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We propose to study at the Large Hadron Collider (LHC) the inclusive production of a pair of hadrons
(a “dihadron” system) in a kinematics where two detected hadrons with high transverse momenta are
separated by a large interval of rapidity. This process has much in common with the widely discussed
Mueller-Navelet jet production and can also be used to access the dynamics of hard proton-parton
interactions in the Regge limit. For both processes large contributions enhanced by logarithms of energy
can be resummed in perturbation theory within the Balitsky-Fadin-Kuraev-Lipatov (BFKL) formalism with
next-to-leading logarithmic accuracy. The experimental study of dihadron production would provide an
additional clear channel to test the BFKL dynamics. We present here the first theoretical predictions for
cross sections and azimuthal angle correlations of the dihadrons produced with LHC kinematics.

DOI: 10.1103/PhysRevD.94.034013

I. INTRODUCTION

The record energy of proton-proton collisions and the
high luminosity of the LHC provide us with a unique
opportunity to study the dynamics of strong interactions in
an unexplored kinematic range. The production of two (the
most forward and backward) jets, separated by a large
interval of rapidity, was proposed by Mueller and Navelet
[1] as a tool to access the dynamics of semihard parton
interactions at a hadron collider. In theory such processes
are described using the Balitsky-Fadin-Kuraev-Lipatov
(BFKL) method [2], which allows one to resum to all
orders the leading (LLA) and the next-to-leading terms
(NLA) of the QCD perturbative series that are enhanced by
powers of large energy logarithms. For the Mueller-Navelet
jet production, the BFKL resummation with NLA accuracy
relies on the combination of two ingredients: the NLA
Green’s function of the BFKL equation [3,4] and the NLA
jet vertices [5–9]. NLA BFKL calculations of the cross
sections for the Mueller-Navelet jet process and also
predictions for the jet azimuthal angle correlations,
observables suggested earlier in Refs. [10,11], can be
found in Refs. [12–22]. Recently [23], the first measure-
ments of the azimuthal correlation of the Mueller-Navelet
jets at the LHC were presented by the CMS Collaboration
at

ffiffiffi
s

p ¼ 7 TeV. Further experimental studies of the
Mueller-Navelet jets at higher LHC energies and larger
rapidity separations are expected.
The important task of revealing the dynamical mecha-

nisms behind partonic interactions in the Regge limit,
s ≫ jtj, by the comparison of theory predictions with data,

can be better accomplished if some other observables,
sensitive to the BFKL dynamics, are considered in the
context of the LHC physics program. An interesting
option—the detection of three jets and four jets, well
separated in rapidity from each other—was recently sug-
gested in Ref. [24] and in Ref. [25].
In this paper we want to suggest a novel possibility, i.e.

the inclusive dihadron production

pðp1Þ þ pðp2Þ → h1ðk1Þ þ h2ðk2Þ þ X; ð1Þ

when the two detected hadrons have high transverse
momenta and are separated by a large interval of rapidity.
For this process, similarly to the Mueller-Navelet jet
production, the BFKL resummation in the NLA is feasible,
since the necessary item beyond the NLA BFKL Green’s
functions, i.e. the vertex describing the production of an
identified hadron, was obtained with NLA in Ref. [26]. It
was shown there that, after renormalization of the QCD
coupling and the ensuing removal of the ultraviolet
divergences, soft and virtual infrared divergences cancel
each other, whereas the surviving infrared collinear ones
are compensated by the collinear counterterms related to
the renormalization of parton densities (PDFs) for the initial
proton and parton fragmentation functions (FFs) describing
the detected hadron in the final state within collinear
factorization. All the theoretical requisites are thus fulfilled
to write down infrared-safe NLA predictions, thus making
this process an additional clear channel to test the BFKL
dynamics at the LHC. The fact that hadrons can be detected
at the LHC at much smaller values of the transverse
momentum than jets, allows one to explore a kinematic
range outside the reach of the Mueller-Navelet channel, so
that the reaction (1) can be considered complementary to
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Mueller-Navelet jet production, although sharing the same
theoretical framework.
We will give below the very first predictions for the cross

sections and azimuthal angle correlations of the process (1).
We will limit ourselves to presenting the main formulas, to
guarantee the reproducibility of our results, and postpone a
more detailed account about their derivation to a later
publication.
It is known that the inclusion of NLA terms has a very

large effect on the theory predictions for the Mueller-
Navelet jet cross sections and the jet azimuthal angle
distributions. Similar features are expected also for our
case of inclusive dihadron production. This results in a
large dependence of predictions on the choice of the
renormalization scale μR and the factorization scale μF.
Here we will take them equal, μR ¼ μF, and adopt the
Brodsky-Lepage-Mackenzie (BLM) scheme [27] for the
renormalization scale setting. In BLM the renormalization
scale ambiguity is eliminated by absorbing the nonconfor-
mal terms proportional to the QCD β0 function into the
running coupling. Such an approach was successfully used
(first in Ref. [16]) for a satisfactory description of the LHC
data on the azimuthal correlations of Mueller-Navelet jets
[23], obtained by the CMS Collaboration.

II. BFKL WITH BLM OPTIMIZATION

We consider the production, in high-energy proton-
proton collisions, of a pair of identified hadrons with large

transverse momenta, ~k21 ∼ ~k22 ≫ Λ2
QCD and large separation

in rapidity.
In collinear factorization we neglect power-suppressed

contributions, and therefore the proton mass can be taken to
be vanishing and the Sudakov vectors can be chosen to
coincide with the proton momenta p1 and p2, satisfying
p2
1 ¼ p2

2 ¼ 0 and 2p1 · p2 ¼ s. Then, the momentum of
each identified hadron can be decomposed as

k1;2 ¼ α1;2p1;2þ
~k21;2
α1;2s

p2;1þ k1;2⊥; k21;2⊥ ¼−~k21;2: ð2Þ

In the center-of-mass system, the longitudinal fractions α1;2
are related to the hadron rapidities by y1 ¼ 1

2
ln α2

1
s

~k21
and

y2 ¼ 1
2
ln

~k22
α2
2
s, which imply dy1 ¼ dα1

α1
and dy2 ¼ − dα2

α2
, if the

space part of the four-vector p1 is taken positive. The
differential cross section of the process (1) can be written as
follows:

dσ

dy1dy2dj~k1jdj~k2jdϕ1dϕ2

¼ 1

ð2πÞ2
�
C0 þ

X∞
n¼1

2 cosðnϕÞCn
�
;

ð3Þ
where ϕ ¼ ϕ1 − ϕ2 − π, and ϕ1;2 are the two hadrons’

azimuthal angles, while y1;2 and ~k1;2 are their rapidities

and transverse momenta, respectively. The eigenvalues of
the kernel of the BFKL equation and the expressions for the
hadron vertices are needed to calculate this cross section. In
LLA theBFKLeigenvalues, parametrized by the continuous
ν variable and the integer conformal spin parameter n, read

χðn; νÞ ¼ 2ψð1Þ − ψ

�
n
2
þ 1

2
þ iν

�
− ψ

�
n
2
þ 1

2
− iν

�
;

and the LLA hadron vertices,

c1ðn; ν; j~k1j;α1Þ

¼ 4

3
ð~k21Þiν−1=2

Z
1

α1

dx
x

�
x
α1

�
2iν−1

×

�
CA

CF
fgðxÞDh

g

�
α1
x

�
þ

X
a¼q;q̄

faðxÞDh
a

�
α1
x

��
; ð4Þ

c2ðn; ν; j~k2j; α2Þ ¼ ½c1ðn; ν; j~k2j; α2Þ��; ð5Þ

are given as an integral in the parton fraction x, containing
the PDFs of the gluon and of the different quark/antiquark
flavors in the proton, and the FFs of the detected hadron (for
more details, seeRef. [26]). It is known [28], that in theBLM
approach applied to semihard processes, we need to perform
a finite renormalization from the modified minimal sub-
traction ðMSÞ scheme to the physical momentum (MOM)
one:

αMS
s ¼ αMOM

s

�
1þ αMOM

s

π
T

�
; ð6Þ

with T ¼ Tβ þ Tconf ,

Tβ ¼ −
β0
2

�
1þ 2

3
I

�
;

Tconf ¼ 3

8

�
17

2
I þ 3

2
ðI − 1Þξþ

�
1 −

1

3
I

�
ξ2 −

1

6
ξ3
�
; ð7Þ

where I ¼ −2
R
1
0 dx

lnðxÞ
x2−xþ1

≃ 2.3439 and ξ is the gauge
parameter of the MOM scheme, which is fixed at zero in
the following. The optimal scale μBLMR is the value of μR that
makes the β0-dependent part in the expression for the
observable of interest vanish. In Ref. [20] some of us
showed that terms proportional to the QCD β0 function
are present not only in the NLABFKL kernel, but also in the
expressions for the NLAvertices (called “impact factors” in
the BFKL jargon). This leads to a nonuniversality of the
BLM scale and to its dependence on the energy of the
process. It was also found [20] that contributions propor-
tional to theNLA impact factors are universally expressed in
terms of the LLA impact factors of the considered process,
through the function fðνÞ, defined as follows:
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i
d
dν

ln

�
c1
c2

�
≡ 2½fðνÞ − ln ðj~k1jj~k2jÞ�: ð8Þ

Finally, the condition for the BLM scale setting was found
to be

Cβ
n ∝

Z
dðP:S:Þ

Z
∞

−∞
dνeYᾱ

MOM
s ðμBLMR Þχðn;νÞc1ðn; νÞc2ðn; νÞ

×

�
5

3
þ ln

ðμBLMR Þ2
j~k1jj~k2j

þ fðνÞ − 2

�
1þ 2

3
I

�

þ ᾱMOM
s ðμBLMR ÞY χðn; νÞ

2

�
−
χðn; νÞ

2
þ 5

3

þ ln
ðμBLMR Þ2
j~k1jj~k2j

þ fðνÞ − 2

�
1þ 2

3
I

���
¼ 0; ð9Þ

where ᾱs ¼ 3αs=π; the first term on the rhs of Eq. (9)
originates from the NLA corrections to the hadron vertices
and the second one from the NLA part of the kernel. Here
Y is the rapidity separation of two detected hadrons,
Y ¼ y1 − y2. We consider the coefficients integrated over
the phase space for two final-state hadrons,

Cn ¼
Z

dðP:S:ÞCnðy1; y2; k1; k2Þ; ð10Þ

where

Z
dðP:S:Þ ¼

Z
∞

k1;min

dj~k1j
Z

∞

k2;min

dj~k2j
Z

y1;max

y1;min

dy1

×
Z

y2;max

y2;min

dy2δðy1 − y2 − YÞ: ð11Þ

For the integrations over rapidities we use the limits,
y1;min ¼ −y2;max ¼ −2.4, y1;max ¼ −y2;min ¼ 2.4, that are

typical for the identified hadron detection at the LHC.
As minimum transverse momenta we choose k1;min ¼
k2;min ¼ 5 GeV, which are also realistic values for the
LHC. We observe that the minimum transverse momentum
in the CMS analysis [23] of Mueller-Navelet jet production
ismuch larger, kjet;min ¼ 35 GeV. In our calculations we use
the PDF set MSTW2008 NLO [29] with two different next-
to-leading-order (NLO) parametrizations for hadron FFs:
AKK [30] and HKNS [31]. We considered also the DSS
parametrization [32], but do not show the related results
here, since they would be hardly distinguishable from those
with the HKNS parametrization. In the results presented
below we sum over the production of charged light
hadrons: π�; K�; p; p̄.
In order to find the values of the BLM scales, we

introduce the ratios of the BLM to the “natural” scale
suggested by the kinematics of the process, μN ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~k1jj~k2j

q
, so that mR ¼ μBLMR =μN , and look for the values

of mR such that Eq. (9) is satisfied. Results are presented in
Fig. 1 as functions of Y for the first few values of n and for
the two values of the LHC center-of-mass energy. Then we
plug these scales into our expression for the integrated
coefficients in the BLM scheme (for the derivation see
Ref. [20]):

Cn ¼
Z

dðP:S:Þ
Z

∞

−∞
dν

×
eY

s
eYᾱ

MOM
s ðμBLMR Þ½χðn;νÞþᾱMOM

s ðμBLMR Þðχ̄ðn;νÞþTconf
3

χðn;νÞÞ�

× ðαMOM
s ðμBLMR ÞÞ2c1ðn; νÞc2ðn; νÞ

�
1þ ᾱMOM

s ðμBLMR Þ

×

�
c̄ð1Þ1 ðn; νÞ
c1ðn; νÞ

þ c̄ð1Þ2 ðn; νÞ
c2ðn; νÞ

þ 2Tconf

3

��
: ð12Þ
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FIG. 1. BLM scales for the dihadron production versus the rapidity interval Y for the two parametrizations of FFs and for all the
observables considered in this work.
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FIG. 2. Cross sections of the dihadron production at the LHC versus the rapidity interval Y for the two parametrizations of FFs
considered in this work: a)

ffiffiffi
s

p ¼ 7 TeV, b)
ffiffiffi
s

p ¼ 13 TeV. See the text for the definition of “natural” and “BLM” scales.
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FIG. 3. hcosϕi, hcos 2ϕi and hcos 3ϕi for dihadron production at ffiffiffi
s

p ¼ 13 TeV for the two parametrizations of FFs considered in this
work. See the text for the definition of “natural” and “BLM” scales.
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The coefficient C0 gives the total cross sections and the
ratios Cn=C0 ¼ hcosðnϕÞi determine the values of the
mean cosines, or azimuthal correlations, of the produced
hadrons. In Eq. (12), χ̄ðn; νÞ is the eigenvalue of the NLA
BFKL kernel [33] and its expression is given, e.g. in

Eq. (23) of Ref. [14], whereas c̄ð1Þ1;2 are the NLA parts of the
hadron vertices [26]. The evaluation of Eq. (12) requires a
complicated eight-dimensional numerical integration [the

expressions for c̄ð1Þ1;2 contain an additional longitudinal
fraction integral in comparison to the formulas for the
LLAvertices, given in Eqs. (4) and (5)]. Since the main aim
of this work is to stress the potential relevance of the
process we are proposing, rather than to give a full NLA
prediction, we will present our first results neglecting the

NLA parts of hadron vertices, i.e. putting c̄ð1Þ1;2 ¼ 0. This
reduces the expression on the rhs of Eq. (12) to a six-
dimensional integral, which is manageable for numerical
calculations using a FORTRAN code. In Fig. 2 we present
results for total cross sections at two values of the center-
of-mass LHC energy:

ffiffiffi
s

p ¼ 7 TeV and
ffiffiffi
s

p ¼ 13 TeV.
Figure 3 shows our predictions for the azimuthal correla-
tions at

ffiffiffi
s

p ¼ 13 TeV.
For comparison, we considered also larger values of Y,

similar to those used in the CMS Mueller-Navelet jets
analysis. In Fig. 4 we present the cross section, C0, and
hcosϕi in this larger Y interval, calculated at a center-
of-mass energy of

ffiffiffi
s

p ¼ 13 TeV and with the other settings
as in Fig. 3. These results may be of future reference for
CMS, LHCb or other experiments.

III. DISCUSSION AND OUTLOOK

We checked that in our numerical analysis the essential
values of x are not too small, x ∼ ½10−3 ÷ 10−2�, and even
bigger in the case of the larger Y intervals presented in
Fig. 4. This justifies our use of PDFs with the standard

DGLAP evolution. Note that our process is not a low-x one,
and similarly to the Mueller-Navelet jet production, we are
dealing with a dilute partonic system. Therefore possible
saturation effects are not important here, and the BFKL
dynamics appears only through resummation effects in the
hard scattering subprocesses, without influencing the
PDFs’ evolution.
Our results are obtained using both the AKK and HKNS

parametrizations for the hadron FFs. We see in Figs. 1 and 2
the sizable difference between predictions in these two
cases, which means that the FFs are not well constrained in
the required kinematic region. In a similar range the
difference between π� and K� AKK and HKNS FFs
was discussed recently in Ref. [34]. Our calculation with
the AKK FFs gives bigger cross sections, whereas the
difference between AKK and HKNS in Fig. 3 is small,
since the FF uncertainties are largely canceled in the
coefficient ratios describing the azimuthal angle correla-
tions. We do not present separate plots for azimuthal
correlations at

ffiffiffi
s

p ¼ 7 TeV because we found that the
difference between our predictions for these observables at
two LHC energies,

ffiffiffi
s

p ¼ 7 TeV and
ffiffiffi
s

p ¼ 13 TeV, is not
larger than 3%.
The general features of our predictions for dihadron

production are rather similar to those obtained earlier for
the Mueller-Navelet jet process. Although the BFKL
resummation leads to the growth with energy of the
partonic subprocess cross sections, the convolution of
the latter with the proton PDFs makes the net effect of a
decrease with Y of our predictions in Fig. 2. This is due to
the fact that, at larger values of Y, PDFs are probed
effectively at larger values of x, where they fall very fast.
For the dihadron azimuthal correlations we predict in Fig. 3
a decreasing behavior with Y. That originates from the
increasing amount of hard undetected parton radiation in
the final state allowed by the growth of the partonic
subprocess energy. The values of the BLM scales we
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FIG. 4. Cross sections and hcosϕi, for dihadron production at
ffiffiffi
s

p ¼ 13 TeV and larger rapidity intervals Y.
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found are much larger than μN , the scale suggested by the
kinematics of the process. For the BLM-to-natural scale
ratios we obtain rather large numbers, mR ∼ 35. These
values are larger than those obtained previously for similar
scale ratios in the case of the Mueller-Navelet jet produc-
tion process. The difference may be attributed to the fact
that, in the case of dihadron production, we have an
additional branching of the parton momenta (described
by the detected hadron FFs), and typical transverse
momenta of the partons participating in the hard scattering

turn out to be considerably larger than j~k1;2j, the momenta
of the hadrons detected in the final state. We found
that a typical value of the fragmentation fraction is
z ¼ αh=x ∼ 0.4, which explains the main source of the
difference between the values of the BLM scales in the case
of dijet and dihadron production. Another source is related
to the difference in the function fðνÞ, defined in Eq. (8),
which appears in the expression for the jet and hadron
vertex in these two reactions, and enters also the definition
of the BLM scale: fðνÞ is zero for the jets and nonzero in
the dihadron case.
Our predictions for dihadron production calculated in

LLA with the use of the natural scale μN and our NLA
results obtained with the BLM scale setting are different:
with NLA BLM we got much lower values of the cross
sections (see Fig. 2) and considerably larger predictions for
the hcos nϕi (see Fig. 3). For comparison, in Figs. 2 and 3
we show our NLA BLM predictions together with the
results we obtained in LLA, but using the large values of
the scales as determined with the BLM setting. The plots of
Figs. 2 and 3 show that the LLA results with BLM scales lie
closer to the NLA BLM ones than LLA results with natural
scales. The difference between NLA BLM and LLA with
BLM scale predictions is due to the account of NLA
corrections to the BFKL kernel in the former. In this paper
we did not include the known results for the NLA
corrections to the hadron vertices, and therefore our
NLA analysis is approximate. As the next stage, we plan

to incorporate the terms c̄ð1Þ1;2ðn; νÞ in our numerical code. At
present we can only rely on the experience gained with the
analysis of the similar Mueller-Navelet jet production
process, where it was shown that NLA effects coming
from the corrections to the BFKL kernel and to the jet
vertices are equally important. Therefore the difference
between our incomplete NLA BLM and LLA with BLM
scale results could be considered as a rough estimate of the
uncertainty of the present analysis.
The rapidity range we focused on here, Y ≤ 4.8, may

seem to be not large enough for the dominance of BFKL
dynamics. But we see, however, that in this range there are

large NLA BFKL corrections, thus indicating that the
BFKL resummation is playing here a nontrivial role. To
clarify the issue it would be very interesting to confront our
predictions with the results of fixed-order NLO DGLAP
calculations. But this would require new numerical analysis
in our semihard kinematic range, because the existing NLO
DGLAP results cover the hard kinematic range for the
energies of fixed target experiments; see for instance
Refs. [35,36].
In our calculation we adopted, somewhat arbitrarily, the

limit j~k1;2j ≥ 5 GeV for hadron transverse momenta. With
this choice we obtained large values of the process cross
sections, presented in Fig. 2. This makes us confident that
the inclusive production of two detected hadrons separated
by large rapidity intervals could be considered in forth-
coming analyses at the LHC.
Considering a region of lower hadron transverse

momenta, say j~k1;2j ≥ 2 GeV, would lead to even larger
values of the cross sections. But it should be noted that in
our calculation we use the BFKL method together with
leading-twist collinear factorization, which means that we
are systematically neglecting power-suppressed correc-
tions. Therefore, by going to smaller transverse momenta
we would enter a region where higher-twist effects must be
important. The applicability border for our approach could
be established either by comparing our predictions with
future data or by confronting it with some other theoretical
predictions which do include higher-twist effects. For the
last point, one can consider an alternative, higher-twist
production mechanism, related to multiparton interactions
in QCD (for a review, see Ref. [37]). The double-parton
scattering contribution to the Mueller-Navelet jet produc-
tion was considered in the papers [19] and [38], using
different approaches. It would be very interesting if similar
estimates were done also for the case of dihadron
production.
In conclusion, we believe that, even within the approxi-

mation adopted in our calculation and the systematic
uncertainties related to the scale-setting procedure, we
have provided enough evidence that the study of the
dihadron production can be successfully included in the
program of future analyses at the LHC and can improve our
knowledge about the dynamics of strong interactions in the
Regge limit.
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