop
model the gauge fields are integrated out to obtain an
effective model of the Polyakov loop and hadrons. Because
of this, except for one special case (dilepton production at
leading order [26,38]), Polyakov loop models can only be
used to study processes in, and not near, equilibrium. In a
matrix model, though, as A0 is not integrated out it is
straightforward to compute processes near equilibrium by
analytic continuation. This includes many quantities of
experimental relevance, especially transport coefficients
such as the shear and bulk viscosities.
There is another difference between the two models. In a

Polyakov loop model, all thermodynamic functions are
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functions of the ratio T=Tc, where Tc is the critical
temperature. In a pure gauge theory, Tc is the temperature
for the deconfining phase transition, Td. With dynamical
quarks, Tc is that for the restoration of chiral symmetry, Tχ .
In contrast, in our chiral matrix model we take the gluon

potential to be identical to that of the pure gauge theory,
keeping the parameter Td ¼ 270 MeV. The Yukawa cou-
pling y is then tuned to obtain a chiral crossover temperature
Tχ ¼ 155 MeV. We stress that in our model, Td is not the
temperature for deconfinement in QCD: it is just a parameter
of the gluon part of the effective, nonperturbative potential
for A0. Since dynamical quarks explicitly break the global
Zð3Þ symmetry of the pure gauge theory, there is no precise
definition of a deconfining temperature in QCD. One
approximate measure is provided by susceptibilities involv-
ing the Polyakov loop, as considered in Sec. V E. These
indicate that deconfinement occurs close to Tχ , Fig. 9.
There are other models in which transport coefficients

can be computed. These include Polyakov quark meson
models improved by using the functional renormalization
group [42–46].
As a byproduct we make some observations about linear

sigma models. For the special limit of three degenerate but
massive flavors, in a general linear sigma model, we show
that at zero temperature the difference of the masses
squared of the singlet and octet states 0− states equals
the difference of the masses squared between the octet and
singlet states for the 0þ, Eq. (91). This is identical to the
same relation for two degenerate, massive flavors [28].
To fix the parameters of the chiral matrix model, we only

use properties of the 0− nonet, not the 0þ nonet. This is
fortunate, because the lightest 0þ nonet may be formed not
from a quark antiquark pair, but is a tetraquark, composed
of a diquark and diantiquark pair [33].
In this paper we do not consider a nonzero quark density,

μ. (We do consider derivatives of the pressure with respect
to μ, but these are then always evaluated at μ ¼ 0.) Because
at μ ¼ 0 lattice simulations indicate that Tχ ≪ Td, as one
moves out in the plane of temperature and chemical
potential, a quarkyonic phase in which Tχ < Td when
μ ≠ 0 [47] is very natural in a chiral matrix model.

II. SIMPLE EXAMPLE OF A CHIRAL
MATRIX MODEL

Before diving into all of the technicalities associated
with the chiral matrix model for 2þ 1 flavors, it is useful
to illustrate some general ideas in the context of a simple
toy model. We take a single flavor of a Dirac fermion,
interacting with a sigma field σ through the Lagrangian

L ¼ ψ̄ð∂ þ yσÞψ þm2
σ

2
σ2 þ λ

4
σ4: ð1Þ

To demonstrate our points we can even neglect the coupling
to the gauge field, although of course it is the coupling to

gluons which drives chiral symmetry breaking. We neglect
the kinetic term for the σ field, since that will not enter into
our analysis, which is entirely at the level of a mean field
approximation for σ.
Notice that we include both the Lagrangian for the

fermion ψ as well as for the scalar field σ. Usually in sigma
models, one assumes that the quarks are integrated out,
with their interactions subsumed into those of the mesons.
We cannot do that, because we need to include the effects of
the quarks on the matrix model, as we show in the next
section. Consequently, we also include a Yukawa coupling
y between the fermion ψ and σ.
This Lagrangian is invariant under a discrete chiral

symmetry of Zð2Þ,

ψ → γ5ψ ; σ → −σ: ð2Þ

We take a Euclidean metric, where each Dirac matrix γμ

satisfies ðγμÞ2 ¼ þ1, and γ5 ¼ γ0γ1γ2γ3, so γ25 ¼ 1.
Integrating out the fermion gives the effective potential

Veff
σ ¼ þm2

σ

2
σ2 þ λ

4
σ4 −

1

V
tr log ð∂ þ yσÞ; ð3Þ

where V is the volume of spacetime.
We thus need to compute the fermion determinant in the

background field of the σ field, which in mean field
approximation we take to be constant. For ease of notation,
we write

mf ¼ yσ: ð4Þ

Taking two derivatives with respect to m2
f,

−
∂2

ð∂m2
fÞ2

tr logð∂ þmfÞ ¼ þ2 tr
1

ðK2 þm2
fÞ2

; ð5Þ

where ∂μ ¼ −iKμ. Here the trace is the integral over the
momentum K in 4 − 2ϵ dimensions,

tr ¼ eM2ϵ
Z

d4−2ϵK
ð2πÞ4−2ϵ : ð6Þ

A renormalization mass scale eM is introduced so that the
trace has dimensions of mass4. The result is

tr
1

ðK2 þm2
fÞ2

¼ þ 1

16π2

�
1

ϵ
þ log

�eM2

m2
f

�
þ logð4πÞ − γ

�
;

ð7Þ

where γ ∼ 0.577 is the Euler-Mascheroni constant.
Integrating with respect to m2

f,
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−
1

V
tr logð∂ þmfÞ ¼ þ m4

f

16π2

�
1

ϵ
þ log

�eM2

m2
f

�

þ logð4πÞ − γ þ 3

2

�
: ð8Þ

Defining

logðM2Þ ¼ log eM2 þ logð4πÞ − γ þ 3

2
; ð9Þ

we find

−
1

V
tr logð∂ þmfÞ ¼ þ m4

f

16π2

�
1

ϵ
þ log

�
M2

m2
f

��
: ð10Þ

The integral in Eq. (7) is logarithmically divergent,
∼d4−2ϵK=ðK2 þm2

fÞ2. The divergence in the ultraviolet
produces the usual factor of 1=ϵ in 4 − 2ϵ dimensions.
Similarly, there is a logarithmimc infrared divergence, cut
off by the mass mf.
We add a counterterm ∼1=ϵ to the effective Lagrangian

so that the sum with the one loop fermion determinant is
finite. We thus obtain a renormalized effective Lagrangian,

Veff;ren
σ ¼ þm2

σ

2
σ2 þ 1

4

�
λþ y4

4π2
log

�
M2

y2σ2

��
σ4: ð11Þ

This resembles the standard effective Lagrangian, except
that it is no longer purely a polynomial in σ, but also has a
term ∼ − y4σ4 logðσ2Þ.
While this logarithmic term changes the effective

Lagrangian, it does not really cause any particular diffi-
culty. As usual we tune the scalar mass squared m2

σ to be
negative at zero temperature, so that σ develops a vacuum
expectation value hσi ≠ 0, and the fermion acquires a
constituent mass mf ¼ yhσi. Because the chiral symmetry
is discrete there are no (pseudo)Goldstone bosons, but for
the points we wish to make here this is irrelevant.
There is one feature which we must note. The sign

of the logarithmic term in the effective Lagrangian,
∼ − y4σ4 logðσ2Þ, is negative. This means that the quartic
term is positive for small values of σ, so to obtain chiral
symmetry breaking, we must tune m2

σ to be negative. That
is no problem, but it also implies that for large values of σ,
the potential is unbounded from below, as the logarithmic
term ∼ − y4σ4 logðσ2Þ inevitably wins over ∼þ λσ4.
It is useful to contrast this to the Gross-Neveu model

in 1þ 1 spacetime dimensions [48]. In this model there
is a potential term σ2, and from the one loop fermion
determinant, a term ∼þ σ2 logðσ2Þ. Because the sign of
logarithmic term is positive, the potential is unstable at
small σ, which implies that there is chiral symmetry
breaking for any value of the coupling constant.
Conversely, the total potential is stable at large values

of σ. This is opposite of what happens in our effective
model in 3þ 1 dimensions.
The reason for this difference is clear: the Gross-Neveu

model is asymptotically free [48], while our model is
infrared free. As such, we do not expect our theory to be
well behaved at arbitrarily high momenta, which as an
effective model is hardly surprising. It does imply that we
need to check that we do not obtain results in a regime
where there is instability, which we do. For the chiral
matrix model which is applicable to QCD, this is easy to
satisfy, because λ is rather large, y relatively small, and we
never probe large σ. We comment that a similar instability
at large σ is present in renormalization group optimized
perturbation theory [49].
The restoration of chiral symmetry at nonzero temper-

ature is straightforward. In the imaginary time formalism,

the four momenta Kμ ¼ ðk0; ~kÞ, k ¼ j~kj, where for a
fermion the energy k0 ¼ ð2nþ 1ÞπT for integral “n”.
The trace is

tr ¼ T
Xþ∞

n¼−∞

eM2ϵ
Z

d3−2ϵk
ð2πÞ3−2ϵ : ð12Þ

Computing the fermion determinant to one loop order with
mf ¼ yσ ≪ T,

−
1

V
tr logð∂ þmfÞ≈

1

12
y2T2σ2 þ y4

16π2
σ4
�
1

ϵ
þ log

�
M2

T2

��
þ � � � ð13Þ

From the term quadratic in σ, we see that there is a second
order chiral phase transition at a temperature

T2
χ ¼ −12

m2
σ

y2
; ð14Þ

which is standard.
What is also noteworthy are the subleading terms in

the fermion determinant. At zero temperature we saw that
there is a logarithmic term from an infrared divergence,
∼σ4 logðσ2Þ. Equation (13) shows that the logarithm of σ
does not occur at nonzero temperature when yσ ≪ T. This
is not surprising: for fermions, the energy k0 is always an
odd multiple of πT. Thus the energy itself cuts off the
infrared divergence, and the logðy2σ2Þ is replaced by
logðTÞ.
The disappearance of the logðσ2Þ at nonzero temper-

ature is important to include in our analysis. It implies
that if, as we show is convenient, we divide the integral
into two pieces, one from T ¼ 0, and the other from
T ≠ 0, that the −σ4 logðy2σ2Þ in the piece at T ¼ 0 must
cancel against a similar term, þσ4 logðy2σ2Þ, from the
piece at T ≠ 0 [36].
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We conclude our discussion of the toy model by
considering the terms which must be added to describe
the explicit breaking of chiral symmetry. The usual term is
just

Vh ¼ −hσ: ð15Þ

This is perfectly adequate at zero temperature. Consider
the limit at high temperature, though, where the effective
Lagrangian, including the fermion determinant, is

Veff;ren
σ ≈ −hσ þ 1

12
y2T2σ2 þ � � � ; T → ∞; ð16Þ

where the terms of higher order in σ do not matter. Then at
high temperature,

mf ¼ yhσi → 6h
yT2

; T → ∞; ð17Þ

and the effective fermion mass, mf, vanishes as T → ∞.
For the light quarks in QCD, though, we know that

while the constituent quark mass is much smaller at high
temperature than at T ¼ 0, as T → ∞ it does not vanish,
but should asymptote to the current quark mass. In terms
of the original Lagrangian in Eq. (1), we need to require
that

mf ¼ yhσi → m0; T → ∞; ð18Þ

where m0 is the analogy of the current quark mass in our
toy model.
The obvious guess is just to put the current quark mass in

the fermion Lagrangian in the first place, and so start with a
modified Lagrangian,

Lmod ¼ ψ̄ð∂ þm0 þ yσÞψ − hσ þm2
σ

2
σ2 þ λ

4
σ4: ð19Þ

However, at high temperature the effective Lagrangian just
becomes

Vmod;ren
σ ≈ −hσ þ 1

12
ðm0 þ yσÞ2T2 þ � � � : ð20Þ

With this modification we have hσi ¼ −m0=y, which
looks fine. However, it is clear that in Eq. (19), the total
effective fermion mass is mf ¼ m0 þ yhσi, so the total
effective fermion mass still vanishes like ∼1=T2

as T → ∞.
This problem has not arisen previously because typically

the quarks are integrated out to give an effective chiral
model. In a chiral matrix model, though, we need to keep
the quarks as fundamental degrees of freedom, and so we
need σ to approach a small but nonzero value, proportional
to the current quark mass.

In the symmetry breaking term of Eq. (16) we
assume that h ∼m0. One solution is then simply to
add a new term which only contributes at nonzero
temperature,

VT
m0

¼ −
y
6
m0T2σ: ð21Þ

Consequently, at high temperature the effective
Lagrangian is now

Veff;ren
σ ≈ −hσ −

y
6
m0T2σ þ 1

12
y2T2σ2 þ � � � ;

T → ∞: ð22Þ

At high temperature the first term ∼h can be neglected.
In this way, the effective fermion mass is just the
Yukawa coupling times the expectation value of σ,
and so by construction we obtain the desired behavior,

mf ¼ yhσi → m0; T → ∞: ð23Þ

That is, we add an additional term to the effective
Lagrangian to ensure that we obtain the requisite
breaking of the chiral symmetry at high temperature,
as we did by adding a term ∼hσ at zero temperature.
While admittedly inelegant, this is typically the way

effective models are constructed. In fact we take a term
which is analogous but not identical to Eq. (21), so that
the effective mass is close to the current quark mass
even at relatively low temperatures. We defer a dis-
cussion of the detailed form of the new symmetry
breaking term until Sec. IV E.
The toy model in this section displays all of the

essential physics in the chiral matrix model which we
develop in the following for QCD. There is one last point
which is worth emphasizing. In the chiral limit, where
m0 ¼ h ¼ 0, we would expect a chiral transition of
second order. The concern is whether a spurious first
order transition is induced by integrating over quark
fluctuations. For instance, if the fluctuations are over a
bosonic field, then the energy k0 is an even multiple of
πT, and there is a mode with zero energy. Integrating
over that mode generates a cubic term ∼ − ðσ2Þ3=2, which
drives the transition first order [50]. In our model,
however, we integrate over a fermion field, where the
energy k0 is an odd multiple of πT, and there is no mode
with zero energy. Thus the fermion determinant is well
behaved for small σ, Eq. (13), and the transition is of
second order. Depending upon the universality class,
there can be a first order transition from fluctuations
in the would-be critical fields [51], but at least the model
does not generate one when it should not.
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III. MATRIX MODEL WITH
MASSLESS QUARKS

A. Matrix model for SUð3Þ gluons without quarks
Following Refs. [19,20], we define the parameters of a

matrix model for a SUð3Þ theory without quarks. The basic
idea is to incorporate partial confinement in the semi-QGP
through a background gauge field for the timelike compo-
nent of the gauge field, A0. We take the simplest possible
ansatz, and neglect the formation of domains. Instead, we
assume that the background A0 field is constant in space.
By a global gauge rotation, we can assume that this field is
a diagonal matrix, and so take the background field to be

Abk
0 ¼ 2πT

3g
ðqλ3 þ rλ8Þ; ð24Þ

λ3 and λ8 are proportional to the analogous Gell-Mann
matrices

λ3 ¼

0
B@

1 0 0

0 −1 0

0 0 0

1
CA; λ8 ¼

0
B@

1 0 0

0 1 0

0 0 −2

1
CA: ð25Þ

From the background field we can compute the Wilson
line in the direction of imaginary time, τ:

LðA0Þ ¼ P exp

�
ig
Z

1=T

0

A0dτ

�
; ð26Þ

with P path ordering. Under a gauge transformation Ω,
L → Ω†LΩ, so the thermal Wilson line is gauge depen-
dent. The trace of powers of L are gauge invariant; more
generally, the gauge invariant quantities are the eigenvalues
of the Wilson line.
For three colors there are two independent eigenvalues,

related to the variables q and r. As only the exponentials
enter into the Wilson line, these are then periodic variables.
(Mathematically, this periodicity is related to the Weyl
chamber.) We note that at one loop order the eigenvalues of
the thermal Wilson line are directly given by q and r, but
beyond one loop order, there is a finite, gauge and field
dependent shift in these variables [22,52,53].
This periodicity can be understood from the Polyakov

loop, as the trace of the Wilson line in the background field
of Eq. (24):

lbk ¼
1

3
trLðAbk

0 Þ

¼ e2πir=3

3

�
e−2πir þ 2 cos

�
2π

3
q

��
: ð27Þ

In the perturbative vacuum, lbk ¼ 1.
When r ¼ 0, the Polyakov loop is real; the confined

vacuum in the pure gauge theory corresponds to q ¼ 1,

with lbk ¼ 0. We can always assume that the Polyakov
loop is real. Thus one goes from the perturbative vacuum at
high temperature, to the confining vacuum at low temper-
atures, by varying q along a path with r ¼ 0.
Rotations in Zð3Þ correspond to r ≠ 0: for example,

q ¼ 0 and r ¼ �1 gives lbk ¼ expð�2πi=3Þ, so these
represent Zð3Þ rotations of the perturbative vacuum. The
interface tension between different Zð3Þ can be computed
semiclassically, by varying r along a path with q ¼ 0 [52];
near Td in the semi-QGP, one moves from r ¼ 0 to r ¼ 1
along a path where both q and r vary [19,20].
Since the background field is a constant, diagonal

matrix, the gluon field strength tensor vanishes, and all
q are equivalent. This degeneracy is lifted at one loop
order. As typical of background field computations, one
takes

Aμ ¼ Abk
μ þ Aqu

μ ð28Þ

and expands to quadratic order in the quantum fluctua-
tions, Aqu

μ . This is best done in background field gauge
[22,52,53].
For three colors the result is

Vgl
pertðq; rÞ ¼

1

V
tr log ð−D2

bkÞ

¼ π2T4

�
−

8

45
þ 4

3
V4ðq; rÞ

�
: ð29Þ

The first term is minus the pressure of eight massless
gluons. The second term is the potential

V4ðq; rÞ ¼
���� 2q3

����2
�
1−

���� 2q3
����
�

2

þ
���� q3 þ r

����2
�
1−

���� q3 þ r

����
�

2

þ
���� q3 − r

����2
�
1−

���� q3 − r

����
�

2

: ð30Þ

In this and all further expressions, each absolute value is
defined modulo one:

jxj ≡ jxjmodulo 1: ð31Þ

This arises because in thermal sums over integers “n”,
Dbk

0 ¼ i2πTðnþ xÞ, and clearly any integral shift in “x”
can be compensated by one in “n”.
When r ¼ 0,

Vgl
pertðq;0Þ¼

8π2

45
T4

�
−1þ5q2

�
1−

10

9
qþ1

3
q2
��

: ð32Þ

Since Vgl
pertð1; 0Þ > Vgl

pertð0; 0Þ, the pressure in the confined
vacuum is less than that of the perturbative vacuum, and so
disfavored.
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To obtain an effective theory for the confined vacuum, by
hand we add a term to drive the transition to confinement:

Vgl
nonðq;rÞ¼4π2

3
T2T2

d

�
−
1

5
c1V2ðq;rÞ−c2V4ðq;rÞþ

2

15
c3

�
;

ð33Þ

where

V2ðq; rÞ ¼
���� 2q3

����
�
1−

���� 2q3
����
�
þ
���� q3 þ r

����
�
1−

���� q3 þ r

����
�

þ
���� q3 − r

����
�
1−

���� q3 − r

����
�
; ð34Þ

again, each absolute value is defined modulo one. When
r ¼ 0,

Vgl
nonðq; 0Þ ¼ 8π2

45
T2T2

d

�
−2c1q

�
1 −

q
2

�

− 5c2q2
�
1 −

10

9
qþ q2

3

�
þ c3

�
: ð35Þ

The nonperturbative terms are assumed to be propor-
tional to T2 because of the following. Numerical simu-
lations of lattice SUð3Þ gauge theories find that the leading
correction to the leading ∼T4 term in the pressure is ∼T2

[1]. This was first noticed by Meisinger, Miller, and Ogilvie
[54], and then by one of us [16]. This is a generic property
of pure gauge theories, and holds for SUðNcÞ gauge
theories from Nc ¼ 2 → 8 [55]. In 2þ 1 dimensions,
where the ideal gas term is ∼T3, again the leading
correction is ∼T2 when Nc ¼ 2 → 6 [56]. In both cases,
if one divides the pressure by the number of perturbative
gluons, ¼ N2

c − 1, one finds a universal curve, independent
of Nc, for T > 1.1Td (closer to Td, differences in the order
of the transition enter).
The results of these lattice simulations in pure SUðNcÞ

gauge theories strongly suggests that massless strings, with
a free energy ∼T2, persist in the deconfined phase. Strings
can be either closed or open. In the confined phase, both are
color singlets, with a free energy ∼N0

c. For open strings, this
implies that the color charge at one end of the string
matches the color charge at the other. In the deconfined
phase, however, near Td lattice simulations show that the
free energy of the deconfined strings, ∼T2, has a free
energy which is ∼N2

c − 1. This must then be due to open
strings where the color charges at each end do not match.
Returning to the matrix model for SUð3Þ, the three

parameters c1, c2, and c3 are reduced to one parameter by
imposing two conditions. The first is that the transition
occurs at Td. For the second, we approximate the small, but
nonzero [57], pressure in the confined phase by zero. These
two equations give

c1 ¼
50

27
ð1 − c2Þ; c3 ¼

47 − 20c2
27

; ð36Þ

Eqs. (77) and (78) of Ref. [20]. The single remaining
parameter, c2, is then adjusted to agree with the results from
lattice simulations for ðe − 3pÞ=T4. The best fit gives

c1 ¼ 0.315; c2 ¼ 0.830; c3 ¼ 1.13: ð37Þ

We remark that besides terms ∼T2, it is also natural to
add terms b ∼ T0, which represent a nonzero MIT
“bag” constant [20]. We do not include such a term
for the following reason. From lattice simulations, in
QCD the chiral crossover takes place at a temperature
Tχ ≪ Td. Consider the interaction measure, defined as
Δ ¼ ðe − 3pÞ=T4, where e is the energy density, and p the
pressure, each at a temperature T. Clearly, terms ∼T2T2

d
contribute to the interaction measure Δ ∼ T2

d=T
2, while a

bag constant gives Δ ∼ b=T4. In the pure gauge theory,
where only temperatures T ≥ Td enter, a better fit is found
with b ≠ 0 [20]. With dynamical quarks, however, as the
model is pushed to much lower temperatures ∼Tχ , we find
that at such relatively low temperatures, that a nonzero
bag constant uniformly is difficult to incorporate into the
model.
The parameters of the model are chosen to agree with the

pressure obtained from the lattice [20]. The results for the
’t Hooft loop agree well with the lattice, but there is sharp
disagreement for the Polyakov loop, as that in the matrix
model approaches unity much quicker than on the lattice.
Consequently, in Sec. VII we consider an alternate model:
while involving many more parameters, the value of the
Polaykov loop is in agreement with the lattice. We then use
this model to compute susceptibilities in QCD.

B. Adding massless quarks to the matrix model

The Lagrangian for massless quarks is

Lqk ¼ ψ̄ðDþ μγ0Þψ ; ð38Þ

with Dμ ¼ ∂μ − igAμ the covariant derivative in the fun-
damental representation, and μ is the quark chemical
potential. In the background field of Eq. (28), for a single
massless quark flavor, to one loop order quarks generate the
potential [58]

Vqk
pertðq; r; ~μÞ ¼ −

1

V
2tr log ðDþ μγ0Þ2

¼ π2T4

�
−

2

15
þ 4

3
Vqk
4 ðq; r; ~μÞ

�
; ð39Þ

where

~μ ¼ μ

2πT
ð40Þ
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and

Vqk
4 ðq;r; ~μÞ¼

����qþr
3

þ1

2
þ i ~μ

����2
�
1−

����qþr
3

þ1

2
þ i ~μ

����
�

2

þ
����−qþr

3
þ1

2
þ i ~μ

����2
�
1−

����−qþr
3

þ1

2
þ i ~μ

����
�

2

þ
����−2r3 þ1

2
þ i ~μ

����2
�
1−

����−2r3 þ1

2
þ i ~μ

����
�

2

: ð41Þ

At a temperature T, bosons satisfy periodic boundary
conditions in imaginary time, and fermions, antiperiodic;
the factor of 1=2 in the above is because the energy is 2nπT
for bosons, and ð2nþ 1ÞπT for fermions, with “n” an
integer.
There are subtleties which arise when the quark chemical

potential is nonzero. To understand these, first consider the
case in which the chemical potential is purely imaginary.
As noted before, a Zð3Þ transformation of the perturbative
vacuum is given by q ¼ 0 and r ¼ 1, with the Polyakov
loop l ¼ expð2πi=3Þ. Inspection of the quark potential in
Eq. (41) shows that when r ¼ 1, we can compensate this by
choosing i~μ ¼ −1=3. This is obvious for the first two
terms, where r=3þ i ~μ enters. For the last term, which
involves j − 2r=3þ 1=2þ i ~μj, this occurs because the
absolute value is defined modulo one, Eq. (31).
This is an illustration of the Roberge-Weiss phenomena

[25,59,60].While the theorywith dynamical quarks does not
respect a global Zð3Þ symmetry, it does exhibit a symmetry
under shifts by an imaginary chemical potential. As this is
related to Zð3Þ, in SUð3Þ the corresponding generator is
λ8 ¼ diagð1; 1;−2Þ, Eq. (25). For a SUðNÞ gauge theory,
the corresponding generator is that related to ZðNÞ trans-
formations, which is λN ¼ diagð1N−1;−ðN − 1ÞÞ.
Thus nonzero, real values of r naturally involve imagi-

nary μ. We bring up this point because it also helps
understand the converse, which is that for real values of
the chemical potential μ, the stationary point involves
values of r which are imaginary.
Remember that a chemical potential biases particles over

antiparticles. The loop, as the propagator of an infinitely
heavy test quark, tends to enter effective Lagrangians as
e−μ=Tl; the antiloop, as eμ=Tl� [15]. Thus when μ ≠ 0, the
expectation values of both the loop and the antiloop are
real, but unequal.
For this to be true in a matrix model, at any stationary

point where q ≠ 0, r must be imaginary,

r ¼ iR: ð42Þ

For this background field, from Eq. (27) the loop is

lbk ¼
e−2πR=3

3

�
e2πR þ 2 cos

�
2π

3
q

��
; ð43Þ

while the antiloop is given by

l�
bk ¼

e2πR=3

3

�
e−2πR þ 2 cos

�
2π

3
q

��
: ð44Þ

Hence imaginary r generates different values for the loop
and the antiloop.
In Sec. VI we shall need to use the fact that the stationary

point when μ ≠ 0 involves imaginary values of r ¼ iR. For
now we conclude this discussion by making one comment
about periodicity of the potential. In previous expressions
for the potential, the absolute value is defined modulo one,
Eq. (31). One then needs to understand how to extend this
definition when the argument is complex. The correct
prescription is to take the absolute value, modulo one,
only for the real part of the argument, leaving the
imaginary part unaffected [58]:

jxþ iyj ≡ jxjmodulo 1 þ iy; ð45Þ

As before, this is natural in considering the sum over
thermal energies which arises in the trace.
When r ¼ μ ¼ 0,

Vqk
pertðq; 0; 0Þ ¼ π2T4

�
−

7

60
þ 4

27
q2 −

8

243
q4
�
: ð46Þ

In the following, we make the simplest possible
assumption, which is that we only need to add the
perturbative potential for quarks in q and r. Doing so,
we find a very good fit to the pressure and other thermo-
dynamic quantities. That is, unlike the gluonic part of the
theory, at least from the pressure we see no evidence to
indicate that it is necessary to add a nonperturbative
potential in q from the quarks.
We note, however, that in Sec. VII, we consider alternate

models where different potentials are used. We show that
they lead to strong disagreements with either the pressure or
quark susceptibilities.

IV. CHIRAL MATRIX MODEL
FOR THREE FLAVORS

A. Philosophy of an effective model,
with and without quarks

For a SUðNcÞ gauge theory without quarks, the matrix
model of Refs. [19,20] is clearly applicable only at temper-
atures above the deconfining transition temperature. This is
because even for two colors, the pressure in the confined
phase is very small (for three colors, see Ref. [57]). This is
evident by considering large Nc, where the pressure of
deconfined gluons in the deconfined phase is ∼N2

c, while
that of confined glueballs in the confined phase is ∼N0

c.
This is not true with dynamical quarks. To make the

argument precise, assume that we have Nf flavors of
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massless quarks. If the chiral symmetry is spontaneously
broken at zero temperature, then the low temperature has a
pressure which is∼N2

f − 1 from the Goldstone bosons, plus
other contributions from confined hadrons. At high temper-
ature, deconfined quarks contribute ∼NfNc to the pressure,
while the gluons contribute ∼N2

c.
Thus for three colors and three flavors, it is not obvious

that the pressure is small at low temperatures, and becomes
large at high temperature. Nevertheless, numerical simu-
lations on the lattice find that for 2þ 1 flavors and three
colors, at a chiral crossover temperature of Tχ ∼ 155 MeV,
the pressure is rather small.
Similarly, consider the order parameter for deconfine-

ment in the SUðNcÞ gauge theory without quarks, which is
the expectation value of the Polyakov loop. This is a strict
order parameter because there is a global ZðNcÞ symmetry
which is restored in the confined phase, and spontaneously
broken in the deconfined phase. Dynamical quarks do not
respect this ZðNcÞ symmetry, and so the Polyakov loop is
no longer a strict order parameter. This is seen in lattice
QCD, where the expectation value of the Polyakov loop is
nonzero at all temperatures T > 0. Nevertheless, as for the
pressure, the expectation value of the Polyakov loop is
surprisingly small in QCD at Tχ , hli ∼ 0.1.
As with so much else, this is important input from lattice

QCD. There is no reason to believe that this remains true as
Nf and Nc change; in particular, as Nf increases for three
colors.
This is surely related to the fact that lattice QCD finds

that Tχ ¼ 155 MeV is much less than the deconfining
transition temperature in the SUð3Þ gauge theory without
quarks, Td ¼ 270 MeV. Thus adding dynamical quarks
inexorably requires us to push the matrix model to much
lower temperatures than in the pure glue theory.
Further, in our effective theory we do not presume to be

able to develop a model by which we can derive chiral
symmetry breaking from first principles. Rather, as
described at the beginning of the Introduction, Sec. I,
we merely wish to develop an effective theory which can be
used to extrapolate results from lattice QCD in equilibrium
to quantities near equilibrium.
To do so, unsurprisingly it is necessary to explicitly

introduce degrees of freedom to represent the spontaneous
breaking of chiral symmetry, through a field Φ. What is not
so obvious is that we find that it is also necessary to
introduce parameters for a potential for Φ, which we
describe shortly. In principle, we might ask that lattice
QCD determine these parameters directly, say at a temper-
ature near but below Tχ. For example, at a temperature
∼130 MeV, where the hadronic resonance gas first appears
to break down.
While possible, in practice determining such couplings

from lattice QCD is a rather daunting task. Instead, since
the hadronic resonance gas does appear to work at temper-
atures surprisingly close to Tχ , we require that our effective

chiral model describe the mass of the (pseudo)Goldstone
bosons in QCD all the way down to zero temperature.
While clearly a drastic assumption, it is a first step

towards a more complete effective theory. With these
caveats aside, we turn to the detailed construction of our
chiral matrix model.

B. Linear sigma model

One thing which we certainly do need to add with
dynamical quarks are effective degrees of freedom to model
the restoration of chiral symmetry.We do this by introducing
a scalar field Φ, and an associated linear sigma model [29].
To be definite, in this work we follow the conventions of
Ref. [30]; for related work, see Refs. [31–33].
We only treat the three lightest flavors of quarks

in QCD, up, down, and strange. In the chiral limit,
classically there is a global flavor symmetry of Gcl

f ¼
SUð3ÞL × SUð3ÞR ×Uð1ÞA, where the Uð1ÞA axial flavor
symmetry is broken quantum mechanically by the
axial anomaly to a discrete Zð3ÞA symmetry, Gqu

f ¼
SUð3ÞL × SUð3ÞR × Zð3ÞA.
For three flavors the Φ field is a complex nonet,

Φ ¼ ðσA þ iπAÞtA; trðtAtBÞ ¼ 1

2
δAB: ð47Þ

The flavor indices A ¼ 0; 1…8, where t0 ¼ 1=
ffiffiffi
6

p
, and

t1…t8 are the usual Gell-Mann matrices.
For particle nomenclature, we follow that of the Particle

Data Group [61]. The field Φ includes a nonet with spin-
parity JP ¼ 0−: π1…3 are pions, π4…7 are kaons, while π8

and π0 mix to form the observed η and η0 mesons. The nonet
with J0 ¼ 0þ includes the following particles. First, there is
an isotriplet, σ1…3, which could be the isotriplet a0ð980Þ.
Second, there are its associated strange mesons, σ4…7. This
state may be the K�

0; there are candidate states at both 800
and 1430 MeV [61]. Lastly, analogous to the η and the η0
there are isoscalar and iso-octet states, which are commonly
referred to as the f0 and the σ. Experimentally, the
candidates for these states are f0ð1500Þ and σð500Þ.
Under global flavor rotations,

ψL;R ≡ PL;Rψ ; ψL;R → e�iα=2UL;RψL;R;

Φ → e−iαURΦU
†
L; ð48Þ

where

PL;R ¼ 1� γ5
2

ð49Þ

are the chiral projectors, e�iα=2 represent axial Uð1ÞA
rotations, and UL and UR rotations for the chiral sym-
metries of SUð3ÞL and SUð3ÞR, respectively. Hence the Φ
field then transforms as 3̄ × 3 under SUð3ÞL × SUð3ÞR.
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Coupling quarks to Φ in a chirally invariant manner, the
quark Lagrangian becomes

Lqk
Φ ¼ ψ̄ðDþ μγ0 þ yðΦPL þ Φ†PRÞÞψ ; ð50Þ

where y is a Yukawa coupling between the quarks and
the Φ field. Note that by construction the theory is
invariant under both the SUð3ÞL × SUð3ÞR and Uð1ÞA
chiral symmetries.
To model chiral symmetry breaking we assume a

potential for Φ which will produce a constituent quark
mass in the low temperature phase. In the chiral limit, this
potential must respect the flavor symmetry, Gqu

f . Including
terms up to quartic order, the most general potential is

VΦ ¼ m2trðΦ†ΦÞ − cAðdetΦþ detΦ†Þ
þ λtrðΦþΦÞ2 þ λVðtrðΦþΦÞÞ2: ð51Þ

All terms are manifestly invariant under SUð3ÞL × SUð3ÞR.
As they are formed from combinations of Φ†Φ, they are
also invariant under the axial Uð1ÞA symmetry. The cubic
determinantal term is only invariant when the axial phase
α ¼ 2πj=3, where j ¼ 0, 1, 2, which is a discrete symmetry
of axial Zð3ÞA [51,62]. We define Φ to have axial charge
one.
The last quartic term, ∼ðtrðΦ†ΦÞÞ2, is invariant under a

larger flavor symmetry of Oð18Þ. This term is suppressed
when the number of colors, Nc, is large, with the coupling
constant λV ∼ 1=Nc [63]. Phenomenologically, this cou-
pling is very small: Ref. [30] finds λV ≈ 1.4, while λ ≈ 46,
so λV ≪ λ. Thus we neglect λV in our analysis.
We also add a term to break the chiral symmetry,

V0
H ¼ −trðHðΦ† þ ΦÞÞ: ð52Þ

The background fieldH is proportional to the current quark
masses, mqk. We shall assume isospin degeneracy between
the up and down quarks, and so take

H ¼ diagðhu; hu; hsÞ; ð53Þ

where hu;s ∼mu;s, with mu ¼ md and ms the current
quark masses. The superscript in V0

H denotes that this
symmetry breaking term is at zero temperature; in Sec. II,
we show that an additional term is required at nonzero
temperature, VT

H.

C. Logarithmic terms for 2þ 1 flavors

The novel term is ultraviolet finite, ∼m4 logðm2Þ.
Generalizing to three flavors of quarks this becomes

LψðmiÞ ¼ þ
X3
i¼1

3m4
i

16π2

�
1

ϵ
þ log

�
M2

m2
i

��
; ð54Þ

where “i” is the flavor index, and the overall factor of three
is from color.
We wish to generalize Eq. (54) to a form which is

manifestly chirally symmetric. To do this, we simply need
to recognize that a mass corresponds to an expectation
value for the diagonal components of Φ,

mi ¼ yhΦiii: ð55Þ

Hence the expression for several flavors is just the sum over
flavors of each term

VT¼0ðmiÞ ¼ þ
XNf

i¼1

3m4
i

16π2

�
1

ϵ
þ log

�
M2

m2
i

��
: ð56Þ

It is then evident that for arbitrary Φ, we need to add a
counterterm

Vct
Φ ¼ −

3y4

16π2
1

ϵ
trðΦ†ΦÞ2; ð57Þ

which is standard.
However, this computation shows that it is also necessary

to include in the effective Lagrangian a novel term,

V log
Φ ¼ 3y4

16π2
tr

�
ðΦ†ΦÞ2 log

�
M2

Φ†Φ

��
; ð58Þ

where the trace is only over flavor indices. This term does
not arise in the usual analysis of effective Lagrangians,
which assumes that all terms are polynomials in Φ. We
cannot avoid introducing such a term, since it will be
induced by integrating over the quarks. The necessity of
introducing such a term was noted by Stiele and Schaffner-
Bielich [32].
We comment that if one were to compute in our model

beyond one loop order, that many other logarithmic terms
will obviously be introduced. These include

trðΦ†ΦÞ2tr log ðΦ†ΦÞ; ðtrΦ†ΦÞ2tr log ðΦ†ΦÞ; ð59Þ

and so on. Since they involve two traces over flavor, they
are suppressed by ∼1=Nc [63].

D. Sigma model at zero temperature: masses

In this section we determine the parameters of the linear
sigma model by fitting to the spectrum of the light
Goldstone bosons in QCD. Because of the novel term in
Eq. (58), with a term which involves the logarithm of Φ,
this is similar, but not identical, to the analysis where only
polynomials in Φ are included:
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V tot
Φ ¼ V0

H þ VΦ þ V log
Φ

¼ −trðHðΦ† þ ΦÞÞ þm2trðΦ†ΦÞ
− cAðdetΦþ detΦ†Þ

þ tr

�
ðΦþΦÞ2

�
λþ κ log

�
M2

Φ†Φ

���
: ð60Þ

For ease of notation we redefine

κ ¼ 3y4

16π2
: ð61Þ

We assume a nonzero expectation value for Φ,

hΦi ¼ t0hΦ0i þ t8hΦ8i ¼

0
B@

Σu 0 0

0 Σu 0

0 0 Σs

1
CA: ð62Þ

Since we treat the high temperature phase, we find it
convenient to use the flavor diagonal expectation values, Σu
and Σs, which are related to the SUð3Þf values by

Σu ¼
1ffiffiffi
6

p
�
hΦ0i þ

1ffiffiffi
2

p hΦ8i
�
; ð63Þ

Σs ¼
1ffiffiffi
6

p ðhΦ0i −
ffiffiffi
2

p
hΦ8iÞ: ð64Þ

At zero temperature, where the effects of the axial anomaly,
cA ≠ 0, are large, then it is natural to use eigenstates of
SUð3Þf flavor. At high temperature, however, the mass
eigenstates are more natural in a flavor diagonal basis. It is
for this reason that we use both the SUð3Þf expectation
values Φ0;8 and the flavor diagonal Σu;s.
We define

Φ ¼ hΦi þ δΦ; ð65Þ

and expand the potential in the fluctuations, δΦ.
Expanding to linear order in δΦ gives the equations of

motion,

hu
Σu

¼m2−cAΣsþ2λΣ2
uþ κΣ2

u

�
−1þ2 log

�
M2

Σ2
u

��
; ð66Þ

hs
Σs

¼m2−cA
Σ2
u

Σs
þ2λΣ2

s þ κΣ2
s

�
−1þ2 log

�
M2

Σ2
s

��
: ð67Þ

For the meson masses at zero temperature, by using the
equations of motion we can eliminate all factors of
logðM2=Σ2Þ for hu and hs, and thus eliminate any depend-
ence upon the renormalization mass scale M. This agrees

with the expectation that physical quantities are indepen-
dent of M.
The mass squared for the pion can be derived directly by

simply expanding the effective Lagrangian to quadratic
order in the pion field,

m2
π ¼m2−cAΣsþ2λΣ2

uþ κΣ2
u

�
−1þ2 log

�
M2

Σ2
u

��
: ð68Þ

For the kaon, it is necessary to be a bit more careful. This
is due to the presence of logðΦ†ΦÞ in the potential, and
because the expectation value hΦ†ihΦi, while diagonal, is
not proportional to the unit matrix. However, it is simply
necessary to compute the logarithm of Φ†Φ to quadratic
order in the kaon field and then expand, giving

m2
K ¼ m2 − cAΣu þ 2λðΣ2

u − ΣuΣs þ Σ2
sÞ

þ κ

�
−Σ2

u þ ΣsΣu − Σ2
s

þ 2

Σu þ Σs

�
Σ3
u log

�
M2

Σ2
u

�
þ Σ3

s log

�
M2

Σ2
s

���
: ð69Þ

Using the equations of motion, Eqs. (66) and (67), we
find that the masses of the pion and kaon reduce to

m2
π ¼

hu
Σu

; m2
K ¼ hu þ hs

Σu þ Σs
: ð70Þ

The results in Eq. (70) are familiar from chiral pertur-
bation theory [29]. In the present case, by introducing the
background fields hu and hs we have eliminated the
ungainly dependence upon the logarithms of Σu and Σs
in Eqs. (68) and (69). This is true generally, and helps
explain why there is a rather mild dependence upon the
logarithmic coupling κ.
The masses for the η and η0 mesons is complicated by

their mixing, because hu ≠ hs. We find

ðmπ
00Þ2 ¼ m2 þ 2

3
cAð2Σu þ ΣsÞ þ

2

3
λð2Σ2

u þ Σ2
sÞ

þ κ

3

�
−2Σ2

u − Σ2
s þ 4Σ2

u log
M2

Σ2
u
þ 2Σ2

s log
M2

Σ2
s

�
;

ð71Þ

ðmπ
88Þ2 ¼ m2 þ cA

3
ð−4Σu þ ΣsÞ þ

2

3
λðΣ2

u þ 2Σ2
sÞ

þ κ

3

�
−Σ2

u − 2Σ2
s þ 2Σ2

u log
M2

Σ2
u
þ 4Σ2

s log
M2

Σ2
s

�
:

ð72Þ

The sum of these masses squared is equal to that for the η
and η0,
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m2
η þm2

η0 ¼ ðmπ
00Þ2 þ ðmπ

88Þ2

¼ hu
Σu

þ hs
Σs

þ cA

�
Σ2
u

Σs
þ 2Σs

�
: ð73Þ

The difference of these masses is

ðmπ
00Þ2 − ðmπ

88Þ2

¼ 1

3

�
þ hu
Σu

−
hs
Σs

þ cA

�
8Σu −

Σ2
u

Σs
þ 2Σs

��
: ð74Þ

In addition, there is a mixing term between the singlet and
octet states,

ðmπ
08Þ2 ¼

2
ffiffiffi
2

p

3
ðcAð−Σu þ ΣsÞ þ 2λðΣ2

u − Σ2
sÞ

þ κ

�
−Σ2

u þ Σ2
s þ 2Σ2

u log
M2

Σ2
u
− 2Σ2

s log
M2

Σ2
s

��

¼
ffiffiffi
2

p

3

�
þ hu
Σu

−
hs
Σs

þ cA

�
−Σu −

Σ2
u

Σs
þ 2Σs

��
:

ð75Þ
Using this, algebra shows

ðm2
η0 −m2

ηÞ2 ¼ ððmπ
00Þ2 − ðmπ

88Þ2Þ2 þ 4ðmπ
08Þ4

¼
�
þ hu
Σu

−
hs
Σs

þ cA

�
−
Σ2
u

Σs
þ 2Σs

��
2

þ 8c2AΣ2
u: ð76Þ

We next compute the masses of the scalar nonet, with
JP ¼ 0þ. The analogies of the pion and kaon are the a0 and
K�

0, whose mass squared are

m2
a0 ¼m2þcAΣsþ6λΣ2

uþ κΣ2
u

�
−7þ6 log

M2

Σ2
u

�
; ð77Þ

m2
K�

0
¼ m2 þ cAΣu þ 2λðΣ2

u þ ΣuΣs þ Σ2
sÞ

þ κ

�
−ðΣ2

u þ ΣuΣs þ Σ2
sÞ

þ 2

Σs − Σu

�
−Σ2

u log
M2

Σ2
u
þ Σ2

s log
M2

Σ2
s

��
: ð78Þ

It can be shown that these can be reduced to

m2
a0 ¼ 3m2

π − 2m2 þ 4cAΣs − 4κΣ2
u; ð79Þ

m2
K�

0
¼ hs − hu

Σs − Σu
: ð80Þ

The mass of the K�
0 looks like that of current algebra [29],

but is not, because it involves the ratio of differences,
hs − hu over Σs − Σu.

The final two mesons are the σ and the f0. After some
computation,

ðmσ
00Þ2 ¼m2 −

2

3
cAð2Σu þΣsÞ þ 2λð2Σ2

u þΣ2
sÞ

þ κ

�
−
14

3
Σ2
u −

7

3
Σ2
s þ 4Σ2

u log
M2

Σ2
u
þ 2Σ2

s log
M2

Σ2
s

�
;

ð81Þ

ðmσ
88Þ2 ¼m2 þ cA

3
ð4Σu −ΣsÞ þ 2λðΣ2

u þ 2Σ2
sÞ

þ κ

�
−
7

3
Σ2
u −

14

3
Σ2
s þ 2Σ2

u log
M2

Σ2
u
þ 4Σ2

s log
M2

Σ2
s

�
:

ð82Þ

The sum of these masses squared equals the sum of the
masses squared for the σ and f0,

m2
σ þm2

f0
¼ ðmσ

00Þ2 þ ðmσ
88Þ2

¼ 3
hu
Σu

þ 3
hs
Σs

− 4m2 þ cA

�
3
Σ2
u

Σs
þ 2Σs

�
− 4κðΣ2

u þ Σ2
sÞ: ð83Þ

The difference of these masses is

ðmσ
00Þ2 − ðmσ

88Þ2 ¼ þ hu
Σu

−
hs
Σs

þ cA
3

�
−8Σu − 3

Σ2
u

Σs
þ 2Σs

�

þ 4

3
κð−Σ2

u þ Σ2
sÞ: ð84Þ

The mixing between the two states is

ðmσ
08Þ2 ¼

ffiffiffi
2

p

3
ðcAðΣs − ΣuÞ þ 6λðΣ2

u − Σ2
sÞ

þ κ

�
−7Σ2

u þ 7Σ2
s þ 6Σ2

u log
M2

Σ2
u
− 6Σ2

s log
M2

Σ2
s

��

¼
ffiffiffi
2

p �
hu
Σu

−
hs
Σs

þ cA
3

�
Σu − 3

Σ2
u

Σs
þ 2Σs

�

þ 4

3
κð−Σ2

u þ Σ2
sÞ
�
: ð85Þ

Using these expressions,

ðm2
f0
−m2

σÞ2 ¼ ððmσ
00Þ2 − ðmσ

88Þ2Þ2 þ 4ðmσ
08Þ4

¼ 9

�
hu
Σu

−
hs
Σs

þ cA

�
−
Σ2
u

Σs
þ 2

3
Σs

�

þ 4

3
κð−Σ2

u þ Σ2
sÞ
�

2

þ 8c2AΣ2
u: ð86Þ
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This is a surprisingly elegant form, analogous to the
expression for the splitting between the masses for the η
and η0 in Eq. (74).
We next turn to two applications of these results: in the

chiral limit, and to QCD.

1. Masses in the chiral limit: the σ meson
and the axial anomaly

In the limit of exact SUð3Þf symmetry, hu ¼ hs ¼ h, and
so Σu ¼ Σs ¼ Σ. The two equations of motion in Eqs. (66)
and (67) reduce to one, and the masses become

m2
π ¼ m2

K ¼ m2
η ¼

h
Σ
; ð87Þ

m2
η0 ¼ m2

π þ 3cAΣ; ð88Þ

m2
a0 ¼ m2

K�
0
¼ m2

f0
¼ 3m2

π − 2m2 þ 4cAΣ − 4κΣ2; ð89Þ

m2
σ ¼ m2

a0 − 3cAΣ: ð90Þ

All of these expressions can be derived directly from the
corresponding equations, except for the mass of the K�

0,
which takes some care.
As expected by the explicit SUð3Þf symmetry, the pions,

kaons, and the η form a degenerate octet. The mass squared
of the η0 is larger than that for this octet by an amount
¼ þ3cAΣ. This explains the negative sign of the term ∼cA
in the chiral Lagrangian of Eq. (60), because experiment
tells us that the η0 is heavy.
For the scalar mesons, again the a0, K�

0, and the f0 form
a degenerate octet. This mass, Eq. (89), explicitly involves
the mass parameter of the chiral Lagrangian,m2 in Eq. (60).
Notice that we chose to include m2 with a positive sign. As
we show in the next section, this is because to fit the
observed hadronic spectrum with cA ≠ 0, m2 > 0; this is
also true when κ ¼ 0 [30]. With cA ¼ κ ¼ 0, though, then it
is necessary to take m2 < 0 so that the a0 is heavy.
What is striking, however, is that if we chose cA to be

positive, so that the mass of the η0 is driven up, that the mass
of the σ meson is driven down, by exactly the same amount:

m2
η0 −m2

π ¼ m2
a0 −m2

σ; hu ¼ hs: ð91Þ

The same relation was first derived by ’t Hooft in a linear
sigma model with two flavors [28].
One motivation for including tetraquarks [33] is that

they naturally give an “inverted” spectrum, where for 0þ
mesons, the isosinglet state is lighter than the octet.
Equation (91) shows that this inverted spectrum arises
naturally in a linear sigma model for three flavors. It is also
a clear demonstration that the axial anomaly is as important
for the 0þ mesons as it is for the 0−.

2. Parameters of the chiral model in QCD

We now use our results for the masses to derive the
values of the parameters of our chiral model in QCD.
In contrast to the standard linear sigma model, as treated

in Ref. [30], we have one more parameter, the Yukawa
coupling between the two scalar nonets and the quarks, y.
We keep y as a free parameter, and use this to adjust the
temperature for the chiral crossover.
To determine the parameters, we take the known masses

of the pseudoscalar nonet,

mπ ¼ 140; mK ¼ 495; mη ¼ 540; mη0 ¼ 960; ð92Þ

in this expression and henceforth, all mass dimensions are
assumed to be MeV.
We take the value of the light quark condensate from its

relation to the pion decay constant, fπ ¼ 93. MeV [30]:

Σu ¼
fπ
2

¼ 46.0: ð93Þ

There is a similar relation for the strange quark condensate,

Σs ¼ fK −
fπ
2
; ð94Þ

which was used in Ref. [30] to fix Σs.
Instead, we prefer to proceed as following. First we

set the renormalization scale M to Σu in vacuum, i.e.
M ¼ fπ=2. Then, we take the four masses in Eq. (92), and
Σu from Eq. (93) as input, and use these to determine Σs,
the background fields hu and hs, and the axial coupling cA,
from Eqs. (70), (73), and (76). The result is

Σs ¼ 76.1; hu ¼ ð96.6Þ3;
hs ¼ ð305.Þ3; cA ¼ 4560: ð95Þ

These values are all independent of the Yukawa coupling
y. The remaining two parameters of the linear sigma model
m2 and λ, can be determined from the equations of motion
in Eqs. (66) and (67),

m2 ¼ ð538.Þ2 − ð11.3Þ2y4;
λ ¼ 18.3þ 0.0396y4; ð96Þ

and do depend upon y.
These values agree approximately with those of a linear

sigma model without a logarithmic coupling, as studied
by Lenaghan, Rischke, and Schaffner-Bielich (LRS) in
Ref. [30]. Using Eqs. (64), we find that they obtain
hLRSu ¼ð98Þ3, versus our hu¼ð96.6Þ3; their hLRSs ¼ð299Þ3,
versus our hs ¼ ð305Þ3; their cLRSA ¼ 4808, versus our
cA ¼ 4560. The differences arise primarily not because
of the differences in the potential forΦ, but because they fix
Σs from the kaon decay constant, Eq. (94). In contrast, we
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determine Σs from the η and η0 masses, Eq. (76). Thus their
ΣLRS
s ¼ 66.8, versus our Σs ¼ 76.1.
The difference in Σs affects the mass of the K�

0, which in
both models is given by Eq. (80). Using their value for the
strange quark condensate, Ref. [30] finds that the mass of
the K�

0 is mLRS
K�

0
¼ 1124, while we find that mK�

0
¼ 957.0.

This leaves the masses of the rest of the 0þ nonet, the
a0, σ, and f0. These masses explicitly depend upon the
Yukawa coupling y, which is determined by the temper-
ature for the chiral crossover, Tχ .

E. Symmetry breaking term at T ≠ 0

In Sec. II we argued that a new symmetry breaking term
needs to be added to ensure that the effective fermion mass
is nonzero in the limit of high temperature. It is necessary to
fix this term in order to determine Tχ .
One possible approach would be simply to take the

analogy of Eq. (22), taking a symmetry breaking which is
computed perturbatively, with the matrix variables
q ¼ r ¼ 0. Since the temperature for the chiral crossover
is so much lower than the deconfining transition, however,
this seems unduly naive.
In fact it is not difficult generalizing the term. Starting

from Eq. (50), for a quark of mass “m”, the quark
contribution to the effective potential is

Vqk
pert ¼−

1

V
tr logðDþmþμγ0þyðΦPLþΦ†PRÞÞ: ð97Þ

Now consider the derivative of this quantity with respect
to m, evaluated at m ¼ 0, times the current quark mass
mqk:

−mqk
1

V
tr

1

Dþ μγ0 þ yðΦPL þ Φ†PRÞ
: ð98Þ

It is then obvious from the discussion in Sec. II that adding
this term will accomplish our objective, to ensure that the
constituent quark mass approaches the current quark mass
at high temperature.
Further, this term is linear in the symmetry breaking

parameter mqk, times a form which is manifestly chirally
symmetric. In fact the form in Eq. (98) is a bit awkward for
our purposes. The computation of susceptibilities involves
taking derivatives with respect not just to σ0 and σ8, but all
components of Φ. While this can be done, the contribution
from the symmetry breaking term is prima facie small.
Thus we ease our computational burden by taking the
symmetry breaking term to be

VT
h ¼−

mqk

V

�
tr

1

Dþμγ0þyσii

����
T≠0

− tr
1

Dþμγ0þyσii

����
T¼0

�
:

ð99Þ

That is, we only take the real, diagonal components of Φ in
the symmetry breaking term. Thus Eq. (99) is not linear in
mqk, but implicitly involves terms which are of higher order.
We do not view this as a serious drawback, but of course

a more careful study, which would not be trivial, would be
most welcome.
We comment that it is absolutely necessary to use a

symmetry breaking term which involves the dynamically
generated quark mass, through the components of σ. At
first we tried a term which involves only the form of
symmetry breaking at high temperature, so that the trace in
Eq. (99) is computed for massless quarks. This gives the
correct behavior at high temperature, but because Tχ ≪ Td,
as discussed previously, this greatly affects the results near
Tχ . This is manifestly unphysical: near Tχ the quarks do
have a dynamically generated mass, and this mass sup-
pressed the contribution of the temperature dependent
symmetry breaking term above.

V. CHIRAL MATRIX MODEL
AT NONZERO TEMPERATURE

A. Complete model

With the symmetry breaking term in hand, we only need
to put all of the pieces together. In mean field approxima-
tion for the Φ mesons, this is

Veffðq; r;ΣfÞ ¼ Vglðq; rÞ þ V tot
Φ ðΣfÞ þ Vqkðq; r;ΣfÞ

þ VT
hðq; r;ΣfÞ: ð100Þ

We assume isospin symmetry, so there are two quark
condensates, Σu ¼ Σd and Σs.
The gluon potential Vglðq; rÞ is the sum of the perturba-

tive term in Eq. (29) and the nonperturbative term in
Eq. (33). As discussed previously, we do not change the
value of the deconfining temperature, Td, in the non-
perturbative part of the gluon potential.
The chiral potential V tot

Φ ðΣfÞ is that of Eq. (60). For the
time being, we do not incorporate any temperature depend-
ence in the parameters of the chiral Lagrangian. In the
mean-field approximation,

V tot
Φ ðΣfÞ ¼ −2huΣu − hsΣs þm2ð2Σ2

u þ Σ2
sÞ − 2cAΣ2

uΣs

þ λð2Σ4
u þ Σ4

sÞ: ð101Þ

The quark contribution is

Vqkðq; r;ΣfÞ ¼
X

f¼u;d;s

Vqk
f

¼
X

f¼u;d;s

�
−

3

8π2
y4Σ4

f ln

�
y2Σ2

f

M2

�

þ Vqk;T
f ðq; r;ΣfÞ

�
: ð102Þ
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The first two terms are just the usual vacuum contributions
from the quark loop, Eqs. (56) and (58). We assume that the
renormalization scale M is chirally symmetric, and so the
same for light and strange quarks.
The thermal term is also straightforward, just the sum

over free energies for each quark flavor, at nonzero
chemical potential μ and qa,

Vqk;T
f ðq; r;ΣfÞ

¼ −2T
X3
a¼1

Z
d3k
ð2πÞ3 ½lnð1þ e−ðEf−μÞ=Tþ2πiqa=3Þ

þ lnð1þ e−ðEfþμÞ=T−2πiqa=3Þ�: ð103Þ

The energy and mass of each quark is

E2
f ¼ k2 þm2

f; mf ¼ yΣf: ð104Þ

The sum over “a” is over colors, where from Eqs. (24)
and (25), the holonomy parameters qa are

~q ¼ ðqþ iR;−qþ iR;−2iRÞ: ð105Þ

As discussed previously, when μ ≠ 0, r ¼ iR is imaginary.
Lastly, for the symmetry breaking term, explicitly the

form of Eq. (99) becomes

VT
hðq; r;ΣfÞ ¼ −

X
f¼u;d;s

Σ0
f

∂
∂Σf

Vqk;T
f ðq; r;ΣfÞ: ð106Þ

B. Mass spectrum, T = 0 and T ≠ 0

We have one free parameter left to determine in the
model, the Yukawa coupling y. Then at any temperature,
we have a set of three coupled equations which determine
the condensates q, Σu, and Σs. The quark condensates are
determined by the equations of motion. Taking derivatives
of Eq. (101) with respect to Σu;s we get

∂
∂Σu

Vqk
u − hu − 2cAΣuΣs þ 2m2Σu þ 4λΣ3

u

− Σ0
u
∂2

∂Σ2
u
Vqk;T
u ¼ 0; ð107Þ

and

∂
∂Σs

Vqk
s − hs þ 2m2Σs − 2cAΣ2

u þ 4λΣ3
s −Σ0

s
∂2

∂Σ2
s
Vqk;T
s ¼ 0:

ð108Þ

The first term in each expression is the derivative of the
quark potential, Vqk

f , for that flavor. Next are the terms from
the potential for Φ. The last term is the derivative of the

mass term at nonzero temperature. The derivative with
respect to q is similar, and determined numerically.
To fix the Yukawa coupling, we fit to Tχ , which we

define as the maximum in the derivative of the condensate
for the light quark, j∂Σu=∂Tj, the peak in the chiral
susceptibility for light quarks. This is shown in Fig. 1.
We consider varying the deconfining temperature Td from
260 to 280 MeV, with the central line corresponding to
270 MeV. The vertical shaded region demonstrates varying
y from 4.5 to 5.
Given the range in the Yukawa coupling, we can then

determine the masses of the 0þ mesons at zero temperature.
In Table 1 we show the values of the a0, f0, and σ, for
values of y ¼ 4.5, 5, and 5.5.
The variation of the mass of the a0 at T ¼ 0, as a function

of the Yukawa coupling, is shown in Fig. 2.
The mass of the a0 in all cases is near the experimental

value of 980 MeV, although low by ∼3%. The mass of
the f0 is a bit below 1 GeV, while the σ is very low,
∼325 MeV. These values are typical of linear sigma
models [30].
We choose the central value of y ¼ 5. The properties of

the theory at μ ¼ 0 then follow directly.
The temperature dependence of the meson masses at

nonzero temperature are shown in Fig. 3. Above
T ∼ 200 MeV, we find that the following masses are
degenerate: the π and σ; the K, η, and K�

0; and the a0,
f0, and η0. This is expected for the restoration of the
SUð3ÞL × SUð3ÞR chiral symmetry, with the small mass
splittings due to the residual symmetry breaking from
mu ¼ md ≪ ms ≠ 0.

FIG. 1. The chiral crossover temperature Tχ as a function of the
Yukawa coupling, y. In the horizontal shaded region Td varies
from 260 to 280 MeV, with the line Td ¼ 270 MeV. The vertical
shaded region corresponds to y∶ 4.5 → 5.5.
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Notice that the mass spectrum does not exhibit the
restoration of the axial Uð1ÞA symmetry, as the η0 meson
is heavier than the ηmeson. This is because we assume that
the coefficient cA is fixed, and does not vary with temper-
ature. This is clearly unphysical, as seen in lattice simu-
lations [5], and as we discuss in Sec. V F.

C. Thermodynamics

Turning to thermodynamics, the pressure is illustrated in
Fig. 4. The agreement with the pressure is reasonable, but
not spectacular. The pressure in the chiral matrix model is
too small at low temperature, below Tχ. This is because we
do not include light hadrons such as pions, kaons, etc. as
dynamical degrees of freedom.
At high temperature, above 250 MeV, the pressure in our

model overshoots that from the lattice data. This is because
we choose the parameters in the gluon potential to be
identical to those in the pure glue theory. A better fit could
be obtained if we allowed this potential to vary.
To see the discrepancy with the lattice results, in Fig. 5

we show the interaction measure, ðe − 3pÞ=T4, where eðTÞ
is the energy density. This peak in the interaction measure
is about 25% too high: it is ∼5, versus ∼4 from the lattice.
Also, the peak in the interaction measure is at ∼220 MeV,
versus ∼200 MeV from the lattice.

D. Behavior of the order parameters

How the order parameters change with temperature is
illustrated in Fig. 6. We show the Polyakov loop directly,
while for the chiral order parameters, we show the ratio of
the condensate at T ≠ 0 to that at T ¼ 0. This figure shows
that in our matrix model there is an extremely close
correlation between the restoration of chiral symmetry,
and deconfinement, as the decline in the light quark
condensate mimics the rise in the Polyakov loop, for

FIG. 3. Temperature dependence of the meson masses for
y ¼ 5.

FIG. 4. The pressure as a function of temperature. The solid
black line is our chiral matrix model, χ-M. The shaded region
about this denotes the variation of the Yukawa coupling,
y∶ 4.5 → 5.5. The red band are the results from lattice simu-
lations [7]. The dashed blue line is that of next-to next-to Hard
Thermal Loop (NNLO HTL) perturbation theory, with the band
changing the renormalization mass scale by a factor of two [14].

TABLE I. Meson masses as functions of the Yukawa coupling.

y ma0 mf0 mσ

4.5 952 982 309
5 962 966 328
5.5 977 945 348

FIG. 2. The mass of a0 meson at zero temperature as a function
of the Yukawa coupling, y. The horizontal shaded region
corresponds to the experimental uncertainty in the a0 mass.
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temperatures between 100 and 300 MeV. To be more
precise, one can compute the associated susceptibilities for
the order paramters. We defer this to Sec. V D, so that we
can discuss at length which susceptibilities diverge in the
chiral limit. As expected for a heavy quark, the strange
quark condensate declines much slower than that for the
light quarks.

The chiral order parameters cannot be directly compared
to those on the lattice. Even their mass dimensions are
different: in our model Σ has dimensions of mass, while in
QCD hψ̄ψi has dimensions of mass3.
Further, in QCD the quark condensate has a quadratic

ultraviolet divergence. Analytically we can eliminate this
divergence by using dimensional regularization, but on the
lattice, there are terms∼1=a2, where a is the lattice spacing.
In numerical simulations, this divergence is eliminated by
computing the difference between the condensates between
the light and heavy quarks, weighted by the quark mass
difference:

Δlattice
u;s ðTÞ ¼ hψ̄ψiu;T − ðmu=msÞhψ̄ψis;T

hψ̄ψiu;0 − ðmu=msÞhψ̄ψis;0
: ð109Þ

Heremu andms are the current quark masses for the up and
strange quarks, and hψ̄ψi the corresponding condensates.
We then compute this ratio of condensates in our model,

where the analogous quantity is

Δχ−M
u;s ðTÞ ¼ ΣuðTÞ − ðhu=hsÞΣsðTÞ

Σuð0Þ − ðhu=hsÞΣsð0Þ
: ð110Þ

These two quantities are shown in Fig. 7. The close
agreement between the lattice results of Ref. [2] and the
matrix model is satisfying.
In contrast, there is a strong difference in the value of

Polyakov loop in our model, and from the lattice [3,4]. This
is illustrated in Fig. 8. The Polyakov loop in the matrix
model approaches unity much quicker than measurements
of the (renormalized) Polyakov loop on the lattice.
Given the good qualitative agreement between the

susceptibilities in the model and the lattice, this

FIG. 7. The subtracted chiral condensates, from the lattice [2],
Eq. (109), and the matrix model, Eq. (110).

FIG. 6. The chiral and deconfining order parameters as func-
tions of T. The light and strange chiral condensates are normal-
ized to their value at zero temperature. The shaded regions
correspond to varying the Yukawa coupling y in the range
y∶ 4.5 → 5.5.

FIG. 5. The interaction measure as a function of T. The black
line denotes the chiral matrix model, χ-M, with the shaded band
the variation in y∶ 4.5 → 5.5. The red band are the results from
lattice simulations [7]. The dashed blue line is that of NNLO HTL
perturbation theory, with the band changing the renormalization
mass scale by a factor of two [14].
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disagreement for the Polyakov loop must be considered the
outstanding puzzle of our model. We note that a similar
disagreement was seen in the pure gauge theory [19,20].
For this reason, in Sec. VII we consider alternate models in
which we fit the Polyakov loop, more or less by hand. We
show that doing so obviates any agreement for other
quantities, such as the pressure and susceptibilities.

E. Susceptibilities for the order parameters,
and their divergences in the chiral limit

To better understand how the chiral and deconfining
order parameters are related, it is useful to compute their
associated susceptibilities. This is shown in Fig. 9. These
are normalized to be dimensionless quantities by multi-
plying by the relevant powers of Tχ , except for those for the
loop-loop and loop-antiloop, where we use T2T2

χ .
As expected, the largest peak is that for the light quark

condensate, Σu − Σu. That for Σu − Σs is less sharp, and
even more so for Σs − Σs. This is unremarkable, demon-
strating that a heavy quark is farther from the chiral limit
than light quarks.
The susceptibility for the loop correlations are broad.

For both the loop-loop and loop-antiloop correlations, they
peak about Tχ , with a wide width, due to their coupling to
the light quark fields.
The susceptibilities of the loop-antiloop have been

computed on the lattice by Bazavov et al. [4]. Their results
peak at a significantly higher temperature than we find in
the chiral matrix model, at ∼200 MeV. This presumably is
due to the fact that the lattice Polyakov loop is shifted to
higher temperatures than in the chiral matrix model. They

did not investigate the susceptibility between the loop and
the chiral order parameter.
Returning to our results, after the Σu − Σu correlation,

the sharpest peak is for that between the loop and the light
quark condensate, Σu − l. This is not an artifact. In a
Polyakov loop model, Sasaki, Friman, and Redlich [35]
found that the Σ-loop correlation is divergent: see Fig. 19
of Ref. [35].
This is a general result for a chiral transition of second

order. To show this, we consider the interaction of the
lowest mass dimension between a chiral field Φ and the
Polyakov loop l,

ðlþ l�ÞtrðΦ†ΦÞ: ð111Þ

This coupling respects all of the relevant symmetries of
gauge invariance and chiral symmetry. It is not invariant
under the global color symmetry of Zð3Þ, but since this
symmetry of the pure gauge theory is violated by the
presence of dynamical quarks, it does arise. In particular,
such a coupling appears in our chiral matrix model. In
general, and in the chiral matrix model, there is an infinite
series of Polyakov loops, in different representations,
which couple to trΦ†Φ. We shall argue that this does
not alter our conclusions about the critical behavior which
follow.
Consider the mass matrix between the chiral field and the

Polyakov loop. We can concentrate on the field Σ which is
nonzero in the phase with chiral symmetry breaking. The
mass squared matrix between Σ and l is

M2 ¼
�

m2 κΣf

κΣf ~m2

�
; ð112Þ

FIG. 9. The susceptibilities for the chiral and deconfining order
parameters, as a function of the temperature T.FIG. 8. The Polyakov loop in the matrix model and from the

lattice [3,4]. The band in the matrix model corresponds to the
variation in the Yukawa coupling from y∶ 4.5 → 5.5, as shown
before.
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where κ is some constant, and ~m2 the mass for the loop.
Assuming the chiral transition is of second order,

m2 ∼ δt; Σf ∼ δtβ; δt ≡
����T − Tχ

Tχ

����: ð113Þ

That the mass of the Σ field vanishes as the reduced
temperature δt is standard. Similarly, the expectation value
of Σ vanishes with critical exponent β. The mass of the
Polyakov loop is assumed to be nonzero at the chiral phase
transition, since it is not a critical field.
The susceptibilities are determined by the inverse of this

matrix. Consequently, for that between the loop and the
condensate, we obtain

1

M2

����
lΣ

∼ δtβ−1: ð114Þ

In this we assume that β < 1=2, which is true for the Oð4Þ
universality class, which is what enters for two massless
flavors [51].
It is direct to show that Eq. (114) is true in a chiral matrix

model. In such a model the coupling is not between the
loop l and the scalar field, but between q and Φ. What
matters is that in the phase with Σf ≠ 0, there is a coupling
between q and Φ which is ∼Σf. This factor can be
understood as follows. The loop diagram between a q
field and the Σ is proportional to

trγ0λ3
1

ðDbk þmfÞ2
: ð115Þ

The factor of γ0 is from the coupling to q, while the
coupling of a quark antiquark to Σ is proportional to unity.
This diagram is nonzero only if the Dirac trace is over
two Dirac matrices, so one of the propagators must bring in
a factor of the quark mass, mf ∼ yΣf. The mixed suscep-
tibility between the loop and q then behaves as
∼yΣf=m2 ∼ 1=δt1=2. This is the expected behavior in mean
field theory, where β ¼ 1=2.
Viewed in a general context of second order phase

transitions, it is not surprising that the coupling between
a critical field Φ, and a noncritical field, l, gives a weak but
divergent susceptibility for the off-diagonal susceptibility
between Φ and l. Indeed, assuming that the expectation
value of the loop is nonzero at Tχ , even Zð3Þ symmetric
operators such as jlj2trΦ†Φ would produce a divergent
susceptibility. However, they would be smaller by powers
of the expectation value of the loop, which is small in QCD
at Tχ .

F. Chiral susceptibilities and Uð1ÞA
In Fig. 3 we showed the meson masses as a function of

temperature. As discussed at the end of Sec. V B, it still

exhibits a violation of the axial Uð1ÞA, with the mass of the
η0 meson heavier than that of the η meson.
This splitting is controlled by the coefficient cA in the

effective Lagrangian. Dynamically, at high temperature cA
should decrease with temperature, as instanton fluctuations
are suppressed by the Debye mass [64].
To study the restoration of the axial Uð1ÞA symmetry,

numerical simulations have studied chiral susceptibilities
which are sensitive to this breaking [5]. In a chirally
symmetric phase, the susceptibilities for the σ and π are
equal, as are those for the η0 and the a0. This degeneracy is
demonstrated by the meson masses in Fig. 3. That the
π and a0 masses are unequal is manifestly due to cA ≠ 0.
Neglecting the temperature dependent symmetry breaking
term, this is clear from the expressions for these masses in
Eqs. (68) and (77): with Σu ≈ 0, m2

π ¼ m2 − cAΣs and
m2

a0 ¼ m2 þ cAΣs.
Numerical simulations find that while the π and a0

susceptibilities differ at Tχ ∼ 155 MeV, they are essentially
equal by TUð1ÞA ∼ 200 MeV. At zero temperature there is a
close relationship between the spontaneous breaking of
chiral symmetry and anomalous amplitudes, such as for
π0 → γγ. Naively this suggests that TUð1ÞA ≈ Tχ . However,
at nonzero temperature Lorentz invariance is lost, and this
relationship is much more involved [65]. Consequently,
the two temperatures TUð1ÞA and Tχ can differ. The lattice
shows that TUð1ÞA > Tχ ; for other numbers of flavors and
colors, to us it seems possible that TUð1ÞA < Tχ .
One might hope to compute the π and a0 susceptibilities

in the matrix model, to fix the temperature dependence of
cA. This was done in Ref. [39] in a Polyakov Nambu-Jona-
Lasino model.
The difficulty is that while our chiral matrix model can

be used to compute many quantities, it cannot be used to
compute all. Consider the quark operator with pion
quantum numbers, Ja5 ¼ ψ̄τaγ5ψ . The chiral susceptibility
for the pion is dominated by single pion exchange,
∼h0jJπjπi1=m2

πhπjJπj0i.
The form factors are determined by Partially Conserved

Axial Current. The axial current satisfies ∂μJ
5;a
μ ¼ 2mqkJa5 ,

where J5;aμ ¼ ψ̄τaγμγ5ψ , and mqk is the current quark mass.

Since h0jJ5;aμ jπi ∼ Pμfπ , using P2 ¼ m2
π ¼ mqkhψ̄ψi=f2π ,

we find that hπjJπj0i ∼ hψ̄ψi=fπ.
In QCD, the expectation value is hψ̄ψi ∼ −ð300 MeVÞ3.

In the chiral matrix model, computation shows that
the analogous quantity is much smaller, hψ̄ψi∼
−m3

π ∼ −ð140 MeVÞ3. This difference is consistent with
chiral symmetry: in QCD the condensate only enters multi-
plied by the current quark mass. In the chiral matrix model,
the pionmass is related to the background fieldhu, and has no
direct relation to the chiral condensate hψ̄ψi.
However, what matters for the associated chiral suscep-

tibilities are the form factors, and so hψ̄ψi. These are too

CHIRAL MATRIX MODEL OF THE SEMIQUARK GLUON … PHYSICAL REVIEW D 94, 034015 (2016)

034015-19



small by an order of magnitude, and so cannot be used to
constrain cA.

VI. FLAVOR SUSCEPTIBILITIES

Besides the computation of bulk thermodynamic proper-
ties, most useful insight is gained by computing derivatives
with respect to quark chemical potentials.
In principle this is straightforward, simply the derivative

of the effective potential with respect to the relevant μ,
evaluated at μ ¼ 0. For example, the baryon number
susceptibility is given by

χBn ¼ Tn−4∂nP
∂μnB

����
μ¼0

: ð116Þ

Particularly in our model, it is trivial to take derivatives with
respect to a given flavor, to compute the corresponding
susceptibility.
At the outset we should note that because we treat the

mesons in mean field approximation, implicitly we neglect
fluctuations from pions. Pion fluctuations are not important
in computing susceptibilities with respect to baryon num-
ber and strangeness, but do matter in computing those with
respect to other chemical potentials, including those for up
and down flavor number, isospin, and charge.
There is one point which must be treated with care, as

was discussed in Sec. III B. Most quantities are even under
charge conjugation, C. This includes the effective potential,

and the stationary points for the chiral condensates, Σu and
Σd, and for the Polyakov loop, q. The latter is not obvious:
while the gauge potential A0 → −A�

0 under C, because we
assume that the stationary point for the Polyakov loop is
real, we always sum over q and −q. That these quantities
are even under C greatly simplifies how they can enter into
quark number susceptibilities.
Previously, however, we argued that when μ ≠ 0, that

the stationary point involves imaginary values of r ¼ iR,
Eq. (42). This means that we can compute quark number
susceptibilities using a type of Furry’s theorem: loops with
insertions of μ correspond to a type of coupling to an
Abelian gauge field. There must be an even number of
insertions, where both insertions of μ or r can enter. Since
we work in mean field approximation, only one field can be
exchanged.

A. Second order susceptibilities

Let us start with the simplest quantity, χB2 . The
diagrams which contribute are illustrated in Fig. 10.
The first diagram, on the left, is expected: two insertions
of the chemical potential into a quark loop. What is
unexpected is the second diagram, where one has two
quark loops, each with single insertions of μ and r,
coupled by a single propagator for r. Since we are
computing fluctuations, that the stationary point in r is
imaginary is really secondary; what matters is that r, like
μ, is C odd. Thus both diagrams satisfy Furry’s theorem.
Note that the second diagram is only nonzero when
q ≠ 0: otherwise, as an insertion of r brings in λ8,
Eq. (25), the color trace vanishes.
The results for χ2 are given in Fig. 11. It is completely

dominated over all temperatures by the one particle
irreducible contribution in Fig. 10(a). The second diagram,
from the exchange of a r gluon, is present, but numerically
small over all temperatures.

FIG. 11. The second order baryon number susceptibility as a function of the temperature. The left panel shows the results in the chiral
matrix (χ −M) model, compared to a σ model, HTL resummation [14], and numerical simulations on the lattice. The right panel shows
contributions to the chiral matrix model: it is dominated by the contribution of the one particle irreducible contribution, Fig. 10(a), over
r-exchange in Fig. 10(b).

r r

(a) (b)

FIG. 10. Contributions to the second order baryon number
susceptibility χB2 : (a) the one particle irreducible and (b) the one
particle reducible. The wiggly line denotes r − r propagator.
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The results of the chiral matrix (χ −M) model approach
the asymptotic value of 1=3 faster than the lattice data.
However, the gross behavior agrees with the lattice. The
chiral matrix model certainly agrees much better with the
lattice data than hard thermal loop resummation, which
stays near 1=3. More surprisingly, it also agrees much better
than a sigma model, which incorporates chiral symmetry
breaking, but not the nontrivial holonomy of the Polyakov
loop, q ≠ 0. We shall see this is true for higher suscep-
tibilities as well.
One can also compute the off-diagonal susceptibilities.

Those for light-light, ud, and heavy-light, us, are illustrated
in Fig. 12. This is a very interesting quantity to compute,
because on the lattice, it is due to disconnected diagrams. In
our model, the off-diagonal susceptibilities are due entirely
not to the connected diagram, Fig. 10(a), but to the diagram
from the exchange of an r gluon, Fig. 10(b).
In our model, we find that the off-diagonal susceptibil-

ities for ud and us are nearly equal. This is easy to
understand, because the difference is only one of form
factors: generating an r gluon from an up loop is about as
probable as from a strange loop.
The results of our model for the off-diagonal suscep-

tibilities us are in reasonable agreement with lattice
simulations. On the other hand, the results for ud are
about an order of magnitude smaller than measured on the
lattice. This is because we do not include dynamical

hadrons, in particular pions, in our model. The most direct
way of including dynamical pions would be to use the
functional renormalization group [66].

B. Fourth order susceptibilities

Turning to the fourth order susceptibility, the diagrams
which contribute are those of Fig. 13. The diagrams
include four insertions of the chemical potential into a
quark loop, Fig. 13(a). Then there are two insertions of the
chemical potential into two different loops, connected by
the exchange of C even fields, either q, Σu, or Σs, Fig. 13(b).
Lastly, there is diagram from one quark loop, with a single
insertion of μ, and another quark loop, with three insertions
of μ, connected by the exchange of an r gluon.
The results for the fourth order baryon number suscep-

tibility are shown in Fig. 14. In this case, the one particle
irreducible contribution of Fig. 13(a) gives a smooth
contribution which is no longer dominant. Instead, the
exchange of a q gluon gives the largest contribution near
Tχ . Indeed, this is larger than that of the Σu field.
The results of the chiral matrix model for χB4 appear to

overshoot the results of the lattice by a factor of two near
Tχ , but the lattice results have large error bars. More
striking is that the hard thermal loop result is essentially
constant with respect to temperature, while a sigma model
gives a result which is too small, and peaked at a temper-
ature significantly below that of the lattice data.
It is also interesting to plot the difference of the second

and fourth order baryon susceptibilities.
Consider the contribution of the quarks to the pressure

for a single flavor,

p ¼ −2T
XNc

a¼1

Z
d3k
ð2πÞ3 ln ð1þ e−Ef=T−μ=Tþi2π

3
qaÞ

þ ln ð1þ e−Ef=Tþμ=T−i2π
3
qaÞ: ð117Þ

Expanding in powers of the fugacity,

p ¼ m2T2Nc

π2
X∞
n¼1

ð−1Þnþ1

n2
K2ðnm=TÞðlnenμ=T þ l†

ne−nμ=TÞ

ð118Þ

where ln is the Polyakov loop in the fundamental repre-
sentation which wraps around in imaginary time n times,

FIG. 12. The second order off-diagonal susceptibilities as a
function of the temperature.

(a) (b)

r r

(c)

FIG. 13. Contributions to the fourth order baryon number susceptibility χB4 : (a) the one particle irreducible and (b-c) the one particle
reducible. Only diagrams to two quark loop order are shown, which are not inclusive. The dashed line denotes the propagator for C even
fields, q, Σu, and Σs; the gluon line, for r.
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ln ¼
1

Nc

XNc

a¼1

exp

�
i
2π

3
qa

�
: ð119Þ

The ln can be expressed in terms of loops in various
irreducible representations. We shall not need the detailed
form. All that matters here is that those which wrap around
a multiple of Nc times include the identity representation.
At small temperatures, these terms are nonzero, and so
dominate.
To eliminate the contribution of such “baryonic” loops,

we construct a quantity for which lNc
cancels. Notice that

to second and fourth order, the baryon number suscep-
tibilities are

χB2 ¼ 2Ncm2

9π2T2

X∞
n¼1

ð−1Þnþ1K2

�
nm
T

�
ln; ð120Þ

χB4 ¼ 2Ncm2

81π2T2

X∞
n¼1

ð−1Þnþ1n2K2

�
nm
T

�
ln: ð121Þ

For three colors the difference between the two is

χB2 − χB4 ≈
2m2

27π2T2

�
8K2

�
m
T

�
l1 − 5K2

�
2m
T

�
l2 þ � � �

�
:

ð122Þ

The contribution from the loop l3 cancels in the difference.
One can show that l2 ¼ l1ð3l1 − 2Þ, so at small temper-
ature, χB2 − χB4 is proportional to the loop, l1. There are also
terms ∼l4;l5 and so on in Eq. (122), but these are
numerically small.
In Fig. 15 we plot this difference as a function of the

temperature. The chiral matrix model agrees very well with
the lattice results up to temperatures of ∼200 MeV, and
then goes more quickly to a constant value than the lattice
data. In contrast, HTL resummation gives essentially a
constant value [14]. More surprising, a sigma model, which
includes chiral symmetry restoration but not the change in
the Polyakov loop, is much higher than the lattice data. As
can be seen from the panel on the right-hand side, this

FIG. 15. The difference between the second and forth order baryon number susceptibilities as a function of the temperature.

FIG. 14. The fourth order baryon number susceptibility as a function of the temperature. The left panel shows the results in the chiral
matrix (χ −M) model, compared to a σ model, HTL resummation [14], and numerical simulations on the lattice. The right panel shows
contributions to the chiral matrix model; only those from Fig. 13 are shown, which are not inclusive.
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difference of susceptibilities is nearly proportional to the
Polyakov loop.

C. Sixth order susceptibilities

We conclude with results for the sixth order baryon
susceptibility. Some of the diagrams which contribute are
illustrated in Fig. 16. We only show the diagrams with
up to two quark loops. We note, however, that the
diagrammatic method is not particularly useful for comput-
ing the susceptibilities. Instead, direct numerical evaluation
was used.
The results are shown in Fig. 17. There are preliminary

results available on the lattice, but none are continuum
extrapolated, and so we do not show these. The results of
HTL resummation are very small [14]. This is expected: in
perturbation theory the pressure is μ4 times a power series
in the coupling constant. Thus contributions to χB6 are
suppressed at least by powers of g2.
What is not evident is not in contrast to a σ model,

the chiral matrix model shows a strong nonmonotonic
behavior, with a large amplitude of oscillation. The
σ model behaves similarly, but occurs below Tχ, and is
almost an order of magnitude smaller than the chiral
matrix model.

VII. ALTERNATE MODELS

The principle problem with the chiral matrix model is
that while most quantities agree well with lattice results,
that for the Polyakov loop, Fig. 8, does not.
Consequently, in this section we consider alternate

models, where we fix the value of the Polyakov loop to
agree with the results from numerical simulations. We then
compute various quantities, and consider if the agreement is
better or worse than with our original model. In all cases,
we find that the agreement is worse. We discuss this further
in the Conclusions, Sec. VIII.

A. Pure gauge theory

We start with the theory without dynamical quarks. In
Sec. III we took the nonperturbative gluon potential from
Refs. [19,20], where it is assumed that the only terms are
even powers of temperature, ∼T4, T2, and T0. The simplest
generalization is then to assume arbitrary powers of
temperature.
In order to fit the Polyakov loop, we use an observation

of Megias, Ruiz Arriola, and Salcedo [67]. They showed
that except close to Td, the expectation value of the
Polyakov loop is close to an exponential in 1=T2,
hli ∼ e−#T

2
d=T

2

. Numerical simulations by Gupta, Hübner,

r r

r r

(c)(b)(a)

(d)

FIG. 16. Contributions to the sixth order baryon number susceptibility χB6 : (a) the one particle irreducible and (b-d) the one particle
reducible. Only diagrams with two quark loops and less are shown. Diagrams up to two quark loops are shown only. The dashed line

denotes the propagator of ~ϕ ¼ ðq;Σu;ΣsÞ. The propagator has off-diagonal elements.

FIG. 17. The sixth order baryon number susceptibility as a function of the temperature, in the chiral matrix model (χ −M), a sigma
model, and HTL resummation [14].
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and Kaczmarek show this holds for both three colors [68];
Mykkanen, Panero, and Rummukainen show it is valid for
two to six colors [69]. At large T, then, hli − 1 ∼ 1=T2.
While a matrix model will not give an exponential behavior
of the Polyakov loop in any natural way, at least at large T
this parametrization indicates that hqi ∼ 1=T.
The perturbative gluon potential is fixed by perturbation

theory to be that of Eq. (29). For r ¼ 0, this potential
involves

V4ðq; 0Þ ≡ V4ðqÞ ¼
2

3
q2
�
1 −

10

9
qþ 1

3
q2
�
: ð123Þ

We assume that we use the same kind of functions as
before, Eq. (33). Thus we also need

V2ðq; 0Þ ≡ V2ðqÞ ¼
2

3
qð2 − qÞ: ð124Þ

We then generalize the potential of Eq. (33) by assuming
that the coefficients of these functions involves not just T2,
but arbitrary powers of temperature, T3, T2, and T:

Vgl
nonðqÞ ¼ 4π2

3
T4
d

�
ðαt3 þ βt2 þ γtÞV2ðqÞ

þ ðα0t3 þ β0t2 þ γ0tÞV4ðqÞ þ
2

15
c3t2

�
; ð125Þ

where

t ¼ T
Td

: ð126Þ

Consider the behavior of this model at high temperature,
where q is small. The dominant behavior is given by
balancing the perturbative potential, ∼T4V4 ∼ T4q2,
against the nonperturbative term, ∼T3V2 ∼ T3q. This gives

hqi ∼ 1=T at large T, which as we discussed above is
suggested by measurements of the renormalized Polyakov
loop.
Following Refs. [19,20], we impose two conditions.

The first is that the pressure (approximately) vanishes at the
critical temperature. This can be used to determine the
constant term, ∼c3:

c3 ¼
1

27
ð47 − 20α0 − 20β0 − 20γ0Þ: ð127Þ

The second condition is given by requiring that the
transition occurs at Td.
The previous potential, Eq. (33), starts with three

coefficients, which then reduce to one free parameter.
The new model begins with seven parameters, which
reduce to five free parameters. By some trial and error,
we are led to the values

α ¼ −0.403376; α0 ¼ −1.00819;

β ¼ −2.58495; β0 ¼ −8.6023;

γ ¼ 1.12179; γ0 ¼ 5.57084: ð128Þ

The results for the Polyakov loop and the interaction
measure, ðe − 3pÞ=T4, are shown in Fig. 18. Given the
plethora of parameters, it is hardly surprising that we can fit
both the Polyakov loop and the pressure at all temperatures
above Td.
We then adopt the same approach as before to include

dynamical quarks. The results are shown in Fig. 19. The
results are not close to those of the lattice, with the peak
in the interaction measure in the new matrix model at a
much higher value, ∼6 instead of ∼4, and at a significantly
larger temperature, ∼250 MeV instead of ∼200 MeV. This
should be compared to the results in our original matrix
model, Fig. 5; while these are not perfect, they are far closer
than those in the new matrix model of Fig. 19.

FIG. 18. Results from the previous matrix model (MM), Eq. (33), and in the new matrix model (NewMM), Eqs. (125) and (128). With
five free parameters in the New MM, as opposed to one in the MM, good fits for both the Polyakov loop, in the left panel, and for the
interaction measure, ðe − 3pÞ=T4, in the right panel, can be obtained.
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As before, the value of the Yukawa coupling is y ¼ 5,
with little sensitivity to varying the Yukawa coupling by
∼10%. We have also computed the chiral order parameter
and the susceptibility for light quarks. This shows that the
temperature for the chiral crossover in the new matrix
model is Tχ ∼ 186 MeV, which is significantly higher than
the lattice value of T lattice

χ ∼ 155 MeV.
This shows that for the pressure and the transition

temperature, that assuming a model which fits the
Polyakov loop in the pure gauge theory gives a worst fit
to these quantities in QCD. Needless to say, this is under the
assumption that there are no new nonperturbative terms in
the gluon potential. We could certainly fit both the pressure
and loop in QCD by allowing new nonperturbative terms in
the gluon potential which are dependent upon presence of
quarks. Since we already have a model with five param-
eters, fitting the pressure and loop in QCD with even more
parameters does not seem particularly noteworthy.

B. The Polyakov loop and baryon susceptibilities

To emphasize the physics, then, in this section we
assume that the value of the Polyakov loop is given by
the value from the lattice. We show in this section that in
doing so, there is a large and persistent disagreement with
the baryon susceptibilities.
Taking the Polyakov loop from the lattice and computing

with our chiral model, we find that the chiral crossover
temperature is like that in the previous section, and is too
large, Tχ ∼ 191 MeV. For the time being we ignore this to
compute the second order baryon susceptibility, χB2 . Our
computation is not complete, because we cannot compute
the diagram including “r” exchange, which is the diagram
on the right-hand side of Fig. 10. Nevertheless, as seen

from the diagram on the right-hand side of Fig. 11, this
contribution is generally small, and so we assume it can be
neglected.
We present the results in Fig. 20. The overall trend of the

results is easy to understand. Because of confinement, χB2
vanishes in the confined phase, and equals 1=3 for ideal
quarks. Thus being deeper in the confined phase decreases
χB2 . This is exactly what is shown in Fig. 20: while the
results in our chiral matrix model are slightly higher
than those from the lattice, the results with a chiral model
which fits the Polyakov loop from the lattice are much
lower than the results from χB2 on the lattice. For example, at
T ¼ 200 MeV, our chiral matrix model is too high by
about ∼10%; in contrast, the value computed from the
lattice Polyakov loop is smaller than the lattice χB2 by
about half.
Thus perhaps the problem is that Tχ is too high.

Motivated by including the pion degrees of freedom, by
hand we adjust the mass squared in the linear sigma model
to fit Tχ to be 155 MeV, as on the lattice. We find that a fit

m2 → m2

�
1þ 0.1

�
T
fπ

�
2
�
; ð129Þ

suffices: the coefficient of 0.1 is chosen to obtain
Tχ ¼ 155 MeV.
The results in Fig. 21 show that while this approach

moves χB2 upward, closer to the lattice results, it is not by
much. As in Fig. 20, fitting to the lattice Polyakov loop
gives a result in which χB2 is rather far from the lattice
results.

FIG. 19. Results for ðe − 3pÞ=T4 for the new matrix model,
Eqs. (125) and (128), with dynamical quarks. The result is farther
from the lattice values than our original model, see Fig. 5.

FIG. 20. The second order baryon number susceptibility, χB2 , in
a model where the Polyakov loop is fitted directly from the
lattice, χ − L. This model gives Tχ ∼ 191 MeV, instead of
T lattice
χ ¼ 155 MeV. Results in our chiral matrix model are shown

in χ −M; these are much closer to the lattice data, LQCD.
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We have also computed higher order baryon suscep-
tibilities, and find similar results. We also computed using
the model of the previous section, and find that the baryon
susceptibilities are uniformly farther from the lattice results
than in our original chiral matrix model.
We compare our analysis with those of the Functional

Renormalization Group (FRG) [42–46]. In the FRG, the
loop approaches unity quickly, as in the chiral matrix
model; for the pure gauge theory, see Fig. 1 of Ref. [42].
Herbst, Luecker, and Pawlowski argued that corrections to
the FRG modify this so that the loop is much closer to the
lattice, Fig. 6 of Ref. [44]. In QCD, though, Fu and
Pawloski computed the baryon susceptibilities [45,46],
and find good agreement with the lattice. This requires,
however, that the loop is relatively large at Tχ : from
Fig. 7 of Ref. [46], hli ∼ 0.4 at Tχ . This agrees with
our conclusions in this section.

VIII. CONCLUSIONS

The analysis in the previous section shows that the
baryon susceptibilities can be a sensitive test of how
quickly QCD deconfines.
For light quarks, the baryon susceptibilities are clearly

tied to the restoration of chiral symmetry. This suggests that
a sensitive test of deconfinement would be to measure the
second order baryon susceptibility for a relatively heavy
quark. The quark cannot be too heavy, or the entire signal is
Boltzmann suppressed. To illustrate this, we show in
Fig. 22 χB2 in our chiral matrix model, versus the results
for free, deconfined quarks, with q ¼ 0. For such a heavy
quark, the approximate restoration of chiral symmetry at

Tχ ¼ 155 MeV should not be of relevance. Nevertheless, at
this temperature there is a large difference between the two
curves, by more than a factor of two.
Thus we suggest that it may be useful to measure χB2 for a

heavy quark in QCD. In the lattice, this heavy quark can be
treated in the valence approximation, which should sim-
plify the analysis.
In this vein, we comment on the difference between the

second order chiral susceptibilities for light and strange
quarks. Bellwied, Szabolcs, Fodor, Katz, and Ratti [12]
have described this difference as due to a “flavor hierarchy”
between light and strange quarks. In our chiral matrix
model, the difference between the two is simply a conse-
quence that because the strange quark is heavier, χ2 tends to
lag behind that for a heavier quark. In any case, measuring
the susceptibility for a test quark should enable one to
disentangle the effects of chiral symmetry restoration
versus deconfinement.
Indeed, one can view the discrepancy between the chiral

matrix model and the Polyakov loop more generally. In our
model, the approximate restoration of chiral symmetry for
light quarks is closely coincident with deconfinement,
Fig. 6. Notably, at the chiral crossover temperature, the
Polyakov loop is large, ∼0.5. Similarly, the peaks in the
susceptibilities for the chiral order parameter for light
quarks coincide with the peak for the loop susceptibilities,
Fig. 6. Moreover, as demonstrated in Secs. VI and VII, this
is also consistent with the baryon susceptibilities, which
approach their ideal values rather quickly, certainly by
temperatures of ∼300 MeV.
In contrast, the value of the renormalized Polyakov loop

[3,4] from the lattice is extremely small at Tχ , hli ∼ 0.1.
That is, chiral symmetry is restored in a phase which is
nearly confined, not deconfined. If taken at face value, this

FIG. 21. The second order baryon number susceptibility, χB2 , in
a model where the Polyakov loop is fitted directly from the
lattice, χ − L, and where the mass parameter in the sigma model
is tuned by hand, Eq. (129), so that Tχ ¼ 155 MeV. Results in
our chiral matrix model are shown in χ −M; these are much
closer to the lattice data, LQCD.

FIG. 22. The baryon susceptibility to second order for a heavy
test quark, m ¼ 500 MeV. The solid black line is in our chiral
matrix model, the dotted line, for free quarks.
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indicates that even for μ ¼ 0, chiral symmetry is restored
in a quarkyonic phase [47]. Even by temperatures of
200 MeV, the Polyakov loop is still very small,
hli ∼ 0.3. It is hard to understand why the quark suscep-
tibilities are close to their ideal values at relatively low
temperatures, ∼300 MeV, if the renormalized Polyakov
loop indicates the theory is still close to confining.
We have not settled this question here, but it demon-

strates that the thermodynamic behavior of QCD is more
involved than naive prejudice might suggest.
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Note added.—There is significant overlap between our
analysis and that of Kovacs et al. [70], who use a Polyakov
loop model coupled to both scalars and vector mesons.
While the details of our analyses differ, they also find that
the value of the Polyakov loop in their model ismuch larger
than that measured by lattice simulations.

APPENDIX A: INTEGRALS IN THE SEMI-QGP

In this appendix we collect some useful integrals.
The trace at zero temperature is defined in Eq. (6). The

basic integral for a single massive field is given in Eq. (7).
For two fields whose masses differ, the corresponding
integral is

tr
1

ðK2 þm2
1ÞðK2 þm2

2Þ
����
T¼0

¼ þ 1

16π2

�
1

ϵ
þ 1

m2
1 −m2

2

�
m2

1 log

�
μ2

m2
1

�

−m2
2 log

�
μ2

m2
2

��
− 1þ logð4πÞ − γ

�
: ðA1Þ

Taking m1 → m2, this reduces to Eq. (7).
At nonzero temperature the trace is defined in Eq. (12).

In this case we need to compute for Q ≠ 0 as well. To
compute the integrals, it is useful to Fourier transform the
propagator in k0 space to that in imaginary time, τ:

1

K2
c þm2

¼
Z

1=T

0

dτ
eik

c
0
τ

2E
ðð1 − ~nqðEÞÞe−Eτ − ~n−qðEÞeþEτÞ;

ðA2Þ

where E is the energy,

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
; ðA3Þ

and ~nqðEÞ is the Fermi-Dirac statistical distribution func-
tion with an (imaginary) chemical potential 2πiq,

~nqðEÞ ¼
1

eE=T−2πiq þ 1
: ðA4Þ

The term at zero temperature is obviously due to the
piece independent of the ~n’s, the 1 in 1 − ~nqðEÞ. For
future reference, ~nðEÞ is just the usual Fermi-Dirac function.
The advantage of this method is that the sum over k0 is

trivial: it gives a delta function in τ, leaving an integral over
the spatial momentum. For example, the equation of motion
for σ, and the pion self-energy, involves

tr
1

K2
c þm2

¼ tr
1

K2 þm2

����
T¼0

−
1

4π2

Z
∞

0

dk
k2

E
ð ~nqðEÞ þ ~n−qðEÞÞ: ðA5Þ

We note that by using Eq. (A4), to regularize the integral we
need to continue the spatial integral to 3 − 2ϵ dimensions,

tr
1

K2 þm2

����
T¼0

¼ μ2ϵ
Z

d3−2ϵk
ð2πÞ3−2ϵ

1

2E
: ðA6Þ

The result is identical to that in 4 − 2ϵ dimensions.
The sum of Fermi-Dirac statistical distribution functions

for q and −q is

1

2
ð ~nqðEÞþ ~n−qðEÞÞ¼

cosð2πqÞeE=T þ1

e2E=T þ2cosð2πqÞeE=T þ1
: ðA7Þ

For the equation of motion of the q field, the integral
which enters is

tr
k0c

K2
c þm2

: ðA8Þ

To evaluate this, it is easiest to write

k0c ¼ −i
∂
∂τ e

ik0cτ; ðA9Þ

and then to integrate by parts in the τ integral. In this way,
we find

tr
k0c

K2
c þm2

¼ 1

4π2

Z
∞

0

dkk2ðiÞð ~nqðEÞ − ~n−qðEÞÞ: ðA10Þ

The term at zero temperature vanishes, because the integral
is then odd in k0. The difference of the Fermi-Dirac
statistical distribution functions is
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ð−iÞð ~nqðEÞ − ~n−qðEÞÞ ¼
2 sinð2πqÞeE=T

e2E=T þ 2 cosð2πqÞeE=T þ 1
:

ðA11Þ

For a given q, each Fermi-Dirac statistical distribution
function ~nqðEÞ is complex. However, we shall show that
uniformly what enters is either a sum of distribution

functions, as ~nq þ ~n−q in Eq. (A7), or i times the difference
of distribution functions, as ið ~nq − ~n−qÞ in Eq. (A11). In all
cases, in the end what enters is manifestly real, and so the
complexity of ~nq does not cause any problems, at least for
the quantities which we compute herein.
For the self energies, there are several integrals which

enter. We start with the simplest,

tr
1

ðK2
c þm2Þ2 ¼ −

∂
∂m2

tr
1

K2
c þm2

¼ tr
1

ðK2 þm2Þ2
����
T¼0

−
1

8π2

Z
∞

0

dk
k2

E3

�
~nqðEÞ

�
1þ E

T
ð1 − ~nqðEÞÞ

�
þ ðq → −qÞ

�
: ðA12Þ

For this integral we also need the sum of the Fermi-Dirac
statistical distribution functions

1

2
ð ~nqðEÞð1 − ~nqðEÞÞ þ ðq → −qÞÞ

¼ eE=Tðcosð2πqÞðe2E=T þ 1Þ þ 2eE=TÞ
ðe2E=T þ 2 cosð2πqÞeE=T þ 1Þ2 : ðA13Þ

It is useful to make a comment about infrared diver-
gences. At zero temperature, the integral tr1=ðK2 þm2Þ2
has a logarithm in mass, ∼m4 logðμ=mÞ, Eq. (7). This is
evident, as ∼

R
d4K=ðK2 þm2Þ2 has both ultraviolet and

infrared divergences.
The ultraviolet divergence is unchanged at nonzero

temperature, but the nature of the infrared divergence
changes. To isolate the infrared divergence, for a Fermi-
Dirac statistical distribution function we can take the
energy E to vanish. At q ¼ 0, ~nð0Þ ¼ 1=2. At q ≠ 0, the
sum of ~n’s satisfies the same identity,

~nqð0Þ þ ~n−qð0Þ ¼ 1; q ≠
1

2
: ðA14Þ

[The restriction that q ≠ 1=2 is necessary because then
the Fermi-Dirac statistical distribution function becomes
Bose-Einstein, with nðEÞ ∼ T=E at small E. In practice,
for three colors q ≤ 1=3, so this never presents a prob-
lem.] From Eq. (A12) there is then an infrared divergence
from

−
1

8π2

Z
∞

0

dk
k2

E3
ð ~nqðEÞ þ ~n−qðEÞÞ

∼ −
1

8π2

Z
T

m

dk
k
∼ −

1

16π2
log

�
T2

m2

�
: ðA15Þ

Comparing with Eq. (7), we see that the logarithm in
mass, ∼m4 logðmÞ, cancels identically, and is replaced by

a logarithm in temperature, ∼m4 logðTÞ [36]. In all, when
m ≪ T,

tr
1

ðK2 þm2Þ2
����
m≪T

¼ þ 1

16π2

�
1

ϵ
þ log

�
μ2

T2

�
þ log

�
4

π

�
þ γ

�
: ðA16Þ

This expression is only valid for masses much less than
the temperature. It is easy to understand why a logarithm
in mass is replaced by one in temperature. At zero
temperature the only infrared cutoff is the mass. At
nonzero temperature, for fermions with q ≠ 1=2 the
temperature acts as an infrared cutoff, so that one can
smoothly take the limit of m → 0 without effect.
We shall not need Eq. (A16), as in general the masses we

consider are on the order of the temperature. In this case, it
is more useful to compute the part at zero temperature
analytically, and the part at nonzero temperature numeri-
cally. However, this expression illustrates the necessity of
including terms at zero temperature. Otherwise we would
include terms with a a logarithm of the mass which properly
are not there.
The susceptibility with respect to a real quark chemical

potential, and the q self-energy involves the integrals

−tr
1

K2
c þm2

þ tr
2E2

ðK2
c þm2Þ2 : ðA17Þ

At zero temperature this term vanishes,Z
d3−2ϵk
ð2πÞ3−2ϵ

�
−

1

2E
þ 2E2

�
−

∂
∂m2

�
1

2E

�
¼ 0: ðA18Þ

This is most reasonable, since we do not expect any
ultraviolet divergence for the quark susceptibility, or from
fluctuations in A0 ∼ q. Thus the only contribution is at
nonzero temperature,
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− tr
1

K2
c þm2

þ tr
2E2

ðK2
c þm2Þ2 ¼ −

1

4π2

Z
∞

0

dkk2ð ~nqðEÞð1 − ~nqðEÞÞ þ ðq → −qÞÞ: ðA19Þ

There is also a mixing between the σ channel and q,

tr
k0c

ðK2
c þm2Þ2 ¼

1

4π2T

Z
∞

0

dk
k2

E
ðiÞð ~nqðEÞð1 − ~nqðEÞÞ − ðq → −qÞÞ; ðA20Þ

where

ðiÞð ~nqðEÞð1 − ~nqðEÞÞ − ðq → −qÞÞ ¼ −
sinð2πqÞeE=Tðe2E=T − 1Þ

ðe2E=T þ 2 cosð2πqÞeE=T þ 1Þ2 : ðA21Þ

For mesons such as kaons, with one strange and one light quark, we require integrals such as

tr
1

ðK2
c þm2

1ÞðK2
c þm2

2Þ
¼ tr

1

ðK2 þm2
1ÞðK2 þm2

2Þ
����
T¼0

−
1

8π2

Z
∞

0

dk
k2

E1E2

�
1

E1 þ E2

ð ~nqðE1Þ þ ~nqðE2ÞÞ −
1

E1 − E2

ð ~nqðE1Þ − ~nqðE2ÞÞ þ ðq → −qÞ
�
;

ðA22Þ

where

E1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

1

q
; E2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

2

q
: ðA23Þ

Naturally one can check that this reduces to Eq. (A12) as
m1 → m2.

APPENDIX B: MESON MASSES
AT FINITE TEMPERATURE

In this appendix, we list the results for the thermal meson
masses used in computing Fig. 3. The pion mass is given by

m2
π ¼

∂Vqk
u

∂Σ2
u
− cAΣs þ 2λΣ2

u þm2 ¼ ĥu
Σu

: ðB1Þ

As at zero temperature, the equations of motion were used
to obtain the final expression, m2

π ¼ ĥu=Σu, and do this
consistently in what follows. To ease the notation, we also
redefine the symmetry breaking field as

ĥu ¼ hu þ Σ0
u
∂2

∂Σ2
u
Vqk;T
u : ðB2Þ

The last term is due to our symmetry breaking term at
nonzero temperature. The corresponding expression for ĥs is

ĥs ¼ hs þ Σ0
s
∂2

∂Σ2
s
Vqk;T
s : ðB3Þ

The kaon mass is

m2
K ¼ ĥu þ ĥs

Σu þ Σs
: ðB4Þ

The masses of the K�
0 and a0 are

m2
K�

0
¼ ĥs − ĥu

Σs − Σu
; ðB5Þ

m2
a0 ¼

1

2

∂2

∂Σ2
u
V̂qk
u þ cAΣs þ 6λΣ2

u þm2; ðB6Þ

where

V̂qk
f ¼ Vqk

f − Σ0
f

∂
∂Σf

Vqk;T
f : ðB7Þ

The sigma and f0 masses are given by

m2
σ ¼

1

2

�
m2

σ00 þm2
σ88 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

σ00 −m2
σ88Þ2þ4m4

σ08

q 	
; ðB8Þ

m2
f0
¼ 1

2

�
m2

σ00 þm2
σ88 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

σ00 −m2
σ88Þ2þ4m4

σ08

q 	
; ðB9Þ

where

m2
σ00 ¼

1

3

∂2

∂Σ2
u
V̂qk
u þ 1

6

∂2

∂Σ2
s
V̂qk
s −

2

3
cAð2Σu þ ΣsÞ

þ 2λð2Σ2
u þ Σ2

sÞ þm2; ðB10Þ

m2
σ08 ¼

1

3
ffiffiffi
2

p ∂2

∂Σ2
u
V̂qk
u −

1

3
ffiffiffi
2

p ∂2

∂Σ2
s
V̂qk
s

þ
ffiffiffi
2

p

3
cAðΣu − ΣsÞ − 2

ffiffiffi
2

p
λðΣ2

s − Σ2
uÞ; ðB11Þ
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m2
σ88 ¼

1

6

∂2

∂Σ2
u
V̂qk
u þ 1

3

∂2

∂Σ2
s
V̂qk
s þ 1

3
cAð4Σu − ΣsÞ

þ 2λð2Σ2
s þ Σ2

uÞ þm2: ðB12Þ

Finally, the η and η0 meson masses are obtained from the
expressions at zero temperature, Eqs. (73) and (76) by
replacing hf → ĥf.
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