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Motivated by the emerging possibilities to study threshold pion electroproduction at large momentum
transfers at Jefferson Laboratory following the 12 GeVupgrade, we provide a short theory summary and an
estimate of the nucleon axial form factor for large virtualities in the Q2 ¼ 1–10 GeV2 range using next-to-
leading-order light-cone sum rules.
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I. INTRODUCTION

The structure of the nucleon probed by the axial current
is described by two form factors that are conventionally
defined as

hNðp0Þjjaμ5jNðpÞi ¼ ūðp0Þ
�
γμGAðQ2Þ

þ ðp0 − pÞμ
2m

GPðQ2Þ
�
τa

2
uðpÞ; ð1:1Þ

where jaμ5 ¼ q̄γμγ5 τa

2
q is the SUð2Þ-flavor isovector axial

current, τa are the usual Pauli matrices, Q2 ¼ −ðp0 − pÞ2
is the invariant momentum transfer squared, and m ¼
ðmp þmnÞ=2 is the nucleon mass.
The axial form factor GAðQ2Þ can be determined either

from quasielastic neutrino scattering or from threshold pion
electroproduction (with the help of current algebra and
chiral perturbation theory). The experimental results and
theory methods used for their extraction at low-to-moderate
momentum transfers can be found in the excellent review in
Ref. [1] and need not be repeated here. All existing data at
Q2 ≲ 1 GeV2 can be described by the dipole formula

GAðQ2Þ ¼ gA
ð1þQ2=M2

AÞ2
; ð1:2Þ

where gA ¼ 1.2673ð35Þ is the axial-vector coupling con-
stant, and the parameter MA, the so-called axial mass, is
determined to be [1]

MA ¼ 1.026ð21Þ GeV ðneutrino scatteringÞ;
MA ¼ 1.069ð16Þ GeV ðelectroproductionÞ: ð1:3Þ

Taken literally, the difference between the two axial mass
determinations by these two techniques translates to a
difference of about 5% for the nucleon axial radius.
Resolution of this discrepancy is discussed in detail in
Refs. [1,2]. The induced pseudoscalar form factor GPðQ2Þ

is believed to be understood in terms of the pion pole
dominance up to small corrections [1].
It has been pointed out that the dipole ansatz can be

too restrictive, and hence the errors underestimated. This
affects potentially both small- and large-Q2 extrapolations.
The most recent neutrino data analysis in a broader Q2

region using a more flexible z parametrization is presented
in Ref. [3].
The motivation for our work comes from the emerging

possibilities to study threshold pion electroproduction at
large momentum transfers at Jefferson Laboratory follow-
ing the 12 GeV upgrade. Such data already exist for the
Q2 ∼ 2–4 GeV2 range [4] but up to now remain largely
unnoticed.
We recall that the extraction of the axial form factor

from pion electroproduction goes back to the classical low-
energy theorem of Nambu, Lurié and Shrauner for the
electric dipole amplitude E0þ at threshold [5,6]. In the strict
chiral limit mπ ¼ 0, this theorem is valid for arbitrary
momentum transfer Q2. However, the finite pion mass
corrections mπ=m≃ 1=7 are tricky. They can be calculated
reliably at small Q2 ∼ ð100 MeVÞ2 using the low-energy
effective theory [1,2], but they are model dependent beyond
this range. Several models for such corrections were
developed to connect low-energy theorems and data.
The extension to the large Q2 region is not straightfor-

ward, because the theoretical limits Q2 → ∞ and mπ → 0
do not commute, in general. In physics terms, the problem
is that at large momentum transfers the emitted pion cannot
be soft to both the initial and the final nucleon simulta-
neously. As a result, classical low-energy theorems are
expected to break down atQ2 ∼m3=mπ [7]: the initial-state
pion radiation occurs at time scales of order 1=m rather
than 1=mπ , necessitating the addition of contributions of
hadronic intermediate states other than the nucleon. The
analysis in Refs. [8,9] suggests that such corrections to the

transverse Eð−Þ
0þ amplitude remain small, of the order of

20%, in the whole region Q2 ∼ 1–10 GeV2 that is interest-
ing in view of the forthcoming JLAB12 experimental
program; whereas the longitudinal L0þ amplitude appears
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to be much more strongly affected. From this evidence, the
worst-case scenario seems to be that finite pion mass
corrections to the nucleon axial form factor extractions
from the threshold pion productions using low-energy
theorems can reach 30%. Such corrections can be, however,
estimated within models, so we expect that with some more
theory input the remaining uncertainty can be brought
below 10%–15%. Whereas this accuracy may not seem
attractive for the low-Q2 range, it is certainly interesting for
studies in the few-GeV region and will be challenging to
match with similar experimental precision. In our opinion,
such measurements would be very interesting, and the task
of this paper is to provide the reader with the corresponding
QCD expectations. To this end, we present a calculation of
the nucleon axial form factor for photon virtualities in the
Q2 ¼ 1–10 GeV2 range using next-to-leading-order (NLO)
light-cone sum rules.

II. LIGHT-CONE SUM RULES

It is generally accepted that hadron form factors in the
formal Q2 → ∞ limit are dominated by hard gluon
exchanges between the valence quarks at small transverse
separations. However, there is overwhelming evidence that
the hard rescattering regime is not achieved for realistic
momentum transfers accessible at modern accelerators, and
the so-called “soft” or Feynman-type contributions play the
dominant role. Soft contributions can be estimated using
the light-cone sum rule (LCSR) technique that is based on
the light-cone operator product expansion of suitable
correlation functions combined with dispersion relations
and quark-hadron duality. This technique is attractive
because it can be applied to all elastic and transition form
factors and involves the same universal nonperturbative
functions that enter the pQCD calculation; there is no
double counting and (almost) no new parameters.
The LCSRs for the electromagnetic nucleon form factors

have been derived in Refs. [10,11] to the leading order (LO)
and recently in Ref. [12] to the NLO in the QCD coupling.
For the axial form factor, only the LO results are avail-
able [11,13]. It turns out, however, that the NLO LCSRs
for the axial form factor do not require a new calculation
and can be obtained using the expressions presented in
Ref. [12] with minor modifications.
The starting point is the correlation function

Tμ5ðp; qÞ ¼ i
Z

d4xeiqxh0jTfηð0Þjμ5ðxÞgjPðpÞi; ð2:1Þ

where jPðpÞi is the proton state with momentum pμ,
p2 ¼ m2, and ηðxÞ is a suitable local operator with proton
quantum numbers (Ioffe current). The corresponding cou-
pling is h0jηð0ÞjPðpÞi ¼ λ1muðpÞ. For technical reasons, it
is more convenient to consider the neutral axial vector
current

jμ5 ¼
1

2
½ūγμγ5u − d̄γμγ5d�: ð2:2Þ

Following Ref. [10], we consider the “plus” projection of
the correlation function in the Lorentz and spinor indices
which can be parametrized by two invariant functions:

ΛþTþ5 ¼ pþ½mA5ðQ2; p02Þ þ q⊥B5ðQ2; p02Þ�γ5uþðpÞ;
ð2:3Þ

where p0 ¼ pþ q. The invariant functions can be calcu-
lated for large Euclidean momentaQ2;−p02 ≫ Λ2

QCD using
the light-cone OPE. The results can be written in the form
of a dispersion integral

AQCD
5 ðQ2;p02Þ¼1

π

Z
∞

0

ds
s−p02 ImAQCD

5 ðQ2;sÞþ���; ð2:4Þ

where ImAQCDðQ2; sÞ is given by the convolution of
perturbatively calculable coefficient functions CF

5 and
the matrix elements of three-quark operators at light-like
separations, F ðx; μFÞ, dubbed distribution amplitudes
(DAs):

ImAQCD
5 ¼

X
F

CF
5 ðx;Q2;s;μF;αsðμFÞÞ⊗F ðx;μFÞ: ð2:5Þ

The sum goes over all existing DAs of increasing twist;
x ¼ fx1; x2; x3g stands for the quark momentum fractions,
and μF is the factorization scale.
Leading-order (LO) expressions are available from

Ref. [11]; see Eq. (A.7) in that reference. For consistency
with our NLO calculation, we expand all kinematic factors
in the LO results in powers of m2=Q2 and neglect terms
Oðm4=Q4Þ. This truncation is also consistent with taking
into account contributions of twist 3, 4, 5 (and, partially,
twist 6) in the OPE. The NLO expressions for A5 can be
obtained from the results in Ref. [12] (see Appendix E)
with the following replacements:
(1) For the d-quark contribution, replace ed → 1=2.
(2) For the u-quark contribution, replace eu → 1=2

and interchange symmetric and antisymmetric parts
of the DAs: V1 ↔ −A1, V2 ↔ A2, V3 ↔ A3.

The sum rules are constructed by matching the QCD
representation (2.4) to the dispersion representation in
terms of hadronic states:

AQCD
5 ðQ2;p02Þ¼2λ1GAðQ2Þ

m2−p02

þ1

π

Z
∞

s0

ds
s−p02 ImAQCD

5 ðQ2;sÞþ���; ð2:6Þ

where it is assumed that contributions of nucleon reso-
nances and scattering states are effectively taken into
account by the QCD expression above a certain threshold,
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s0 ≃ ð1.5 GeVÞ2 (interval of duality). Applying the Borel
transformation p02 → M2 to get rid of the subtraction
constants and suppress higher-mass contributions, one
obtains the LCSR [10,11]

2λ1GAðQ2Þ ¼ 1

π

Z
s0

0

dseðm2−sÞ=M2

ImAQCD
5 ðQ2; sÞ ð2:7Þ

that we analyze in what follows [14].

III. RESULTS

The results are shown in Fig. 1, where on the left panel
we plot GAðQ2Þ in absolute normalization, and on the right
panel we plot the ratio ofGAðQ2Þ to the dipole formula (1.2)
with the axial mass MA ¼ 1.069 GeV corresponding to
the average value (1.3) from the pion electroproduction
measurements [1].
The LCSR for the axial form factor in Eq. (2.7) does not

contain free parameters. The results are shown for two
realistic models of the leading- and higher-twist nucleon
DAs, ABO1 (solid curves) and ABO2 (dashed curves),
defined in Table I of Ref. [12]. These models have been
obtained by combining the available lattice QCD con-
straints [15,16] with the fit to the electromagnetic proton
form factors, F1ðQ2Þ and F2ðQ2Þ; see Fig. 3 in Ref. [12].
The NLO corrections that are the subject of this work are
large and positive (up to 40%) at Q2 ¼ 1–2 GeV2 but
decrease (to below 15%) at larger momentum transfers
and change sign at Q2 ∼ 6 GeV2 for both DA models. In
addition to the uncertainty in the nonperturbative input,
there exist also intrinsic uncertainties of the LCSR
approach itself (factorization scale and Borel parameter
dependence, higher-order and higher-twist corrections,
etc.) that we estimate to be 10%–15%. We, therefore,

expect the overall accuracy of our predictions for the axial
form factor in the optimal range for this technique,
Q2 ∼ 3–10 GeV2, to be of the order of 20%–25%. We
show the results starting at Q2 > 1 GeV2. However,
experience with the LCSRs for B-decay and nucleon
electromagnetic form factors indicates that momentum
transfers in the 1–2 GeV2 range are still too low for a
fully quantitative treatment in this approach.
A compilation of the low-Q2 measurements can be found

in Ref. [1] (see also Ref. [3]). For the neutrino scattering, in
order not to overload the plot, we show the standard dipole
parametrization with the axial mass MA ¼ 1.026ð21Þ GeV
by the narrow shaded area—and, in addition, by a broader
shaded area extending to Q2 ¼ 4 GeV2, the 1σ envelope
from the recent analysis using a more general z para-
metrization that also includes newer deuterium data [3]. For
the same reason, we do not show “old” electroproduction
data except for the case of Ref. [17] in the range
Q2 ¼ 0.45–0.88 GeV2. The three shown sets of data points
correspond to the form factor extraction using the strict soft
pion limit (filled triangles) and two models for the hard
pion corrections (open triangles). The recent CLAS data [4]
are shown by filled squares. These results were obtained by
employing the low-energy theorem in the chiral limit and
extracting the E0þ multipole from the fit to the total cross
section γ�p → πþn at the energyW ¼ 1.11 GeV, closest to
the threshold. Our predictions for the large-Q2 region
match the existing neutrino scattering data at smaller
momentum transfers [3] very well, and are about 20%–
30% below the CLAS extraction from pion electroproduc-
tion in the soft pion limit [4]. Since the corrections to the
soft pion limit are expected to be negative [8,9,17] and can
well be in the 20% range, there is no contradiction. A more
detailed analysis of such corrections within realistic models
would be very welcome.
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FIG. 1. Axial form factor of the nucleon from LCSRs compared to the experimental data. Parameters of the nucleon DAs correspond
to the sets ABO1 and ABO2 in Table I of Ref. [12] for the solid and dashed curves, respectively. Borel parameter M2 ¼ 1.5 GeV2 for
ABO1 andM2 ¼ 2 GeV2 for ABO2. The dipole and z parametrizations of the neutrino scattering data are shown by the narrow (green)
and broad (orange) shaded regions, respectively. The data points are from the pion electroproduction experiments in Refs. [4,17]. For
more details, see text.
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To summarize, we argue that studies of pion electro-
production at threshold γ�p → πþn at large photon virtual-
ities accessible at the Jefferson Laboratory following the
12 GeV upgrade supplemented by the measurements of the
neutron magnetic form factor in the same Q2 range provide
one with a viable method to determine the axial proton form
factors with a theoretical accuracy that is currently limited
to 20%–30% but very likely can be improved in the future.
These results can be confronted with QCD predictions
based on LCSRs and, potentially, lattice QCD (e.g.
Refs. [18,19]) and Dyson-Schwinger equations [20],
although the extension to the large-Q2 region in both

approaches can be challenging. A combination of lattice
calculations with models can offer additional insights,
e.g. Ref. [21].
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