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In order to describe the hadronization of polarized quarks, we discuss an extension of the quark-jet
model to transverse momentum dependent fragmentation functions. The description is based on a product
ansatz, where each factor in the product represents one of the transverse momentum dependent splitting
functions, which can be calculated by using effective quark theories. The resulting integral equations and
sum rules are discussed in detail for the case of inclusive pion production. In particular, we demonstrate that
the three-dimensional momentum sum rules are satisfied naturally in this transverse momentum dependent
quark-jet model. Our results are well suited for numerical calculations in effective quark theories and can be
implemented in Monte Carlo simulations of polarized quark hadronization processes.
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I. INTRODUCTION

Quark fragmentation functions (FFs) are key objects for
the analysis of inclusive hadron production in hard scatter-
ing processes [1]. Transverse momentum dependent
(TMD) quark FFs, both polarized and unpolarized, are
of particular importance for semi-inclusive hadron produc-
tion in eþe− annihilation, semi-inclusive deep inelastic
lepton-nucleon scattering (SIDIS) and proton-proton colli-
sions [2–11]. They are universal, nonperturbative objects
that contain vital information on the correlation between
spin and orbital motion of the fragmenting quark and the
produced hadrons [12–15]. TMD FFs also are crucial
ingredients for accessing the TMD parton distribution
functions (PDFs) in SIDIS, that encode the three-
dimensional picture of the nucleon in momentum space
[16–21]. Particular attention was focused on the so-called
Collins TMD FF [22,23] that allows access to the trans-
versity PDF, the least well determined of the three leading-
order PDFs that do not vanish in the collinear limit. FFs
cannot be calculated in lattice QCD and, therefore, effective
theories of QCD are very important tools to extract
information and constraints on TMD FFs. Important
representatives are the quark-jet model [1], the Lund model
[24,25], spectator models involving the coupling of quarks
to mesons [26–30], and the Nambu-Jona-Lasinio (NJL)
model [31] applied in the quark-jet framework [32] using
Monte Carlo techniques [33–38].

It is well known [1,32,35] that a model description of
quark FFs must include the effects of multifragmentations
in order to reproduce the main features of the correspond-
ing empirical functions [39–41]. This is particularly
important for the unfavored fragmentation functions, which
cannot be described by assuming one single (elementary)
fragmentation step [35,36]. For the one-dimensional FFs
(integrated over the transverse momentum (TM) of the
produced hadron), the quark-jet model of Field and
Feynman [1] provides a simple framework to account
for multifragmentation processes. It represents a chain of
fragmentation processes by a product of elementary FFs,
which can be evaluated in any effective quark theory. The
resulting integral equations of the jet model can be solved
directly, or by using Monte Carlo methods, which is most
convenient if many hadron channels and resonances are
included [35–38]. The inclusion of the spin, which is
directly linked to the transverse momentum dependence,
however, remains a challenging problem for model calcu-
lations including multifragmentation processes [25,42].
The purpose of this paper is to provide an analytic
framework, based on the assumptions of the successful
jet model, which can be used for numerical calculations of
TMD FFs. For this, we extend the generalized product
ansatz for quark cascades of our previous work [32] to the
description of TMD FFs. Limiting ourselves for simplicity
and clarity to the case of inclusive pion production and
quark flavor SU(2), we derive the explicit forms of the
resulting integral equations, and demonstrate the validity of
the sum rules in the TMD jet model. Our results will allow a*bentz@keyaki.cc.u‑tokai.ac.jp
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self-consistent formulation of the Monte Carlo method for
polarized quark hadronization, much needed for the study
of various correlations in polarized single—and dihadron
FFs [43–45].
The outline of the paper is as follows: In Sec. II, we give

the operator definitions of the TMD FFs and discuss their
partonic interpretation. In Sec. III, we derive the integral
equations for the TMD FFs from the basic product ansatz.
The explicit forms of the equations will be presented for the
case of inclusive pion production, and the validity of the
sum rules will be confirmed analytically. A summary of our
work is given in Sec. IV. Further details on the calculations
are presented in five appendixes. In particular, Appendix C
presents a list of analytic forms of the elementary FFs
which have been obtained in earlier works [27–30,32] by
using effective quark theories.
The integral equations of the TMD jet model, which we

will present in Sec. III. D, hold in any effective quark theory
which does not involve explicit gluon and gauge link
degrees of freedom, and which satisfies the elementary
momentum conservation and positivity constraints sum-
marized at the end of Sec. III. D. The integral equations can
then readily be used for numerical calculations. It is our
hope that our paper will contribute to a more quantitative
understanding of spin-dependent fragmentation processes.

II. OPERATOR DEFINITIONS AND PARTONIC
INTERPRETATION

The operator definitions of TMD quark FFs follow from
the single particle inclusive quark decay matrix given by [9]

nβαðp−;p⊥;SÞ ¼
1

2z

Z
dkþdk−
ð2πÞ4 δ

�
1

z
−
k−
p−

�
Nβαðp; k;SÞ;

ð2:1Þ

where z is the scaling variable, and the correlator is given
by (see Fig. 1)1

Nβαðp;k; SÞ¼
X
n

Z
d4ωeik·ωh0jψβðωÞjp;nihp;njψαð0Þj0i:

ð2:2Þ

Here the field operators refer to a given quark flavor
(q ¼ u, d), which is not indicated explicitly in this section,
and k and p are the 4-momenta of the fragmenting quark
and the produced particle. The state

jp; ni ¼ a†hðp; SÞjni
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p−ð2πÞ3

q
ð2:3Þ

refers to the produced particle of type h (including isospin)
and polarization S (which is twice the eigenvalue of the spin
operator in the direction of S), and a complete set of
spectator states jni. The generic vector S specifies the
spin 4-vector of the produced particle of mass M and
energy Ep as

Sμ ¼
�
p · S
M

;Sþ pðp · SÞ
MðEp þMÞ

�
: ð2:4Þ

The operator definitions (2.1), (2.2) refer to a frame where
the TM of the produced particle vanishes (pT ¼ 0) while
the fragmenting quark has nonzerokT . The vector S in (2.4)
can then be expressed in terms of its transverse components
ST and longitudinal component SL (helicity) as S ¼
ðS1T; S2T; SLÞ. By a transverse Lorentz transformation (see
Appendix A for details) one can transform to a frame where
the fragmenting quark has zero TM (k⊥ ¼ 0) and the
produced particle has p⊥ ¼ −zkT , so that we can consider
the decay matrix (2.1) as a function of p−;p⊥ and S.
The quark decay matrix (2.1) can be expanded in terms

of Dirac matrices, with coefficient functions which are
invariant under transverse Lorentz transformations. In
leading order, which corresponds to the limit p− → ∞, a
set of 4 Dirac matrices (Γ) contributes to the decay matrix.
Their coefficient functions hΓi≡ TrDðΓnÞ can be para-
metrized in terms of 8 FFs in the following way:

1

2p−
hγþi ¼ Dðz;p2⊥Þ −

1

M
ϵijkTiSTjD⊥

T ðz;p2⊥Þ; ð2:5Þ

1

2p−
hiσiþγ5i ¼ SiTHTðz;p2⊥Þ þ

SL
M

kiTH
⊥
L ðz;p2⊥Þ

þ 1

M2
kiTðkT · STÞH⊥

T ðz;p2⊥Þ

−
1

M
ϵijkTjH⊥ðz;p2⊥Þ; ð2:6Þ

1

2p−
hγþγ5i ¼ SLGLðz;p2⊥Þ þ

1

M
ðkT · STÞGTðz;p2⊥Þ:

ð2:7Þ

FIG. 1. Cut diagram representing the correlator of Eq. (2.2).
The dots labeled by α, β indicate the Dirac indices of the quark
field operators, the line labeled by the momentum k represents the
fragmenting quark, and the line labeled by the momentum p and
polarization S represents the produced particle. The shaded oval
represents the spectator states jni, and the cut goes through the
shaded oval.

1The light-cone components of a 4-vector are defined as aμ ¼
ðaþ; a−; aTÞ with a� ¼ ða0 � a3Þ= ffiffiffi

2
p

. Covariant normalization
is used throughout this paper, and the summation symbol

P
n in

(2.2) includes an integration over the on-shell momenta pn.

W. BENTZ et al. PHYSICAL REVIEW D 94, 034004 (2016)

034004-2



Here i ¼ 1, 2 denote the transverse vector indices,
kT ¼ −p⊥=z, and ϵij ≡ ϵ−þij such that ϵ12 ¼ 1. The
definitions and notations of the 8 leading order FFs in
(2.5)–(2.7) follow the Trento conventions [46], except that
we assume the large momentum component of the leading
produced particle as p− ¼ zk−, and we omit the subscript 1
on all functions because we only consider the leading
order here.2

Next we wish to discuss the partonic interpretation of the
various FFs as number densities of the produced particle (h)
within a quark, and thereby derive an expression for the
“total fragmentation function”, which will be used in the
next section to formulate the integral equations of the TMD
jet model. For this purpose, we formally define the Dirac
matrix valued 4-vector Γμ as

Γμ ≡ ðγþ; γþγ1γ5; γþγ2γ5; γþγ5Þ; ð2:8Þ

and express the quantities on the left-hand sides of
Eqs. (2.5)–(2.7) as

1

2p−
hΓμi≡ 1

2p−
TrDðΓμnðp−;p⊥;SÞÞ

¼ p−

2z

Z
dω−d2ωTeiðp−ω

−þp⊥·ωTÞ=z

× h0jψβðω−;ωTÞa†hðp; SÞahðp; SÞψ̄αð0Þj0iΓμ
αβ

ð2:9Þ
¼ p−

z ·
ffiffiffi
2

p
Z

dω−d2ωTeiðp−ω
−þp⊥·ωTÞ=z

× h0jψþβðω−;ωTÞa†hðp; SÞahðp; SÞψ†
þαð0Þj0i ~Γμ

αβ:

ð2:10Þ

In the second step, we used the relation (2.3) and the
completeness of the spectator states jni, and in the third
step we introduced the “good components” of the quark
field operator by [48,49]

ψþ ¼ 1ffiffiffi
2

p γ0γþψ ≡ ΛðþÞψ ; ð2:11Þ

and defined Γμ ¼ γþ ~Γμ. We then introduce the expansion

ψþðω−;ωTÞ ¼
Z

dq−ffiffiffiffiffiffiffiffi
2q−

p d2qT
ð2πÞ3=2

X
λ

bλðqÞuþλðqÞ

× e−iq−ω
−
eiqT ·ωT þ � � � ; ð2:12Þ

where uþ denotes the “good components” of the Dirac
spinor (see Appendix B for details), and the dots (…)
denote the antiquark terms which do not contribute here.
Introducing also the quark basis states by

jkλ0i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞ3k−

q
b†λ0 ðkÞj0i; ð2:13Þ

and noting that hkλjkλi≡ hkjki is independent of λ, we
can express (2.10) in a form which is independent of the
normalization of states:

1

2p−
hΓμi ¼ 1

4

X
λ0λ

ðūλ0 ðkÞΓμuλðkÞÞ

×
hkλja†hðp; SÞahðp; SÞjkλ0i

hkjki : ð2:14Þ

In Appendix B, we show that the matrix elements in (2.14)
take the form

uλ0 ðkÞΓμuλðkÞ ¼ 2k−ðσμÞλ0λ; ð2:15Þ

where we defined σμ ¼ ð1; σÞ, with σ ¼ ðσ1; σ2; σ3Þ the
usual Pauli matrices. If we insert (2.15) into (2.14) and
multiply both sides by sμ ≡ ð1; sÞ, where the generic vector
s has Cartesian components ðs1T; s2T; sLÞ, we obtain3

1

2p−
hsμΓμi

¼ k−
X
λ0λ

1

2
ð1þ s · σÞλ0λ

hkλja†hðp; SÞahðp; SÞjkλ0i
hkjki :

ð2:16Þ

Note that in this expression the spin density matrix of the
fragmenting quark, ρðsÞ ¼ 1

2
ð1þ s · σÞ, appears naturally.

Multiplying both sides of (2.16) by the weight factors dz ¼
dp−=k− and d2p⊥, and expressing the rhs by a trace
operation (Tr), we obtain

1

2p−
hsμΓμidzd2p⊥

¼ Tr

�
ρðsÞ hkja

†
hðp; SÞahðp; SÞjki

hkjki
�
dp−d2p⊥: ð2:17Þ

From this relation it follows that the quantity

Fðz;p⊥;S; sÞ≡ 1

2p−
hsμΓμi ¼ 1

2p−
sμTrDðΓμnðp−;p⊥;SÞÞ

ð2:18Þ
2Because the two T-odd FFsD⊥

T andH⊥ have been introduced
first in Refs. [6] and [4], respectively, they are often called the
Mulders-Tangerman function and the Collins function in the
literature. (For the quark distribution functions, their counterparts
are the Sivers function [47] and the Boer-Mulders function [8].)
The other 6 functions in (2.5)–(2.7) are T-even.

3Like Γμ and σμ, the quantity sμ is not a Lorentz 4-vector, but
Einstein’s summation convention still applies [50].
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can be interpreted as the number density of the produced
particle (h) with polarization S within the fragmenting
quark of polarization s.
We can now write down the expression for Fðz;p⊥;S; sÞ,

which follows from the definition (2.18) and the para-
metrizations (2.5)–(2.7):

Fðz;p⊥;S; sÞ

¼ Dðz;p2⊥Þ −
1

M
ðkT × STÞ3D⊥

T ðz;p2⊥Þ

þ ðsT · STÞHTðz;p2⊥Þ þ
1

M
SLðkT · sTÞH⊥

L ðz;p2⊥Þ

þ 1

M2
ðST · kTÞðsT · kTÞH⊥

T ðz;p2⊥Þ

−
1

M
ðkT × sTÞ3H⊥ðz;p2⊥Þ þ ðSLsLÞGLðz;p2⊥Þ

þ 1

M
sLðST · kTÞGTðz;p2⊥Þ: ð2:19Þ

Here kT ¼ −p⊥=z, and the superscript 3 denotes the
3-component of a vector product, i.e., ðaT × bTÞ3 ¼
ϵijaibj for any 3-vectors a and b. We also remind that
the vector sT is transverse to the momentum of the
fragmenting quark, while ST is transverse to the momentum
of the produced particle.
In the next section, we will use the above parametrization

for the “full” q → hadronðhÞ FF, which includes effects of
multifragmentation processes, as well as for the elementary
FFs (denoted by small letters f, d, d⊥T , etc), where both
q → hadronðhÞ and q → quarkðQÞ processes have to be
taken into account.4 (HereQ ¼ U,D denotes the flavor of a
quark in an intermediate state of the fragmentation chain.)
Several sum rules for the full q → h function Fðq→hÞ can

immediately be derived from the above relations. Let us for
example discuss the momentum sum rules. Multiplying
both sides of (2.17) by the hadron momentum
p≡ ðp−;p⊥Þ, where p− ¼ k−z for fixed k−, and integrat-
ing or summing over all hadronic variables, we obtain

X
h

Z
1

0

dz
Z

d2p⊥
X
�S

pFðq→hÞðz;p⊥;S; sÞ

¼ Tr

�
ρðsÞ hkjP̂jkihkjki

�
; ð2:20Þ

where we defined the momentum operator in terms of
hadron variables as

P̂≡X
h

Z
∞

0

dp−

Z
d2p⊥

X
�S

ðpa†hðp; SÞahðp; SÞÞ:

ð2:21Þ

Here and in the following,
P

�S means taking the trace for
the spin represented by S. If one allows for an infinite chain
of elementary fragmentation processes, the final quark
remainder will have zero longitudinal momentum (LM)
fraction, and on average also zero TM: hp⊥irem ¼ 0. (We
will confirm this point explicitly in the TMD jet model later
by using two independent methods in Sec. III. D. and
Appendix E.) It then follows that the average value of the
hadronic momentum operator P̂ in the initial quark state is
equal to the momentum of the initial quark, which is
k ¼ ðk−; 0⊥Þ. Equation (2.20) then leads to the LM and
TM sum rules5

X
h

γh

Z
1

0

dz z
Z

d2p⊥Dðq→hÞðz;p2⊥Þ ¼ 1; ð2:22Þ

X
h

γh

Z
1

0

dz
2zMh

Z
d2p⊥ · p2⊥H⊥ðq→hÞðz;p2⊥Þ ¼ 0; ð2:23Þ

where γh is the spin degeneracy factor of the hadron andMh
its mass. A similar derivation can be given for the z
component of the hadronic isospin operator T̂, which
has a form like Eq. (2.21) with p replaced by the z
component of the hadron isospin th. After an infinite decay
chain the final quark remainder will have zero average
value of isospin z component. (A simple proof for this is
presented in Appendix E.) Therefore the average value of T̂
in the initial quark state becomes equal to the isospin z
component of the initial quark τq

2
:

X
h

γhth

Z
1

0

dz
Z

d2p⊥Dðq→hÞðz;p2⊥Þ ¼
τq
2
: ð2:24Þ

The validity of the LM sum rule (2.22) and the isospin sum
rule (2.24) in the quark jet model is well known [1,32], and,
in the following section, we will also confirm the validity of
the TM sum rule (2.23).

4Although we used the symbol h (to denote hadron) for the
produced particle, the operator definitions are formally the same
for the case where the produced particle is a quark (Q). For the
case of the q → Q FFs, the summation over n in (2.2) includes the
hadronic vacuum state j0i.

5To derive (2.23), we use the following identity:

Z
d2p⊥pi⊥p

j
⊥H⊥ðq→hÞðz;p2⊥Þ ¼

δij

2

Z
d2p⊥p2⊥H⊥ðq→hÞðz;p2⊥Þ:

Because the TM sum rule (2.23) has first been introduced in
Ref. [51], it is sometimes called the Schäfer—Teryaev sum rule in
the literature. We note that, although the average TM of the quark
remainder after an infinite decay chain is zero, the magnitude of
the fluctuation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hp2⊥irem

p
is nonzero.
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III. FORMULATION OF THE TMD JET MODEL

In this section, we will formulate the TMD jet model,
referring for definiteness and simplicity to the case of
inclusive pion production. The inclusion of other hadron
channels is straight forward, in particular if one uses
Monte Carlo methods [33–38].
We first make a few comments on the elementary splitting

functions. In Appendix C, we present model forms of the
elementary function fðq→QÞ, which is expressed in terms of

the eight splitting functions dðq→QÞ; d⊥ðq→QÞ
T ;…; gðq→QÞ

T

similar to Eq. (2.19), and the elementary function fðq→πÞ,
for which only the spin-independent term dðq→πÞ and the
quark-spin-dependent term ∝h⊥ðq→πÞ contribute. These
forms, which are obtained in any effective theory which
involves the coupling of constituent quarks to pions, are
given in lowest order of the pion-quark coupling constant,
i.e., the tree diagrams for the T-even functions (see Fig. 2 of
AppendixC) and theone-loop graphs for theT-odd functions
(see Figs. 3 and 4 of Appendix C). One peculiar feature of
those functions is that the virtual quark can fragment into an
on-shell quark and a real pion only with a certain probability
1 − ZQ, which is actually equal to the probability to find a
constituent quarkwith its virtual pion cloud [30,32]. (Typical
values areZQ ≃ 0.8.)More precisely, the elementary q → Q
FF can be expressed in the form

fðq→QÞðz;p⊥;S; sÞ≡ ZQδð1 − zÞδð2Þðp⊥ÞδðτQ; τqÞ

×
1

2
ð1þ S · sÞ þ ð1 − ZQÞf̂ðq→QÞðz;p⊥;S; sÞ; ð3:1Þ

where the first term involves the probabilityZQ that the quark
does not fragment at all,6 and accordingly the new function
f̂ðq→QÞ is normalized to 1:

Z
1

0

dz
Z

d2p⊥
X
�S

X
τQ

f̂ðq→QÞðz;p⊥;S; sÞ ¼ 1: ð3:2Þ

This renormalized elementary function f̂ðq→QÞ is again
parametrized as in Eq. (2.19) in terms of the eight splitting

functions d̂ðq→QÞ; d̂⊥ðq→QÞ
T ;…; ĝðq→QÞ

T . (Explicit model
forms obtained in lowest-order perturbation theory are given
in Appendix C.)
For the formulation of the product ansatz, it will be

convenient to define the elementary q → Q FF for the case
where the incoming quark (q) has polarization s and the
outgoing quark (Q) is unpolarized:

f̂ðq→QÞðz;p⊥; sÞ≡
X
�S

f̂ðq→QÞðz;p⊥;S; sÞ

¼ 2

�
d̂ðq→QÞðz;p2⊥Þ þ

1

Mz
ðp⊥ × sTÞ3ĥ⊥ðq→QÞðz;p2⊥Þ

�
;

ð3:3Þ
where M is the constituent quark mass. The renormalized
elementary q → π FF is related to the above function by
(see Refs. [30,32])7

f̂ðq→πÞðz;p⊥; sÞ ¼ f̂ðq→QÞð1 − z;−p⊥; sÞjτQ¼τq−2τπ ; ð3:4Þ

and is normalized to 1 according to (3.2). For later
reference, we finally note that from (3.2) the quark
renormalization factor is expressed in terms of the unrenor-
malized integrated q → Q FF dðq→QÞðzÞ as follows:

1 − ZQ ¼ 2
X
τQ

Z
1

0

dz dðq→QÞðzÞ: ð3:5Þ

A. Product ansatz

In order to describe multistep fragmentation (quark cas-
cade) processes, in our previous work [32] we expressed the
integrated q → π FF by a sum of products of elementary q →
Q FFs, introducing themaximum number of pions (N) which
can be produced by the fragmenting quark. It was shown that
the momentum and isospin sum rules are satisfied only in the
limit of N → ∞.8 In this limit, one recovers the original jet
model of Field and Feynman [1], where the FF is expressed
from the start by an infinite product of renormalized q → Q
FFs, corresponding to our quantity f̂ðq→QÞ of Eq. (3.1). In
Appendix D, we show that the same line of argument can be
used also for the TMD case; i.e., the first (nonfragmentation)
term of (3.1) can be processed so as to express the full q → π
FF in terms of products of the renormalized elementary q →
Q FFs of (3.1). In order to keep the formulas of the main part
as simple as possible, we use the limit N → ∞ from the start
here. We will use the following notations for multidimen-
sional momentum integrations:Z

DNη≡
Z

1

0

dη1

Z
1

0

dη2 � � �
Z

1

0

dηN;Z
D2Np⊥ ≡

Z
d2p1⊥

Z
d2p2⊥ � � �

Z
d2pN⊥: ð3:6Þ

The product ansatz is then as follows:

6The spin structure of the nonfragmentation term is explained
in Appendix C. In practice, this term only serves to renormalize
the elementary fragmentation functions, as explained in Appen-
dix D.

7We denote τq ¼ ð1;−1Þ for ðu; dÞ and τπ ¼ ð1; 0;−1Þ for
ðπþ; π0; π−Þ.

8Although this indicates a conceptual limitation of the jet
model, which arises from several assumptions like scaling,
leading twist and factorization, we take the limit N → ∞ here,
because one of the purposes of this paper is just to demonstrate
the validity of the sum rules in this limit for the TMD case.
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Fðq→πÞðz;p⊥;sÞ¼ limN→∞

XN
m¼1

Z
DNη

Z
D2Np⊥

X
τQN

× f̂ðq→Q1Þðη1;p1⊥;sÞf̂ðQ1→Q2Þðη2;p2⊥−η2p1⊥;hS1iÞ
× � ��× f̂ðQN−1→QNÞðηN;pN⊥−ηNpN−1⊥;hSN−1iÞ
×δðz−zmÞδð2Þðp⊥−ðpm−1⊥−pm⊥ÞÞ

×δðτπ;ðτQm−1
−τQm

Þ=2Þ≡ limN→∞

XN
m¼1

Fðq→πÞ
m ðz;p⊥;sÞ:

ð3:7Þ

Here the function f̂ðq→Q1Þðη1;p1⊥; sÞ is the elementaryFF for
the first step, which refers to the case where the incoming
quark (q) has polarization s and no TM (k⊥ ¼ 0), and the
outgoing quark ðQ1Þ is unpolarized and has momentum
variables ðη1;p1⊥Þ. The function f̂ðQi→QjÞðηj;pj⊥ −
ηjpi⊥; hSiiÞ for the jth step refers to the case where the
incoming quark ðQiÞ hasmomentumvariables ðηi;pi⊥Þ and a
polarization hSii, which is defined as the mean polarization
density of the outgoing quark of the ith step (which depends
implicitly on the momentum variables of the steps 1; 2;…i),
while the outgoing quark ðQjÞ has momentum variables
ðηj;pj⊥Þ and its spin is not observed. In (3.7), we applied the
rule (A5) for making a transverse Lorentz transformation in
each step of the fragmentation chain. The delta functions in
(3.7) select a meson which is produced in the m-th step with
LM fraction zm of the initial quark, where

zm ¼ η1η2 � � � ηm−1 · ð1 − ηmÞ ð3:8Þ

for m > 1, and z1 ¼ 1 − η1 for m ¼ 1. In (3.7), a sum over
repeated quark flavor indices is implied, and for m ¼ 1 we
define p0⊥ ≡ k⊥ ¼ 0 and S0 ¼ s.
The main difference to the case of the integrated FFs [32]

is the spin structure of the product ansatz (3.7), which will
be explained in the following subsection.

B. Spin structure of the product ansatz

Here we wish to explain the spin structure of the product
ansatz (3.7). For this purpose, we keep only the spin
variables in most parts of this subsection, suppressing
momentum and isospin labels for simplicity.
Because the q → π FF is obtained from a chain of

elementary fragmentation processes, averaging over the
spin of the final quark remainder, we express it formally as

FðsÞ ¼ lim
N→∞

Tr½ða� þ b� · σÞNρðsÞðaþ b · σÞN �: ð3:9Þ

Here Tr denotes the trace of a spin 2 × 2 matrix, ρðsÞ is the
spin density matrix of the initial quark as before, and in
order to avoid long expressions for products, we use the
symbolic notations

ðaþ b · σÞn
≡ ða1 þ b1 · σÞ · ða2 þ b2 · σÞ…..ðan þ bn · σÞ;

ð3:10Þ

ða� þ b� · σÞn
≡ ða�n þ b�

n · σÞ…..ða�2 þ b�
2 · σÞ · ða�1 þ b�

1 · σÞ;
ð3:11Þ

where an and bn depend on the momentum variables of the
nth fragmentation step.
Our aim is to express (3.9) as a product of N factors.

For this, we first note that the matrix corresponding
to the first fragmentation step ðq → Q1Þ can be
expressed as

~f1ðsÞ ¼ ða�1 þ b�
1 · σÞρðsÞða1 þ b1 · σÞ

≡ 1

2
ðf1ðsÞ þ σ · f1ðsÞÞ ð3:12Þ

¼ f1ðsÞρðhS1iÞ; ð3:13Þ

where in (3.12) we defined the functions

f1ðsÞ ¼ Tr½ða�1 þ b�
1 · σÞρðsÞða1 þ b1 · σÞ�; ð3:14Þ

f1ðsÞ ¼ Tr½ða�1 þ b�
1 · σÞρðsÞða1 þ b1 · σÞσ�; ð3:15Þ

while in (3.13) we used the spin density matrix
ρðhS1iÞ ¼ 1

2
ð1þ hS1i · σÞ, where

hS1i ¼
f1ðsÞ
f1ðsÞ

ð3:16Þ

is the average polarization density of Q1 (after the first
step). Because of jhS1ij ≤ 1, the quark Q1 is in a partially
polarized state.
The matrix corresponding to the first and second

fragmentation steps (q → Q1 → Q2) can then be
expressed as

~f2ðsÞ ¼ ða�2 þ b�
2 · σÞf1ðsÞρðhS1iÞða2 þ b2 · σÞ

≡ f1ðsÞ
1

2
ðf2ðhS1iÞ þ σ · f2ðhS1iÞÞ ð3:17Þ

¼ f1ðsÞf2ðhS1iÞρðhS2iÞ; ð3:18Þ

where in (3.17) we defined the functions

f2ðhS1iÞ¼Tr½ða�2þb�
2 ·σÞρðhS1iÞða2þb2 ·σÞ�; ð3:19Þ
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f2ðhS1iÞ¼Tr½ða�2þb�
2 ·σÞρðhS1iÞða2þb2 ·σÞσ�; ð3:20Þ

while in (3.18) we used the spin density matrix
ρðhS2iÞ ¼ 1

2
ð1þ hS2i · σÞ, where

hS2i ¼
f2ðhS1iÞ
f2ðhS1iÞ

ð3:21Þ

is the average polarization density of Q2 (after the sec-
ond step).
We can continue in this way, and after N steps we obtain

for the FF (3.9)

FðsÞ ¼ lim
N→∞

f1ðsÞf2ðhS1iÞ…fNðhSN−1iÞTrρðhSNiÞ
¼ lim

N→∞
f1ðsÞf2ðhS1iÞ…fNðhSN−1iÞ: ð3:22Þ

Equation (3.22) is the desired result, because it expresses
the quantity (3.9) by a product of N factors, where each
factor is given in terms of the elementary FF. This
concludes the derivation of the spin structure of the product
ansatz (3.7).
We finally comment on the relation between the matrix

representation of the elementary FFs used in this subsec-
tion, and the form (2.19). For definiteness we consider the
FF for the first step, which in Eq. (3.12) was expressed in
spin matrix form as ~f1ðsÞ ¼ 1

2
ðf1ðsÞ þ σ · f1ðsÞÞ. The

connection to the form (2.19) for the elementary q → Q1

case is given by

f1ðS1; sÞ ¼ Trð ~f1ðsÞρðS1ÞÞ

¼ 1

2
ðf1ðsÞ þ S1 · f1ðsÞÞ; ð3:23Þ

where again the subscript 1 on the functions f and f is used
to denote the dependence on the momentum variables for
the first step. In (3.23), S1 is considered simply as an
auxiliary variable; i.e., if one knows f1ðS1; sÞ as a function
of S1, one also knows the matrix valued function ~f1ðsÞ.

(We note that an analogous trace operation was performed
in (2.17) for the initial quark.) Equation (3.23) also
provides a natural extension of the formalism in Sec. II,
where the polarization S in (2.3) implicitly referred to a
fully polarized state, to the case of partial polarization.
Returning to the full notations including the momentum

and isospin variables, comparison of (2.19) with (3.23)
gives

f̂ðq→Q1Þðη1;p1⊥; sÞ ¼ 2½d̂ðq→Q1Þðη1;p2
1⊥Þ

þ 1

Mη1
ðp1⊥ × sTÞ3ĥ⊥ðq→Q1Þðη1;p2

1⊥Þ�

ð3:24Þ

in agreement with (3.3), and9

f̂ðq→Q1Þðη1;p1⊥; sÞ

¼ 2

�
1

Mη1
p0
1⊥d̂

⊥ðq→Q1Þ
T ðη1;p2

1⊥Þ þ sTĥ
ðq→Q1Þ
T ðη1;p2

1⊥Þ

þ 1

M2η21
p1⊥ðsT · p1⊥Þĥ⊥ðq→Q1Þ

T ðη1;p2
1⊥Þ
�
: ð3:25Þ

If p1⊥ ¼ ðp1
1⊥; p2

1⊥Þ, the vector p0
1⊥ is defined by

p0
1⊥ ¼ ð−p2

1⊥; p1
1⊥Þ. To get the corresponding functions

for the second step, one has to replace the momentum
variables ðη1;p1⊥Þ by ðη2;p2⊥ − η2p1⊥Þ, while according
to (3.18) the spin variable s should be replaced by hS1i,
which is the ratio of the 2 functions given above for the
first step.

C. Integral equations

Let us now proceed with the product ansatz (3.7) to
derive the integral equation for the FF in the TMD jet
model. For a fixed m in (3.7), we can integrate over the
variables ηk, pk⊥ for k > m using the normalization (3.2).
The integrations over ηm, pm⊥ are then performed by using
the delta functions. Making a shift ηm → 1 − ηm and using
(3.4), the result of these integrations is

X
τQm

Z
1

0

dηm

Z
d2pm⊥δðz − zmÞf̂ðQm−1→QmÞðηm;pm⊥ − ηmpm−1⊥; hSm−1iÞδðp⊥ − ðpm−1⊥ − pm⊥ÞÞδðτπ; ðτQm−1

− τQm
Þ=2Þ

¼
Z

1

0

dηmδðz − η1η2…ηmÞf̂ðQm−1→πÞðηm;p⊥ − ηmpm−1⊥; hSm−1iÞ: ð3:26Þ

In this way, the function Fðq→πÞ
m of Eq. (3.7) becomes

9Equation (3.25) shows only the transverse part of f̂ðq→Q1Þ without the contribution from the last term ∝ sL in the elementary version
of Eq. (2.19). It will become clear in subsection III. D. that this term does not contribute to inclusive pion production. Also, there is a
longitudinal part of f̂ðq→Q1Þ which arises from the terms ∝ SL in the elementary version of (2.19). Because the total FF for q → π consists
only of the unpolarized (D) and the Collins ðH⊥Þ terms of (2.19), this part does not contribute either.
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Fðq→πÞ
m ðz;p⊥; sÞ ¼

Z
Dmη

Z
D2ðm−1Þp⊥f̂ðq→Q1Þðη1;p1⊥; sÞf̂ðQ1→Q2Þðη2;p2⊥ − η2p1⊥; hS1iÞ � � �

× f̂ðQm−2→Qm−1Þðηm−1;pm−1⊥ − ηm−1pm−2⊥; hSm−2iÞ
× f̂ðQm−1→πÞðηm;p⊥ − ηmpm−1⊥; hSm−1iÞδðz − η1η2 � � � ηmÞ: ð3:27Þ

In order to obtain a recursion relation for the functions Fðq→πÞ
m , we carry out the steps explained in Appendix D [see

Eqs. (D8)–(D14)], and obtain for m > 1

Fðq→πÞ
m ðz;p⊥; sÞ ¼

Z
D2η

Z
D4p⊥δðz − η1η2Þδð2Þðp⊥ − p2⊥ − η2p1⊥Þf̂ðq→QÞðη1;p1⊥; sÞFðQ→πÞ

m−1 ðη2;p2⊥; hS1iÞ; ð3:28Þ

where hS1i is the mean polarization density of the quark produced in the first step and depends on the momentum variables
ðη1;p1⊥Þ (for the explicit form, see Eq. (3.38) of the following subsection), while for m ¼ 1 we have

Fðq→πÞ
1 ðz;p⊥; sÞ ¼ f̂ðq→πÞðz;p⊥; sÞ: ð3:29Þ

Because the total FF is obtained by performing the sum over m and taking the limit N → ∞ [see (3.7)], it satisfies the
following integral equation:

Fðq→πÞðz;p⊥; sÞ ¼ f̂ðq→πÞðz;p⊥; sÞ þ
Z

D2η

Z
D4p⊥δðz − η1η2Þδð2Þðp⊥ − p2⊥ − η2p1⊥Þf̂ðq→QÞðη1;p1⊥; sÞ

× FðQ→πÞðη2;p2⊥; hS1iÞ: ð3:30Þ

More explicit forms of this integral equation will be derived
in the following subsection. Here we add remarks on the
following two points: First, the SU(2) flavor dependence of
all q → π and q → Q FFs in this paper (elementary or full)
can be expressed by

Zðq→πÞ ¼ 1

3
Zðq→πÞ
ð0Þ þ 1

2
τqτπZ

ðq→πÞ
ð1Þ ; ð3:31Þ

Zðq→QÞ ¼ 1

2
Zðq→QÞ
ð0Þ þ 1

2
τqτQZ

ðq→QÞ
ð1Þ : ð3:32Þ

Here Z ¼ f̂ for the elementary functions, and Z ¼ F for the
full functions, and the subscripts (0) and (1) denote the
isoscalar and isovector parts.10 These definitions are con-
venient for the discussion of sum rules because of the
following relations:

X
τπ

Zðq→πÞ ¼Zðq→πÞ
ð0Þ ;

X
τπ

τπZðq→πÞ ¼ τqZ
ðq→πÞ
ð1Þ : ð3:33Þ

By using the forms (3.31) and (3.32) in the integral
equation (3.30), the sum over the intermediate quark
flavors can be easily carried out, and one obtains two
separate integral equations, of the same form as the original

equation (3.30), for the isoscalar (α ¼ 0) and isovector
(α ¼ 1) parts:

Fðq→πÞ
ðαÞ ðz;p⊥; sÞ

¼ f̂ðq→πÞ
ðαÞ ðz;p⊥; sÞ þ

Z
D2η

Z
D4p⊥δðz − η1η2Þ

× δð2Þðp⊥ − p2⊥ − η2p1⊥Þf̂ðq→QÞ
ðαÞ ðη1;p1⊥; sÞ

× FðQ→πÞ
ðαÞ ðη2;p2⊥; hS1iÞ: ð3:34Þ

From this equation it follows that the “favored” combina-
tion 1

3
Fðq→πÞ
ð0Þ þ 1

2
Fðq→πÞ
ð1Þ and the “neutral” function 1

3
Fðq→πÞ
ð0Þ

have nonzero driving terms, while the “unfavored” combi-
nation 1

3
Fðq→πÞ
ð0Þ − 1

2
Fðq→πÞ
ð1Þ has no driving term, which is a

simple consequence of charge conservation.
Second, we note that the momentum and isospin sum

rules for the elementary FFs follow from the general forms
(2.22)–(2.24), if the sum over h includes both the produced
pion and the outgoing quark. Namely, the elementary
counterpart of the LM sum rule (2.22) is

Z
1

0

dz z
Z

d2p⊥
�X

τπ

d̂ðq→πÞðz;p2⊥Þ

þ 2
X
τQ

d̂ðq→QÞðz;p2⊥Þ
�

¼ 1; ð3:35Þ10For the isoscalar and isovector functions ZðαÞ, the distinction
between the quark labels q and Q is irrelevant.
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that of the TM sum rule (2.23) isZ
1

0

dz
z

Z
d2p⊥p2⊥

�
1

mπ

X
τπ

ĥ⊥ðq→πÞðz;p2⊥Þ

þ 2

M

X
τQ

ĥ⊥ðq→QÞðz;p2⊥Þ
�

¼ 0; ð3:36Þ

and that of the isospin sum rule (2.24) isZ
1

0

dz
Z

d2p⊥
�X

τπ

τπd̂
ðq→πÞðz;p2⊥Þ

þ 2
X
τQ

τQ
2
d̂ðq→QÞðz;p2⊥Þ

�
¼ τq

2
: ð3:37Þ

The sum rules (3.35)–(3.37) just express the momentum
and isospin conservation laws for the elementary fragmen-
tation process and are, therefore, model independent.
(Explicit model forms for pseudoscalar (ps) and pseudo-
vector (pv) pion-quark coupling are collected in
Appendix C.) We stress again that in the “full” sum rules
(2.22)–(2.24) the summation Σh refers only to the pions,
because after an infinite chain of elementary fragmentation
processes the final quark remainder will have zero LM and,

on average, also zero TM and zero isospin z component.
We will confirm this point in the TMD jet model in the next
subsection and in Appendix E.

D. Explicit forms of TMD jet integral equations
and sum rules

In this subsection, we give the explicit forms of the
integral equations for the spin-independent (Dðq→πÞ) and
quark-spin-dependent (H⊥ðq→πÞ) FFs and confirm the asso-
ciated sum rules. For this, we have to insert the elementary
FFs for an incoming polarized quark and outgoing pion or
unpolarized quark, as given by (3.3) and (3.4), into the
integral equation (3.30), and use the following expression
for the mean polarization density of the quark produced in
the first step [see Eqs. (3.16), (3.24), and (3.25)]:

hS1i ¼
2

f̂ðq→QÞðη1;p1⊥; sÞ

�
1

Mη1
p0
1⊥d̂

⊥ðq→QÞ
T ðη1;p2

1⊥Þ

þ sTĥ
ðq→QÞ
T ðη1;p2

1⊥Þ

þ 1

M2η21
p1⊥ðsT · p1⊥Þĥ⊥ðq→QÞ

T ðη1;p2
1⊥Þ
�
: ð3:38Þ

We then obtain for the product on the rhs of (3.30):

f̂ðq→QÞðη1;p1⊥; sÞFðQ→πÞðη2;p2⊥; hS1iÞ

¼ f̂ðq→QÞðη1;p1⊥; sÞDðQ→πÞðη2;p2
2⊥Þ þ

2

mπη2

�
1

Mη1
ðp1⊥ · p2⊥Þd̂⊥ðq→QÞ

T ðη1;p2
1⊥Þþðp2⊥ × sTÞ3ĥ⊥ðq→QÞ

T ðη1;p2
1⊥Þ

−
1

M2η21
ðp1⊥ × p2⊥Þ3ðsT · p1⊥Þĥ⊥ðq→QÞ

T ðη1;p2
1⊥Þ
�
H⊥ðQ→πÞðη2;p2

2⊥Þ: ð3:39Þ

Inserting everything into (3.30), we obtain the following two coupled integral equations11:

Dðq→πÞðz;p2⊥Þ ¼ d̂ðq→πÞðz;p2⊥Þ þ 2

Z
D2η

Z
D4p⊥δðz − η1η2Þδð2Þðp⊥ − p2⊥ − η2p1⊥Þ

×

�
d̂ðq→QÞðη1;p2

1⊥ÞDðQ→πÞðη2;p2
2⊥Þ þ

1

Mmπz
ðp1⊥ · p2⊥Þd̂⊥ðq→QÞ

T ðη1;p2
1⊥ÞH⊥ðQ→πÞðη2;p2

2⊥Þ
�
; ð3:40Þ

ðp⊥ × sTÞ3H⊥ðq→πÞðz;p2⊥Þ ¼ ðp⊥ × sTÞ3ĥ⊥ðq→πÞðz;p2⊥Þ þ 2

Z
D2η

Z
D4p⊥δðz − η1η2Þδð2Þðp⊥ − p2⊥ − η2p1⊥Þ

×

�
mπ

M
η2ðp1⊥ × sTÞ3ĥ⊥ðq→QÞðη1;p2

1⊥ÞDðQ→πÞðη2;p2
2⊥Þ

þ ðη1ðp2⊥ × sTÞ3ĥðq→QÞ
T ðη1;p2

1⊥Þ −
1

M2η1
ðsT · p1⊥Þ

×ðp1⊥ × p2⊥Þ3ĥ⊥ðq→QÞ
T ðη1;p2

1⊥ÞÞH⊥ðQ→πÞðη2;p2
2⊥Þ
�
: ð3:41Þ

At this stage, it is easy to confirm our previous comment
about the vanishing contribution from the last term ð∝ sLÞ in
the elementary version of (2.19) for the q → Q case:
Although this term contributes to (3.38) and (3.39), it

11Because the isoscalar and isovector integral equations have
completely the same form [see (3.34)], we will omit the isospin
index (α) in some of the following equations for simplicity.
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vanishes in the integral equation (3.41). Therefore only the
transverse quark polarization contributes to inclusive pion
production.
In order to obtain the integral equation for the function

H⊥ðq→πÞ from (3.41), it is necessary to use the delta
function to integrate over p2⊥. Using simple identities
which follow from rotational invariance in the transverse
plane, we obtain

H⊥ðq→πÞðz;p2⊥Þ

¼ ĥ⊥ðq→πÞðz;p2⊥Þ þ 2

Z
D2ηδðz − η1η2Þ

Z
d2p1⊥

×

�
mπ

M
η2Xĥ

⊥ðq→QÞðη1;p2
1⊥ÞDðQ→πÞðη2;p2

2⊥Þ

þ ððη1 − zXÞĥðq→QÞ
T ðη1;p2

1⊥Þ þ
1

M2η1
ðp2

1⊥ − p2⊥X2Þ

×ĥ⊥ðq→QÞ
T ðη1;p2

1⊥ÞÞH⊥ðQ→πÞðη2;p2
2⊥Þ
�
; ð3:42Þ

where we denoted X ≡ p⊥·p1⊥
p2⊥

, and p2
2⊥ ≡ ðp⊥ − η2p1⊥Þ2.

The two coupled integral equations (3.40) and (3.42)
constitute important results of our investigation.
We now wish to show that the momentum and isospin

sum rules (2.22)–(2.24) are valid in this TMD jet model.
In the subsequent discussions, we will use the following
notation for the nth moment of any TMD function
Aðz;p2⊥Þ12

A½n�ðzÞ ¼
Z

d2p⊥ðp2⊥ÞnAðz;p2⊥Þ; ð3:43Þ

and adopt the notations

hAðzÞi ¼
Z

1

0

dzAðzÞ;

ðAðη1ÞÞ ⊗ ðBðη2ÞÞðzÞ ¼
Z

D2ηδðz − η1η2ÞAðη1ÞBðη2Þ:

ð3:44Þ

First, thewell-known LM and the isospin sum rules follow
immediately from (3.40): Integrating over p⊥, the second
term in ½…� vanishes, which leaves us with the usual one-
dimensional convolution integral for the spin-independent FF
[32]. For the isoscalar case, we obtain the LM sum rule

hzDðq→πÞ
ð0Þ ðzÞi
¼ hzd̂ðq→πÞ

ð0Þ ðzÞi þ 2hzd̂ðq→QÞ
ð0Þ ðzÞihzDðQ→πÞ

ð0Þ ðzÞi
¼ hzd̂ðq→πÞ

ð0Þ ðzÞi þ hð1 − zÞd̂ðq→πÞ
ð0Þ ðzÞihzDðq→πÞ

ð0Þ ðzÞi;
ð3:45Þ

where we performed the shift z → ð1 − zÞ of the integration
variable. If we write (3.45) formally as R ¼ rþ r0R, then
rþ r0 ¼ 1 due to the normalization (3.2), and we get R ¼ 1,
as in the original quark jet model [1],

Z
1

0

dzz
Z

d2p⊥D
ðq→πÞ
ð0Þ ðz;p2⊥Þ ¼ 1; ð3:46Þ

which is Eq. (2.22) for the present case of h ¼ π only. For the
isospin sum rule, we can simply use the model-independent
normalizations of the isovector splitting functions listed in
Appendix C to obtain

hDðq→πÞ
ð1Þ ðzÞi ¼ hd̂ðq→πÞ

ð1Þ ðzÞi þ 2hd̂ðq→QÞ
ð1Þ ðzÞihDðQ→πÞ

ð1Þ i

¼ 2

3
−
1

3
hDðq→πÞ

ð1Þ i: ð3:47Þ

From this we obtain the isospin sum rule

Z
1

0

dz
Z

d2p⊥D
ðq→πÞ
ð1Þ ðz;p2⊥Þ ¼

1

2
; ð3:48Þ

in agreement with (2.24).
Second, in order to confirm also the validity of the TM

sum rule, we first derive the integral equation for the n ¼ 1

moment H⊥½1�ðq→πÞðzÞ. For this, we multiply (3.42) by p2⊥,
integrate and perform the shift p⊥ → p⊥ þ η2p1⊥. Using
simple identities which follow from rotational invariance in
the transverse plane, and expressing z ¼ η1η2 everywhere,
we obtain the following simple one-dimensional integral
equation,

H⊥½1�ðq→πÞðzÞ ¼ ĥ⊥½1�ðq→πÞðzÞ
þ 2

mπ

M
ðĥ⊥½1�ðq→QÞðη1ÞÞ ⊗ ðη22Dðq→πÞðη2ÞÞ

þ 2ðη1ĥðq→QÞðη1ÞÞ ⊗ ðH⊥½1�ðq→πÞðη2ÞÞ;
ð3:49Þ

where we defined the function

ĥðq→QÞðηÞ ¼ ĥðq→QÞ
T ðηÞ þ 1

2M2η2
ĥ⊥½1�ðq→QÞ
T ðηÞ: ð3:50Þ

For the sum rule (2.23) we need to divide (3.49) by 2zmπ,
which gives

12We only need the cases n ¼ 0, where A½0�ðzÞ ¼ AðzÞ is the
integrated function, and n ¼ 1. Note that, with this naive
definition, the dimension of the n ¼ 1 moment is different from
the n ¼ 0 case.
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1

2zmπ
H⊥½1�ðq→πÞðzÞ

¼ 1

2zmπ
ĥ⊥½1�ðq→πÞðzÞ

þ
�

1

Mη1
ĥ⊥½1�ðq→QÞðη1Þ

�
⊗ ðη2Dðq→πÞðη2ÞÞ

þ2ðĥðq→QÞðη1ÞÞ⊗
�

1

2η2mπ
H⊥½1�ðq→πÞðη2Þ

�
: ð3:51Þ

If we integrate Eq. (3.51) for the isoscalar parts over z and
use the LM sum rule (3.46) and the relation (3.36) for the
elementary splitting functions, we see that the first two
terms on the rhs of (3.51) cancel each other in the integral.
What remains is the following relation:

Z
1

0

dz
2zmπ

H⊥½1�ðq→πÞ
ð0Þ ðzÞ ¼ C ×

Z
1

0

dz
2zmπ

H⊥½1�ðq→πÞ
ð0Þ ðzÞ;

ð3:52Þ

where we defined the constant

C ¼ 2

Z
1

0

dz ĥðq→QÞ
ð0Þ ðzÞ ð3:53Þ

¼
�Z

1

0

dzhðq→QÞ
ð0Þ ðzÞ

�
·

�Z
1

0

dzdðq→QÞ
ð0Þ ðzÞ

�
−1
; ð3:54Þ

where in the second step we used ĥðq→QÞðzÞ ¼
hðq→QÞðzÞ=ð1 − ZQÞ with ð1 − ZQÞ from (3.5). From
(3.52), we see that, unless C ¼ 1, the isoscalar TM sum
rule must vanish. On general grounds, jCj ≤ 1 follows from
one of the positivity bounds for the twist-2 quark FFs:
Because the q → Q FF has the physical interpretation of the
distribution function of Q inside q (see Sec. II), we see that
hðq→QÞ is the transversity distribution function and dðq→QÞ
the unpolarized distribution function of Q inside q. The
probabilistic interpretation of those functions leads to the
positivity bound jhðq→QÞðzÞj ≤ dðq→QÞðzÞ [48], which can
be extended [52] to the TM-dependent functions:
jhðq→QÞðz;p2⊥Þj ≤ dðq→QÞðz;p2⊥Þ. This inequality immedi-
ately leads to jCj ≤ 1. The boundary value C ¼ 1 would
correspond to the case where hðq→QÞ and dðq→QÞ are
identical functions of z and p2⊥, which we exclude here.13

Actually, for the case of pion emission, the result for C
obtained for both ps and pv quark-pion coupling shows that
−1 < C < 0 (see Appendix C).

Finally in this section, we add the following three
comments:

(i) In our present TMD jet model, the constant C of
(3.53) gives the ratio of the mean polarizations of the
outgoing and incoming quarks (including a sum over
the outgoing quark flavors) for one elementary
fragmentation step, i.e., a measure for the quark
depolarization. Taking the first step as an example,
this follows from the form given by (3.25):Z

1

0

dη
Z

d2p⊥
X
τQ

f̂ðq→QÞðη;p⊥; sÞ ¼ CsT: ð3:55Þ

(ii) The finite constituent quark mass M causes mixing
of operators with opposite chirality in the integral
equation (3.40): We remind that the Dirac matrices
γþ and γþγ5 of (2.5) and (2.7) are chiral even
(anticommute with γ5), while iσiþγ5 of (2.6) is
chiral odd (commutes with γ5). If there were no
mass term in the quark propagator, operators with
opposite chirality could not couple in the integral

equation. Therefore the term ∝ d̂⊥ðq→QÞ
T H⊥ðQ→πÞ in

the integral equation (3.40) arises entirely from the
finite constituent quark mass term in the propaga-
tors. (Explicit model examples to illustrate this point
are discussed in Appendix C for both ps and pv
pion-quark coupling.)

(iii) The integral equations derived in this section and the
associated sum rules hold in any effective quark
theory which does not involve explicit gluon and
gauge link degrees of freedom, and which satisfies
the following 3 points which were used in the
verification of the TM sum rule in the steps from
Eq. (3.49) to (3.54): (i) the LM sum rule (3.46),
(ii) the TM conservation in each fragmentation step
expressed by (3.36), and (iii) the quark depolariza-
tion factor C of (3.53) is not equal to unity; i.e., the
transversity distribution function and the unpolar-
ized distribution function of a quark inside a parent
quark are not identical to each other.

IV. SUMMARY

The analysis of TMDquark distribution and fragmentation
functions is a very active field of present experimental and
theoretical research. For the description of quark TMD
distribution functions, one can follow the methods based
on relativistic bound statevertex functions for hadrons,which
have been applied successfully to form factors and the
longitudinal quark momentum distributions. For the descrip-
tion of quark FFs, however, one has to consider multi-
fragmentation processes,where the quark produces a cascade
of mesons. One purpose of this paper was therefore to
formulate the TMD jetmodel, which is suitable for numerical
calculations in effective quark theories. Limiting ourselves to
the case of inclusive pion production for simplicity and

13Writing hðq→QÞ ¼ f↑ − f↓ and dðq→QÞ ¼ f↑ þ f↓ with semi-
positive definite functions f↑ and f↓, the boundary value C ¼ 1
would mean that f↓ ¼ 0; i.e., the probability distribution of
quarks with transversity opposite to the parent quark would have
to vanish identically for all values of z and p2⊥.
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clarity, we used a product ansatz for the TMD FF, similar to
that used by Field and Feynman for the description of
longitudinal quark jets [1]. From this product ansatz we
derived the integral equations for the spin-independent and
quark-spin-dependent FFs. The proper treatment of the spin
of the quarks in the intermediate states requires the use of
several elementary TMD splitting functions in the integral
equations.We found that these integral equations are coupled
to each other, that is, the spin-independent and quark-spin-
dependent FFs are mutually interrelated. We showed that in
this TMD jet model all momentum and isospin sum rules are
satisfied. This is possible because after many hadron emis-
sions the final quark remainder has zero longitudinal
momentum and, on average, also zero transverse momentum
and zero z- component of isospin.
The numerical solutions of the integral equations derived

in this paper, using model input splitting functions, will
allow to obtain the relevant FFs in future work. An
important task thereby will be to extend the framework
to additional hadron production channels, such as kaons,
vector mesons and their strong decays, as well as baryons.
The Monte Carlo method will be naturally suited for this
purpose, which can also allow to study various correlations
between FFs describing single- and multihadron inclusive
production. In order to make contact to experiment, it is
also important to take into account the Q2 evolution of the
calculated TMD FFs [53]. Together with the model TMD
PDFs, they can be used to calculate observables like cross
sections and asymmetries for various SIDIS processes.
Finally, in view of recent experimental analyses [54], it is of
great interest to explore quark FFs in the nuclear medium.
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APPENDIX A: TRANSVERSE LORENTZ
TRANSFORMATIONS

A transverse Lorentz transformation is defined so as to
leave the component aþ ¼ a− of any 4-vector aμ ¼
ðaþ; a−; a1; a2Þ unchanged. It involves the parameters
b− and bT , and the Lorentz matrix is expressed by [55]

Λμ
ν ¼

0
BBBBB@

1
b2
T

2b2−
b1
b−

b2
b−

0 1 0 0

0 − b1
b−

1 0

0 − b2
b−

0 1

1
CCCCCA: ðA1Þ

The quark and hadron momenta are transformed as
k0μ ¼ Λμ

νkν, p0
μ ¼ Λμ

νpν. If we start from a system S,
where in general both pT and kT are nonzero, we consider
the following two cases: (1) By using b− ¼ k−, bT ¼ kT in
(A1), we arrive at a system S’ where k0

T ¼ 0. The relation
between the transverse momenta in this case becomes
p0
T ¼ pT − zkT . (2) By using b− ¼ p−, bT ¼ pT in (A1),

we arrive at a system S’ where p0
T ¼ 0. The relation

between the transverse momenta in this case becomes
k0
T ¼ kT − pT

z .
We note that one can express the above transformations

also in usual Minkowski coordinates. For example, for the
transformation (1) discussed above we get

p0
0 ¼ p0 þ

1

2
ffiffiffi
2

p
p−

ðk2
Tz

2 − 2zkT · pTÞ; ðA2Þ

p0
3 ¼ p3 þ

1

2
ffiffiffi
2

p
p−

ðk2
Tz

2 − 2zkT · pTÞ; ðA3Þ

and one can confirm that p02
0 − p02

3 − p02
T ¼ p2

0 − p2
3 − p2

T .
Therefore, at leading order (leading power of p−), the
direction p̂ is always in the 3—direction, and the correc-
tions to this are of subleading order.
The operation used in the definition of the quark decay

matrix [see Eq. (2.1)],

1

2z

Z
dkþdk−
ð2πÞ4 δ

�
1

z
−
k−
p−

�
; ðA4Þ

is invariant under the transverse Lorentz transformations,
because the transformation of kþ can be eliminated by a
shift of the integration variable. We also note that the
vectors s and S in the parametrization of all FFs used in this
paper [see Eq. (2.19)] are not subject to any Lorentz
transformation, because by definition they denote generic
(constant) vectors in space; i.e., parameters which specify
the spin 4-vector [see, for example, Eq. (2.4)]. Quantities
like SL, ST , for example, are defined by SL ¼ ðS · p̂Þ and
ST ¼ S − p̂ðS · p̂Þ, and for the leading produced particle
(leading twist) the direction p̂ is not changed under the
transverse Lorentz transformation as discussed above. We
therefore arrive at the following simple rule for the trans-
verse Lorentz transformation of any FF:

Fðz;pT;kT ;S; sÞ ¼ Fðz;pT − zkT ;S; sjk⊥ ¼ 0Þ: ðA5Þ

Here the notation on the rhs refers to a frame where the
transverse momentum of the fragmenting quark vanishes,
and in this case the parametrization given by Eq. (2.19)
holds. Namely, in a general system, we simply have to
replace the momentum p⊥ in Eq. (2.19) according
to p⊥ → pT − zkT .
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APPENDIX B: LIGHT FRONT SPINORS
AND MELOSH ROTATION

The positive energy spinor in the usual Dirac represen-
tation is given by

uλðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþm

p �
χ̂λ

σ·p
Eþm χ̂λ

�
; ðB1Þ

where χ̂λ is a 2-component Pauli spinor. In this appendix,
we denote the mass by m, the energy Ep by E, and the
normalization is ūu ¼ 2m. The “good component” of the
spinor is obtained from (B1) by applying the projection
operator Eq. (2.11):

uþλðpÞ ¼ ΛðþÞuλðpÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþm

p
 
1þ σ3ðσ·pÞ

Eþm

σ3 þ ðσ·pÞ
Eþm

!
χ̂λ ðB2Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ p3

2

r �
U†

M
σ3U

†
M

�
χ̂λ ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ p3

2

r �
1
σ3

�
χλ:

ðB3Þ

Here the Pauli spinor χλ is defined by χ̂λ ¼ UMχλ, and UM
is the so-called “Melosh rotation” [56]. (The explicit form
of the spinor rotation UM can easily be obtained from the
above relations.)
Using the form of the spinor uþλðpÞ given in (B3), the

relation (2.15) of Sec. II can easily be shown as follows:

ūλ0 ðpÞΓμuλðpÞ ¼
ffiffiffi
2

p
u†þλ0 ðpÞ ~ΓμuþλðpÞ

¼
ffiffiffi
2

p Eþ p3

2
χ†λ0 ð1; σ3Þ ~Γμ

�
1

σ3

�
χλ

¼
ffiffiffi
2

p
ðEþ p3Þχ†λ0σμχλ ¼ 2p−ðσμÞλ0λ; ðB4Þ

where we used the definitions of Γμ, Eq. (2.8), and
Γμ ¼ γþ ~Γμ. Equation (B4) is the same as (2.15) of Sec. II.
The quantity (B4) represents a Hermitian 2 × 2matrix in

the spin indices ðλ0; λÞ, and contraction with sμ ¼ ð1; sÞ
leads to ρλ0λðsÞ ¼ 1

2
ð1þ s · σÞλ0λ of (2.16) in the main text.

Denoting by s the magnitude of the polarization vector
(0 ≤ s ≤ 1) and by ŝ its direction, the operator ρðsÞ ¼
1
2
ð1þ s · σÞ can be written in the form

ρðsÞ ¼ wþ
1

2
ð1þ ŝ · σÞ þ w−

1

2
ð1 − ŝ · σÞ; ðB5Þ

where w� ¼ 1
2
ð1� sÞ. Therefore, for a fully polarized

quark (s ¼ 1), ρðsÞ becomes a projector onto the direction
ŝ, while for a partially polarized quark (s < 1), ρðsÞ is a
linear combination of the projectors onto the directions ŝ
and −ŝ with coefficients wþ and w−, respectively.
Therefore ρðsÞ can be identified with the usual spin density
matrix.

For easier interpretation of some of the relations in the
main text, we finally give the form of the spin density
matrix in the basis which diagonalizes s · σ,

ρλ0λðsÞ ¼ δλ0λ
1

2
ð1þ sλÞ; ðB6Þ

where λ ¼ �1. In this basis, the spin average of any
quantity A takes the form

TrðρðsÞAÞ ¼ wþA11 þ w−A−1−1: ðB7Þ

APPENDIX C: EXPLICIT FORMS OF
ELEMENTARY FRAGMENTATION FUNCTIONS

In this appendix, we list model results for the
elementary q → π and q → Q splitting functions, para-
metrized as in Eq. (2.19), and their sum rules. We will
mainly refer to the case of ps coupling of constituent
quarks (mass M) to pions, but also discuss the results for
pv coupling in those cases which serve to illustrate the
model independence of the points discussed in Sec. III of
the main text.
The nonfragmentation term ∝ ZQ of Eq. (3.1) is easily

obtained from the operator definitions (2.1) and (2.2) as the
contribution of the hadronic vacuum state j0i to the sum Σn
in (2.2). All four operators (2.8) contribute to this term, and
by using (2.15) for the spinor matrix elements, one easily
derives the spin dependence as expressed in (3.1). Another
way to see this is to use the formal analogue of
Eq. (3.23) for the “0th step”: f0ðS; sÞ≡ Trð ~f0ðsÞρðSÞÞ ¼
1
2
ð1þ S · sÞ, where ~f0ðsÞ ¼ ρðsÞ follows from setting N ¼

0 in Eq. (3.9).14 We do not list the nonfragmentation terms
in the formulas of this appendix, because eventually they
can be absorbed into the renormalized FFs, as explained in
Appendix D.
The tree-level cut diagrams of Fig. 2 contribute to the six

T-even splitting functions of Eq. (2.19), and in order to
obtain nonzero results for the T-odd functions d⊥T and h⊥
one has to consider the loop diagrams shown in Figs. 3
and 4.15 In order to facilitate comparison with previous
works [28–30], we give the expressions for the case where a
neutral pion is produced (for q → π case) or on the cut (for
q → Q case), which we refer to as the “neutral functions.”
The flavor dependence is then expressed in terms of those
neutral functions by

fðq→πÞ ¼ fðq→πÞ
neutralð1þ τqτπÞ; ðC1Þ

14The corresponding argument for pure spin states is to
use the relation jSihSj ¼ 1

2
ð1þ S · σÞ, which implies hsjSi ¼

1
2
ð1þ S · sÞ.
15As as shown in Ref. [27], the other one-loop diagrams do not

contribute to the T-odd functions considered here.
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fðq→QÞ ¼ fðq→QÞ
neutral

�
3

2
−
τqτQ
2

�
: ðC2Þ

Because of the definitions (3.31) and (3.32) of the main
text, the isoscalar and isovector functions can be obtained
from the neutral ones by

fðq→πÞ
ð0Þ ¼ 3fðq→πÞ

neutral; fðq→QÞ
ð0Þ ¼ 3fðq→QÞ

neutral ; ðC3Þ

fðq→πÞ
ð1Þ ¼ 2fðq→πÞ

neutral; fðq→QÞ
ð1Þ ¼ −fðq→QÞ

neutral : ðC4Þ

Consider first the tree diagrams of Fig. 2 for ps coupling.
For the q → π fragmentation, they give the well-known
result [30,32]

dðq→πÞ
neutralðz;p2⊥Þ ¼

z
2

g2π
ð2πÞ3

p2⊥ þM2z2

½p2⊥ þM2z2 þ ð1 − zÞm2
π�2

;

ðC5Þ

while for the q → Q fragmentation they give the following
six T-even functions [30]:

dðq→QÞ
neutral ðz;p2⊥Þ ¼

1 − z
4

g2π
ð2πÞ3

p2⊥ þM2ð1 − zÞ2
½p2⊥ þM2ð1 − zÞ2 þ zm2

π�2
;

ðC6Þ

hðq→QÞ
T;neutralðz;p2⊥Þ ¼ −dðq→QÞ

neutral ðz;p2⊥Þ; ðC7Þ

h⊥ðq→QÞ
T;neutral ðz;p2⊥Þ ¼

1 − z
2

g2π
ð2πÞ3

M2z2

½p2⊥ þM2ð1 − zÞ2 þ zm2
π�2

;

ðC8Þ

h⊥ðq→QÞ
L;neutral ðz;p2⊥Þ ¼

1 − z
2

g2π
ð2πÞ3

M2zð1 − zÞ
½p2⊥ þM2ð1 − zÞ2 þ zm2

π�2
;

ðC9Þ

gðq→QÞ
L;neutralðz;p2⊥Þ ¼

1 − z
4

g2π
ð2πÞ3

−p2⊥ þM2ð1 − zÞ2
½p2⊥ þM2ð1 − zÞ2 þ zm2

π�2
ðC10Þ

gðq→QÞ
T;neutralðz;p2⊥Þ ¼ h⊥ðq→QÞ

L;neutral ðz;p2⊥Þ: ðC11Þ

The pion loop diagrams of Fig. 3 give the following
results for the elementary T-odd q → π FF for the case of
ps coupling [28,29]:

h⊥ðq→πÞ
neutral ðz;p2⊥Þ

¼ −
g2π

ð2πÞ3
Mmπ

1 − z

�
Im ~Σðk2Þ

ðk2 −M2Þ2 þ
Im ~Γπðk2Þ
k2 −M2

�
; ðC12Þ

where the whole expression should be taken at

k2 ¼ 1

zð1 − zÞ ðp
2⊥ þM2zþm2

πð1 − zÞÞ:

In (C12), we have ~Σ ¼ Aþ B and ~Γπ ¼ Dþ EþMF,
where the various functions are defined by the representa-
tion of the quark self energy Σ and the qqπ vertex
correction Γπ in terms of Dirac matrices as Σ ¼ Akþ
BM and Γπðk; pÞ ¼ CþDpþ Ekþ Fpk. The analytic
forms of Im ~Σ and Im ~Γπ are given by [28]

FIG. 3. Cut diagrams with a pion loop for the elementary
fragmentation process q → π. The solid line denotes a quark, and
the dashed line a pion. The cut goes through the line labeled by
the momentum k − p.

FIG. 4. Cut diagrams with a pion loop for the elementary
fragmentation process q → Q. The solid line denotes a quark, and
the dashed line a pion. The cut goes through the line labeled by
the momentum k − p.

FIG. 2. Cut diagrams for elementary fragmentation processes
q → π (top) and q → Q (bottom). The solid line denotes a quark,
and the dashed line a pion. The cut goes through the line labeled
by the momentum k − p.
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Im ~Σðk2Þ ¼ 3g2π
16π2

�
1 −

M2 −m2
π

k2

�
I1; ðC13Þ

Im ~Γπðk2Þ ¼
g2π
8π2

k2 −M2 þm2
π

λ

× ðI1 þ ðk2 −M2 − 2m2
πÞI2Þ; ðC14Þ

where the integrals I1 and I2 are given by

I1 ¼
Z

d4lδðl2 −m2
πÞδ½ðk − lÞ2 −M2�

¼ π

2k2
ffiffiffi
λ

p
Θðk2 − ðM þmπÞ2Þ;

I2 ¼
Z

d4l
δðl2 −m2

πÞδ½ðk − lÞ2 −M2�
ðk − p − lÞ2 −M2

¼ −
π

2
ffiffiffi
λ

p log

�
1þ λ

k2M2 − ðM2 −m2
πÞ2
�

× Θðk2 − ðM þmπÞ2Þ;

and the function λ is given by

λðk2Þ ¼ ðk2 − ðM þmπÞ2Þðk2 − ðM −mπÞ2Þ:

For the elementary T-odd q → Q FFs, the pion
loop diagrams of Fig. 4 give the following results for ps
coupling [30]:

h⊥ðq→QÞ
neutral ðz;p2⊥Þ

¼ 1

2

g2π
ð2πÞ3

M2

1 − z

�
Im ~Σðk2Þ

ðk2 −M2Þ2 þ
Im ~Γqðk2Þ
k2 −M2

�
; ðC15Þ

d⊥ðq→QÞ
T ðz;p2⊥Þ ¼ −h⊥ðq→QÞðz;p2⊥Þ; ðC16Þ

where the expressions should be taken at

k2 ¼ 1

zð1 − zÞ ðp
2⊥ þ ð1 − zÞM2 þm2

πzÞ:

For some fixed value of k2 one has Im ~Γqðk2Þ ¼ Im ~Γπðk2Þ.
The above model expressions illustrate some general

features discussed in the main text. First, the validity of the
TM sum rule for the elementary FFs is evident from
Eqs. (C12) and (C15). Second, if we insert the above
model expressions into the expression (3.54) for the quark
depolarization factor C we obtain

C ¼ −
�Z

1

0

dz
Z

d2p⊥
M2z3

½p2⊥ þM2z2 þ ð1 − zÞm2
π�2
�

×

�Z
1

0

dzz
Z

d2p⊥
p2⊥ þM2z2

½p2⊥ þM2z2 þ ð1 − zÞm2
π�2
�−1

:

ðC17Þ

From this relation we see that −1 < C < 0 and cannot be
equal to 1, which verifies the validity of the TM sum rule
(2.23) for the case of ps coupling.
The third point concerns the mixing of operators with

opposite chirality in the integral equation (3.40) because
of the finite constituent quark mass term in the propa-
gator. By noting that the Dirac matrices for massless
quark propagators are chiral even, and pion-quark cou-
plings always occur in pairs, we see that for the case of
the massless quark the chirality of the final product of
Dirac matrices is equal to the chirality of the external

quark operators γþ, γþγ5, iσiþγ5. Therefore the term ∝
d̂⊥ðq→QÞ
T H⊥ðQ→πÞ in the integral equation (3.40) must

arise from the finite constituent quark mass term in
the propagators. The model forms given above actually

show that d̂⊥ðq→QÞ
T ∝ M2, and ĥ⊥ðq→QÞ ∝ M2. Because

also ĥ⊥ðq→πÞ ∝ M, the integral equation (3.42) gives
H⊥ðq→πÞ ∝ M, and therefore the second term in the
bracket ½…� of (3.40) is ∝ M2.
In completely the same manner, one can confirm these

points also for the case of pv coupling. First, in order to
verify that −1 < C < 0 from (3.54), we need the following
three functions derived from the q → Q fragmentation
diagram of Fig. 2:

~dðq→QÞðz;p2⊥Þ ¼
�
gA
2fπ

�
2 1

4

1

ð2πÞ3

×

�
1

1 − z
−

4M2m2
πzð1 − zÞ

½p2⊥ þM2ð1 − zÞ2 þ zm2
π�2
�
;

ðC18Þ

~hðq→QÞ
T;neutralðz;p2⊥Þ ¼ − ~dðq→QÞ

neutral ðz;p2⊥Þ; ðC19Þ

~h⊥ðq→QÞ
T;neutral ðz;p2⊥Þ ¼

1 − z
2

�
gA
2fπ

�
2 1

ð2πÞ3

×
4M4z2

½p2⊥ þM2ð1 − zÞ2 þ zm2
π�2

; ðC20Þ

where the tilde above the functions characterizes the pv
coupling, gA is the weak axial vector coupling constant on
the quark level, and fπ is the weak pion decay constant.
Comparing to the forms (C6)–(C8) for ps coupling, we see
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that in pv coupling a kind of contact term appears [28], and
for a numerical evaluation one needs a scheme which
regularizes both the divergencies of the z integrals and the
transverse momentum integrals.16 Nevertheless, it is
straight forward to verify the inequality −1 < C < 0 on
the level of integrands by inserting the above model forms
into (3.54).
Second, the one-pion loop expression for the elemen-

tary T-odd function h⊥ðq→πÞðz;p2⊥Þ in pv coupling has
been given in [28], and we do not reproduce it here. It
has the same prefactor Mmπ as in (C12) of the ps case,
and from the operator definition (2.6) it follows that the
function h⊥ðq→QÞðz;p2⊥Þ in pv coupling involves the
same prefactor M2 as in the ps case (C15). Together
with the relation (C16), which holds also in the pv case,
the above discussion on the mixing of operators with
opposite chiralities due to the finite constituent quark
mass term in the propagator holds for pv coupling
as well.
Finally, in this appendix, we list the sum rules for the

renormalized functions, including the flavor dependence as
shown in (C1) and (C2):

X
τπ

Z
1

0

dz
Z

d2p⊥f̂ðq→πÞðz;p⊥; sÞ ¼ 1; ðC21Þ

X
τπ

τπ

Z
1

0

dz
Z

d2p⊥f̂ðq→πÞðz;p⊥; sÞ ¼
2

3
τq; ðC22Þ

X
τQ

X
�S

Z
1

0

dz
Z

d2p⊥f̂ðq→QÞðz;p⊥; s;SÞ ¼ 1; ðC23Þ

X
τQ

τQ
2

X
�S

Z
1

0

dz
Z

d2p⊥f̂ðq→QÞðz;p⊥; s;SÞ

¼ −
1

6
τq: ðC24Þ

Because these sum rules are based only on the normali-
zation condition (3.2) and the flavor dependence (C1) and
(C2), they are model independent.

APPENDIX D: PRODUCT ANSATZ
AND RECURSION RELATIONS

We first formulate the product ansatz in terms of the
unrenormalized elementary q → Q FFs and the maxi-
mum number of pions (N) which can be produced by the
fragmenting quark. Let us denote the first and second
terms on the rhs of Eq. (3.1), which correspond to
different hadronic spectator states (namely the vacuum

and the one-pion state, respectively) by fðq→QÞ
v and

fðq→QÞ
p . We use the notations (3.6) of the main text to

denote multidimensional momentum integrations and
also define

�X
ν¼v;p

�
N ≡ X

ν0¼v;p

X
ν1¼v;p

� � �
X

νN−1¼v;p�X
�Sn

�
N ≡X

�S1

X
�S2

� � �
X
�SN

:

for multiple summations. The basic product ansatz is
then as follows:

Fðq→πÞðz;p⊥; sÞ

¼
�X

ν¼v;p

�
NXN

m¼1

Z
DNη

Z
D2Np⊥

�X
�Sn

�
NX

τQN

× fðq→Q1Þ
ν0 ðη1;p1⊥;S1; sÞ

× fðQ1→Q2Þ
ν1 ðη2;p2⊥ − η2p1⊥;S2; hS1ifν1 Þ ×…

× fðQN−1→QNÞ
νN−1 ðηN;pN⊥ − ηNpN−1⊥;SN; hSN−1ifνN−1

Þ
× δðz − zmÞδð2Þðp⊥ − ðpm−1⊥ − pm⊥ÞÞδðνm; 1Þ
× δðτπ; ðτQm−1

− τQm
Þ=2Þ: ðD1Þ

Here the function f
ðQi→QjÞ
νi ðη;p⊥;Sj;SiÞ for the jth step

is the unrenormalized elementary FF for the case
where the incoming quark ðQiÞ has zero TM and
polarization Si and the outgoing quark ðQjÞ has
TM p⊥ and polarization Sj. The quantities hSiifνi of

the jth step (j ¼ iþ 1) denote the average polarization

of Qi determined by the functions fðQi−1→QiÞ
νi−1 of the

ith step.
We now insert the form (3.1) for each factor fνi of (D1)

and sum over the directions of Sj, where j ¼ iþ 1. As a
result, the factor ð1þ S · sÞ=2 in fv of (3.1) is replaced by
unity, while the spin sum over f̂ gives the function (3.3). It
is then easy to see that all products with the same number
(call it k) of f̂0s and (N − k) number of Z0

Qs make the same

contribution to Fðq→πÞ. We, therefore, can introduce an
ordering of the factors in (D1), so that the first k η’s not
equal to one (η1; η2;…ηk ≠ 1), and the remaining η’s equal
to one (ηkþ1; ηkþ2;…ηN ¼ 1), multiply the combinatoric
factor ðNkÞ and perform a sum over k. For some fixed k, only
the terms with m ≤ k will contribute to the sum in (D1),
because zm in (3.8) must be nonzero. Then Eq. (D1)
becomes

16An example is the invariant mass (or Lepage-Brodsky)
regularization scheme [57,58].
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Fðq→πÞðz;p⊥; sÞ

¼
XN
m¼1

XN
k¼m

PðkÞ
Z

Dkη

Z
D2kp⊥

X
τQk

× f̂ðq→Q1Þðη1;p1⊥; sÞ
× f̂ðQ1→Q2Þðη2;p2⊥ − η2p1⊥; hS1iÞ
× � � � × f̂ðQk−1→QkÞðηk;pk⊥ − ηkpk−1⊥; hSk−1iÞ
× δðz − zmÞδð2Þðp⊥ − ðpm−1⊥ − pm⊥ÞÞ

× δðτπ; ðτQm−1
− τQm

Þ=2Þ≡XN
m¼1

Fðq→πÞ
m ðz;p⊥; sÞ:

ðD2Þ

Here we use the same notation as in the main text for the
spin averages; i.e., hSii for the jth step (j ¼ iþ 1) means
the average polarization of Qi determined by the renor-
malized function f̂ðQi−1→QiÞ of the ith step. The binomial
distribution,

PðkÞ ¼
�
N

k

�
ZN−k
Q ð1 − ZQÞk; ðD3Þ

is the probability of producing kmesons out of a maximum
of N mesons and satisfies the normalization condition

XN
k¼0

PðkÞ ¼ 1: ðD4Þ

For a fixedm in (D2), we can integrate over the variables ηk
and pk⊥ for k > m by using the normalization (3.2). Then,
for all k ≥ m, only the integrations over the same set of
variables ηl and pl⊥ for l ¼ 1; 2;…m remain, and the sum
over k refers only to the probabilities PðkÞ. The integrations
over the variables ηm;pm⊥ are then performed by using the
delta functions. Making a shift ηm → 1 − ηm, and following
similar steps as in (3.26) of the main text, the result of these
integrations is

X
τQm

Z
1

0

dηm

Z
d2pm⊥δðz − zmÞf̂ðQm−1→QmÞðηm;pm⊥ − ηmpm−1⊥; hSm−1iÞδðp⊥ − ðpm−1⊥ − pm⊥ÞÞδðτπ; ðτQm−1

− τQm
Þ=2Þ

¼
Z

1

0

dηmδðz − η1η2…ηmÞf̂ðQm−1→πÞðηm;p⊥ − ηmpm−1⊥; hSm−1iÞ; ðD5Þ

where the renormalized elementary q → π splitting function f̂ðq→πÞ is given by

f̂ðq→πÞðz;p⊥; sÞ ¼
1

1 − ZQ
fðq→πÞðz;p⊥; sÞ: ðD6Þ

In this way, the function Fðq→πÞ
m of Eq. (D2) becomes

Fðq→πÞ
m ðz;p⊥; sÞ ¼

�XN
k¼m

PðkÞ
�Z

Dmη

Z
D2ðm−1Þp⊥f̂ðq→Q1Þðη1;p1⊥; sÞf̂ðQ1→Q2Þðη2;p2⊥ − η2p1⊥; hS1iÞ � � �

× f̂ðQm−2→Qm−1Þðηm−1;pm−1⊥ − ηm−1pm−2⊥; hSm−2iÞ
× f̂ðQm−1→πÞðηm;p⊥ − ηmpm−1⊥; hSm−1iÞδðz − η1η2 � � � ηmÞ: ðD7Þ

In order to obtain a recursion relation for the functions Fðq→πÞ
m , we carry out the following steps17: First, we make shifts of

the integration variables ðpm−1⊥;…p1⊥Þ → ðp0
m−1⊥;…p0

1⊥Þ according to

p0
l⊥ ¼ pl⊥ − ηlpl−1⊥ ðl ¼ 1; 2;…m − 1Þ; ðD8Þ

with p0⊥ ≡ 0. Using these relations recursively, the argument of the function f̂ðQm−1→πÞ in (D7) becomes

p⊥ − ηmpm−1⊥ ¼ p⊥ − ηmp0
m−1⊥ − ηmηm−1p0

m−2… − ηmηm−1 � � � η3η2p1⊥: ðD9Þ

In this way, Eq. (D7) can be written as

17The same steps are used in the main text to derive Eqs. (3.28) and (3.29) from (3.27).
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Fðq→πÞ
m ðz;p⊥; sÞ ¼

�XN
k¼m

PðkÞ
�Z

Dmη

Z
D2mp⊥f̂ðq→Q1Þðη1;p1⊥; sÞf̂ðQ1→Q2Þðη2;p2⊥; hS1iÞ × � � �

× f̂ðQm−1→πÞðηm;pm⊥; hSm−1iÞδðz − η1η2 � � � ηmÞδð2Þðp⊥ − pm⊥ − ηmpm−1⊥ − ηmηm−1pm−2⊥ − � � �
− ηmηm−1…η3η2p1⊥Þ: ðD10Þ

Second, we replace m → m − 1 in (D10) to obtain an expression for Fðq→πÞ
m−1 . In this expression, we rename the integration

variables as η1 → η2; η2 → η3;…ηm−1 → ηm and similarly for the TM. Also, we rename the quark flavors as
q → Q1; Q1 → Q2;…Qm−1 → Qm. Third, in the expression (D10) for Fðq→πÞ

m , we use the following identities:

δðz − η1η2 � � � ηmÞ ¼
Z

1

0

dηδðz − η1ηÞδðη − η2η3 � � � ηmÞ; ðD11Þ

δð2Þðp⊥ − pm⊥ − ηmpm−1⊥ − ηmηm−1pm−2⊥… − ηmηm−1 � � � η3η2p1⊥Þ

¼
Z

d2k⊥δð2Þðp⊥ − k⊥ − ηp1⊥Þδð2Þðk⊥ − pm⊥ − ηmpm−1⊥ − ηmηm−1pm−2⊥ −… − ηmηm−1… − η4η3p2⊥Þ: ðD12Þ

In (D12), we used η ¼ η2η3 � � � ηm from (D11).

Following the three steps explained above, we obtain the following recursion relation for Fðq→πÞ
m ,

Fðq→πÞ
m ðz;p⊥; sÞ ¼ Rm

Z
D2η

Z
D4p⊥δðz − η1η2Þδð2Þðp⊥ − p2⊥ − η2p1⊥Þf̂ðq→QÞðη1;p1⊥; sÞ

× FðQ→πÞ
m−1 ðη2;p2⊥; hS1iÞ; ðD13Þ

while for m ¼ 1, we have

Fðq→πÞ
1 ðz;p⊥; sÞ ¼ R1f̂

ðq→πÞðz;p⊥; sÞ: ðD14Þ

The ratios Rn for n ¼ 1; 2;…N are defined as

Rn ¼
P

N
k¼n PðkÞP

N
k¼n−1 PðkÞ

: ðD15Þ

The total FF then becomes

Fðq→πÞðz;p⊥; sÞ ¼ R1f̂
ðq→πÞðz;p⊥; sÞ

þ
XN
n¼2

Fðq→πÞ
n ðz;p⊥; sÞ: ðD16Þ

It can be seen from this relation that the sum rules are not
satisfied if the maximum number of mesons (N) is finite
[32]. As we explain in the main text, we consider the limit
N → ∞, where the following relation is satisfied:

Rn !N→∞
1 ðn ¼ 1; 2;…Þ: ðD17Þ

(We note that, according to the Moivre-Laplace theorem, in
the limit N → ∞ the binomial distribution PðkÞ of (D3)
becomes a normal (Gauss) distribution with the same mean

value [equal to Nð1 − ZQÞ] and variance [equal to
NZQð1 − ZQÞ].) It then follows from (D16) and (D13)
that the FF satisfies the following integral equation in the
limit N → ∞:

Fðq→πÞðz;p⊥; sÞ

¼ f̂ðq→πÞðz;p⊥; sÞ þ
Z

D2η

Z
D4p⊥δðz − η1η2Þ

× δð2Þðp⊥ − p2⊥ − η2p1⊥Þf̂ðq→QÞðη1;p1⊥; sÞ
× FðQ→πÞðη2;p2⊥; hS1iÞ; ðD18Þ

which is the same as (3.30) of the main text.

APPENDIX E: MEAN ISOSPIN Z COMPONENT
AND TRANSVERSE MOMENTUM

OF QUARK REMAINDER

In this appendix, we wish to show that, after N → ∞
fragmentation steps, the mean isospin z component and the
mean TM of the quark remainder are zero. These results are
confirmed in the main part (Sec. III. D.), and for clarity we
present alternative proofs in this appendix.

1. Mean isospin z component of quark remainder

We denote by PN the probability that, afterN emission of
pions, the isospin z component of the quark is the same as
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that of the initial quark. Because, in each emission step, the
probability that the quark isospin z component changes is
equal to 2=3 and the probability that it does not change is
equal to 1=3, we obtain the recursion relation

PN ¼ 1

3
PN−1 þ

2

3
ð1 − PN−1Þ ¼

2

3
−
1

3
PN−1: ðE1Þ

This can be solved with the initial condition P0 ¼ 1 as

PN ¼ 1

2

�
1þ

�
−
1

3

�
N
�
: ðE2Þ

This shows that, in the limit N → ∞, PN becomes 1=2, i.e.,
that the quark remainder has equal probabilities for the
isospin z component �1=2 and, therefore, its mean isospin
z component must be zero. More explicitly, if τq=2 is the
isospin z component of the initial quark, then after N
emission steps, the quark has an average isospin z compo-
nent

τq
2
PN −

τq
2
ð1 − PNÞ ¼

τq
2
ð2PN − 1Þ ¼ τq

2

�
−
1

3

�
N
; ðE3Þ

which vanishes in the limit N → ∞.

2. Mean TM of quark remainder

According to our product ansatz (3.6), the probability for
a fragmentation chain is given by the products of elemen-
tary q → Q splitting functions. The delta functions in (3.6)
select a meson which is produced in the mth step, and the
summation over m gives the probability for semi-inclusive
pion production. Instead of selecting the pions, we now
select the final quark by the delta functions. Because we are
interested in the isoscalar case, we sum over the flavors of
the final quark. This gives, for the probability density of
q → QN ,

Pðz;p⊥; sÞ

¼ limN→∞

Z
DNη

Z
D2Np⊥

X
τQN

× f̂ðq→Q1Þðη1;p1⊥; sÞf̂ðQ1→Q2Þðη2;p2⊥ − η2p1⊥; hS1iÞ
×… × f̂ðQN−1→QNÞðηN;pN⊥ − ηNpN−1⊥; hSN−1iÞ
× δðz − ηNÞδð2Þðp⊥ − pN⊥Þ: ðE1Þ

Because each factor has the flavor dependence (3.32), it is
easy to see that, after the flavor summations, all elementary
functions should be replaced by the isoscalar functions

f̂ðq→QÞ
ð0Þ . The mean TM of the quark remainder is obtained

by multiplying (E1) by p⊥ and integrating over z and p⊥.
This gives

hp⊥irem ≡
Z

d2p⊥p⊥
Z

1

0

dzPðz;p⊥; sÞ

¼ limN→∞

Z
DNη

Z
D2Np⊥

× f̂ðη1;p1⊥; sÞf̂ðη2;p2⊥ − η2p1⊥; hS1iÞ
×… × f̂ðηN;pN⊥ − ηNpN−1⊥; hSN−1iÞpN⊥;

ðE2Þ

where now all functions in the product refer to the isoscalar
part of the elementary q → Q splitting function. Next we
use the shifts of integration variables (D8) for all
l ¼ 1; 2;…N. Using these relations recursively, as
explained in (D9), to express pN⊥ by the new variables,
we obtain

hp⊥irem ¼ limN→∞

Z
DNη

Z
D2Np⊥f̂ðη1;p1⊥; sÞ

× f̂ðη2;p2⊥; hS1iÞ ×… × f̂ðηN;pN⊥; hSN−1iÞ
× ðpN⊥ þ ηNpN−1⊥ þ ηNηN−1pN−2⊥ þ…

þηNηN−1…η2p1⊥Þ: ðE3Þ
Remember that the function for the nth step in this product
has the form (3.3)

f̂ðηn;pn⊥; hSn−1iÞ

¼ 2

�
d̂ðηn;p2

n⊥Þ þ
1

Mηn
ðpn⊥ × hSn−1iÞ3ĥ⊥ðηn;p2

n⊥Þ
�
;

ðE4Þ
with hS0i≡ s. Also, remember that for hSni in the function
for the (nþ 1) step, we have the recursion relation [see
Eq. (3.38)]

hSni · f̂ðηn;pn⊥; hSn−1iÞ

¼ 2

�
1

Mηn
p0
n⊥d̂⊥T ðηn;p2

n⊥Þ þ hSn−1iĥTðηn;p2
n⊥Þ

þ 1

M2η2n
pn⊥ðhSn−1i · pn⊥Þĥ⊥T ðηn;p2

n⊥Þ
�
; ðE5Þ

where the vector p⊥0 is defined by p⊥0 ¼ ð−p2⊥; p1⊥Þ if
p⊥ ¼ ðp1⊥; p2⊥Þ. (We also note that the longitudinal quark
polarizations do not contribute to inclusive pion production
and, therefore, all spin vectors of this appendix can be
replaced by their transverse parts.)
Consider now the integral over ðηN;pN⊥Þ in the second

term of ð…Þ in (E3). Here only the spin independent term
∝d̂ of the Nth factor in the product (E3) contributes, which
gives the longitudinal momentum fraction left to the quark
in one step. We denote this by K, where clearly K < 1. For
example, using the model forms of Appendix C for the case
of ps coupling, we have
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K≡2

Z
1

0

dηη
Z

d2p⊥d̂ðη;p2⊥Þ

¼
�Z

1

0

dηηð1−ηÞ
Z

d2p⊥
p2⊥þM2η2

½p2⊥þM2η2þð1−ηÞm2
π�2
�

×

�Z
1

0

dηη
Z

d2p⊥
p2⊥þM2η2

½p2⊥þM2η2þð1−ηÞm2
π�2
�

−1
:

ðE6Þ

For the third term in ð…Þ of (E3), we can carry out the
integrations over ðηN;pN⊥Þ and ðηN−1;pN−1⊥Þ to get a
factor K2, and so on. Therefore Eq. (E3) can be written as

hp⊥irem ¼ limN→∞

XN
n¼1

InKN−n; ðE7Þ

where we defined the integrals In by

In ¼
Z

Dnη

Z
D2np⊥f̂ðη1;p1⊥; sÞf̂ðη2;p2⊥; hS1iÞ

×… × f̂ðηn;pn⊥; hSn−1iÞpn⊥: ðE8Þ

These integrals can be evaluated in closed form by using
(E4) and (E5). The result is

Iin ¼ −ðϵijsjÞA · Cn−1; ðE9Þ

where we defined the constant A by

A ¼
Z

1

0

dη
Z

d2p⊥
p2⊥
Mη

h⊥ðη;p2⊥Þ: ðE10Þ

The constant C was defined already in (3.53), where it was
shown that jCj < 1 and that C has the physical meaning of
the quark depolarization factor for one fragmentation step.
The TM of the quark remainder is then finally obtained
from (E7) as

hpi⊥irem ¼ −ðϵijsjÞA lim
N→∞

KN − CN

K − C
¼ 0; ðE11Þ

where we used jKj < 1 and jCj < 1. We finally note that,
for the elementary process, the average TM of the final
quark is given by I1 ∝ A, which is nonzero. It is only after
an infinite chain of fragmentation processes that the
average TM of the final quark becomes zero. As we noted
already in the main text, the magnitude of the fluctuationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hp2⊥irem

p
is nonzero.
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