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We analyze the second-class current decays τ− → π−ηð0Þντ in the framework of chiral perturbation theory
with resonances. Taking into account π0-η-η0 mixing, the π−ηð0Þ vector form factor is extracted, in a model-
independent way, using existing data on the π−π0 one. For the participant scalar form factor, we have
considered different parametrizations ordered according to their increasing fulfillment of analyticity and
unitarity constraints. We start with a Breit-Wigner parametrization dominated by the a0ð980Þ scalar
resonance and after we include its excited state, the a0ð1450Þ. We follow by an elastic dispersion relation
representation through the Omnès integral. Then, we illustrate a method to derive a closed-form expression
for the π−η, π−η0 (and K−K0) scalar form factors in a coupled-channels treatment. Finally, predictions for
the branching ratios and spectra are discussed emphasizing the error analysis. An interesting result of this
study is that both τ− → π−ηð0Þντ decay channels are promising for the soon discovery of second-class

currents at Belle-II. We also predict the relevant observables for the partner ηð0Þl3 decays, which are extremely
suppressed in the Standard Model.
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I. INTRODUCTION

According to Weinberg [1], nonstrange weak (V − A)
hadronic currents can be divided into two types depending
on their G parity: (i) first-class currents, with the quantum
numbers JPG ¼ 0þþ; 0−−; 1þ−; 1−þ; and (ii) second-class
currents (SCCs), which have JPG ¼ 0þ−; 0−þ; 1þþ; 1−−.
The former completely dominate weak interactions since
there has been no evidence of the later in nature so far.
In the Standard Model (SM) SCCs come up with an

isospin-violating term which heavily suppresses the inter-
action and the eventual sensitivity to new physics [i.e., by a
charged Higgs contribution to the πηð0Þ scalar form factors]
may be enhanced.
One tentative scenario to look for such types of currents

is through the rare hadronic decays of the τ lepton τ− →
π−ηντ and τ− → π−η0ντ [2] for which some experimental
upper bounds already exist. For the π−η decay mode,
BABAR, Belle and CLEO Collaborations have reported the
branching ratio upper limits of 9.9 × 10−5 at 95% C.L. [3],
7.3 × 10−5 at 90% C.L. [4] and of 1.4 × 10−4 at 95% C.L.
[5], respectively. Actually, τ− → π−ηντ belongs to the
discovery modes list of the near future super-B factory
Belle II [6] for which we advocate the measurement.
Regarding the π−η0 channel, BABAR obtained a new upper

bound, 4.0 × 10−6 at 90% C.L. [7], that slightly improved
its previous value 7.2 × 10−6 at 90% C.L. [8]. Also CLEO
quoted the upper limit 7.4 × 10−5 at 90% C.L. [9] in the
nineties. Historically, τ− → π−ηντ decays attracted a lot of
attention at the end of the eighties when existing measure-
ments hinted at abnormally large branching fractions into
final states containing η mesons, and a preliminary
announcement by the HRS Collaboration advocated for
an Oð%Þ decay rate into the π−η decay mode, which was
against theoretical expectations [10]. Later on, the situation
settled [11] and these decays remained undiscovered even
at the first generation B factories BABAR and Belle, where
the background from other competing modes such as
τ− → π−π0ηντ [12,13] veiled the SCC signal. According
to our results, their discovery [through either of the τ− →
π−ηð0Þντ decay channels] should be finally possible at
Belle-II, thanks to the fifty times increased luminosity of
Belle-II [14] with respect to its predecessor. The imple-
mentation of theory predictions for these modes in the
TAUOLAversion used by the Belle Collaboration [15] will
help to accomplish this task.
From the theoretical perspective, the spin parity of the

π−ηð0Þ system, JP, is 0þ or 1− depending whether the system
is in S or Pwave, respectively. However, theG parity of the
system is −1, which is opposed to the vector current that
drives the decay in the SM. Therefore, the SðPÞ wave of
the π−ηð0Þ system gives JPG ¼ 0þ−ð1−−Þ, which can only be
realized through a SCC independently of possible

*rescriba@ifae.es
†sgonzalez@ifae.cat
‡proig@fis.cinvestav.mx

PHYSICAL REVIEW D 94, 034008 (2016)

2470-0010=2016=94(3)=034008(19) 034008-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.94.034008
http://dx.doi.org/10.1103/PhysRevD.94.034008
http://dx.doi.org/10.1103/PhysRevD.94.034008
http://dx.doi.org/10.1103/PhysRevD.94.034008


intermediate resonant states. Previous theoretical analysis
estimated the branching ratio to be of the order of 10−5 and
within the range 10−8 to 10−6 for the π−η and π−η0 modes,
respectively. In this work, we revisit these processes
benefited from our previous experiences in describing
dimeson τ decays data [16–22]. Here, the main subject of
our study is the theoretical construction of the participant
vector and scalar form factors. Our initial approach is
carried out within the framework of the chiral perturbation
theory (ChPT) [23] including resonances (RChT) [24].
On a second stage, we take advantage of the global analysis
of the Uð3Þ ⊗ Uð3Þ one-loop meson-meson scattering in
the frame of RChT performed in Ref. [25] to calculate the
scalar form factors from dispersion relations based on
arguments of unitarity and analyticity. In particular, we will
first take into account elastic final state interactions through
the Omnès solution [26] for describing the π−η and π−η0
scalar form factors (SFFs), respectively. Then, we consider
the effect of coupled channels in the former system for
studying inelasticities. Afterwards, wewill also consider the
K−K0 threshold, whose coupling to the intermediate scalar
resonance is presumably large [25], and couple it to both π−η
and π−η0 SFFs independently. Finally, the three coupled-
channels case will be addressed. Several ways of solving
coupled-channels form factors have been considered in the
literature; some use iterative methods [27–30], while others
employ closed algebraic expressions [31–38]. The second
alternative will be followed in this work. See also Ref. [39]
for a recent description based on dispersive techniques.
The paper is organized as follows. In Sec. II, we define

the hadronic matrix element in terms of the vector and
scalar form factors and give the expression for the differ-
ential decay width. In Sec. III, we derive the π−ηð0Þ vector
form factor (VFF) within RChT by considering mixing
within the π0-η-η0 system. In our approach, the VFFs
appear to be an isospin-violating factor times the π−π0

form factor for which we will employ its experimental
determination arising from the well-known first-class
current τ− → π−π0ντ decay. We devote Sec. IV to the
computation of the corresponding scalar form factors. We
start with a simple Breit-Wigner (BW) parametrization and
then consider a dispersion relation obeying unitarity, first in
the elastic single-channel case through the Omnès solution
and then taking into account coupled-channel effects. The
spectra and predictions for the branching ratios are given in
Sec. V. Also in this section, we will briefly discuss the

crossing symmetric ηð0Þl3 decays, η
ð0Þ → πþl−ν̄l ðl ¼ e; μÞ,

for which branching ratio predictions will be given as well.
Finally, we present our conclusions in Sec. VI.

II. HADRONIC MATRIX ELEMENT AND
DECAY WIDTH

The amplitude of the decay τ− → π−ηð0Þντ in terms of the
hadronic matrix element reads

M ¼ GFffiffiffi
2

p VudūðpντÞγμð1 − γ5ÞuðpτÞhπ−ηð0Þjd̄γμuj0i; ð1Þ

where the π−ηð0Þ matrix element of the vector current
follows the convention of Ref. [40],

hπ−ηð0Þjd̄γμuj0i ¼ cV
π−ηð0Þ

½ðpηð0Þ − pπ−ÞμFπ−ηð0Þ
þ ðsÞ

− ðpηð0Þ þ pπ−ÞμFπ−ηð0Þ
− ðsÞ�; ð2Þ

with cV
π−ηð0Þ ¼

ffiffiffi
2

p
, s ¼ q2 ¼ ðpηð0Þ þ pπ−Þ2, and Fπ−ηð0Þ

þð−Þ ðsÞ,
the two Lorentz-invariant vector form factors. However,

instead of Fπ−ηð0Þ
− ðsÞ, the scalar form factor Fπ−ηð0Þ

0 ðsÞ is
usually employed, which arises as a consequence of the
nonconservation of the vector current. That is, taking the
divergence on the left-hand side of Eq. (2) we get

hπ−ηð0Þj∂μðd̄γμuÞj0i ¼ iðmd −muÞhπ−ηð0Þjd̄uj0i
≡ iΔQCD

K0KþcSπ−ηð0ÞF
π−ηð0Þ
0 ðsÞ; ð3Þ

with cSπ−η ¼
ffiffiffiffiffiffiffiffi
2=3

p
, cSπ−η0 ¼ 2=

ffiffiffi
3

p
, and ΔPQ ¼ m2

P −m2
Q,

while on the right-hand side we have

iqμhπ−ηð0Þjd̄γμuj0i ¼ icV
π−ηð0Þ ½ðm2

ηð0Þ −m2
π−ÞFπ−ηð0Þ

þ ðsÞ
−sFπ−ηð0Þ

− ðsÞ�: ð4Þ

Then, by equating Eqs. (3) and (4), we link Fπ−ηð0Þ
− ðsÞ with

Fπ−ηð0Þ
0 ðsÞ through

Fπηð0Þ
− ðsÞ¼−

Δπ−ηð0Þ

s

�cS
πηð0Þ

cV
πηð0Þ

ΔQCD
K0Kþ

Δπ−ηð0Þ
Fπηð0Þ
0 ðsÞþFπ−ηð0Þ

þ ðsÞ
�
; ð5Þ

and the hadronic matrix element finally reads

hπ−ηð0Þjd̄γμuj0i ¼ cV
πηð0Þ

�
ðpηð0Þ − pπÞμ þ

Δπ−ηð0Þ

s
qμ
�
Fπηð0Þ
þ ðsÞ

þ cS
π−ηð0Þ

ΔQCD
K0Kþ

s
qμFπ−ηð0Þ

0 ðsÞ: ð6Þ

The advantage of the parametrization as given in Eq. (6) is

that the vector (scalar) form factor Fπ−ηð0Þ
þð0Þ ðsÞ is in direct

correspondence with the final PðSÞ-wave state, respec-
tively. Moreover, the finiteness of the matrix element at the
origin imposes1

1We will come back to Eq. (7) in Sec. V in order to check the
consistency of our input values.
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Fπ−ηð0Þ
þ ð0Þ ¼ −

cS
π−ηð0Þ

cV
π−ηð0Þ

ΔQCD
K0Kþ

Δπ−ηð0Þ
Fπ−ηð0Þ
0 ð0Þ: ð7Þ

Therefore, the differential decay width of the τ− → π−ηð0Þντ
decay as a function of the invariant mass of the π−ηð0Þ
system can be written as

dΓðτ−→ π−ηð0ÞντÞ
d

ffiffiffi
s

p ¼G2
FM

3
τ

24π3s
SEWjVudF

π−ηð0Þ
þ ð0Þj2

�
1−

s
M2

τ

�
2

×

��
1þ 2s

M2
τ

�
q3
π−ηð0Þ ðsÞj ~F

π−ηð0Þ
þ ðsÞj2

þ
3Δ2

π−ηð0Þ

4s
qπ−ηð0Þ ðsÞj ~Fπ−ηð0Þ

0 ðsÞj2
�
; ð8Þ

where qPQðsÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2−2sΣPQþΔ2

PQ

q
=2

ffiffiffi
s

p
, ΣPQ¼m2

Pþm2
Q

and

~Fπ−ηð0Þ
þ;0 ðsÞ ¼ Fπ−ηð0Þ

þ;0 ðsÞ
Fπ−ηð0Þ
þ;0 ð0Þ

ð9Þ

are the two form factors normalized to unity at the origin.
They encode the unknown strong dynamics occurring in
the transition. Their descriptions will be given in Secs. III
and IV, respectively. Regarding the global prefactors, we
employ SEW ¼ 1.0201 [41], accounting for short-distance
electroweak corrections, and Vud ¼ 0.97425ð8Þð10Þð18Þ
[42], while the normalization Fπ−ηð0Þ

þ ð0Þ is an isospin-
violating quantity of Oðmd −muÞ, whose value will be
deduced in the next section, which brings an overall
suppression explaining the smallness of the corresponding
decay widths. In fact, in the limit of exact isospin,mu ¼ md

and e ¼ 0, Fπ−ηð0Þ
þ ð0Þ ¼ 0 and these processes would be

forbidden in the SM.

III. π−ηð0Þ VECTOR FORM FACTOR

We derive the π−ηð0Þ vector form factor within the
context of RChT [24], which extends chiral perturbation
theory [23] by adding resonances as explicit degrees of
freedom. A short introduction to the topic can be
found in Ref. [43], where references concerning its
varied phenomenological applications are given. In
Refs. [19,20] we have also provided a short review of
the theory as applied to the computation of the vector
and scalar K−ηð0Þ form factors describing the decays
τ− → K−ηð0Þντ. In the present analysis, we would occa-
sionally refer the interested reader to the former references
though some comments will be given in the following for
consistency.

It is not straightforward to incorporate the dynamics of
the η and η0 mesons in a chiral framework (see, for instance,
Ref. [44]). The pseudoscalar singlet η0 is absent in SUð3Þ
ChPT and their effects are encoded in the next-to-leading
order low-energy constant L7. To take into account con-
sistently the effects of the singlet in an explicit way one
must perform a simultaneous expansion not only in terms
of momenta ðp2Þ and quark masses ðmqÞ but also in the
number of colors ð1=NcÞ. In this framework, known as
large-Nc ChPT [45], the singlet becomes a ninth pseudo-
Goldstone boson and the η-η0 mixing can be understood in a
perturbative manner.2 At lowest order, the physical states
ðη; η0Þ are related to the mathematical states ðη8; η0Þ in the
so-called octet-singlet basis by a simple two-dimensional
rotation matrix involving one single mixing angle. At the
same order, the four different decay constants related to
the η-η0 system are all equal to the pion decay constant in
the chiral limit. At next-to-leading order, however, besides
mass-matrix diagonalization one requires to perform first a
wave-function renormalization of the fields due to the
nondiagonal form of the kinetic term of the Lagrangian.
This two-step procedure makes the single mixing angle at
lowest order to be split in two mixing angles at next-to-
leading order.3 The magnitude of this splitting is given in
the octet-singlet basis by the difference of the FK and Fπ

decay constants, that is, a SUð3Þ-breaking correction [52].
At this order, now, the decay constants are all different due
to these wave-function–renormalization corrections. Being
this two-mixing angle scheme unavoidable at next-to-
leading order in the large-Nc chiral expansion, one can
express their associated parameters either in the form of
two mixing angles ðθ8; θ0Þ and two decay constants
ðf8; f0Þ or one mixing angle, the one appearing at lowest
order, and three wave-function–renormalization correc-
tions, appearing only at next-to-leading order. In this work,
we will follow the second option. Needless to say, the
mixing so far involves only the η and η0 mesons in the
isospin limit, but if isospin symmetry is broken, as it is our
case, the π0 is also involved, and instead of using one
mixing angle and three wave-function–renormalization
corrections we will need to use three lowest order mixing
angles, θηη0 for the η-η0, θπη for the π-η, and θπη0 for the π-η0

systems, respectively, and the corresponding six wave-
function–renormalization corrections. Since we are in the
context of RChT, these wave-function–renormalization

2In this simultaneous expansion the chiral loops are
counted as next-to-next-to-leading order corrections and thus
considered negligible [45]. This fact is in part corroborated
numerically.

3For a detailed explanation of the two-mixing angle scheme in
the large-Nc ChPT at next-to-leading order in the octet-singlet
basis, see, for instance, Appendix B in Ref. [46]. Several
phenomenological analyses using this basis or the so-called
quark-flavor basis are Refs. [47–49]. Other comprehensive
reviews are Refs. [50,51].
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corrections are assumed to be saturated by the exchange of
a nonet of scalar resonances and therefore expressed in
terms of the associated cd and cm coupling constants
(see below).
Because the size of isospin-breaking corrections due to

the light-quark mass difference are given in terms of the

ratio ðmd −muÞ=ms and hence very small, the two former
mixing angles involving the π0 can be well approximated
by their Taylor expansion at first order. Then, the orthogo-
nal matrix connecting the mathematical and physical states
at lowest order can be written as

0
B@

π0

η

η0

1
CA ¼

0
B@

1 επηcθηη0 þ επη0sθηη0 επη0cθηη0 − επηsθηη0

−επη cθηη0 −sθηη0
−επη0 sθηη0 cθηη0

1
CA ·

0
B@

π3

η8

η0

1
CA; ð10Þ

where επηð0Þ are the approximated π0-ηð0Þ mixing angles and
ðc; sÞ≡ ðcos; sinÞ. Using this parametrization for the rota-
tion matrix, we preserve the common η-η0 mixing descrip-
tion, when both επηð0Þ are fixed to 0, and the one for π-ηð0Þ

mixing, when both θηη0 and επη0ðÞ are set to 0. A detailed
illustration of this π0-η-η0 mixing can be found in
Ref. [53], from where we borrow the numerical values
ε̂πη ≡ επηðz ¼ 0Þ ¼ 0.017ð2Þ and ε̂πη0 ≡ επη0 ðz ¼ 0Þ ¼
0.004ð1Þ as a check of our results. For the η-η0 mixing
angle we take θηη0 ¼ ð−13.3� 0.5Þ° [54].4
As stated before, the π−ηð0Þ VFFs will be calculated in the

framework of RChT. There are four different types of
contributions in total. At leading order, there is the
contribution from the lowest order of large-Nc ChPT. At
next-to-leading order, there are, in addition, the contribu-
tion from the exchange of explicit vector resonances, the
so-called vacuum insertions and the wave-function–
renormalization contributions. The latter two are written
in terms of the explicit exchange of scalar resonances and
seen to cancel each other [38]. As a result, we obtain

Fπ−ηð0Þ
þ ðsÞ ¼ επηð0Þ

�
1þ

X
V

FVGV

F2

s
M2

V − s

�
; ð11Þ

where the prefactor denotes it occurs via π0-η-η0 mixing and
the parenthesis includes the direct contact term plus the
exchange of an infinite number of vector resonances
organized in nonets5 (FV and GV are the two coupling
constants of the Lagrangian of one nonet of vectors coupled
to pseudoscalars, MV the common nonet vector mass, and
F the pion decay constant in the chiral limit).
Interestingly, the term in parenthesis appearing in

Eq. (11) is nothing but what one would have obtained if
the π−π0 VFF had been computed instead. Hence, written

in this way, the π−ηð0Þ VFFs are given in terms of the well-
known π−π0 VFF (see, for instance, Refs. [18,56] for a

review). Their value at the origin is Fπ−ηð0Þ
þ ð0Þ ¼ επηð0Þ , and

as a consequence the normalized form factors are both the
same and equal to the normalized π−π0 one, that is,

~Fπ−η
þ ðsÞ ¼ ~Fπ−η0

þ ðsÞ ¼ ~Fπ−π0
þ ðsÞ: ð12Þ

The above relation allows us to implement the well-known
experimental data on the π−π0 VFF to describe the π−ηð0Þ
decay modes we are interested in. In particular, we employ
the latest experimental determination obtained by the Belle
Collaboration from the measurement of the decay
τ− → π−π0ντ,

6 which is shown in Fig. 1 (the set of data
is borrowed from Table VI of Ref. [58]). In this manner, we
are not only taking into account the dominant vector
resonant contribution given by the ρð770Þ, whose effect
is clearly seen from the neat peak around 0.6 GeV2, but
also the effects of higher radial excitations such as ρ0ð1450Þ
and ρ00ð1700Þ (see their manifestation in the form of a
negative interference with the ρ in the energy region
between 2 and 3 GeV2). An interesting check would be
then to compare these data with theoretical descriptions of
this form factor, such as the ones given by dispersion
relations, where the contributions of the different states can
be switched on and off, to discern the number of partici-
pating resonances [18,30].

IV. π−ηð0Þ SCALAR FORM FACTOR

Any description of a physical observable involving light
scalar mesons has been always controversial,7 and simple
model parametrizations do not typically succeed. In this
work, in order to construct a reasonable description of the
participant scalar form factors we will basically exploit two

4In Ref. [54], the value ϕηη0 ¼ ð41.4� 0.5Þ° is obtained in the
quark-flavor basis. However, at lowest order, this value is
equivalent in the octet-singlet basis to θηη0 ¼ ϕηη0 − arctan

ffiffiffi
2

p ¼
ð−13.3� 0.5Þ°.

5At leading order in 1=Nc at this stage, i.e., with an infinite
number of zero-width resonances [55].

6The contribution of the scalar form factor entering into the
π−π0 decay mode is weighted by Δ2

π−π0
, thus heavily suppressed

by isospin [57] and usually neglected.
7See, e.g., the “Note on scalar mesons below 2 GeV” in

Ref. [42] for a review.
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powerful theoretical arguments: the required analytical
structure of the form factor and the unitarity of the
scattering matrix. In what follows, we will tackle three
different parametrizations in increasing degree of
completeness.

A. Breit-Wigner approach

Our initial approach for describing the required π−ηð0Þ
SFF is, as in the case of the VFF, the RChT framework. In
the large-Nc limit, the octet of scalar resonances and the
singlet become degenerate in the chiral limit (with common
mass MS), and all them are collected in a nonet. The
calculation of these SFFs is performed again at next-to-
leading order in the simultaneous expansion in terms of
momenta and the number of colors, and the different
contributions to them are the lowest order one from
large-Nc ChPT and the three next-to-leading order ones
from RChT, which are, in order, the explicit exchange of
scalar resonances, the vacuum insertions, and the wave-
function–renormalization contributions. The resulting SFFs
are8

Fπ−ηð0Þ
0 ðsÞ¼cπ

−ηð0Þ
0

�
1−

8cmðcm−cdÞ
F2

2m2
K−m2

π

M2
S

þ4cm
F2

ðcm−cdÞ2m2
πþcdðsþm2

π−m2
ηð0Þ Þ

M2
S−s

�
; ð13Þ

where cπ
−η

0 ¼ cos θηη0 −
ffiffiffi
2

p
sin θηη0 and cπ

−η0
0 ¼ cos θηη0 þ

sin θηη0=
ffiffiffi
2

p
for the πη and πη0 channels, respectively, and

cdðmÞ are the couplings appearing in the derivative (mass)

terms of the Lagrangian involving the nonets of scalar and
pseudoscalar mesons. A similar analysis was done in
Ref. [29] for the Kπ, Kη and Kη0 SFFs. Once the QCD
asymptotic behavior of the form factors is imposed, that is,
they areOð1=sÞ for large s, which implies cd − cm ¼ 0 and
4cdcm ¼ F2, and hence cd ¼ cm ¼ F=2 [29], these can be
finally written as [59]

Fπ−ηð0Þ
0 ðsÞ ¼ cπ

−ηð0Þ
0

�
1þ Δπ−ηð0Þ

M2
S

�
M2

S

M2
S − s

; ð14Þ

and their value at the origin are

Fπ−ηð0Þ
0 ð0Þ ¼ cπ

−ηð0Þ
0

�
1þ Δπ−ηð0Þ

M2
S

�
: ð15Þ

These normalizations can now be incorporated into Eq. (7)
to give a prediction of the normalizations of the related
VFFs:

Fπ−η
þ ð0Þ¼−

cosθηη0 −
ffiffiffi
2

p
sinθηη0ffiffiffi

3
p ΔQCD

K0Kþ

Δπ−η

�
1þΔπ−η

M2
S

�

¼ cosϕηη0
m2

K0 −m2
Kþ −m2

π0
þm2

πþ

m2
η−m2

π−

�
1−

m2
η−m2

π−

M2
S

�
;

ð16Þ

and

Fπ−η0
þ ð0Þ¼−

sinθηη0 þ
ffiffiffi
2

p
cosθηη0ffiffiffi

3
p ΔQCD

K0Kþ

Δπ−η0

�
1þΔπ−η0

M2
S

�

¼ sinϕηη0
m2

K0 −m2
Kþ −m2

π0
þm2

πþ

m2
η0 −m2

π−

�
1−

m2
η0 −m2

π−

M2
S

�
;

ð17Þ

where the η-η0 mixing has been expressed for simplicity in
the quark-flavor basis, cosϕηη0 ¼ ðcos θηη0 −

ffiffiffi
2

p
sin θηη0 Þ=ffiffiffi

3
p

and sinϕηη0 ¼ ðsinθηη0 þ
ffiffiffi
2

p
cosθηη0 Þ=

ffiffiffi
3

p
, and ΔQCD

K0Kþ ¼
m2

K0 −m2
Kþ − Δm2

Kelm ¼ m2
K0 −m2

Kþ −m2
π0
þm2

πþ has
been estimated from the K0-Kþ mass difference corrected
for mass contributions of electromagnetic origin according
to Dashen’s theorem [60,61]. Comparing these VFFs
normalizations with those obtained after Eq. (11), one
finally gets

επηð0Þ ¼ cosϕηη0 ðsinϕηη0 Þ
m2

K0 −m2
Kþ −m2

π0
þm2

πþ

m2
ηð0Þ −m2

π−

×

�
1 −

m2
ηð0Þ −m2

π−

M2
S

�
; ð18Þ

for the πη and πη0 cases, respectively. It is worth noticing
that the former equation is equivalent up to higher-order
isospin corrections to Eq. (31) in Ref. [53] after the
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F
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FIG. 1. π−π0 vector form factor as obtained by the Belle
Collaboration [58] (black circles). The red solid curve is an
interpolation of these data.

8As a starting point, we assume there is only a nonet of scalar
resonances. Later on, we will include a second one. Moreover, we
use in the calculation of the form factors isospin-averaged πðKÞ
masses mπðKÞ which will be in the following identified as their
corresponding charged masses, being the differences higher-
order isospin-breaking corrections.
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identification z≡ ðfu − fdÞ=ðfu þ fdÞ ¼ −ðm2
K0 −m2

Kþ−
m2

π0
þm2

πþÞ=M2
S. The former equality allows for an esti-

mate of this parameter, z≃ −5 × 10−3 forMS ¼ 980 MeV,
in agreement with the conclusion in Ref. [53] that
z < 0.015. From Eq. (18), we can also provide a numerical
determination of the πηð0Þ mixing angles, επη ¼
ð9.8� 0.3Þ × 10−3 and επη0 ¼ ð2.5� 1.5Þ × 10−4, which
are far, specially in the latter case, from their infinite
scalar mass limit, ε̂πη ≡ επηðMS → ∞Þ ¼ 0.014 and ε̂πη0≡
επη0 ðMS → ∞Þ ¼ 0.0038, in accordance with Ref. [48].
These values were calculated using ϕηη0 ¼ ð41.4� 0.5Þ°
[54]. As seen, επη0 is 1 order of magnitude smaller than ε̂πη0
caused by the strong suppression due to mη0 ≃MS.
The description of the SFFs in the form of Eq. (14)

begins to fail in the vicinity of the resonance region. It
breaks down for s ¼ M2

S which corresponds to an on-shell
intermediate scalar resonance. A common and simple way
to cure this limitation is by promoting the scalar propagator
1=ðM2

S − sÞ to 1=ðM2
S − s − iMSΓSðsÞÞ, where the corre-

sponding energy-dependent width computed within RChT
in this case reads

ΓSðsÞ ¼ ΓSðM2
SÞ
�

s
M2

S

�
3=2 hðsÞ

hðM2
SÞ
; ð19Þ

with [σPQðsÞ ¼ 2qPQðsÞ=
ffiffiffi
s

p
× Θðs − ðmP þmQÞ2Þ is a

kinematical factor]

hðsÞ ¼ σK−K0ðsÞ þ 2cos2ϕηη0

�
1þ Δπ−η

s

�
2

σπ−ηðsÞ

þ 2sin2ϕηη0

�
1þ Δπ−η0

s

�
2

σπ−η0 ðsÞ; ð20Þ

for the a0ð980Þ resonance case coupling dominantly to the
πη system.9 In this way, we have incorporated into our
description some elastic and inelastic unitarity corrections
through resumming the imaginary part of the π−ηð0Þ and
K−K0 self-energy loop insertions into the propagator,
accounting for rescattering effects of the final state hadrons.
Nonetheless, this description is not strictly unitary neither
in its elastic form (since we have accommodated inelas-
ticities into the description) nor in an inelastic fashion

which would require to couple the channels in a more
elaborated way. In addition, this description is not fully
analytic in the sense that the real part of the loop functions
has been neglected. Usually, this option, known as the BW
representation, is widely used in the literature even though
it might not be an appropriate choice for describing data (as
we have pointed out in Refs. [19,66]). Notwithstanding, we
have considered it interesting to discuss it as a starting
point. Using the values MS ¼ ð980� 20Þ MeV and ΓS ¼
ð75� 25Þ MeV [42] for the BWmass and BWwidth of the
a0ð980Þ resonance, the SFFs at the origin, see Eq. (15), are
predicted to be Fπη

0 ð0Þ ¼ 0.92� 0.02 and Fπη0
0 ð0Þ ¼

0.05� 0.03, respectively. Once these normalizations are
taken into account, the resulting normalized SFFs are
identical in the RChT framework, that is, ~Fπ−η

0 ðsÞ ¼
~Fπ−η0
0 ðsÞ. In Fig. 2, we provide their graphical account

by considering a0ð980Þ as the mediated scalar resonance.
The above description can be generalized to take into

consideration further resonances with the same quantum
numbers of the a0ð980Þ. In particular, we will also include
the a0ð1450Þ resonance whose effects, in spite of its mass,
could be noticeable within the available phase space. For
the same reason, however, no more resonances will be
considered henceforth. The SFFs in the framework of
RChT including two resonances then read as

Fπ−ηð0Þ
0 ðsÞ ¼ cπ

−ηð0Þ
0 ×

�
1 −

8cmðcm − cdÞ
F2

2m2
K −m2

π

M2
S

þ 4cm
F2

ðcm − cdÞ2m2
π þ cdðsþm2

π −m2
ηð0Þ Þ

M2
S − s

−
8c0mðc0m − c0dÞ

F2

2m2
K −m2

π

M2
S0

þ 4c0m
F2

ðc0m − c0dÞ2m2
π þ c0dðsþm2

π −m2
ηð0Þ Þ

M2
S0 − s

�
; ð21Þ
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Breit Wigner a0 980

FIG. 2. Normalized π−ηð0Þ scalar form factors as obtained from
the Breit-Wigner approach described in Sec. IVA. The gray error
band accounts for the (uncorrelated) uncertainty on the mass and
width of the a0ð980Þ resonance.

9Current understanding favors that the meson multiplet including this resonance does not survive in the large-Nc limit (see e.g.
Refs. [62–65]). However, since this Breit-Wigner–like model is only considered for illustrative purposes, this fact will be ignored as it is
usually done in this approach.
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where S and S0 correspond to the a0ð980Þ and a0ð1450Þ
resonances, respectively. The short-distance requirement
that the form factors go to zero for s → ∞ then implies the
constraints [29]:

4cdcm þ 4c0mc0d ¼ F2;

cm
M2

S
ðcm − cdÞ þ

c0m
M2

S0
ðc0m − c0dÞ ¼ 0: ð22Þ

Not so much is known on the exact values of the couplings
c0d;m (and, to some extent, on cd;m). The estimate with only
one scalar resonance led to cd ¼ cm and thus it seems
plausible to keep this constraint in the case of two
resonances. One immediate consequence of the constraint
and the second relation in Eq. (22) is c0d ¼ c0m. Then, the
SFFs can be expressed, with cm and c0m fulfilling
c2m þ c02m ¼ F2=4, as

Fπ−ηð0Þ
0 ðsÞ ¼ cπ

−ηð0Þ
0

�
1þ 4

F2

�
c2m

M2
S − s

þ c02m
M2

S0 − s

�
ðsþm2

π −m2
ηð0Þ Þ

�

→
cπ

−ηð0Þ
0

ðM2
S − s − iMSΓSðsÞÞðM2

S0 − s − iMS0ΓS0 ðsÞÞ
�
ðM2

S − sÞðM2
S0 − sÞ

þ 4

F2
½c2mðM2

S0 − sÞ þ c02mðM2
S − sÞ�ðsþm2

π −m2
ηð0Þ Þ

�
; ð23Þ

once the energy-dependent widths have been incorporated
into the scalar propagators. Regarding the numerical
values, we employ cm ¼ 41.9 MeV [67] for the scalar
coupling, and MS0 ¼ ð1474� 19Þ MeV and ΓS0 ¼
ð265� 13Þ MeV [42] for the a0ð1450Þ mass and width,
respectively. In Fig. 3, the normalized πηð0Þ SFFs obtained
from Eq. (23) in the approximation of considering two
resonances are shown and compared with the single-
resonance case. Notice now that the normalized
expressions depend on the mode. While in the πη case,
one clearly sees a dominant peak corresponding to the
a0ð980Þ followed by a second smaller one in association
with the a0ð1450Þ, in the πηð0Þ case, two similar peaks
located around both resonances are found.

B. Elastic dispersion relation: Omnès integral

A two-meson form factor is an analytic function in the
whole complex plane except for the branch cut originated

as soon as the energy reaches the threshold for producing
the first intermediate state where an imaginary part is then
developed. The case in which the intermediate state is
exactly the same as the final one is known as elastic and the
corresponding cut is called the unitary or elastic cut. For
the case at hand this cut starts at sth ¼ ðmπ− þmηð0Þ Þ2 and
the corresponding (elastic) unitarity relation for the scalar
form factor reads

ImFπ−ηð0Þ
0 ðsÞ ¼ σπ−ηð0Þ ðsÞFπ−ηð0Þ

0 ðsÞtπ−ηð0Þ�10 ðsÞ; ð24Þ

where tπ
−ηð0Þ

10 ðsÞ is the unitarized elastic π−ηð0Þ partial wave,
with I ¼ 1 and J ¼ 0, of the scattering amplitude to be
discussed later. Analyticity, which relates the real and
imaginary parts of the form factor, is ensured through
the use of a dispersion relation whose solution leads to the
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FIG. 3. Normalized π−η (left plot) and π−η0 (right plot) scalar form factors as obtained from the Breit-Wigner approach described in
Sec. IVA including two resonances (red dashed curves) or a single resonance (solid black curves). The red error bands account for the
(uncorrelated) uncertainty on the mass and width of the a0ð980Þ and a0ð1450Þ resonances.
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well-known Omnès integral [26]. When one subtraction is
performed, the SFF can be written as10

Fπ−ηð0Þ
0 ðsÞ¼Fπ−ηð0Þ

0 ð0Þexp
�
s
π

Z
∞

sth

ds0
δπ

−ηð0Þ
10 ðs0Þ

s0ðs0− s− iεÞ
�
; ð25Þ

where δπ
−ηð0Þ

10 is the phase shift associated to tπ
−ηð0Þ

10 and the
value of the SFF at the origin has been chosen for
convenience as the subtraction constant (the subtraction
point is then set to zero).
The so-called dispersive representation has been wide

and successfully employed to describe lots of phenomena
and, in particular, data on exclusive hadronic tau decays
[16–22,30,69,70].11 Unfortunately, for the π−ηð0Þ decay
modes there is a lack of experimental data either on the
phase shifts or the decays spectra. However, in the elastic
region Watson’s theorem [72] states that the form factor
phase equals that of the corresponding elastic scattering
amplitude. Thus, we can access this phase through the
identification

ϕπ−ηð0Þ ðsÞ≡ δπ
−ηð0Þ

10 ðsÞ ¼ arctan
Imtπ

−ηð0Þ
10 ðsÞ

Retπ
−ηð0Þ

10 ðsÞ
: ð26Þ

Regarding the scattering amplitudes π−η → π−η and
π−η0 → π−η0, we have considered convenient here to use
the expressions obtained within the global analysis of the
Uð3Þ ⊗ Uð3Þ one-loop meson-meson scattering ampli-
tudes in ChPT including resonances, carried out in
Ref. [25]. In that work, the partial-wave amplitudes have
been properly deduced and unitarized through the N=D

method [73,74], whose general simplified perturbative
solution reads

tPQIJ ðsÞ ¼ σPQðsÞNPQ
IJ ðsÞ

1þ gPQðsÞNPQ
IJ ðsÞ ; ð27Þ

and finally applied to fit the available scattering ampli-
tudes’ phase shifts. In Eq. (27), PQ refers to the interacting
meson-meson system in question, gPQðsÞ are the dimeson
one-loop scalar functions defined in Eq. (33) of Ref. [25]
and NPQ

IJ ðsÞ contain the expressions of the partial-wave
amplitudes up to next-to-leading order.
In Fig. 4, we represent the elastic SFFs obtained using

Eq. (25) and the results from the updated analysis of
Ref. [67] as the input values of the theory: couplings,
masses, etc. Specifically, we are using the values in
Eq. (A12) of this reference, neglecting error correlations
since we ignore them. For the normalizations, as stated, we
have chosen Fπ−η

0 ð0Þ ¼ 0.92 and Fπ−η0
0 ð0Þ ¼ 0.05 from

Eq. (15).12 The plots show a resonant region at around
1.4 GeV which may be attributed to the effect of the
a0ð1450Þ resonance. This presence and the absence of a
corresponding peak for the a0ð980Þ is explained because
the former resonance appears in the s channel of the
scattering amplitude while the latter only in the crossed
t and u channels.
It can be verified that these SFFs can also be written in a

closed expression as [29,32,75]

Fπ−ηð0Þ
0 ðsÞ ¼

Y
j

1

ð1 − s=szjÞ
Fπ−ηð0Þ
0 ð0Þ

ð1þ gπ−ηð0Þ ðsÞNπ−ηð0Þ
10 ðsÞÞ

: ð28Þ

The szj are the locations of the zeros of the inverse of the

denominator functions,Dπ−ηð0Þ ðsÞ≡ 1þ gπ−ηð0Þ ðsÞNπ−ηð0Þ
10 ðsÞ,

which have to be removed in the form factors. In our
specific case, the zero is placed at sz1 ¼ 1.9516 GeV2
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FIG. 4. Normalized π−η (left plot) and π−η0 (right plot) scalar form factors as obtained from the elastic dispersion relation (Omnès
integral) described in Sec. IV B. The grey error bands account for the (uncorrelated) uncertainty on the input values from Ref. [67].

10The dispersive integral is uniquely specified up to a poly-
nomial ambiguity. This ambiguity is canceled by the subtraction
function [68]. Both can be fixed from theory, for instance ChPTor
RChT, or experimental data. If the form factor is “well behaved”
at high energies, that is lims→∞F0ðsÞ ¼ 0, the subtraction
function can be fixed to a constant.

11See also Ref. [71] for the interesting case of Bl4 decays.

12These inputs could be checked with lattice QCD simulations
incorporating isospin-breaking corrections.
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corresponding to the bare (squared) mass of the scalar octet
S8 [67]. As a consistency check, we have verified that the
results obtained with Eq. (25) are reproduced using the
closed expression in Eq. (28). Inspired by the works of
Refs. [31–38,76–80], we propose to obtain the analogous
expression of Eq. (28) valid for the description of the
coupled-channels case. In this respect, our closed-form
solution for this case giving the participant SFFs appears
numerically advantageous (instead of the more common
iterative solution of the coupled integro-differential set of
equations) for the Monte Carlo event generator perfor-
mance [81], specially if our expressions are to be used for
fitting the resonance parameters appearing in the form
factors. The method is detailed in the Appendix.

C. Two coupled channels

We first consider the two coupled-channels case involv-
ing the π−η and π−η0 cuts. The two-meson loop function
and the required partial-wave scattering amplitudes are
organized in symmetric matrices given by

gðsÞ ¼
�
gπ−η 0

0 gπ−η0

�
;

N10ðsÞ ¼
�
Nπ−η→π−η Nπ−η→π−η0

Nπ−η0→π−η Nπ−η0→π−η0

�
; ð29Þ

where each entry of the matrixNðsÞ (omitting the IJ quantum

numbers) reads NijðsÞ¼TOðp4Þ
ij ðsÞ −giðsÞðTOðp2Þ

ij ðsÞÞ2,
for i, j ¼ 1, 2, with TOðp4Þ

ij ðsÞ referring to the corresponding
partial-wave amplitude atOðp4Þ, which includes theOðp2Þ
term, the Oðp4Þ contributions arising from wave-function
renormalization of the fields and, finally, the explicitOðp4Þ
resonance-exchange and one-loop diagrams in the s
channel as well as in the crossed t and u channels.
Written in this way, the double counting of loop contri-
butions in the s channel is avoided. For the sake of clarity,
the Eq. (A17) in the Appendix applied to this particular
case would read

� Fπ−η
0 ðsÞ

Fπ−η0
0 ðsÞ

�
¼ 1

Det½DIJðsÞ�
×

�
1þ gπ−η0 ðsÞNπ−η0→π−η0 ðsÞ −gπ−ηðsÞNπ−η→π−η0 ðsÞ
−gπ−η0 ðsÞNπ−η0→π−ηðsÞ 1þ gπ−ηðsÞNπ−η→π−ηðsÞ

�� Fπ−η
0 ð0Þ

Fπ−η0
0 ð0Þ

�
; ð30Þ

where the subtraction point s0 has been set to zero in
analogy with Refs. [16,19,21]. The determinant of the
matrix DIJðsÞ, defined in Eq. (A18) of the Appendix, may
vanish for some values of s. To get rid of these possible
zeros we factorize them in the same way as has been done
in Eq. (28) for the single-channel case. These singularities
can be understood as dynamically generated resonances
appearing after the rescattering of the pseudoscalar mesons
involved. In our case, Det½DIJðsÞ� is seen to vanish again at
s ¼ 1.9516 GeV2 for the same reason given in the elastic
case.
In Fig. 5, we display the results obtained from Eq. (30).

The π−η SFF coupled to π−η0 (left plot) and vice versa (right
plot) are compared to their respective elastic case. As seen,
the π−η SFF develops a thin peak at around 1.4 GeV
followed by a hard drop. We can also observe that,
generically, the neat effect of coupling the π−η0 channel
into the π−η SFF is small. On the contrary, the impact of the
π−η channel in the description of the π−η0 SFF is large,
the resonance region is highly enhanced.Needless to say, the
coupled-channels effects start at the π−η and π−η0 thresh-
olds, respectively, and in case these inelasticities were
switched off the elastic description would be recovered.
Analogously, we can consider the K−K0 cut which is

located between the π−η and π−η0 thresholds. A priori, one
would expect the intermediate ūd-like scalar to strongly
couple to the K−K0 system [82]. We emphasize that the
value at the origin of the K−K0 SFF, as computed from

RChT in a similar way to Eq. (14) for the π−ηð0Þ ones, is
FK−K0

0 ð0Þ ¼ 1 (this can be easily understood observing that
the kaon mass difference is very small compared to the
chiral symmetry breaking scale), and therefore its weight
may be relevant. This is corroborated in Fig. 6, where the
π−ηð0Þ SFFs coupled to K−K0 are shown. Notice that this
time the effect on the π−η SFF is sizable. After a small dip at
the π−η threshold one can see a small peak at the K−K0

threshold and a significant enhancement between 1.3 and
1.45 GeV with respect to the elastic case. This is one
interesting result which may help to unveil the somewhat
“exotic” nature of the scalar resonances that couple to the ūd
operator. Suggestions like a tetraquark interpretation as well
as molecular KK̄ threshold states exist in the literature.13

D. Three coupled channels

Let us now turn to the case in which the π−η, π−η0, and
K−K0 cuts are considered simultaneously.14 This requires
us to perform a calculation when the three channels are

13See, e.g., the “Note on scalar mesons below 2 GeV” in
Ref. [42].

14The π−π0 cut is safely neglected because no resonance
contributions to this channel are allowed at first order in isospin
breaking. However, its low-energy limit has been derived in
Ref. [83] in a model-independent way because of its importance
in producing a sizable CP-violating asymmetry in the dipion tau
decays, albeit only very close to the ππ threshold.
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coupled to each other. In this case, the matrices encoding
the corresponding scalar loop functions and partial-wave
amplitudes are given by

gðsÞ ¼

0
B@

gπ−η 0 0

0 gπ−η0 0

0 0 gK−K0

1
CA; ð31Þ

and

N10ðsÞ¼

0
B@

Nπ−η→π−η Nπ−η→π−η0 Nπ−η→K−K0

Nπ−η0→π−η Nπ−η0→π−η0 Nπ−η0→K−K0

NK−K0→π−η NK−K0→π−η0 NK−K0→K−K0

1
CA; ð32Þ

respectively. From the analogous expression to Eq. (30) for
the case of three coupled channels, which we do not quote
explicitly, we obtain the π−η SFF coupled to π−η0 and
K−K0 as well as the π−η0 SFF coupled to π−η and K−K0. In
Fig. 7, we provide a graphical account of these results
compared with all previous cases. For the πη SFF, the three
coupled-channels solution follows closely the one obtained
coupling the πη and K−K0 channels, except for the region
between 1.2 and 1.3 GeV where a dip appears first. On the

contrary, for π−η0 SFF, the three coupled-channels solution
does not appear to be significantly dominated in the
inelastic region by any of the two coupled-channels results.
In addition, we get the K−K0 SFF coupled to the π−ηð0Þ
systems as shown in Fig. 8. In this case, the three coupled-
channels solution resembles very much the π−η channel
coupled to K−K0 apart from the region between 1.3 to
1.4 GeV where the peak in the two-channels case almost
disappears in the three-channels solution. Finally, it is
worth mentioning that the effects of the πηð0Þ → πðπÞγ
channels should be considered as well. However, the
devoted discussion of these contributions in Ref. [83]
reveals that either subleading isospin-breaking effects of
the ρ contribution to the one-pion final state or phase space
considerations in the two-pion channel suppress these
channels enough so as to neglect them at the current level
of uncertainty.

V. SPECTRA AND BRANCHING
RATIO PREDICTIONS

The vector and scalar form factors as described in
Secs. III and IV finally enter Eq. (8) to predict the partial
width of the decays τ− → π−ηð0Þντ. The corresponding
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FIG. 6. Normalized π−η (left plot) and π−η0 (right plot) scalar form factors as obtained from Eq. (A17) in the Appendix (blue dotted
curves) compared to the corresponding elastic cases (black solid curves).
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invariant mass distributions (decay spectra) are plotted in
Figs. 9 and 10, respectively, and the predicted branching
ratios are given and compared to other authors’ results in
Tables I and II. In the following, we discuss the two
reactions separately.

A. τ− → π−ηντ
In Fig. 9, we display the total differential decay width

distribution of τ− → π−ηντ as a function of the π−η
invariant mass for the different parametrizations of the
π−η SFF discussed in the text, that is, the Breit-Wigner
formula incorporating two resonances (blue dotted curve),
the elastic dispersion relation (solid black curve), and the
three coupled-channels solution (green dot-dashed curve).
For completeness, the vector contribution alone is also
included (red dashed curve). As seen, the low-energy part
of the spectrum, ranging from the π−η threshold to 1.2 GeV,
is mainly dominated by the vector contribution associated
to the ρð770Þ resonance. Only in the case of the Breit-
Wigner description of the SFF is the low-energy region
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instead dominated by the a0ð980Þ scalar resonance whose
manifestation is clearly visible around 1 GeV and then
suppressed. On the contrary, the scalar contribution as
obtained either from the elastic dispersion relation
through the single-channel Omnès integral or the three
coupled-channels solution dominates the energy region of
the mass distribution above 1.2 GeV. In the first case, the
distribution falls off smoothly, while in the latter a sizable

peak around 1.4 GeV appears due to the consideration of
the K−K0 intermediate state that could be attributed to the
effect of the a0ð1450Þ resonance. Finally, in the upper part
of the spectrum, although suppressed, the vector contribu-
tions from the ρ0 and ρ00 resonances are suggested.
In Table I, we present the results of our analysis for the

integrated branching ratio of τ− → π−ηντ attending to the
different parametrizations of the π−η SFF. The values for

TABLE II. Vector, scalar, and total contributions to the BR of τ− → π−η0ντ. Upper part: Results from previous phenomenological
analyses. Middle part: Results from our analysis depending on the description of the π−η0 SFF used. Lower part: Current experimental
upper bounds.

BRV BRS BR Reference

< 10−7 ½0.2; 1.3� × 10−6 ½0.2; 1.4� × 10−6 Nussinov, Soffer [90]
½0.14; 3.4� × 10−8 ½0.6; 1.8� × 10−7 ½0.61; 2.1� × 10−7 Paver, Riazuddin [91]
1.11 × 10−8 2.63 × 10−8 3.74 × 10−8 Volkov, Kostunin [89]

BRV BRS BR Our analysis
½0.3; 5.7� × 10−10 ½2 × 10−11; 7 × 10−10� ½0.5 × 10−10; 1.3 × 10−9� Breit-Wigner [a0ð980Þ]
½0.3; 5.7� × 10−10 ½5 × 10−11; 2 × 10−9� ½0.8 × 10−10; 2.6 × 10−9� Breit-Wigner [a0ð980Þ þ a0ð1450Þ]
½0.3; 5.7� × 10−10 ½2 × 10−9; 4 × 10−8� ½2.6 × 10−9; 4 × 10−8� Elastic dispersion relation
½0.3; 5.7� × 10−10 ½2 × 10−7; 2 × 10−6� ½2 × 10−7; 2 × 10−6� 2 coupled channels (π−η & π−η0)
½0.3; 5.7� × 10−10 ½3 × 10−7; 3 × 10−6� ½3 × 10−7; 3 × 10−6� 2 coupled channels (π−η & K−K0)
½0.3; 5.7� × 10−10 ½1 × 10−7; 1 × 10−6� ½1 × 10−7; 1 × 10−6� 3 coupled channels

BR Experimental collaboration
<4 × 10−6 (90% C.L.) BABAR [7]
<7.2 × 10−6 (90% C.L.) BABAR [8]

TABLE I. Vector, scalar, and total contributions to the branching ratio (BR) of τ− → π−ηντ. Upper part: Results from previous
phenomenological analyses. Middle part: Results from our analysis depending on the description of the π−η SFF used. The source of
uncertainty in the BRs arises from the errors on επη (the only source for the VFF and the SFF based on coupled channels) and from the
(uncorrelated) errors on the SFF input values. Lower part: Current experimental upper bounds.

BRV × 105 BRS × 105 BR × 105 Reference

0.25 1.60 1.85 Tisserant, Truong [84]
0.12 1.38 1.50 Bramon, Narison, Pich [85]
0.15 1.06 1.21 Neufeld, Rupertsberger [86]
0.36 1.00 1.36 Nussinov, Soffer [87]
[0.2, 0.6] [0.2, 2.3] [0.4, 2.9] Paver, Riazuddin [88]
0.44 0.04 0.48 Volkov, Kostunin [89]
0.13 0.20 0.33 Descotes-Genon, Moussallam [83]

BRV × 105 BRS × 105 BR × 105 Our analysis
0.26� 0.02 0.72þ0.46

−0.22 0.98� 0.51 Breit-Wigner [a0ð980Þ]
0.26� 0.02 0.48þ0.29

−0.14 0.74� 0.32 Breit-Wigner [a0ð980Þ þ a0ð1450Þ]
0.26� 0.02 0.10þ0.02

−0.03 0.36� 0.04 Elastic dispersion relation
0.26� 0.02 0.15� 0.09 0.41� 0.09 2 coupled channels (π−η & π−η0)
0.26� 0.02 1.86� 0.11 2.12� 0.11 2 coupled channels (π−η & K−K0)
0.26� 0.02 1.41� 0.09 1.67� 0.09 3 coupled channels

BR × 105 Experimental collaboration
<14 (95% C.L.) CLEO [5]
<7.3 (90% C.L.) Belle [4]
<9.9 (95% C.L.) BABAR [3]
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the vector contribution, the scalar one, and the total
branching ratio are shown separately. Our results for each
contribution are compared with previous phenomenologi-
cal analyses existing in the literature. The current exper-
imental upper bounds are also included for comparison. For
the vector contribution, it is worth mentioning again that we
benefit from the experimentally well-known π−π0 VFF of
τ− → π−π0ντ decays to fix this contribution (and the one to
π−η0) up to a constant factor. In this manner, the vector
contribution to the π−ηð0Þ decays can be considered as
model independent since they are extracted directly from
data. To first order in isospin breaking, this constant factor
is nothing else than the π0-ηð0Þ mixing angle επηð0Þ , that is,
the normalization of the VFF at the origin. This same
normalization, see Eq. (8), appears as a global prefactor in
the evaluation of the branching ratios. Our predictions are
pretty sensitive to the isospin-violating mixing angles επηð0Þ ,
whose uncertainties become an important source of error.
Thus, precise determinations of these mixing angles would
be very welcome. A second important source of uncertainty
is the intrinsic error associated to the SFF.15 From the table,
we observe that the obtained values for the vector con-
tribution to the π−η VFF are in line with existing ones. The
error stated comes from the επη mixing angle alone.
Regarding the effect of the error from the measured
π−π0 VFF onto the πηð0Þ VFFs, this is tiny and hence
neglected. The same happens to the scalar contribution; our
values are in accordance with present calculations. For the
total branching ratios, all of them satisfy the current
experimental upper bounds. Finally, in order to test the
dependence of our results on the value of the επηð0Þ mixing
angle, we will also use two sets of different values
besides our default ones, επη ¼ ð9.8� 0.3Þ × 10−3 and
επη0 ¼ ð2.5� 1.5Þ × 10−4. The first set, named set 1,
consists of επη ¼ 0.0134 [88] and επη0 ¼ ð3� 1Þ × 10−3

[91], while the second, set 2, employs επη ¼ 0.0155 and
επη0 ¼ 6.79 × 10−3 [89]. Using these sets, we obtain for the
vector contribution BRV ¼ 0.49 × 10−5 and BRV ¼ 0.66 ×
10−5 for set 1 and set 2, respectively, together with new
results for the scalar (depending on the SFF employed) and
total contributions which tend to be smaller than, but in
agreement with, the reference ones shown in Table I.

All in all, in view of forthcoming measurements, our aim
is to provide reasonable estimates for the τ− → π−ηντ
branching ratio, depending on the framework used for
the π−η SFF, rather than producing precise results. Once the
π−η invariant mass spectrum is available, it could be used to
test the different approaches to this form factor.

B. τ− → π−η0ντ
In Fig. 10, the total differential decay width distribution

of τ− → π−η0ντ is shown as a function of the π−η0 invariant
mass for several parametrizations of the π−η0 SFF. The
vector contribution alone is included again. In this case, the
large mass of the η0 considerably reduces the available
phase space with respect to the π−η mode. As a result, the
vector contribution is suppressed because the opening of
the π−η0 production threshold happens well beyond the
region of possible ρð770Þ effects. In consequence, the
τ− → π−η0ντ decay is mainly driven by the SFF. The scalar
contribution, as obtained from the Breit-Wigner prescrip-
tion with two resonances (blue dotted curve), is in this case
small since the a0ð980Þ effects occur before the π−η0
threshold and only the impact of the a0ð1450Þ is noticeable.
The three coupled-channels solution (green dot-dashed
curve) shows instead a clear peak around 1.4 GeV which
vastly dominates the decay. This effect could be
attributed to the a0ð1450Þ resonance as we argued for
the π−η case. The same behavior is seen for the elastic
treatment (solid black curve) though the peak is now less
pronounced.
In Table II, our predictions for the integrated branching

ratio of τ− → π−η0ντ are given and compared with
previous phenomenological analyses and present-day
experimental upper limits. For the vector contribution,
we obtain results 2 orders of magnitude smaller than
former calculations which can be explained by the fact
that we are using a value for the επη0 mixing angle 1 order of
magnitude smaller than previous estimates (see the πη
subsection above for the numerical values employed).
Remember that the normalized version of the π−η0 VFF
is fixed from data on π−π0 decays. Our results for the scalar
contribution, which in most cases dominates the total
branching ratio, are in line with existing analyses and
fulfill the present limits.
In short, we find that this decay could be of the order of

the current experimental upper bound. We hope that
forthcoming experimental information can soon shed light
on this mode. Taking into account the results of our
predictions together with the present limits on these τ− →
π−ηð0Þντ decays, one could think of discovering them at
Belle-II as a first example of measured SCC.

C. ηð0Þ → πþl−ν̄l ðl = e;μÞ
The form factors required for describing τ− → π−ηð0Þντ

decays and the semileptonic ηð0Þ → πþl−ν̄l ðl ¼ e; μÞ

15This error arises for the case of the Breit-Wigner formula
from the (uncorrelated) errors of the resonance(s) parameters and
for the elastic dispersion relation from the (uncorrelated) errors of
the input values from Ref. [67]. However, for the three coupled-
channels solution, we do not provide an error for the SFF since
the guess of using uncorrelated parameters produces large
uncertainties resulting in predictions compatible with zero. In
line with this, it is pointed out in Ref. [83] that an uncertainty
smaller than 20% in the fπη0 at 1 GeV would allow us to improve
the bounds on a charged Higgs obtained from B → τντ decays.
Our previous remark makes clear that this is not possible at
present.
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decays are the same because the hadronic matrix element
hηð0Þjd̄γμujπþi is related by crossing symmetry with the one

in Eq. (6). However, in ηð0Þl3 decays the available kinematical
energy range is m2

l ≤ s ≤ ðmηð0Þ −mπÞ2 instead of

ðmηð0Þ þmπÞ2 ≤ s ≤ m2
τ for the τ decays. Consequently,

the form factors entering ηl3 decays are by analyticity real
functions of s. The differential decay width is given for
these decays by

dΓðηð0Þ → πþl−ν̄lÞ
d

ffiffiffi
s

p ¼ G2
Fs

2

12π3m3
ηð0Þ

SEWjVudF
π−ηð0Þ
þ ð0Þj2

�
1 −

m2
l

s

�
2

×

��
2þm2

l

s

�
q3
π−ηð0Þ

ðsÞ ~Fπ−ηð0Þ
þ ðsÞ2 þm2

l

s

3Δ2
π−ηð0Þ

4s
qπ−ηð0Þ ðsÞ ~Fπ−ηð0Þ

0 ðsÞ2
�
; ð33Þ

where the VFF contribution highly dominates over the SFF
one because this latter is weighted by the squared lepton
mass.
In Fig. 11, the total differential decay width distributions

of ηð0Þ → πþl−ν̄l ðl ¼ e; μÞ are displayed. In Table III, the
results of our analysis for the integrated branching ratios are
presented. These have been obtained after employing επη ¼
ð9.8� 0.3Þ × 10−3 and επη0 ¼ ð2.5� 1.5Þ × 10−4 for the
ηl3 and η0l3 channels, respectively. For the electronic
channel, our predictions are compared with the ones
obtained in Ref. [83]. These are 2.5 times bigger than
ours, which can be easily understood from the fact that the
value επη ¼ ð1.56� 0.23Þ × 10−2 is used in this case.
Predictions from Ref. [86], with επη ¼ 1.21 × 10−2, lie

in the middle.16 The rareness of these semileptonic
decay modes enhances the sensitivity to new types of
interactions and any clear deviation from branching
ratios of order Oð10−13; 10−12Þ might probe physics
beyond the SM. At the moment, the BESIII
Collaboration has reported BRðη → πþe−ν̄e þ c:c:Þ <
1.7 × 10−4 and BRðη0 → πþe−ν̄e þ c:c:Þ < 2.2 × 10−4,
both at the 90% C.L., which are considered as the first
upper bounds ever for η and η0 semileptonic weak decays
[92], but still extremely far from present estimates.

VI. CONCLUSIONS

Hadronic decays of the τ lepton constitute an ideal
scenario for studying the hadronization of QCD currents in
its nonperturbative regime. In this work, we have examined
the τ− → π−ηð0Þντ decays which, being allowed, though
isospin suppressed, SM processes, belong to the so-called
SCC processes unseen in nature so far.
We have focused on the SM prediction of these decays

by describing the participant scalar and vector form
factors. These have been calculated within ChPT including
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FIG. 11. Total differential decay width distribution for η → πþl−ν̄l (left plot) and η0 → πþl−ν̄l (right plot). The electronic channel
(solid black curves) and the muonic one (red dashed curves) are shown.

TABLE III. Branching ratio estimates for ηð0Þ → πþl−ν̄l
ðl ¼ e; μÞ semileptonic weak decays.

Decay
Descotes-Genon,
Moussallam [83]

Our
analysis

η → πþe−ν̄e þ c:c: ∼1.40 × 10−13 0.6 × 10−13

η → πþμ−ν̄μ þ c:c: ∼1.02 × 10−13 0.4 × 10−13

η0 → πþe−ν̄e þ c:c: 1.7 × 10−17

η0 → πþμ−ν̄μ þ c:c: 1.7 × 10−17

16Because of the small phase space available, different energy
dependences of the normalized π−η0 VFF do not cause a sizable
effect.
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resonances as explicit degrees of freedom as an initial setup
approach. In this framework, we have encoded the π0-η-η0
mixing by means of three Euler angles (επη, επη0 , and θηη0),
where the επηð0Þ are isospin-violating quantities, acting as
normalizations of the corresponding form factors, which
explain the smallness of these decays. One interesting
consequence which emerges neatly in this parametrization
is that the normalized π−η and π−η0 VFFs are found to be
identical to the well-known π−π0 VFF. Taking advantage of
this fact, we have implemented in our study the exper-
imental determination on the latter, obtained from the Belle
Collaboration in the analysis of τ− → π−π0ντ decays, for
describing the former in a model-independent way.
Regarding the SFF description, we have discussed different
parametrizations according to their increasing fulfillment of
analyticity and unitarity. We started considering a Breit-
Wigner representation by resuming inelastic width effects
into the resonance propagator(s) but neglecting the real part
of the corresponding loop function, hence inducing a
violation of both requirements. This case has been tackled
by taking into account, first, the contribution of the a0ð980Þ
as the only resonant state and, second, by including the
nearest radial excitation a0ð1450Þ into the representation.
Then, we moved to a completely analytic description,
respecting elastic unitarity, by the use of a dispersion
relation through the well-known Omnès integral. This
solution requires as an input the elastic phase of the form
factor which has been obtained from the corresponding
scattering amplitude after invoking Watson’s theorem.
Finally, we have illustrated a method for solving
coupled-channels form factors by using closed algebraic
expressions after exemplifying the equivalence with the
Omnès solution for the single-channel elastic case. In this
way, the lowest-lying scalar resonances are generated
dynamically after considering final-state interactions of
meson-meson systems.
Concerning our predictions for the branching ratios and

spectra, several comments are in order. For the π−η decay
channel, we have found total BRs of the order of 10−5, in
agreement with previous theoretical estimates and respect-
ing the current experimental upper bound. Both vector and
scalar contributions are comparable. While the former is
fixed from experiment up to an overall normalization
constant, the επη mixing angle, which we have computed
at next-to-leading order in ChPT including resonances and
is dominated by ρ-exchange, the value of the latter depends
on the SFF description. The Breit-Wigner approach,
including one or two scalar resonances, gives similar
results and these are bigger than the ones obtained from
the elastic dispersion relation (not adding resonances
explicitly but generating them dynamically). We have seen
that the effect of coupling the π−η0 channel into the π−η
SFF is small since it does not differ so much from the
elastic result. However, the effect of incorporating the
K−K0 threshold is sizable. This may be due to the exotic

nature of the scalars coupled to the ūd operator. For the
π−η0 decay channel, this is mainly driven by the scalar
contribution because of phase space considerations. It is
much more sensitive to both the επη0 normalization and the
SFF description. We have also seen that inelastic channels
may increase the BR of this mode by 2 orders of magnitude
up to 10−6. In any case, accurate predictions of these two
processes demand precise values for the επηð0Þ mixing
angles. An updated analysis of these two isospin-breaking
parameters would be very welcome. The main drawback of
the present work is that the errors associated to the SFFs
contributions coming from the dispersive treatments (elas-
tic or coupled channels) are underestimated since correla-
tions among the participating parameters are unknown.
This important limitation shall be improved once these
decay modes are first measured, ideally through a joint
analysis with the related meson-meson scattering data.
To summarize, considering the tighter bounds on the

π−ηð0Þ channels, both τ− → π−ηð0Þντ decay modes have
good prospects for discovering SCC soon at Belle-II. While
the ρð770Þ meson shoulder should be an unambiguous
signature of this discovery in the π−ηmode, the thin peak of
the a0ð1450Þ resonance would be very much helpful in both
cases. Finally, as a byproduct, we have also given estimates
for the semileptonic crossing symmetric decays ηð0Þ →
πþl−ν̄l ðl ¼ e; μÞ for which detection in the near future
is not foreseen. We hope our work will serve as a
motivation for the experimental collaborations to measure
these decays soon at Belle-II, BESIII, and forthcoming
facilities.
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APPENDIX: FORM FACTIORS IN
COUPLED-CHANNEL ANALYSES

The once-subtracted dispersion relation for a form factor
is written as
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FðsÞ ¼ Fðs0Þ þ
s − s0
π

Z
∞

sth

ds0
ImFðs0Þ

ðs0 − s0Þðs0 − s − iϵÞ ;

ðA1Þ

where FðsÞ is now, in the case of coupled channels,
a n-entries column vector. Besides analyticity, the form
factor can also satisfy unitarity. The unitarity relation
ImFðsÞ ¼ ΣðsÞt�IJðsÞFðsÞ, with ΣðsÞ a diagonal matrix
of kinematical factors given by

ΣðsÞ ¼

0
BBB@

σ1ðsÞ 0 � � � 0

0 σ2ðsÞ � � � 0

� � � � � � � � � 0

0 0 0 σnðsÞ

1
CCCA; ðA2Þ

and tIJðsÞ a n × n matrix defined as

tIJðsÞ ¼

0
BBB@

t11ðsÞ t12ðsÞ � � � t1nðsÞ
t21ðsÞ t22ðsÞ � � � t2nðsÞ
� � � � � � � � � � � �

tn1ðsÞ tn2ðsÞ � � � tnnðsÞ

1
CCCA; ðA3Þ

encoding the required unitarized partial-wave amplitudes,
allows us to rewrite the form factor as

Fðsþ iϵÞ ¼ Fðs0Þ þ
s − s0
π

Z
∞

sth

ds0
Σðs0Þt�IJðs0ÞFðs0Þ

ðs0 − s0Þðs0 − s − iϵÞ
≡ Fðs0Þ þ ~Fðsþ iϵÞ; ðA4Þ

where Fðs0Þ is real and the discontinuity of ~Fðsþ iϵÞ is
given by

~Fðsþ iϵÞ − ~Fðs − iϵÞ ¼ 2ilim
ϵ→0

ImFðsþ iϵÞ
¼ 2iImFðsÞ
¼ 2iΣðsÞt�IJðsÞFðsÞ: ðA5Þ

To unitarize the partial-wave scattering amplitudes, we
introduce the N=D method

tIJðsÞ ¼
NIJðsÞ
DIJðsÞ

; ðA6Þ

where the matrix functions (the IJ indices are omitted
hereafter) N and D contain the left- and right-hand cuts of
the partial-wave amplitudes, respectively, and satisfy the
dispersion relations

NðsÞ ¼ s − s0
π

Z
sL

−∞
ds0

ImNðs0Þ
ðs0 − s0Þðs0 − s − iϵÞ ðA7Þ

and

DðsÞ ¼ Dðs0Þ þ
s − s0
π

Z
∞

sth

ds0
ImDðs0Þ

ðs0 − s0Þðs0 − s − iϵÞ :

ðA8Þ

Unitarity applied to the inverse of the partial-wave ampli-
tudes fulfills Imt−1ðsÞ ¼ −ΣðsÞ, or, equivalently,

ImDðsÞ ¼ −NðsÞΣðsÞ: ðA9Þ

By inserting Eq. (A9) into Eq. (A6), one gets

t�ðsÞ ¼ N�ðsÞ
D�ðsÞ ¼

−ðImDðsÞ=ΣðsÞÞ�
D�ðsÞ ¼ −ImDðsÞ=ΣðsÞ

Dðs − iϵÞ :

ðA10Þ

Then, using Eq. (A10), one rewrites Eq. (A5) as

~Fðsþ iϵÞ − ~Fðs − iϵÞ

¼ 2iΣðsÞ
�
−ImDðsÞ=ΣðsÞ

Dðs − iϵÞ
�
½Fðs0Þ þ ~Fðsþ iϵÞ�; ðA11Þ

which further reduces to

~Fðsþ iϵÞ½Dðs − iϵÞ þ 2iImDðsÞ� − ~Fðs − iϵÞDðs − iϵÞ
¼ −2iImDðsÞFðs0Þ: ðA12Þ

Once the term in square brackets is written as Dðsþ iϵÞ
(the discontinuity across the cut), one arrives at the
following expression:

~FðsþiϵÞDðsþiϵÞ− ~Fðs−iϵÞDðs−iϵÞ¼−2iImDðsÞFðs0Þ;
ðA13Þ

whose once subtracted solution, as a result of the Cauchy
integral, reads

~FðsþiϵÞDðsþiϵÞ

¼s−s0
2πi

Z
∞

sth

ds0
Fðs0þiϵÞDðs0þiϵÞ−Fðs0−iϵÞDðs0−iϵÞ

ðs0−s0Þðs0−sÞ ;

ðA14Þ

and hence

~Fðsþ iϵÞ ¼ 1

Dðsþ iϵÞ
−ðs − s0Þ

π

Z
∞

sth

ds0
ImDðs0ÞFðs0Þ
ðs0 − s0Þðs0 − sÞ ;

ðA15Þ

which, employing Eq. (A8), brings us to
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~Fðsþ iϵÞ ¼ −Dðsþ iϵÞ−1½Dðsþ iϵÞ −Dðs0Þ�Fðs0Þ:
ðA16Þ

Finally, the form factor in Eq. (A4), after imposing
analyticity and unitarity, is found to be

FðsÞ ¼ Fðs0Þ −DðsÞ−1½DðsÞ −Dðs0Þ�Fðs0Þ
¼ DðsÞ−1Dðs0ÞFðs0Þ: ðA17Þ

As written in Eq. (A17), the form factor’s problem in a
coupled-channels analysis is reduced to finding a suitable
parametrization for the DðsÞ matrix. In this work, we have
used

DIJðsÞ ¼ 1þ gðsÞNIJðsÞ; ðA18Þ
in analogy with Eq. (28) for the single-channel case. The
matrices gðsÞ and NIJðsÞ are generalizations for the
multichannel case of the definitions given there.
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